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Abstract

We propose a general method to solve matrix recurrences. The method also
makes easier to solve some scalar recurrences. We apply this technique to the
average case analysis of balanced search trees and tries. In particular we give
the exact solution for a fringe analysis problem, that was unknown before.

1 Introduction

Solving recurrences is at the heart of analysis of algorithms. Classical introductions
to the topic can be found in [Knu69, Lue80, GK82, GKP89]. However, matrix recur-
rences, as a topic, are only treated in differential equations books, and most of the
time for very simple cases involving constant matrices (for example, see Hildebrand
[Hil68]).

There are several algorithms that naturally lead to matrix recurrences in search
trees and digital trees. Also, scalar recurrences of high order, can be expressed as a
matrix recurrence of lower order [Hil68].

We propose a general method to solve matrix recurrences where all terms can
be expressed ‘as scalar functions of the independent variable and constant matrices.
We also obtain the asymptotic behaviour of the solution.

We begin by giving the main ideas behind our method, followed by two applica-
tions: the solution of a fringe analysis type equation (from the expected behaviour
of balanced search trees); and the expected complexity of some algorithms over tries
(regular expression searching and partial match queries).

*The work of the first author was supported by an Ontario Graduate scholarship, and the second
author by a Natural Sciences and Engineering Research Council of Canada Grant No. A-3353.
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2 Solving Matrix Recurrences

By using matrix algebra it is possible to simplify the analysis of a set of recurrence
equations. For example, consider the following problem:

fi(n) f(n/2) + fa(n/2)+ e, F1(1)=0,
fo(n) = afi(n/2)+ fi(n/2)+c2, fa(1)=0,

for n a power of 2 and a > 0. Suppose that a = 0, then we can reduce the problem
to

fi(n) = fi(n/2)+ fi(n/4)+e1+ec2, fi(2)=c, (1)=0.

Even this particular case appears to be difficult to solve.
However, writing the problem as a matrix recurrence, we obtain

f(n) =Hf(n/2) +¢,
and this recurrence may be solved by simple iteration
log, n—1
fln)y= Y Hke.
k=0

In many cases, this solution is not enough, and we need asymptotic results to obtain
the complexity of the algorithm. Decomposing H in its Jordan normal form {Gan59],
namely

H=PJP!

where J is a block diagonal matrix of the form

Jo 0 ..
J= 0 J, 0 .. ’
J; is a m; X m; square matrix of the form
A; 0o ..
S D
0 A;

where each J; is an eigenvalue of H with multiplicity m;, and P has as columns the
respective eigenvectors. Hence, we have

H* = pJ*p-1
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where J* is the block diagonal matrix [J¥], and each J¥ is of the form [Gan59)
Ak kAI.e—-l k( kz—I!Al.e—z ( k )Al'e+1-m.-
1 1 3 ° m;—1/""1

0 Ak RAET L (Ck yykzem
HF=|0 o Ak (kA
0 \E

1

Hence, we obtain the exact solution for f(n) as a function of the eigenvalues of H,

that is
. logy n—1
f(n)=P ( 3 J") Ple.

k=0
Hence, we have sums of the form

log, n—1 k .
YA (_)A’“" .
k=0 J
In fact, we have hidden all the dependencies of the recurrences inside the matrices

until this last step, where known summations that will depend on the eigenvalues
of H will have to be solved. In our case, we have that (A > 0)

M = O((logy n)intoe22) X #1
=1 O((logsn*)  A=1

Therefore the higher order term of f(n) is given by the eigenvalue of maximum value
and its multiplicity. In our example, the eigenvalues are 1+ \/a and 1 — y/a. Then,

= | O(nlw(+va)) o >0
f(”)“{ O((log;n)?) =0

If the exact value of the eigenvalues is unknown, we can bound them using charac-
teristics of the matrix H.
In summary, the main steps are

1. Express the set of recurrences as a matrix recurrence where all functions of
the independent variable (n in the example) are scalars, and the matrices have
constant entries.

2. Solve the recurrence using standard methods for scalar recurrences, but using
matrix algebra (non-commutative multiplication, inverse instead of division,
etc.).

3. Decompose all the matrices into their normal Jordan forms, expressing the
solution as a function of the eigenvalues of the matrices.

4. Compute or bound the eigenvalues to obtain the asymptotic complexity of the
solution.
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3 Fringe Analysis

Fringe analysis was formally introduced by Yao in 1974 [Yao74, Yao78] and was also
discovered independently by Nakamura and Mizoguchi [NM78]. However, the first
fringe type analysis was done by Knuth [Knu73, Solution to problem 6.2.4.10, pages
679-680]. Fringe analysis is a method used to analyze search trees that considers
only the bottom part or fringe of the tree. From the behaviour of the subtrees on the
fringe, it is possible to obtain bounds on most complexity measures of the complete
tree and some exact results.

