EbARTMENT
EPARTMENT

EPARTMENT

ER SEENGE B
cF SORNGER

|
Ul
UT

T

§

UNIVERSITY OF WATERLOC

ATERLS

WA
W

ONVERSH &

Reasoning About
Functional Dependencies
Generalized for

Semantic Data Models

Grant E. Weddell

Research Report
CS-89-14

April, 1989

Reasoning About Functional Dependencies Generalized for
Semantic Data Models

Grant E. Weddell

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1

ABSTRACT

We propose a more general form of functional dependency for semantic
data models that derives from their common feature in which the separate
notions of domain and relation in the relational model are combined into a single
notion of class. The feature manifests itself in a richer terminological com-
ponent for their query languages in which a single term may traverse any
number of properties (including none). We prove the richer expressiveness of
this more general functional dependency, and exhibit a sound and complete set
of inference axioms. Decision procedures are developed that apply when the
dependencies included in a schema correspond to keys, or when the schema itself
is acyclic. The theory is then extended to include a generalization of select-join
queries. Of particular significance is that the queries become an additional
source of functional dependency constraints. Finally, we outline several applica-
tions of the theory to various problems in physicul design and in query optimiza-
tion. The applications derive from an ability to predict when queries can have at
most one solution.

The research reported here was supported in part by the Natural Sciences and Engineering Research Coun-
cil of Canada, Bell-Northern Research Ltd, the University of Waterloo and the Multimedia Laboratory.

1. INTRODUCTION

There are several problems with the relational model when used for complex applica-
tions.[9] Some of these problems derive from its notion of a property, and its strict
separation of objects that must have property values, called tuples, from objects that can
be property values, called domain values. An important consequence is that query
languages which are variations of a "typed” form of the tuple calculus, such as SQL [5] or
QUEL [8], require all terms to denote objects that are domain values. This implies that
users must introduce properties of objects to serve as their means of reference, and that

all relationships between objects must be expressed indirectly in terms of these properties.

In order to overcome these difficulties, more recent semantic data models
[1, 4,6, 12, 13, 18] and object-oriented languages [7, 14] have usually combined the
separate notions of domain and relation into a single notion of class, and thereby allowed
properties to be defined between any pair of classes. Terms in query languages are then
permitted to "traverse” any number of properties: none, in recognition that objects that
were tuples have separate identity, or more than one, since objects that were domain

values are now permitted to also have structure.

If we think of an attribute as what the terminological component of a query
language permits one to ask of an object, then the variety of attributes possible with
semantic data models and object-oriented databases corresponds to all possible property
paths. Also, the possibility exists with most such data models that a schema may be
defined in which the number of different attributes is countably infinite. This happens for
cyclic schema. For example, if employee objects have a "boss” property which is also an

employee object, then there is a "boss" attribute, a "boss of the boss" attribute, and so on.

In this paper, we propose a more general form of functional dependency constraint
for semantic data models, called a path functional dependency (PFD), in which component
attributes may correspond to property paths. In Section 2, we define a simple semantic
data model together with a notion of interpretation based on directed graphs. Section 3
defines PFDs, proves their richer expressiveness, and presents a set of inference axioms.
A proof of their soundness and completeness with respect to our graph theoretic notion of
interpretation is also included. In Section 4, we derive some decision procedures that
apply in cases where the PFDs included with a schema correspond to keys, or when the
schema itself is acyclic. We also prove that a closure construction used by the procedures
can require exponential time in the more general case of cyclic schema with non-key
PFDs. In Section 5, we extend the theory by introducing a generalization of select-join

queries. In the process, we unveil a new source of PFDs induced by the join conditions

-3

of a query. A motivation for the theory is given in Section 6, where we present a number
of applications of the theory to problems in physical design and query optimization. The
applications derive from an ability to predict when at most one solution is possible to a
query. Our summary comments are given in Section 7, where we also mention some
open problems.

2. DEFINITIONS

In the relational model, a relation R with attributes {Ar, ---, A,} and corresponding
domains {Dy, - - - , D,} is usually declared by a relational scheme of the form
R{AI:DI""vAn:Dn} (21)

There are two consequences of this structuring of a relation on the forms that terms may
have for query languages based on the tuple calculus, such as SQL or QUEL. First, a
variable v in a query is assumed to range over a particular relation. And second, a term is
required to have the form "v.A" where A is an attribute of the relation over which v
ranges. Only a small finite number of terms can therefore be expressed for a given vari-
able.

In contrast, a semantic data model combines the separate notions of domain and
relation into a single notion of class, and allows attributes, typically called instance vari-
ables, to then have any class as their range.t In terms of the relational model, this is
analogous to permitting tuple-valued attributes. This idea is manifest in the following
definition of a simple semantic data model.

Definitions. A database is defined by a class schema S consisting of a set of class
schemes of the form

C{PI:C1,---,P,,:C,.} (2.2)

Each attribute P;, hereafter called a property, is unique in a given class scheme. Its type,
written Ran(C, P;), is the name C; of another (not necessarily distinct) class scheme. The
set of names of class schemes in S is written Classes(S), and the set of property names
occurring in the definition of a particular class scheme with the name C is written
Props(C).

O

1 The distinction remains, however, for "built-in" Integer or String classes. They may serve as a range for a
property, but may not themselves have properties. -

Example. A database storing information about student course enrollment might be
defined by the set of five class schemes listed in Table 1, where the last two are perhaps
"built-in". Note that the value of either the S or C property for any enrollment object will

be other objects that also have property values.
a

An important consequence is that query languages can now allow terms to have any
number of "dots”, including none. In other words, terms can navigate from object to
object by following a property value path, possibly of zero length. For example, if a vari-
able v ranges over all objects in the Enrollment class, then a query language might permit
a term such as "v.Student.Name", or even just "v" to be expressed. Furthermore, if a
class schema is cyclic, in the sense formally defined below, then the variety of terms
expressible for a given variable can be countably infinite. For example, given the class
scheme C {P:C} and variable v ranging over C, possible terms include "v*, "v.P",

"v.P.P", and so on.

Enrollment {S : Student, C : Course, Mark : Integer}
Student {Name : String}

Course {Room : Integer, Time : Integer}

Integer { }

String { }

Table 1. An Enroliment Class Schema

The concept of a path function will be our means of referring to a sequence of pro-

perties that may now occur in a term.

