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ABSTRACT

The term ‘field’ is used herein for a process
which associates a physical quantity with each
point in a region of space and time. In general,
fields can be scalar, vector, or tensor valued. Due
to the typically large number of variables involved,
many different visualization procedures are possible.
To provide analysts with immediate accessibility to
many alternatives, much development effort is
required in the areas of user-interface design and
advanced field visualization algorithms. This paper
describes the design of a system in the context of
generic field visualization. New visualization algo-
rithms can be implemented in a way that is
independent of the representation details underlying
a particular set of analysis results. User interfaces
and rendering methods can be easily shared across
fields of differing order and dimensionality. The use
of time as a visualization dimension is formalized
and pertinent interface controls are discussed.
These design attributes lead the way to many new
possibilities in interactive visualization, permitting
the exploitation of the fast processing, graphics
pipeline speeds and multi-dimensional graphics
input devices that are now obtainable with graphics
workstations.

Key Words and Phrases: Scalar-, vector- and
tensor-valued fields; piecewise analysis of continuum
systems; visualization in scientific computing;
interactive feature extraction; system design.

1. INTRODUCTION

For the purposes of this paper, a field is
defined as a mapping from an n-dimensional space
to the m-components of a corresponding field value.
Fields can be scalar, vector, or tensor valued. For
scalar fields, m is always 1. For vector fields, m is
the dimensional length of the vector value. For
tensor fields, m is the number components in the
tensor value.

More formally, scalars and vectors can be
thought of as zero and first order temsors respec-
tively[1l]. An example of a second order tensor field
is the stress associated with a thin plate. In this
case the stresses perpendicular to the plane of the
plate at a given point are negligible. The complete
stress state associated with a given point in the
plate can be written in terms of a symmetric 2 by 2
matrix. Thus m is 3 for this class of field.

Mathematical operations on a field with m
components produce new fields with a new m,
which we denote as m/. An objective in field visuali-
zation is to display the continuous behaviour of the
(n+m~+m' . .) dimensions unambiguously. More
specifically, it is important to provide for the
display of explicit interrelationships between
selected components. This is because for high order
fields, the independent display of any one of the m
components is typically of little or no interest, rela-
tive to the continuously varying interrelationships
among component values.

From this background, the task at hand can
be thought of as being (n+m-+m' . .) dimensional,
where (n+m-+m' . .) can be typically as high as ten
or more. Since the number of dimensions available
for actual display on a workstation at one time is
limited, there are many alternative display methods
to be chosen from, each with a distinct selection
from or combination of the (n+m+m'..) dimen-
sions of the task at hand. This leads to many
interesting user interface design issues that need to
be dealt with.

Another important attribute of field visualiza-
tion that distinguishes it from other forms of scien-
tific data visualization is that there is an infinity of
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information within the continuous domain of a
given field. Hence field visualization is inherently a
summarizing process in which there are many dif-
ferent methods of summarizing various aspects of a
field that might be of interest. Clearly, a sys-
tematic approach is needed to make these methods
interactively accessible to users, permitting the
selection of the visualization and feature extraction
techniques that are most appropriate for a given
problem.

A major practical consideration in the design
of field visualization software involves the diversity
of field-analysis methods. These include finite
difference methods, finite volume methods, boun-
dary and finite element methods, spectral methods,
and special purpose variational methods[eg:2]. All
of these methods are approximations to the solution
of continuum systems. At the end of the analysis,
the output is characterized by numbers (field
values) associated with discrete points (nodes) or
regions (elements) of the domain. For some
methods, such as the finite element method, an
interpolation function that is consistent with the
underlying mathematical formulation might also be
available. Similarly, for empirically measured fields,
data values at discrete points are typically used
along with a relevant interpolation method.

Until recently, the post-processing software
associated with common analysis codes have tended
to carry this discrete data structure all the way
through to what the analyst sees on the screen of a
graphics workstation. The geometry in the under-
lying data structures was typically inflexible, and
dedicated to a given analysis method. Providing
analysts with immediate access to a selection of old
‘summarizing’ procedures was difficult, let alone
adding new ones.