Classical fringe analysis considers only insertions, and the model used is that
the n! possible permutations of the n keys used as input are equally likely. A search
tree build under this model is called a random tree. This is equivalent to say that
the n-th insertion has the same probability to fall in any of the n + 1 leaves of the
tree.

The theory of fringe analysis was formalized in Eisenbarth et al. [EZG182]. The
fringe of the tree is defined in terms of a finite collection C' of trees. A collection
C is closed if the effect of an insertion only depends in the subtree of the fringe in
where is performed, and produces one or more members of the same collection.

A

Type 1 Type 2
Figure 1: 2-3 tree fringe collection of height one

Figure 2: A 2-3 tree and its fringe of height one

Example 1. Figure 1 shows a tree collection that defines a fringe of height one
in a 2-3 tree, while figure 2 shows a 2-3 tree and the fringe corresponding to this
collection. The composition of the fringe can be described by the number of subtrees
of each type [Yao78], or by the probability that a randomly chosen leaf belongs to
each member in C [EZG182]. An insertion in a type I subtree produces a type II
subtree, while an insertion in a type II subtree produces two type I subtrees. This
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process defines a Markov chain [EZG*82]. Let A;(n) be the expected number of
subtrees of type % in the fringe, L; the number of leaves in type %, and
_ A;(n)L;
pi(n) = n+1
be the probability of a leaf belonging to a subtree of type ¢ in a random 2-3 tree
with n keys. Then,

Ai(n) = Aﬁn——U——zAgn)+22Aﬂn)and

Ax(n) = Ay(n-1)-— SAff") + 2A;(") .

Using p;(n) and matrix notation we have
—t 1 -
= —H)P(n-1
P(n)= 1+ —H)P(n-1),

where I is the identity matrix and H is called the fransition matrix, given by
-3 4
H= [ 3 —4 ] )

By using the condition p;(n) + p2(n) = 1 we obtain P(n) = [4/7,3/7]T forn > 6. B

In general, H = Hjy — Hy where Hy represents the transitions from one type to
another type, that is, hs;; is the the probability that an insertion in type j produces
one or more subtrees of type i times the number of leaves of type 7 created; and
H; = diag(L;) + I represents the leaves lost by each type after an insertion plus
one. It is not difficult to see that det(H) = 0.

A fringe analysis is connected [EZG*82], if there exist H; such that det(H;) # 0,
where H; is the matrix H with the i-th row and i-th column deleted.

The solution to a connected fringe analysis is given by the following theorem:

THEOREM 3.1
P(n) = & + 0(nFe(2)) |

where & is the solution to HZ = 0, normalized such that Y. p; = 1, and Xy is the
eigenvalue with second largest real part, and Re()\;) < 0 [EZG*82]. ||

In many cases, it is possible to use the structure of H to simplify the solution of
the system of equations [BYP85]. In the following paragraphs we give the solution
of the recurrence for all n, and we show that the second order term also depends on
the multiplicity of A,.
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We start from the matrix recurrence equation
- 1 o

P(n)=(14+ ——H)P(n—-1).

() = 1+ P - 1)

l.et m be the dimension of the recurrence. Because the rank of H is m — 1, we
include the condition that 3 ; p;(n) = 1, to obtain the following equation
1 =
F
n+1

bl

Bn) = (1+ ;}L—lfr)ﬁ(n ~1) +

where T = H(pm_1)x(m-1) — H', F is the last column of H up to the (m — 1)-th row,
and H' is a (m — 1) X (m — 1) matrix where every column is equal to F.

THEOREM 3.2 The solution for a connected fringe analysis of a closed collection of
trees is given by

(-1

(n+ 1)!

where 22 = (2 —n +1)---(z — 1)z denotes descendent factorials, with C obtained
from the initial condition

P(n)=-T7'F + (-T —1)2LC |

ﬁ(no) - [1$0’0’"-a0]T »

where ng is the number of elements in the smallest subtree type of the fringe collec-
tion.

Proof: Introducing the generating function

13(2) = Z ﬁ(n)z" ,
n>0
in the matrix recurrence, we obtain the following first order non-linear differential
equation
dB(z) (2:—1 1 )» 1 5
= I T)|P —Q=F
dz z(1 - z2) T3 (=) + z(1—2z)2" "’

whose solution is

P(z) = ‘(T“)‘n(“‘)o i )T’lF

where C is obtained from the initial condition.
For n > ng, we have

In*(1 -

B(n) = ["P(2) = =T7'F + Y (=T - D" ]—1 g,

k>0
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where [2"]P(z) denotes the coefficient in 2™ of P(2). But

k -z _1\n
[Zn]ln (}c' ) — ( :') S&k) ,

for n > k where Sgk) denotes Stirling numbers of the first kind [Knu69]. Therefore,
for n > ng