Definition. The set of property induced path functions PFp,,,(S) over class schema § is the

smallest set such that

1. {P|P € Props(C), for some C € Classes(S)} S PFpyp(S), where
Dom(P) = {C € Classes(S) | P € Props(C)}

2. If pf € PFp,pp(S), C € Dom(pf) and P € Props(Ran(C, pf)), then pf.P € PF Prop(S),

where

Dom(pf.P) = Dom(pf)
Ran(C, pf.P) = Ran(Ran(C, pf), P)
(m|
Example. The set of property induced path functions for the enroliment schema is
{S, S.Name, C, C.Room, C.Time, Mark, Name, Room, Time}

where, for example, Dom(C.Room) is {Enrollment} and Ran(Enrollment, C.Room) is
Integer. Note that the domain of all other path functions are also singleton sets, since no

two class schemes have the same name for any of their properties.
O

Definition. The set of identity path functions PF4(S) over class schema S consists of Idc
for each C € Classes(S), where Dom(Idc) = {C} and Ran(Idc) = C. (Identity path func-
tions will be our means of referring to property value paths of zero length. Note that they

are not considered properties.)
g

Definitions. The set of path functions over class schema S, written PF(S), is defined as
PFprop(S) U PF14(S) (i.e. the set of all property induced path functions and identity path
functions over S). The capital letters X, ¥ and Z are used to denote subsets of PF(S) for
some class schema S. For each C € Classes(S), we write PathFuncs(C) to denote all
pf € PF(S) where C € Dom(pf).

a

Definition. The length of a path function is the number of property names that it con-
tains; that is,

1 + Len(pf) ; if pf has the form of.P,
Len(p) = 40 ; if pf € PFAS),
1 ; otherwise.

O

Example. For the enrollment schema, Len(S.Name) = 2, and Len(Idgydent) = 0.
(]

The following lemma is a simple consequence of the fact that the number of differ-

ence properties mentioned in a given class schema is finite.

Lemma 1. For any class schema S and integer n, the set { pf € PF(S) | Len(pf) < n} is
finite.

A cyclic schema can now be defined in terms of the path function concept.

Definition. A class schema S is cyclic iff there exists pf € PFpp(S) and C € Dom(pf)
where C = Ran(C, pf).
[m]

Lemma 2, also given without proof, is a straightforward consequence of Lemma 1 above.

Lemma 2. A class schema S is acyclic iff PF(S) is finite.

Finally, we define an operator denoting the composition of two path functions that
will help to simplify our notation in the remainder of the paper. Since composition is
clearly associative, we shall omit explicit mention of precedence in expressions with more

than instance of the operator.

Definition. Given class schema S and pfi , pfa € PF(S) where there exists C € Dom(pf1)
such that Ran(C, pfi) € Dom(pfs), the composition of pfy and pfy, written pf1°pfs, is
defined as follows: 1) pf; if pfi is an identity path function, 2) pfi if pf is an identity path

function, or 3) pf.pf> otherwise.
0

Example. In the enrollment class schema, So Name is the path function S.Name, and
both Idgnrolment® C 2and CoIdcouse are the path function C. The expression
IdEnroliment ® C¢ Room denotes either (Idgproliment® C) ¢ Room or Idgaroliment ® (C° Room)

(by associativity of composition), and in both cases is the path function C.Room.
a

2.1. Directed Graphs as Interpretations of Class Schema

We adopt a form of labelled directed graph as our notion of interpretation for class

schema.t

Definition. An interpretation for class schema S is a (possibly infinite) directed graph
G(V, A) with vertex and edge labelling as class and property names respectively. G must

+ A more traditional notion based on some choice of relations over some domain of discourse is also possi-
ble. However, we have found it more natural and intuitive (what really matters when choosing a model
theory) to ‘think of entities or objects as vertices and of arcs as property values.

also satisfy the following constraints (note that the class name label of a vertex v is written
lel(v)).

1. (property value integrity) If wuZ®sv € A, then Ic(u) € Dom(P) and
lei(v) = Ran(ici(u), P).

2. (property functionality) If u £+v, u Bsw € A, then v = w.

3. (property value completeness) If u € V, then there exists uEsv € A for all
P € Props(ic(u)).

O

Property value integrity ensures that property values satisfy the "typing" of properties indi-
cated in a class schema. Property functionality ensures that properties are single-valued.
Note that this constraint would not apply for nested relational models. Property value
completeness ensures that properties are "total" on their domain classes. This constraint
would not apply for data models that permit "null-inapplicable" values for properties.

Example. The directed graph of Figure 1 depicts one possible interpretation for the
enrollment schema. The eight vertices of the graph correspond to eight different entities
of which two are students, three are integers, and so on. Note that different Integer ver-
tices represent different integers. The particular integers involved (or strings) are not
important to our presentation, and therefore are not mentioned in our example interpreta-

tions.
o

The relationship between the path functions of a class schema and paths in an
interpretation of the schema is established by the concept of path description and vertex
naming, which we now define. When starting from a particular vertex, a subsequent
lemma establishes that any given path to another (not necessarily distinct) vertex is
described by a unique path function.

Definition. A path uBsy— - - - S win an interpretation G(V, A) for class schema S is
described by a path function pf € PF(S) iff either: 1) the path consists of a single vertex u
and pf is the identity path function Idsequy, or 2) pf is Po pf, where v— - - - —»w is
described by pf.

(]

Mark | Integer

Integer

Integer

Figure 1. An Interpretation of the Enrollment Schema

Definition. A vertex v € V is named by vertex u € V and path function pf € PF(S) in an
interpretation G(V, A) of class schema S iff there exists a path u— - -+ —v in G
described by pf.

O

Lemma 3. Given u € V and pf € PathFuncs(lci(u)) in an interpretation G(V, A) of class

schema S, there is a unique v € V named by u and pf, written u.pf.

Proof. The lemma follows by a simple induction on the length of pf, together with the

constraints on arcs and their labelling that G must satisfy (since it is an interpretation).

O

Example. In Figure 1, u.S.Name is vertex v. That is, vertex v is the unique vertex
reachable from u via a path described by the path function S.Name.
a

3. PATH FUNCTIONAL DEPENDENCIES

Two important classes of constraints in the relational model are key constraints and func-
tional dependencies. Given a relational scheme of the form (2.1) above, the latter are
written (Ay -+ - Ay — Ay, * - Ay), and assert that no two tuples in R will have
different Ay values, m < j < n, whenever they have the same values for Ay, 1<k<m.
Key constraints are a kind of functional dependency that are usually expressed in a spe-
cial way, such as with the form Key(A; - - - A,;,), and assert that no two tuples in R

will have different values for any attribute values whenever they have the same values for

—9 -

A, ,1 <k <m. In the case of semantic data models, a more accurate statement is that
cach R-object has as unique combination of Ay, attribute values, since there is usually no
requirement that the combination of all attribute values must uniquely identify the object,

that every class has at least one key.

We propose a more general form of functional dependency constraint for a class

scheme in which any choice of path function is permitted as a component.