This paper describes the design of a system
that is based on the above generic concept of a con-
tinuous field. New visualization algorithms can be
implemented in a way that is independent of the
representation details underlying a particular set of
analysis results. User interfaces and rendering
methods can be easily shared across fields of differ-
ing order and dimensionality. The ability to map
one of the n generic independent variables to real
time can be provided in a natural way. This use of
time as a formal visualization dimension provides
analysts with easy access to the best real-time per-
formance that a given workstation can deliver,
without compromising on software portability.

2. OVERALL SYSTEM DESIGN

The overall structure of the system is illus-
trated schematically in Table 1. The crux of this
design lies in the data flow between the tools and
the generic field source. The only information that
the tools need to perform their assigned tasks effi-
ciently is m values (and optionally, selected low
order derivatives) at arbitrary points in the n-D
domain of the field. The tools produce geometry,
scalar values associated with coordinates of that
geometry, and colour and timing information, all of
which is sent to the renderers which form the inter-
face between the tools and a graphics hardware
pipeline. Because the tools are not constrained by
the data structures of a given field analysis method,
they have complete freedom to adapt to field
behaviour, and permit simple user control of the
trade-offs between image quality and precision on
the one hand, and interaction speeds and response
times on the other.
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Table. 1. The primary modules
and their interconnections

GENERIC FIELDS

Evaluators for each supported field represen-
tation

An interface between generic field value
requests and the actual evaluators, including
a mechanism to permit the user to indicate
a ‘current field’ out of a collection of fields

(a) Requests for {a) Values (and
field values derivatives)
(b) Requests for (b) Boundary
local domain boun- intersections  and
dary information local curve seg-
ments
TOOLS

Numerical algorithms for tracking curves
and sweeping out surfaces that satisfy
specific conditions relevant to a given
feature extraction process

Adaptive and flexible volume/surface inter-
section procedures

User interfaces capable of monitoring system
performance and adapting accordingly, and
of exploiting the ease with which users can
‘walk around’ field space with the aid of
graphical input devices

Geometry, scalar System perfor-
values, colour and mance data w.r.t
timing data the use of time

RENDERERS

Mechanisms for associating field coordinates
with screen coordinates

Mechanisms for associating scalar values
with colour

Mechanisms for controlling the use of time
as a formal visualization dimension

3. GENERIC REPRESENTATIONS OF
FIELDS

The overall design concept described in Table
1 is applicable to large classes of field visualization
problems. But in order to provide a framework for
discussion of some specific tools in section 4 and to
pragmatically define the scope of the present paper,
the following limits are placed on n for the
remainder of this paper.

We explicitly deal herein with fields in which
n is either three or four. For fields in which n = 3,
we denote the three independent variables as
(»,v,t), and use v and v as spatial dimensions of the
output geometry and map ¢ to real time. 2-D
steady state fields form a special case in which ¢ is
invariant. Similarly, for fields in which n =4, we
denote the four independent variables as (u,v,w,t),
and use u, v and w as spatial dimensions and ¢ as
time. (Similarly, 3-D steady state fields are a spe-
cial case in which ¢ is invariant.)

The software implementation of the above
generic concept of fields follows readily via well-
known information hiding techniques. The user
interacts with an array of fields, where all visualiza-
tion operations are performed on the currently
selected field. Consider the simplest case of a scalar
field visualization tool that only needs the value of
the field at requested points in the field domain in
order to perform its task efficiently. Such a tool
can simply send requests to the field evaluators giv-
ing the three (or four) data elements comprising an
arbitrary point in n-space, and receive an indication
of whether or not that point is inside the domain of
the current field, and if so, what its value is.

Such a tool need not know any of the details
about its representation — it might be a tensor pro-
duct B-spline in four variables; a uniform grid of
values that are to be quad-linearly interpolated; or
sets of connected networks of irregular polyhedra,
along with relevant spatial and time interpolating
functions. In all of the algorithms referred to in
section 4, we assume that these representational
details are indeed hidden, leaving the corresponding
software immune to changes or augmentations of
the actual field evaluators. The major generic
requirement of a given evaluation scheme is that
field values are expected to be finite and piecewise
continuous, (and in some cases, depending on the
algorithm, first and second order differentiable). At
run-time, the use of a given tool is restricted until
such time as the data for a relevant field exists
somewhere that is accessible to the relevant field
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evaluators.