P(n)=-T 4I'+i lT;E%smﬂ—T 1)*C,
or [Knu69] .
-, . 1)t -
B(n)=-T"1F + ((—n—1+)T)!(—T — Nl

Example 2. In Example 1, we have 1_5(1) =[1,0],T = -7, F=4and C =1/35,
obtaining

4 (1-2)®
P(z) = 72(1 — 2) TR
or
_4 (-1)rf s
nr) =7 - 35 (n+1)'
Note that the second term is 0 for n > 5. |

The next step is to obtain the asymptotic behaviour of the solution. Let R =
—T — I. We want the asymptotic value of

( 1)n+1

) =

stﬂ@ﬁ

THEOREM 3.3 Asymptotically, every component of é(n) is
O(nRe(Al) logm—l n) ,

where A is the eigenvalue of T with largest real component, and m is its multiplicity.
Note that A\, is equal to the the second largest eigenvalue of H and that Re(A;) < 0.

Proof: We decompose R in its upper normal Jordan form [Gan59]
R=PJP!.

Then, we obtain
( 1)n+1

k -
an) = Py Zsille P10,
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Therefore, we have summations of the form
( 1)n+1 n+l (*) i
M; = erEyP Zsm bLat
By using a well known combinatorial relation [Knu69] we have

n+1 A
Mo = (-1)™ (n+1) )

From Eisenbarth et al. [EZG*82] we know that Re(A) > G for A an eigenvalue of
—T. If X is an integer we have M = 0 for n > A. If X is not an integer (that is, A
is real or complex), we have [Knu69]

B a1l A _[n=A-1) I'(n—2)
Mo = (-1)™* (n+1> = ( -1 ) T I(=A)T(n+1)°

Therefore, asymptotically, we have

n_(A‘H-)

Mo =55y + O(n™*72)

(see [AS72] for details about the I' function).
Analogously, we obtain

M; = ((Z(n - A) = ¥(=N) +0(1/n)) Mo = O(Mologi n) ,

where ¥(z) = £(InT(z)) =Inn + O(1) [AST2].
But if A is an eigenvalue of T, then —(A + 1) is an eigenvalue of —~T — I. Then,
we can state that every component of é(n) is

O(nfe1) 1og™117)

where ) is the eigenvalue of T with largest real component, and m is its multiplicity.

In all the analyses that appear in the literature, the multiplicity of the second
eigenvalue is 1. However, in general this may be not true.
Example 3. For the second order analysis of 2-3 trees [Yao78, EZG*82] (a seven
type collection), the second eigenvalue of H is —6.55 + 6.25¢, and then, the order of
each component in €(n) is proportional to

99.01 cos(6.25lnn)n"8%% 4+ O(n~"5%) .

Note that the periodic term has logarithmic period. |
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4 Algorithms on Tries

The analysis of several algorithms on tries can be expressed by matrix recurrence
equations. Examples are the simulation of finite automata over a binary trie [BYG89]
and partial match queries in k-d tries [FP86]. Here, we extend both cases to an al-
phabet of size o (that is, o-tries). A o-trie is a o-ary digital tree, which each node
has a descendant for every symbol of the alphabet.

One algorithm to search what strings are members of the language defined by
a given regular expression, is to simulate the corresponding deterministic finite au-
tomaton over the trie built from the set of strings. The main steps of the algorithm
are [BYG89]:

1. Convert the regular expression passed as a query into a minimized DFA with-
out outgoing transitions from final states (see justification in step 3).

2. Simulate the DFA on the o-trie from all strings. That is, associate the root of
the tree with the initial state, and, for any internal node associated with state
i, associate its k-th descendant with state j = §(%, zz) where § is the transition
function of the DFA and z; is the k-th symbol of the alphabet.

3. For every node of the trie associated with a final state, accept the whole subtree
and halt the search in that subtree. (For this reason, we do not need outgoing
transitions in final states).

4. On reaching an external node, run the remainder of the automaton on the
single string determined by this external node.

It is shown in [BYG89] that the expected number of internal nodes visited by
the automaton starting from a non-final state ¢, in a o-trie of n random infinite
strings can be expressed as

1 n!
Niny=1+— 3. G —WVa(m)+ -+ Nj(no)) (n>1)
on jittde=n 71t 70!

where j, = 6(%,2%) and 2 is the k-th symbol of the alphabet. This is similar to
the analysis for the expected number of nodes in o-tries [Knu73]. For final states
we have N¢(n) = 1 and for undefined states we have Nypnges(n) = 0 for all n. The
initial conditions are N;(0) = N;(1) = 0.