Definitions. A path functional dependency (PFD) over class schema $ has the form

Cpfi - - - Pfm—Pfmt1 ~ - Pfw)

where 1 < m < n, and where pf; € PathFuncs(C), for 1 <i<n. A key path functional
dependency (key PFD) over class schema S is any path functional dependency over S with
the form

Clpfi - - pfa—1dc)

That is, a key PFD has a single identity path function occurring on its right-hand-side. A
PFD is said to be trivial if its right-hand-side path functions are a subset of its left-hand-

side path functions. The capital letter F is used to denote a finite set of PFDs over S.
]

Example. PFDs for the enrollment schema are listed in Table 2. All but the last are
key PFDs. Informally, the first and second assert that students have a unique name and
that no two courses can be given in the same room at the same time. The third asserts
that a student can enroll at most once in a given course; and the last, which is not a
consequence of the first three, is justified by virtue of a physical limitation — it asserts

that a student cannot be enrolled in two separate courses at the same time.
O

Definition. A PFD C(pfi -+ * pfin—Dfm+1 * ° - Dfa) oOver class schema S is satisfied by
an interpretation G(V, A) iff for any pair of vertices u, v € V where Ic)(u) = Ic)(v) = C,
u.pfi=v.pfi, 1 <i<mimplies u.pfj=v.pfi, m <j<n.

g
Example. The interpretation for the enrollment schema depicted in Figure 1 satisfies all

PFDs in Table 2 except the first, since there are two students with the same name.
a

—10 —

Student(Name — Idgm,gent)
Course(Room Time — Idcourse)
Enrollment(S C — Idgaroliment)
Enrollment(S C.Time — C)

Table 2. PFDs for the Enrollment Schema

Definition. Given PFDs Fu {C(X —Y)} over class schema S, C(X —Y) is a logical
consequence of F, written F|=C(X—Y), iff any interpretation G(V, A) satisfying all
PFDs in F must satisfy C(X — Y).
|

3.1. Expressiveness of Path Functional Dependencies

Traditional functional dependencies can all be expressed as PFDs in which no component
path function has length exceeding one (in which no "dots” occur). This is also true for
the key constraint languages for all semantic data models of which we are aware, such as
ADAPLEX uniqueness rules, TAXIS key properties or GEM key specifications. In this
section, we prove that permitting arbitrary path functions as components of PFDs
increases the expressiveness of such constraints. Note that the last PFD on the enrollment

schema given in Table 2 is at least one motivating example.

Theorem 1. There exists PFDs over some class schema for which the set of possible satis-
Jying interpretations is not the same as the set of possible satisfying interpretations for any
combination of simpler PFDs, in which no component path function has length greater than

one, over the same class schema. Thus, limiting PFDs to the form
C(Py -+ Py=—>Ppyy -+ Py

reduces their expressiveness.

Proof. Consider the following class schema.

R{A:S} S{B:T} T{}

Clearly, only two non-trivial PFDs can be expressed in which no component path function
has length exceeding one: R(A —Idr) and S(B—Idg). Note that both are key PFDs.

~11 —

We prove the theorem by comparing the four possible sets of these two constraints to the
following "non-simple"” PFD.

R(A.B — Idg) (3.1)

In each case, we exhibit an interpretation satisfying one side of the comparison only.

¢ Comparing (3.1) to the empty set or to the singleton set {R(A —IdR)}, the
interpretation

satisfies either of the latter but not the former. In particular, there are two
R-objects that have the same T-object as their A.B values, but different S-objects as
their A values. Thus A values uniquely identify R-objects, but A.B values do not.

® Comparing (3.1) to the singleton set {S(B — Ids)}, the interpretation

also satisfies the latter, but not the former. In this case, the single S-object is the A
value of both R-objects. Again, A.B values do not uniquely identify R-objects,
whereas this is trivially true of B values for S-objects.

® Finally, comparing (3.1) to the set {R(A — Idr), S(B —Ids)}, the interpretation

now satisfies the former, but not both PFDs in the latter set. Here, B values fail to
uniquely identify S-objects, whereas this is trivially true of both A and A.B values
of R-objects.

—12 —

Thus the set of possible interpretations consistent with (3.1) differs from the set consistent

with any combination of the two possible non-trivial PFDs with zero length components.
a

A simple corollary is that key PFDs are a richer form of key constraint than any in
which no component path function has length exceeding one. This follows since all PFDs

mentioned in the proof are key PFDs.

3.2. Inference Axioms for Path Functional Dependencies

In this section, we exhibit a sound and complete axiomatization for path functional
dependencies. Five inference axioms are necessary, including three that are generaliza-
tions of a set of similar inference axioms complete for traditional functional dependencies.
The remaining two are new, and are referred to as simple attribution and simple prefix
augmentation. Simple attribution is a consequence of the functionality of properties, while
simple prefix augmentation captures the intuitive notion that interpretations satisfying any
PFD for a given class must satisfy similar PFDs for any other class for which the first

occurs as the "type” of a subpart.

Definition. Given PFDs FU {C(X —Y)} over class schema S, C(X —Y) is derivable
from F, written Fi— C(X —Y), iff it is a member of F or is the result of one or more

applications of the following inference axioms.

Al. (reflexivity) For every C € Classes(S) and YE X where X is a finite subset of
PathFuncs(C), derive C(X —Y).

A2. (path function augmentation) For every C € Classes(S) and finite subsets X, ¥ and
Z of PathFuncs(C), if C(X —Y) can be derived, then so can C(XZ — YZ) (where

XZ, for example, denotes the union of all path functions in X and Z).

A3. (transitivity) For every C € Classes(S) and finite subsets X, Y and Z of
PathFuncs(C), if both C(X—Y) and C(Y—2Z) can be derived, then so can
C(X—2).

A4. (simple attribution) For every C € Classes(S) and P € Props(C), derive
C(Idc —P).

AS5. (simple prefix augmentation) For every Cy € Classes(S) and P € Props(Cy), if
Calpfi - Pfm—Pfmsr - - Pfa)

can be derived, where C; = Ran(Cy, P), then so can

—13 —

Ci(Popfy - -+ POopfu—POopfuy; - -+ Popf)
O
Example. Table 3 lists a twelve step derivation of the PFD
Enrollment(S.Name C.Time — Mark)

from those given in Table 2. The derived PFD asserts that at most one mark exists for a

given combination of student name and course time.
O

PFD Justification
1. Student(Name — Idgngent) (given)
2. Enrollment(S.Name — S) (1 and A5)
3. Enrollment(S.Name C.Time — S C.Time) (2 and A2)
4, Enrollment(S C.Time — C) (given)
5. Enrollment(S.Name C.Time — C) (3, 4 and A3)
6. Enrollment(S.Name C.Time — S S.Name C.Time) (3 and A2)
7. Enrollment(S S.Name C.Time — S C) (5 and A2)
8. Enrollment(S.Name C.Time — S C) (6, 7 and A3)
9. Enrollment(S C — Idgpoliment) (given)
10. Enrollment(S.Name C.Time — Idgnroliment) (8, 9 and A3)
11. Enrollment(Idggyroiiment — Mark) (A4)
12. Enrollment(S.Name C.Time — Mark) (10, 11 and A3)

Table 3. Derivation of a PFD

Theorem 2. Inference axioms Al to A5 are sound; that is, Fi— C(X —Y) implies
FEC(X —7) for any PFDs FU {C(X — Y)} over a given class schema.