As m increases, the number of data items
that need to get passed from the evaluators to the
tools increases. This increase is exaggerated in
cases where tools require partial derivatives in addi-
tion to the m field values. But the number of data
items remains manageable and does not threaten
the feasibility of the above approach for a large
class of practical field problems. Consider such a
class defined in Table 2 by the limits placed on m
for vector and tensor fields.

Table 2. Limits on number of values associated
with a large class of practical fields.

2nd order
n vars. Vector Symm. Tensor
3 u,v,t m=2 m=3
4 u,v,w,t m=3 m==6

Practical examples of vector fields in this class
include transient fluid flow fields in 2 and 3 spatial
variables. Examples of tensor fields include tran-
sient symunetric stress tensors.

A more general set of field visualization tools
can be served by the field value and derivative
requests that are summarized in Table 3. Each
entry in this table corresponds to a unique request.
The number in each entry indicates the number of
members in the returned data structure. Al of the
tools described later in this paper use structures of
these forms.

Table 3. The numbers of data items including derivatives
associated with selected field-value requests.

2nd order

Scalar Vector S.Tensor

n— 3D 4D 3D 4D 3D 4D
value 1 1 2 3 3 6
deriv_orderl 4 5 8 15 12 30
deriv_order2 10 15 - - - -

It is a simple task to add more data struc-
tures as the need arises. The important concept is
that there exists a manageable number of data
structures that cover large classes of visualization
needs.

There are many benefits of adopting this
approach. For example, all of the branching state-
ments required to perform a given evaluation using
the correct ‘current field’ are localized in an

analogous manner to collections of objects in an
object-oriented programming environment. More
generally, requests for field values need not even be
restricted to local function calls. A natural general-
ization would be to permit requests across networks
via remote procedure calls in a distributed comput-
ing environment. This would eliminate the
apparent need to pass entire sets of memory-
consuming analysis results to the visualization sys-
tem before it can get ‘off the ground’.

Another benefit of this generality is that spe-
cial cases fall into place in natural ways. For exam-
ple, ‘steady state’ fields can be readily accommo-
dated by simply adopting the convention that all
values are constant over some interval &, < ¢t < ¢,

and non-existent elsewhere. Thus the data associ-
ated with a steady state field that corresponds to
the termination of a damped transient field problem
can be smoothly joined to the transient field data
without the user having to switch current fields.

Further, even though t is always mapped to
the real time, T, of the display device, we need not
be restricted to fields in which the last variable is
physically ‘time’. (The mechanism for mapping ¢ to
T is described in section 6.). That is, we can alter
the actual use of the four dominant visualization
dimensions by simply altering the order of values in
the relevant field value data structure prior to
handing them to the tools.

4. FIELD VISUALIZATION TOOLS

The simplest tool, but least useful in terms of
getting an overall impression of the behaviour of a
given field, is a ‘numeric cursor’ digital readout of
field values at points indicated by ‘walking around’
the spatial domain of a field with the aid of various
graphics input devices. While this operation is
clearly of limited use on its own, we have found
that it fulfills an apparent desire to see actual
numbers when a user has identified and zoomed in
on a given feature of interest. It thus has an impor-
tant role to play in complementing the other tools.

Generally, tools are comprised of numerical
algorithms that performn operations on the current
field, and the user interfaces used to control when
and how these algorithms are executed. The algo-
rithms include operations on a sequence of fields of
the form f(u,v,w,ty), f(u,v,w,4), . . ., f(u,v,wty),
where t; forms a monotonically increasing sequence

over an interval of ‘model time’. As well as per-
forming operations on a given field, f(w,v,w,t;), the
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continuity of specific features with respect to time
can also be tracked via numerical techniques. From
the user’s point of view, the task of discretizing the
continuous time of a given field into a monotonic
sequence of images should be a hidden detail.
Mechanisms for doing this automatically involve
two-way communication between the renderers and
the tools.