Introducing exponential generating functions in the above equation, that is

Ni(z) = 3 Ni(m) 2
n>0

we obtain

Ni(z) = /7 (N, (2/0) + -+ Ny, (/) + e* =1 -2
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Writing all the equations as a matrix functional equation, we have
N(z) = e/°HN(z/0) + f(2)F

where f(z) = e* — 1 — z and H is the incidence matrix of the automaton (that is,
an s X s matrix where s is the number of states in the DFA and h;; is the number

of transitions from state 7 to state j, with h;; = 0 if 7 is a final state) and Fbea
constant vector such that F; is 1 for all . The initial state is labelled 1.
This functional equation may be solved formally by iteration [FP86] obtaining

ﬁ(Z) — Z.ez(l_l/ak)f(Z/a'k)Hkﬁ
k>0

From here, it is easy to obtain N(n)/n! by computing [2"]N(z) using the series
expansion of e*. Then, we have
N(n) = Z TopHEF
k>0

1I\* n 1\n?
Tn,k::l—"(l—;) —;(1-;) .

The next step, it is to obtain the asymptotic value of N (n). Decomposing H in
its upper normal Jordan form [Gan59], and following the same steps as before, we
have

where

Nn)= Y mHF=P (Z Tn,ka) PlF.

k>0 k>0
Then, as in Section 2, we have summations of the form

M; = Z Tnk (k) Ae=i
k>0 J

The convergence of M; is guaranteed by the fact that, for fixed n and large k we
have

2
~1—e ot _ T —(n-1)/ek _ n
Tk ~1l—e _a'ke( We® = O(azk .

The asymptotic value of My for ¢ = 2 has already been obtained in Flajolet and
Puech [FP86]. In a similar manner (A > 1) we obtain

Mo = v(log, n)n'°%-* + 0(1) ,

where y(z) is a periodic function of ¢ with period 1, mean value depending only on
A, and with small amplitude. Similarly, for A > 1

1 1 d
M; = ( ojg;,n) ( og)ir n) nlo8e X L O(M;_y) .
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If A = 1, we have M; = O((log, n)*!). Then, for A; we have that the main order
term is

7i(loga n) (loga n)mi_l o8 X |
The higher order term of Ny(n) is given by A; = max;(|);]). In the case that there
are more than one eigenvalue with the same modulus, we select A; to be the one
with largest multiplicity.

In [BYG89] is shown that 1 < A; < 2 for any regular expression when o = 2,
hence the number of visited nodes is sublinear in n. Analogously, it is possible to
prove that 1 < A; < o for our case. A similar analysis is done to conclude that the
expected number of comparisons performed by the automaton on a single string is
bounded by a constant independent of n [BYG89].

Example 4. Let A be the deterministic finite automaton of the regular expression
((0+ 2)(1 + 0))*1((1 + 2)(1 + 0))*0 over a ternary alphabet (see figure 3).

L) 1 (S)__ 0 @

0,1 02 0,1 1,2

Figure 3: Minimal state deterministic finite automaton for ((0 + 2)(1 + 0))*1((1 +
2)(1 + 0))*0.

The incidence matrix for A (1 is the initial state, and 5 is the final state) is

0 2100
2 0000
H=(00 0 2 1
00 2 00
c 00 0O

The eigenvalues of H are 2 and —2, each one with multiplicity 2; and 0. The
expected number of visited nodes is

N1(n) = 7(log; n)logy n n'°%2 + O(n'*®?) = O(log, n n*%) .

In the case of partial match queries in k-d-tries of Flajolet and Puech [FP86], the
analysis is similar to an automaton with a single cycle of length k. Namely, a partial
match query over k attributes, consists in a string of length k, where some of the
attributes are specified and others are unspecified. The attributes are considered to



REFERENCES 12

be encoded using o symbols, and the keys stored in a o-trie, such that the branching
is decided cyclically in one of the k attributes, like in a k-d tree [BF79)].

In this case, the recurrences can be expressed as a single one, and in [FP86] a
scalar recurrence is solved. We use our technique to simplify the analysis. We see
the partial match query as a regular expression with a single cycle where we follow
one descendant if the attribute is specified, or all the descendants if the attribute
is unspecified. Let u be the number of unspecified attributes. Then, the matrix H
consists only in one upper diagonal (Hy,2, ..., Hk—1,), plus one entry (Hg,1), where
u elements have the value o, and k£ — u the value 1. Hence, there is a real eigenvalue
A of maximal modulus (Perron-Frobenius theorem [Gan59]) of value A; = o%/* and
multiplicity 1.

Using the solution given for the general automaton, with the only difference
that the period of the oscillating function is divided by the number of attributes k
(because we have to inspect k levels, one per attribute, to discriminate one set of
keys), we have that the expected number of comparisons (visited nodes) to search

the query is
Cn e ‘Y (]%) nu/k .

Therefore, the only difference between the binary case and the case & > 2 is that
the period of 4 decreases when o increases.
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