Proof. Soundness for each axiom is a straightforward consequence of Lemma 3 and our
definition of PFD satisfaction. We consider simple prefix augmentation as an example.

If an interpretation G(V, A) over a class schema S does not satisfy the PFD

—14 —

Ci(Pepfy + -+ Popfu—Popfurs - - - Popfy)

then there exists two vertices u, v € V where u.Popf;=v.Popf; for all 1 <i<m, but
where u.Popf; % v.Popf; for some m < j < n. The latter can only be true according to
property functionality and Lemma 3 if there exists two distinct vertices w = ».P and
x = v.P, where lgi(w)=lci(x) = Type(Cq, P). Thus, w.pf; = x.pf; for all 1 <i<m, but
w.pfj # x.pf; for some m < j < n, and therefore G cannot satisfy

Cpfi - - Pfmn—Pfmer - - Pfa)
where Cy = Type(Cy, P).
d

It will simplify matters if we now introduce addirivity and projectivity axioms, along

with more general forms of attribution and prefix augmentation.

A6. (additivity) For every C € Classes(S) and finite subsets X, Y and Z of
PathFuncs(C), if C(X — Y) and C(X — Z) can be derived, then so can C(X — ¥Z).

A7. (projectivity) For every C € Classes(S) and finite subsets X, ¥ and Z of
PathFuncs(C), if C(X — YZ) can be derived, then so can C(X — Y).

A8. (attribution) For every C € Classes(S) and pf € PathFuncs(C), derive C(Idc — pf).

A9. (prefix augmentation) For every C; € Classes(S) and pf € PathFuncs(Cy), if

Co(phr *** Pfm—Pfmts " Pfa)

can be derived, where C; = Ran(C,, pf), then so can

Ci(pfopfi -+ pfopfm—pfoPfms1 - PfODS)

Lemma 4. Inference axioms A6 to A9 are also sound.

Proof. Derivations of the additivity and projectivity axioms from reflexivity, path func-
tion augmentation and transitivity are well-known.[10, 15] The more general forms of
attribution and prefix augmentation can be derived by simple inductions on the length of
pf. For the latter, assume there exists C; € Classes(S) and pf € PathFuncs(Cy), and that
the PFD

Cpfi - - Pfmn = Pfmer * Pl

can be derived, where Ran(Cy, pf) = C;. If Len(pf) = 0, then pf is the identity path func-
tion Idc,. The conclusion follows since C; = Ran(Cy, Idc,) = Cy and Idc,© pf; = pf;.

Now assume pf has the form Po ;;f. By the inductive assumption, we can derive

—15 —

Ran(Cy, P)(Bfopfi -+ + Bfopfm—+BfOPfnss - - - PfODf)

and by simple prefix augmentation

Ci(Popfopfy * ** POPfopfm—POpfopfus; - - = Popfopf,)
The conclusion follows since pf = Po ;;f.

For the more general form of attribution, consider a C € Classes(S) and
pf € PathFuncs(C). Again, if Len(pf) = 0, then pf is the identity path function Idc, in
which case C(Idc— Idc) can be derived by reflexivity. Now assume pf has the form
pfoP. By the inductive assumption, we can derive C(Idc — pf). Simple attribution justi-
fies the derivation of

Ran(C, l;f)(IdRan(C. M=

Use of prefix augmentation gives C(ﬁf —_ ;;fo P), and then C(Idc— pf) follows by transi-
tivity.
O

To prove completeness of our axiomatization, we shall introduce the concepts of a
C-Tree and Two-C-Tree, which are interpretations for a given class schema S induced by
a particular choice of class scheme C € Classes(S). In preparation, we extend the
notions of the closure F* of a given set of functional dependencies F, and of the closure

Xt of a set of attributes with respect to a set of functional dependencies.

Definition. The closure of a set of PFDs F over class schema S, written F*, is the smal-
lest set containing all PFDs C(X — Y) over S where F — C(X—Y).
[}

Definition. Given a set F of PFDs over class schema S, the closure of a finite set of path
functions X & PathFuncs(C) for some C € Classes(S), written X+, is the smallest set
containing all pf € PathFuncs(C) where F— C(X ~pf). (Note that X+ may not be fin-
ite.)
|

Lemma 5. Given PFDs FU {C(X ~ Y)} over class schema S, F |~ C(X — Y) iff yExt,

Proof. (if part) Additivity implies F - C(X — Y) since F |- C(X — pf) forallpf € Y.
(only if part) Projectivity implies F- C(X — pf) for all pf € ¥, and therefore that
Ycxt,
a

—16 —

F* for any choice of PFDs F over a class schema S will be countably infinite when-
ever S is cyclic. For example, let S consist of the following two class schemes which

describe a database about employees and their names and bosses.
E{N:String ,B:E} String { } (3.2)

Note that S is cyclic because of the "boss" property B. The attribution axiom implies that
F+ will contain all PFDs of the form E(Idg — BY), where B‘ represents B occurring i
times. If F is {E(B.N—B)} (i.e. a single path functional dependency asserting that
bosses have unique names), then prefix augmentation implies that F* also contains all
PFDs of the form E(B{.N —BY), for i >0. The closure of a set of path functions can
also be countably infinite for cyclic schema. For example, if S is as above, then Xt is
PF(S) if X consists of both identity path functions Idg and Idpteger, regardless of the selec-
tion of PFDs F.

Definition. Given class schema S and class scheme C € Classes(S), a C-Tree is a (possi-

bly infinite) directed graph G(V, A) with vertices and arcs constructed as follows.

Step 1. For each pf € PathFuncs(C), add vertex v with lcy(v) assigned Ran(C, pf), and
with an additional label {p{v) (called its path function labelling) assigned pf. The
single vertex u with lp{u) = Idc is denoted as Root(G).

Step 2. For each u, v € V where lp{u) = pf and lp{v) = pfo P, add u By toA.
]

Example. Figure 2(a) illustrates the top levels of the E-Tree for the employee class
schema (3.2) above. The vertex denoted as Root(G) is also indicated. The sequence of
property names on the path from Root(G) to any other vertex v is its path function label-
ling lpAv) (proven below).

O

Lemma 6. The C-Tree defined by class scheme C € Classes(S) for a given class schema S
is an interpretation of S that satisfies the following two conditions.
1. Forallu, v € Vand pf € PathFuncs(u), if u.pf = v then lpfu) o pf = lp{v).
2. Forallu € V, u =Root(G).lp{u).

Proof. We first prove that G is an interpretation of S. Consider property value
integrity. If uZsv € A where lp{u) = pf, then Ran(C, pf) = lci(u) according to Step 1,
and therefore I (k) € Dom(P) by definition of composition of path functions. By

—-17 -

definition of path functions
Ran(c? pfe P) = Ran(Ran(C7 Pf), P) = Ra"(’ct(“), P)

From Step2, uEsv € A also implies Ip{v) =pfeP, and therefore from Step 1
Ran(C, pfo P) = Ici(v). Thus, Ici(v) = Ran(ic(x), P). Now consider property functional-
ity. According to Step 2, if uEsv,ufsw € V, then lp{v) = Ip{w). But then v =w
since Step 1 of the construction implies no two vertices have the same path function label-
ling. To establish property value completeness, let lp{u) = pf for some « € V. From
Step 1, P € Props(lci(u)) implies P € Props(Ran(C, pf)). By definition of path functions,
pfeP € PathFuncs(C), and therefore u £+v € A for some v € V.