As shown in Table 1, the primary item of
information that the renderers expect is geometry.
The basic geometric primitives that are dealt with
here are 3-D curves, tubes, and surfaces. Curves
are handed to the renderers as simply connected
polylines. Tubes are passed as polylines, along with
radii and surface properties. Other surfaces are
represented by irregularly connected triangular
patches. While these simple primitives are far less
compact than those obtainable using splines, they
are well suited to the assignment of colour to indivi-
dual geometric elements according to a given scalar
value and colour interpolation scheme. Some appli-
cations of each of these primitives are now given.

4.1 Curves

4.1.1 2-D contours and streamlines

Algorithms for tracking contours of bivariate
scalar fields of the form f(u,v,t;), and contours on

section planes of trivariate scalar fields of the form
fluv,w,t,), can be readily designed to exploit low
order partial derivatives[3]. Similarly, 2-D gradient
streamlines on section planes of f(u,v,w,;) can be
used to highlight point singularities[4]. While
continuous-tone colouring of surfaces provides good
overall impressions of field behaviour, curves pro-
vide excellent local directional information.

4.1.2 2-D Tensor field lines through finite
element models

An example of the result of interactively
tracking tensor field lines (curves which are every-
where parallel to the eigenvectors of a tensor field)
through a theoretically interesting stress field is
illustrated in Figure 1. In this field, a pair of forces
of equal magnitude and opposite direction are act-
ing near the centre. The way in which force is
transmitted from the source to the sink, and the
influence that this has on the surrounding media, is
clearly evident from the map of tensor fields lines.
The interaction paradigm used to create these
curves was roughly as follows. Having requested a

particular curve type from a menu, the user moves
the cursor around the domain of the field. A pair of
curves is drawn ‘uphill and downhill’ about the
moving cursor at speeds approaching refresh rates.
A button press at a given location records the
current curve pair. Hence analysts can essentially
paint pictures interactively, highlighting the
features required for either analysis feedback, future
records or simply evidence to use in communicating
concepts to colleagues.

Figure 2 illustrates a more practical example
— a wall-mounted bracket, in which there is no
point source or sink. In this example, the way in
which the applied distributed force is transmitted in
tension across the top member, and in compression
down the diagonal strut, is clearly evident from the
map of tensor field lines. The constriction-like
features in the top left also give the analyst clues as
to how the geometry might be modified to reduce
the maximum shear stresses in this region.

4.2 Tubes

4.2.1 The analysis of a stable defect pair in a
liquid crystal

Strong visual clues about the 3-D form of
space curves are observable when they are rendered
as tubes wrapped around their centrelines. This
effect can be exaggerated if lights are used to
highlight features of special interest. An example is
illustrated in Figures 3 and 4. The centrelines of
these tubes are parallel to the orientations of
molecules in a liquid crystal defect. In this exam-
ple, scalar quantities such as the vector magnitude
are of little significance, so colour and lights can be
used to highlight and distinguish the two directional
features of particular interest. A similar interaction
paradigm to that described earlier was used to
create this model.

4.2.2 An electric field associated with a macro
molecular model

The same procedures can be applied to the
gradient of scalar fields of the form f(u,v,w,t;), as

illustrated in Figure 5. The placement of each dis-
tinct collection of tubes into a separate graphical
sub-structure is straightforward, permitting the user
to switch features on and off at will. In this case
the tubes are colour coded according to gradient
magnitude, but there is no lighting and shading
used. On workstations with the ability to simul-
taneously display enough colours, both lights and
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scalar-value colour mapping can be used simultane-
ously.

4.2.3 A computational fluid dynamics
application

In many fluid flow problems, curvilinear
singularities are of interest. The centrelines of the
vortices illustrated by the streamline in Figure 6
provide an interesting example. Air flows from the
inlet at high velocity over the baffle towards the
outlet, where it then gets entrained in a pair of vor-
tices. Due to the complex nature of these vortices,
visualizing their form with streamlines alone is diffi-
cult hecause the resulting curves ‘cross themselves’
many times over when projected onto a 2-dimen-
sional graphics monitor. Further, when the velocity
in the direction of the vortex centreline is low,
streamlines tediously circulate around the centre-
line, taking a long time to track and to draw on the
screen. Hence it becomes interesting to focus
specifically on curves that define the centrelines of
the vortices. An example is illustrated by the addi-
tional curve in Figure 7 that is not shown in Figure
6. Figures 8 and 9 illustrate the 3-D nature of this
curve. The velocity along this line is extremely low
relative to the surrounding air. The blue spot in
the middle indicates the location at which the velo-
city magnitude passes through zero, or equivalently,
the point at which the velocity direction changes
sign.

The interaction paradigm used to create the
model of the vortex centreline is roughly as follows.
The user moves a cursor around in 3-space in the
vicinity of the vortex. With each screen update,
the nearest point on the curve defining the centre-
line of the vortex is located, and the centerline is
tracked about that point and displayed on the
screen. At any given time during this interaction,
the user can save a chosen centreline as a per-
manent tube in a manner analogous to that
described earlier. For transient fluid flow visualiza-
tion, the automatic tracking of such features with
respect to time follows in a natural way.

4.2.4 3-D Tensor fields lines through finite
clement models

The use of tensor field lines to communicate
the ways in which force is transmitted through 3-D
tuedin s illustrated in Figure 10. Various methods
tor displaying scalar functions of tensor fields have
heen been commonplace for some time. But the
bty to display the coupling between all 6

components of a symmetric 3X3 tensor field in this
way is new, and has only becoming feasible as a
result of increases in the performance of graphics
workstations. These curves were painted interac-
tively using the same sort of user interface as that
described in section 4.1.2. For 3X3 tensor fields,
there are three distinct curve sets about any given
point. Accordingly, the simultaneous tracking of
any combination of these is provided for in the
curve tracking menu for tensor fields.

4.3 Surfaces

4.3.1 Colour coded spherical icons

At the very beginning of this section, the use
of a ‘numeric cursor’ was described. A natural pro-
gression from this sort of simplistic interface is to
wrap a sphere around interactively steered points,
colour-coding it according to the value of a relevant
scalar field, or scalar function of some higher order
field (eg. velocity magnitude, eigenvalues, Von
Mises stresses, and so on). This gives analysts a fast
means of locating ‘hot-spots’ in regions of particular
interest. In transient fields, collections of such
objects can be left at given points in the (u,v,w)
domain, while the system automatically alters their
colour with respect to time.

4.3.2 Continuous tone section planes through
an atmospheric humidity field

A monochrome example of the use of con-
tinuous colour maps on volume sections is illus-
trated in Figure 11. In this example, the wave-like
highs in the humidity field are of particular interest.
A monochrome interpolation scheme was found to
be more effective in highlighting these features than
the full colour schemes used in the other examples.
The level of subdivision that surfaces are discretized
into prior to display is an editable parameter of the
section plane renderer. For section planes, this is
expressed in terms of limits on the data value varia-
tion across elements of the geometry. This sort of
adaptive control of the trade-offs between image
quality and drawing speeds is easy to provide for
with the continuous nature of the generic function
evaluators described in section 3.

Time plays an important role in this tool.
The provision for interactively steering a section
plane through a given volume provides an alterna-
tive to the apparent need to perform volume imag-
ing. Similarly, by leaving section planes in a given
spatial location, an impression can be gained of the
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full 4-D variation of transient scalar functions using
the timing controls described in section 5.