Both conditions can be established by a simple induction on the length of path func-
tion labelling for vertex u. For the first, if Len(pf) = 0, then pf is Id;c4), and therefore
v =u. The consequent follows since, by definition of composition,
Iplu) o Idcy(u) = Ip{u). Now let pf= pfoP. By the inductive assumption u.pf=w
implies Ipdu) 0 1;f = lp{w). If u.};fOP = v then w £»v must have been added in Step 2,
and therefore Ilpdv) = Ip{u)o pfoP. Now consider the second condition. If
Len(lp{u)) = 0, then Ip{u) is Idc, and therefore

u = Root(G) = Root(G) ‘Ilej(ROOt(G))

Let lp{u) = pfoP. By the inductive assumption, the v € V where IpAv) = pf satisfies
v = Root(G).pf. Since Step 2 adds v £+u to A, u = Root(G).pfo P, and therefore satisfies
u = Root(G).lp{u).

a

Definition. Given PFDs F over class schema S and PFD C(X —Y) € F*, a Two-C-Tree
is a (possibly infinite) directed graph G(V, A) constructed as follows.

Step 1. Construct two C-Trees Gy(Vy, A1) and G(Vz, A;). Let RI and R2 denote
Root(G1) and Root(G,) respectively.

Step 2. Remove any v € V; and its incident arcs from A; whenever Ip{v) € X*. (Note
that R2 is not removed, since removal together with attribution, additivity and
transitivity would imply C(X — Y) € F*, contrary to assumptions.) Add all ver-
tices in V1U V3 to V and all arcs in AjU A; to A.

Step 3. For each u € V and P € Props(ici(u)) where u£»w € A for all w € V, add arc
uBsR1.1p{u)o P to A.

—18 —

a

Example. Figure 2(b) illustrates the top levels of the Two-E-Tree for the singleton set
F ={E(B.N—B)} over the employee class schema (3.2) above, and the PFD
E(B.N — Idg) not in F*. Note that vertices in V, (i.e. originating from the second of
the two E-Trees used in the construction) are represented as small squares. The two ver-
tices denoted as R/ and R2 are also indicated. In this case, the sequence of property

names on the path from RI or R2 to any other vertex is its path function labelling.
a

R1 R2
E E
N B B N
Root(G)
E String
B
E
N B
Strin, E
g N .
String N
(b)

Figure 2. E-Tree and Two-E-Tree for the Employee Schema.

Lemma 7. The Two-C-Tree G(V, A) defined by PFDs Fu {C(X — Y)} over class schema
S, where C(X —Y) & F*, is an interpretation of S satisfying the following two conditions.

1. Forallu,v € V and pf € PathFuncs(u), if u.pf = v then Ip{(u) © pf = lpdv).
2. One and only one of the following holds for each u € V

® u=RI.lpAu), u # R2.lp{u) and lpfu) & X*.

. u # RI.lpfu), u = R2.lp{(u) and Ipfu) € X+,

—19 —

® u=RI.lp{u), u = R2.lp{u) and lpfu) € X+.

Proof. We first prove that G is an interpretation. From Lemma 6, G can only violate
property value completeness at the end of Step 2 since its only effect is to remove vertices
from an interpretation G,. Any violation of property value completeness is then resolved
in Step 3 by adding arcs to A, clearly without any possibility of violating property func-
tionality. What remains is to demonstrate that Step 3 does not compromise property
value integrity. If u £y is added in Step 3, then I)(u) € Dom(P) and RI.lp{u)oP =v.
By Lemma 6, the latter implies /pdv) = lp{u)° P, and therefore by definition of path
function labelling

lci(v) = Ran(C, lpfu) © P) = Ran(Ran(C, IpAu)),P) = Ran(lc/(u), P)

As in Lemma 6, both conditions can be established by induction on the length of
path function labelling. Since we know from above that [p{v) = lp{u) o P is true for any
arc u £+v added in Step 3, the proof of the first condition for Lemma 6 applies essentially
unchanged. To prove the second condition, we first prove that if 4 € V, is removed in
Step 2, then all vertices v € V3 reachable from u are also removed. To begin, v is reach-
able implies there exists pf € PathFuncs(ici(u)) such that u.pf=v. By Lemma 6,
Ip{u) o pf = lp{v). Since u is removed, we know F C(X — lp{u)). By attribution
F = lof(u)(Xdsequy) —> pf), and by prefix augmentation F | C(lp{u) = lpdu)o pf) or
F b C(lpfu) = lpv)). Thus F = C(X —lp{v)) by transitivity, and therefore v must
also have been removed.

Consequently, according to the second condition of Lemma 6, for all 4 € V, we
know

u=RI.lp{u) or u=R2.lpdu)
The second condition then follows if

R1 .lp,(u) =R2 .lpf,(u) iff lpf(u) € X+

holds for all # € V, which we now prove by induction on Lén(lpf(u)). If Len(lpdu)) =0,
then lp{u) = Idc. Thus lp{u) € X+, and u must be either R/ or R2, but not both. Now
let lp{u) = pfoP. There are two cases to consider. First, if pf € X+, then pfo P € X+ by
simple attribution, prefix augmentation and transitivity. According to the inductive
assumption and property functionality, this then implies R .pfo P = R2.pfe P. Second, if
pf € X*, then by the inductive assumption RI.pf # R2.pf. Thus, RI.pfoP = R2.pfoP iff
Step 3 adds arc R2.pfEsR1.pfo P to A. But this happens iff Step 2 has removed a vertex
w € V3 where lp{w) = pfo P, which in turn can happen iff pfo P € X*.

—20 —

(]

Corollary 1. Given a Two-C-Tree G(V, A) defined by PFDs Fu {C(X —Y)} over class
schema S, where C(X—Y) € F*, for any distinct u,v € V where Ici(u) = Ic(v), if
u.pf = v.pf for some pf € PathFuncs(lci(u)), then lp{(u) = lp{v) and lp{u) o pf € X+,

Proof. By virtue of condition one of Lemma?7, if u.pf=v.pf then
ipfu) © pf = lpAv) ° pf, and therefore Ip{u) = lp{v). Without loss of generality, condition
two of Lemma?7 first implies u=RI.lp{u) and v =R2.lp{v). Thus
Rl.lp{u)opf =R2.lp{v)opf, and condition two of Lemma7 then implies
lpfu) 0 pf € X+,

a

Theorem 3. Inference axioms Al to A5 are complete; that is, F = C(X —Y) implies

F}- C(X —Y) for any PFDs FU {C(X -+ Y)} over a given class schema.