4.3.3 Isotimic surfaces through the molecular
electric field

An example of the use of isotimic (constant
value) surfaces is illustrated in Figure 12. The
three  ‘bubble-shaped’ features on the left
correspond to the three singularities in Figure 5.
The simultaneous wuse of shaded gradient-
streamlines and isotimic surfaces is illustrated in
Figure 13. For isotimic surfaces, the relevant scalar
value can be specified by using the ‘numeric cursor’
described earlier along with a mouse click, at which
point there is a slight pause while the isotimic sur-
face geometry around that point is created and
then handed to the renderers. In transient fields,
the evolution of the geometry of isotimic surfaces
with respect to time can be used together with the
use of section planes described above. The algo-
rithm for this task builds on ideas from the march-
ing cubes algorithm([56]. An initial virtual grid is
used as a starting point. The resulting coarse polyg-
onal information is adaptively refined until relevant
geometric tolerances have been satisfied.

Another example of the use of isotimic sur-
faces is shown in Figure 14, which clearly shows the
3-D form of the low pressure zone associated with
the vortices of the velocity field shown in Figures 8
and 9.

4.3.4 Tensor fields surfaces through 3-D FEM
models

Figure 15 shows a family of surfaces that are
everywhere orthogonal to the tensor field lines dep-
icted -in Figure 10. In this way, complete informa-
tion about the directions and magnitudes of the
states of normal stresses are viewable throughout
the tensor field medium at a given instant in time.

4.4 ‘Bubble traces’

The explicit use of the variable f as a visuali-
zation dimension is described in more detail in sec-
tion 5. It is difficult to capture the importance of
this dimension with static images alone, but ‘strobo-
scoped’ images provide some clues. An example of
the use of animation with respect to time in a
steady state analysis is illustrated in Figure 16.
The bubbles in this image are spaced a constant
time interval apart. The interaction is analogous to
that described earlier except that two button
presses are used — one to animate a given

streamline and a second to save the geometrical
description of the stroboscoped image.

A limitation of the traditional ‘bubble’ shape
is that its simplistic form does not lend itself well to
visualizing variations in the torsion of space curves.
So in addition to bubbles, the user can choose other
objects such as the ‘paper jet’ illustrated in Figure
17, permitting more effective use of lights and shad-
ing.

5. FIELD RENDERERS AND TIMING
CONTROLS

As shown in Table 1, the renderers control
the way in which geometry, timing and scalar data
are used to display images on the screen of a works-
tation.

5.1 Screen space and colour

Mechanisms for associating the spatial por-
tion of field coordinates (i.e. u, v, and w) with
screen coordinates (X, Y, and Z) are well-known
and need not be dealt with in detail here.

With respect to colour, our current imple-
mentation is restricted to mapping a given portion
of a scalar domain to colour space. Interactive con-
trol of the use of particular portions of colour space
is provided for, but we have chosen to limit the
number of independent variables in the use of
colour to one. Again, methods for performing this
task are well-known and are not dealt with in detail
here.

However, the use of time as a formal visuali-
zation dimension is of particular interest in interac-
tive field visualization, and is described in more
detail below.

5.2 The use of time — design objectives

In this section, the term resolution is used in
reference to the number of distinct frames that are
displayed per unit of real time, unless noted other-
wise. Clearly, the major consideration with respect
to the use of time as a formal visualization dimen-
sion is that resolution is dependent not only on
screen refresh rates, frame buffer update speeds and
the compute server performance of a given
hardware environment, but also the size and com-
plexity of the relevant display lists. Hence resolu-
tion can be expected to vary dramatically within a
given hardware environment, as well as across dif-
ferent hardware systems.
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Work aimed at developing methods for con-
trolling the faithful use of ‘real-time’ in computer-
graphics has been underway for many years[eg:7].
More recently, real-time previewing of the effects of
non-linear editing of the time-interpolation of
inhetweens in filn making has also been
developed[8]. In these applications, the use of time
is well-defined and the output sequence is fixed to a
given number of frames per second, requiring
display update speeds to be sufficient to be able to
display the most complex image within some given
amount of time. Similar constraints apply to the
design of flight simulators.

But in contrast to these applications, the use
of ‘real-time’ in scientific visualization is relatively
abstract. As described earlier, the underlying
independent variable that gets mapped to real-time
need not even physically correspond to time at all.

From the point of view of a field analyst
attempting to interpret quantitative results, con-
sistency in the way a visualization system handles
time is paramount. In a given static image, pixel
colours in the vicinity of a given normalized screen
coordinate are expected to be similar, regardless of
device resolution. Similarly, the entire image in the
vicinity of a given point in ‘display-time’ can be
expected to be basically the same from one
hardware environment to another, regardless of
hardware performance. The only difference should
be ‘image quality’ in so far as it is affected by the
number of frames in between the first and last
frames.

Consider extending this analogy to interac-
tive alteration of clipping and ‘zoom’ parameters.
If the projection of a given static image is such that
the pixel resolution around a particular feature is
insufficient to capture the essential characteristics
of the feature, then the user gets to zoom in on the
feature until the required information is clearly visi-
ble. Accordingly, if the real-time resolution of a
given sequence is so poor as to miss a particularly
short duration feature, then the user should be able
to interactively ‘zoom’ in on the model-time inter-
val of interest, obtaining more information over a
given real-time interval, and ‘clipping’ information
outside the ‘time-zoom’ limits. This is in marked
contrast to simply controlling the wait interval (or
frame buffer swapinterval in a double buffered sys-
tem) in a fixed sequence with a fixed number of
frames per unit of model time.

From this background, the main design objec-
tive for the use of time as a formal visualization
dimension becomes clear. The user requires 3
valuators (egs. knobs or slider bars) to control the
mapping from field-model time, ¢, to real-time, T:

O G O

Model start Model finish

The three corresponding variables are
denoted as t,,,,,, the start time in field-model space,

Real interval

thinish, the finish time in field-model space, and T,

realy
the real-time duration to which tg, .5 — t,ey is

mapped on to. The automatic computation of an
appropriate sequence of sets of geometry and scalar
values for fields of the form f(u,v,w,t;) and the con-

trol of the faithful real-time display of them, is to
be left up to the tools and renderers. The mechan-
ism that we have adopted for this task is described
below in pseudo code. It is assumed that the works-
tation is doublebuffered, and that control of when
buffers get swapped is available from the applica-
tions software level. Note that ¢, i =10,.,N is in

general, a non-uniform monotonic sequence, and
that the resulting display sequence, T, corresponds

to a subset of ¢;. Also note that all of the geometry

information is computed outside of the main loop,
and stored in a display-list or analogous format.
This approach is required to provide the maximum
possible density of frames per unit time, because
the time that it takes to compute the geometry,
scalar values, and colour coding information is typi-
cally over three orders of magnitude greater than
the time that it takes to display it.
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N,

estimate € an estimate of the number of frames that the

hardware is capable of displaying in Treal‘
N + (Ne:timate X M) —1 t
Compute geometry for f(u,v,w,t,v) fori =0,...,N.

do {
Execute display list for #; in back-buffer
Tmm +— the real time now

Execute screen update now (swap buffers)

while ( T< T.start + Treal)
{
Clear back buffer
T <+ the real time now
1+ estimate_i_to_give_spare_time( T—T,,,.)t
Execute display list for f; in back-buffer

t,— 1t T7-T

(3 start start

wait until 2
finish™ - Tre al
Execute screen update now (swap buffers)

}

if (performance can be improved) t

Re-evaluate NV using accumulated performance stats.t
Compute geometry for f(u,v,w,t,-) for ¢ = 0,...,N.

} while no user interrupts

t The crux of this design lies in pre-
computing display list information for more frames
than the hardware is capable of delivering in 7,,,,

and then actually displaying a selection from these
that is adaptable to fluctuations in system response
times. The actual density of the initial stored
sequence is controlled by M. Low values of M can
be used to give coarse initial guesses at optimal
sequences, which can then be refined during the
pause between cycles, accounting for possible ine-
qualities in display speeds from one frame to the
next. Responsibility for the faithful use of real-time
is localized within the function:

“estimate_i_to_give_spare_time(T—T,..)",

which can be designed to use statistics obtained
from the last cycle to estimate the next frame that
can be written into the backbuffer with time to
spare. User feedback of how frequently frames get
displayed late due to overly optimistic estimates is
easy to provide for using graphs of model time vs
real time. This function also takes responsibility for
ensuring that the last frame is displayed on time,
even if this means skipping (say) the second to last
frame and waiting until T = Ty—T,,,...