Proof. Given PFDs F over class schema S, for any C(X —Y) over S not in F*, we
prove that the Two-C-Tree interpretation G(V, A) satisfies all PFDs in F*, but not
CX—Y).

First, we show G does not satisfy C(X —Y). From Lemma 7, RIl.pf = R2.pf for all
pf € X. If G did satisfy C(X —Y), then RIl.pf=R2.pf for all pf € ¥, which implies
C(X —pf) € F*. But use of the additivity axiom then implies C(X —Y) € F+, a con-
tradiction.

We now show that G does satisfy all PFDs in F+. Assume

Cofi * Pfw=Bfme1 - Pf)

is in F*, and that there exists distinct u, v € V where u.pfi =v.pfi for all 1 <i < m, but
where u.pf; # v.pf; for some m <j<n. By Corollary 1, lp{u) = lp{v) since u and v
agree on some path function, and therefore by prefix augmentation and projectivity, there

is some PFD

C(lpfu)opfi -+ - lpfu) 0 pfw— lpfu) ° pf))

also in F*, where RI.lp{u)opfi=R2.lp{u)opf; for all 1<i<m, but where
R1.lpAu)o pf; # R2.lp{u)o pf; for some m<j<n. Corollary1 also establishes
Ipdu) o pf; € X+ for all 1 <i<m. This is contradictory since, by m—1 applications of
additivity and by transitivity, Ipdu)opf; € X*, and therefore by Lemma7,

R1.lp{u) © pf; = R2.lpdu) © pf;.
m

—21 —

4. DECISION PROCEDURES

The decision procedures for PFDs that we derive can be used when all antecedents are
key PFDs, or when the schema is acyclic. To begin, we first define two subsets of F+
that are induced by a particular choice of class scheme. These subsets will prove to be
rich enough to permit the derivation of any PED in F+, on the same class scheme, with
the use of the first three of our inference axioms alone; that is, to derive the PFD using

reflexivity, path function augmentation and transitivity.

Definition. Given class schema S and C € Classes(S), the set of all property induced
PFDs over S with respect to C, written Fq, consists of all PFDs over S of the form
C(pf—pfoP). For i>0, Fi(i) denotes all PFDs C(pf— pfoP)E€F; where
Len(pfeP) <i.

a

Definition. Given PFDs F over class schema S and C € Classes(S), the set of all
F-induced PFDs over S with respect to C, written F,, consists of all PFDs over S defined
on C that can be derived from F by a single use of prefix augmentation (axiom A9). For
i > 0, Fy(i) denotes all PFDs C(X — Y) € F, where Len(pf) < i, for all pf € XY.

0

Theorem 4. Given PFDs FU {C(X —Y)} over class schema S, F — C(X—Y) iff
C(X —Y) can be derived from F1U F3 by reflexivity, path function augmentation and transi-
tivity.

Proof. (if part) It suffices to show that all PFDs in F{U F5 can be derived from F by
using any of the inference axioms. This is clearly true for all PFDs in F,. The PFDs in
Fj are of one of two forms: C(Idc—P), or C(pf— pf.P). Any of the first form derive
immediately from simple attribution. Also by simple attribution, we can derive
Ran(C, pf)(Idran(c, ppy = pf-P), and therefore any of the second form by prefix augmenta-
tion.

(only if part) Let Fy =CLEJSF1 and Fp = cLerFz' We begin by showing how any

derivation of C(X —Y) from F can be modified to a derivation from Fyu F; by reflex-

ivity, path function augmentation and transitivity alone.

First observe that any use of simple attribution to derive a PFD of the form
é(Idé—»P) is unnecessary since the PFD is already in F;. Now let pfdy and pfd; denote
two PFDs in the derivation where the second is justified by simple prefix augmentation on
the first. If pfd; is in F then pfd; is in F5, and this use of simple prefix augmentation can

22—

be removed. We refer to this case as an initial use of prefix augmentation. Otherwise,
we can replace this use of simple prefix augmentation by at most two new uses applied to
PFDs preceding pfd; in the derivation as follows. If pfd; was derived by reflexivity, then
pfdy can also be derived by reflexivity. If pfdy was derived by path function augmentation
or by transitivity from one or two previous PFDs, then pfd; can also be derived by path
function augmentation or by transitivity from one or two new PFDs added to the deriva-
tion, which are themselves the consequence of simple prefix augmentation applied to the
one or two previous PFDs from which pfd; was derived. For example, without loss of
generality, the necessary modification for the case of simple path function augmentation
is illustrated as follows (where "Po¢ XZ", for example, denotes the set consisting of the

composition of P with each path function in XZ).

PFD Justification PFD Justification
n. Ci(X—Y) ? n. Cix—=Y) ?
n+l. Ci(XZ—-YZ) (n and A2) n+l. Cy(PoX—PoY) (n and AS5)
n+2. CyPoXZ—PoYZ) (n+landAS) n+2. C(XZ—YZ) (n and A2)

n+3. Cy(P°XZ—PoYZ) (n+1 andA2)

(before) (after)

Finally, if pfd; was itself derived from an earlier PFD by simple prefix augmentation,
then pfd; can also be derived from the earlier PFD by using the more general prefix aug-
mentation inference axiom with a larger prefix. Thus, by a simple induction, any use of
simple prefix augmentation can be replaced by initial uses of prefix augmentation (as

described above), and can therefore be removed.

The derivation of C(X — Y) that results now consists of a sequence of PFDs justified
by virtue of membership in FyU F, or by virtue of reflexivity, path function augmenta-
tion or transitivity applied to PFDs earlier in the derivation. Since these inference axioms
only permit the derivation of PFDs on the same class, we can further modify the deriva-
tion by removing any PFD not defined on C, since they cannot be of any help in deriving
C(X —Y). The remaining PFDs mentioned in the derivation that were originally justified
by virtue of membership in Fiu F, are now justified by virtue of membership in F1U F3

since this final modification ensures that they are defined on C.
a

—23 —

A Closure construction will form the basis of our decision procedures. In contrast to
similar constructions used to decide functional dependencies, this first version of Closure
is only effective for acyclic schema since cyclic schema can cause argument sets to be

infinite.

Definition. Given PFDs F over class schema S and X & PathFuncs(C) for some C € S,
Closure(X, PathFuncs(C), F1U F3) = iL>JoXi’ where each X? is determined in sequence as

follows.

Step1. i+0;X0 —X.

Step 2. X! «—X'U { pf € PathFuncs(C) | there exists C(Y—Z)EFUF; s.t.
YE X, pf¢ X*andpf€ 2}

Step 3. i « i+ 1; and repeat from Step 2.

O

Theorem 5. Given PFDs F U {C(X—Y)} over class schema §, F-C(X—7Y) iff
Y € Closure(X, PathFuncs(C), F1U F5).