The main advantage of this design is the sim-
plicity and consistency of the user interface. For a
given setting of the three valuators, the same
software running on two systems with differing per-
formance capabilities will produce consistent first
and last frames and will cycle over the same inter-
val of real time, even though N might be totally dif-
ferent on each system. As described earlier, the
difference is limited to image quality in so far as
this is affected by N. The consistency of the con-
tent of the display with respect to time from one
cycle to the next is also kept as high as possible.

Special cases of timing requests also fall into
place naturally. For example, ‘forwards and back-
wards’ is simply controlled by permitting t,,,,, to be

either greater or less than g, ,, and constraining
T, . to be positive. Further, the use of ‘stills’ at
arbitrary values of ¢ (as distinct from discrete
‘frames’ in a finite sequence), can use the same
interface by simply adding a button that constrains
t,100¢ tO be equal to thinish-

The same algorithm can be applied to using
time as a visualization dimension for steady state
fields. For example, to animate the streamlines in
Figures 16 and 17, the total time that a mass-less
particle takes to travel the length of the streamline
is used to define a domain in . The user then uses
the three knobs described above to control the rela-
tionship between t and 7T, and the portion of the
streamline that gets animated.

Further work is planned for fields in which a
long playback duration (say ( Tpinish=Tstars) > 15
secs) is of interest. In such cases, a fourth valuator
to interactively control non-linear relationships
between ¢ and T is required. This would permit
the user to skip over uninteresting regions of ¢, and
concentrate on more interesting regions at the
touch of a valuator.

6. SUMMARY AND CONCLUSIONS

In summary, the recent dramatic improve-
ments of both processing power and graphics pipe-
line speeds provided in today's graphics worksta-
tions will lead to new ways of thinking about
interactive visualization in the analysis of field
problems. Based on the use of a prototype of the
design described herein, it is becoming reasonable to
suggest that interactive feature identification will
become part of the analysis itself, rather than an
afterthought as suggested by older terms such as
‘post-processing’.  As iterative design and analysis
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procedures evolve with more extensive use of feed-
back loops, it will become more and more important
to provide analysts with fast, highly interactive
methods of extracting the particular aspects of a
given field that are of interest. This is in marked
contrast to older ‘batch processing’ approaches that
involve the automatic creation of large amounts of
pictorial representations of analysis results. Just as
‘visualization’ has been invented to describe the
process of providing more immediate access to very
large amounts of analysis data, ‘interactive visuali-
zation’ will be ‘invented’ to describe the process of
providing more immediate access to the particular
features that are of interest to the analyst at par-
ticular points in both the spatial and time domains
of a given field.

7. OTHER APPLICATIONS

Work is already underway on the application
of the tools described herein to other phenomena,
including 4-D wind fields from meteorology studies,
and results of transient stress analyses. The latter
includes 4-D auto crash simulations using DYNA3D
software, and 3-D metalforming simulations involv-
ing automated re-meshing with respect to time[9].
With respect to tensor fields, applications beyond
the realm of solid mechanics are also of interest.
These include studies of the interaction between
components of coupled vector processes, such as the
flows of holes, electrons, and heat through semi-
conductor devices; and studies of the covariance of
probabilistic vector fields.

Finally, while the emphasis in this paper has
been on the use of tools that produce geometrical
information suitable for ‘geometry pipeline’ oriented
graphics workstations, it should be noted that the
overall design is by no means incompatible with the
use of tools that produce pixel information directly,
for use with ‘image computers’[10]. In fact an early
implementation of some of the components of this
design was used to volume render a sequence of
atmospheric humidity fields[11], the results of which
were presented at SIGGRAPH ’88. An interesting
extension of this work might involve performing
‘ray-tracing’-like procedures on continuous scalar
fields with colour-coded geometries of the styles
described herein imbedded within the scalar field,
potentially combining the best attributes of both
graphics system designs.
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