Proof. A proof that Closure(X, PathFuncs(C), F1U F3) is X* easily follows from the
correctness of ALGORITHM 1 in [2]. The theorem follows by Lemma 5.
o

Example. Table 4 exhibits the operation of Closure for the PFD
Enrollment(S.Name C.Time — Mark)

over the enrollment schema. This is the same PFD used to demonstrate PFD derivation
in Table 3. By Theorem 5, the PFD can be derived from those in Table 2 since
Mark € X% Note that only X' for i < 4 are indicated, since clearly X/ = X4 for j > 4.

a

It is straightforward to improve the effectiveness of Closure by modifying Step 2 to a
form that requires examination of finite sets only. First, we extend the definition of Path-

Funcs in order to refer to finite subsets of path functions for cyclic schema.

Definition. Given class schema S, for each C € Classes(S) and i > 0, PathFuncs(C, i)
consists of all pf € PathFuncs(C) where Len(pf) < i.
a

—24 —

F; = {Enrollment(Idgaroiment — S), Enrollment(S — S.Name),
Enrollment(Idgyoliment — C), Enrollment(C — C.Room),
Enrollment(C — C.Time), Enrollment(Idgnroltment — Mark) }

F; = {Enrollment(S.Name — S), Enrollment(C.Room C.Time — C),
Enrollment(S C — Idgnroiment), Enrollment(S C.Time ~ C) }

X% = {S.Name, C.Time}

X! = {S.Name, C.Time, S}

X2 = {S.Name, C.Time, S, C}

X3 = {S.Name, C.Time, S, C, C.Room, Idguroiment}

X* = {S.Name, C.Time, S, C, C.Room, Idgaroument, Mark}

Table 4. Example of Closure for the Enrollment Schema.

According to Lemma 1, PathFuncs(C, i) must always denote a finite set, which is clearly
also true for Fy(i) and F(i) defined above. Procedures to enumerate any finite sets

denoted by PathFuncs(C, i), F1(i) or Fp(i) for any integer i > 0 are straightforward.

A minimum constant @ can be determined by a simple inspection of any finite set of
PFDs F such that, for any PFD C(X —Y) € F, a satisfies the condition

[plflez%r Len(pf) —p}[él}l{ly Len(pf) } <a

That is, @ bounds the difference in length between the longest and shortest component
path functions of any PFD in F. Note that o =1 will suffice to bound PFDs in F; for
any class schema S. Now consider the set F3 of F-induced PFDs with respect to some
class C € Classes(S). Since prefix augmentation does not derive PFDs with a larger

length differential, this same bound will also hold for F,.

These observations guarantee that X’ is always finite in the above Closure construc-
tion, and allow us to improve its effectiveness by limiting the number of path functions
and PFDs considered in each invocation of Step 2. The new version of Step 2 is as fol-
lows.

—25

Step 2. X! «— XU { pf € PathFuncs(C, j) | there exists C(Y =Z) € Fi(j)U Fa(j) s.t.
Y C X, pf € Z, pf € X' and j = max(1, @) +g}g§iLen(pf) }

A simple variation of this more effective definition of Closure, in which we check for
containment of another finite set of path functions at each iteration, also establishes that
the set of PFDs which are logical consequences of a given set of finite PFDs is recursively
enumerable. However, this dependency verifier may still require examining a number of
path functions and PFDs exponential in the length of encoding of a class schema and

given set of PFDs.

Theorem 6. There exists class schema S and PFDs F U {C(X —Y)} over S, where
F = C(X —Y), for which Closure requires a number of iterations i exponential in the length
of encoding of S and F before Y & X'.

Proof. Letpy, - - - , p, be the first n primes, and let S and F consist of the following
class schema and PFDs (where P™ denotes a path function with property P occurring m
times).

R { Ay :Integer, - - - , A,:Integer, B: R }
Integer { }

R(A;—PB.A))

R(A,—DB”".A,)

R(B.A; - - B.A,—1dp)

Now consider the use of Closure to verify that the PFD
R(B.Ay - -+ B”.A,—1IdRr)

is a logical consequence of F. Closure will require O(py X - - - X p,) iterations before
obtaining an X! with a combination of path functions that permit a first use of a PFD in
F, derived from the last PFD of those above. About the same number of iterations using
similarly derived PFDs in F* are then required to add Idg. The result follows since the

sum of the first n primes is bound by a polynomial in 7.
O

If we remove the last key PFD in the above, then the example used by the proof
also establishes the existence of problems for which no finite subset Fa(i) of F; can be

used by Closure to produce the same set of path functions. For example, removing

—26 —

R(B"?'.A; = BHDP A) from Fy, for I >1, removes all path functions B™P!,A,,
where m > [, from the value of Closure. In this case, each non-key PFD in F satisfies the
condition that its right-hand-side path function exceeds its left-hand-side path function in
length, but this is not a necessary condition. Consider where S and F consist of the fol-
lowing class schemes and (single) PFD. ’

R{A:§5,B:R} S{C:T} T{D:Integer}
R(A.C.D—B.A)

All PFDs in F; must then have the form
R(B'.A.C.D—B*1 A)

where i >0, and therefore satisfy the opposite condition that their left-hand-side path
function exceeds their right-hand-side path functions in length. Again, removing any
PFDs in F; has the effect of "breaking a chain”, and therefore removing path functions
from the result of Closure, which otherwise consists of all path functions ending with the
property A, C or D. It is also possible to devise a refinement to the example used in the
proof of Theorem 6, based on the idea used here, to demonstrate a case requiring
exponential time in the length of encoding of S and F where all PFDs in F do satisfy this

opposite condition that left-hand-side path functions are longer.

However, if all PFDs in F are keys, then it is possible to find a sufficient finite sub-
set of F; for which Closure yields the same set of path functions.

Lemma 8. Given key PFDs F over class schema S, let « equal

coc By er o5 LoD

(i.e. the length of the longest path function mentioned in F). For any C € Classes(S) and
[finite subset of path functions X & PathFuncs(C)

Closure(X, PathFuncs(C), F1U Fx(f)) = Closure(X , PathFuncs(C), F1U F,)

where = max [1, o+ ;l}é\)% Len(pf)]

Proof. We prove that any PFD in F; — F5(f) is never used in the construction. Without
loss of generality, consider a first use of such a PFD at step i. Our condition that F con-
sists of key PFDs alone implies that the PFD has the form

—27 —

C(pf.P1. - - - .Py pf-pfi " - pf-Bfa—pD

where m >0 and [> 1 (I = 0 implies pf € X*~!). Now consider the set of path functions

Z = {pf, pf-P1, - - - ,pf-P1. - - .P;}. With respect to the longest path function in Z

® by definition of the construction, pf.Py. - - - .P; € X1 and

® by definition of Fy(f) (implying that Len(pf) > Len(;;f) for all pf € X),
pf Py - - P & X0

Since, for any PFD C(X —»ﬁf) € Fy(P), Len(ﬁf) < Len(pf), we know that pf.P1. - - - .P,
could only have been added by the construction at some step j < i by virtue of some other
PFD in F1. Since this PFD must have the form

C(pf.P1. - -+ .Pp_1~pf.Py. - - - Pi_1.P))
we conclude that pf.Py. - - - .P;; € X*1, and by a simple induction on the remaining
attributes in Z, that pf € X'~1 — a contradiction.

(]

A decision procedure that applies whenever the antecedent PFDs are keys derives in

an obvious way from the following theorem.

Theorem 7. Given key PFDs F over class schema S, let o equal

cox By e (23 Lo)
For any PFD C(X = Y) also over S, F=EC(X = Y) iff
Y € Closure(X, PathFuncs(C, \), Fi(\) U F3(3))
where A = a +px}1ee}{xy Len(pf), and f = o + gflgg{(Len(pf).

Proof. Without loss of generality, consider an arbitrary pf € Y. If pf € X, then the

theorem trivially holds for this case. Otherwise, by Lemma 8
pf € Closure(X, PathFuncs(C), F1 U F3)
if and only if
pf € Closure(X, PathFuncs(C), F1 U F3(8))

Now consider a PFD C(pf—pfoP) € Fy. Clearly, if Len(pAfD P) > X, then it is of no

help in deriving pf, or in deriving any left-hand-side path function of any PFD in Fo(f).
O

—28 —

A straightiorward variation of the mechanisms used in the linear time decision procedure
for functional dependencies, called ALGORITHM 2 in [2], can also be employed to
achieve a running time in this case of O(|PathFuncs(C, A\) |). Unfortunately,
| PathFuncs(C, \) | will almost certainly be exponential in A, since a class scheme will
usually include more than one property in its definition. Efficient decision procedures for

PFDs with lengthy path functions as components is a topic for future research.

5. CONJUNCTIVE QUERIES

The applications discussed in the next section of an ability to express and reason about
PFDs are better illustrated by reference to a form of conjunctive query. In effect, each
application will reduce to the problem of determining if at most one solution is possible to
a such a query on any consistent database (satisfying all constraints). The class of con-
junctive queries we define is analogous to the class of select-join queries in the relation
model, with a restricted form of projection manifested in so-called Junctional joins. In the

process, we unveil a new source of PFDs induced by the join conditions of a query.

Informally, conjunctive queries that will concern us can be described in the follow-

ing SQL-like manner.

SELECT Vi, --:,V,

FROM Ci, -+ ,C,

WHERE je; AND - - - AND jo; AND
sct AND - - - AND sc,,

The "SELECT...FROM..." clauses characterize a space of possible solutions for a given
interpretation that consists of n-tuples [vy, - - - , v,] of vertices where lef(vi) = C;. The
Jjoin conditions jc; and selection conditions scj in the "WHERE..." clause have forms

V;°pfi = Vi°pfs and V;0 pf = <a constant> respectively, and are constraints on the pos-
sible solutions.

Our formal characterization of a conjunctive query is based on a simple expedient to
avoid additional notation. The idea is to abstract "SELECT...FROM..." clauses as an
additional class scheme of the form

Q{Vi:Cy, -+ ,Vu:Cp} (5.1)

Each solution to the query is then represented as an entity in Q. This also permits a par-
ticularly simple characterization of the set of terms that may occur as arguments of selec-

tion or join conditions for a query. They are simply the set of property induced path

—29 —

functions defined on Q. Finally, it will be unnecessary for our purposes to mention the

constants that occur in selection conditions.

Definitions. A conjunctive query over a class schema S is a 3-tuple [Q, J, T], where Q
is an additional class scheme of the form (5.1) above, J is a set of constraints of the form
pfi = pf2 representing join conditions, and T is a set of path functions representing selec-
tion conditions. Any path function mentioned in J or T must occur in the set Terms(Q),

defined as

{Pf € PFProps (Su {Q}) | Qe Dom(Pf)}

We use ¢ (possibly subscripted) to denote a member of this set. Each join condition
t; = 1, € J must also satisfy Ran(Q, #;) = Ran(Q, 12).
a

Example. Consider a request for "all enrollments of Fred in courses at 9 am". The query

might be expressed in the above SQL-like fashion as

SELECT E,C
FROM Enrollment, Course
WHERE E.C= CAND
E.S.Name = "Fred” AND C.Time = 900

The query includes one join condition and two selection conditions. Our abstraction of

the query is the 3-tuple
[Q{ E : Enrollment , C : Course }, {E.C = C}, {E.S.Name, C.Time}]
a

Satisfaction of join conditions and the sense in which at most one solution is possible

to a query is formally defined as follows.

Definition. Given a query [Q, J, T] over class schema S, an interpretation G(V, A)
satisfies a join condition # =1 € J iff for any vertex u € V where Ic(x) =Q,

u.l1 =u.ly.

O

Definition. Given PFDs F over class schema S, a query [Q, J, T] over S is single solu-
tion limited iff any interpretation G(V, A) over Su {Q} that satisfies all join conditions J
and PFDs Fu {Q(Props(Q) — Idg)}, must also satisfy Q(T — Idg).

(]

To paraphrase, at most one solution can exist to a query [Q, J, T] if entities in Q,
representing query solutions, are uniquely determined by the values of the path functions
corresponding to the terms occurring in selection conditions. Note that admitting the
PFD Q(Props(Q) — 1Idg) is mandated on the grounds that any particular solution need
only be recorded once. Also note that it is unnecessary to allow only interpretations that
"maximally populate” Q; that is, that encode all possible solutions to the query. The issue
is clearly resolved if and only if there can exist any interpretation not satisfying
Q(T — Idg).

Example. Consider the above enrollment query. If F includes the PFDs mentioned in

Table 2, then the query is single solution limited since
Q(E.S.Name C.Time — Idg)

can be derived from F and Q(E C — Idg).
(W]

A complete axiomatization for a theory of both PFDs and join conditions is not yet
available. However, in the remainder of this section, we define a class of PFDs induced

by join conditions satisfying a more limited form of completeness.

The problem of reasoning about join conditions in the absence of PFDs has been

fully developed in [3], from which we reproducé the following definition and theorem.

Definition. Given a query [Q, J, T] over class scheme S, a join condition #; = ¢; is deriv-
able from J, written J |- g4ty = #;, iff it is a member of J or is the result of one or more

applications of the following inference axioms.

El. (reflexivity of equality) For every t € Terms(Q), derive t =1t.

E2. (symmetry of equality) If t1 = #, can be derived, then so can 1, = 1.

E3. (transitivity of equality) If #; = #; and ¢, = 13 can be derived, then so can 4 = #3.

E4. (attribution of equality) For every P € Props(Ran(Q, t1)), if ; = t; can be derived,
then so can #1.P = .P.

|

Theorem 8. Given a query [Q, J, T] over class schema S, J \— gq ty = 13 iff any interpre-
tation G(V, A) of Su {Q} satisfying all join conditions in J must also satisfy t1 = t,.

—31 —

The set of PFDs induced by the join conditions of a query that we shall consider are
defined as follows.

Definition. Given a query [Q, J, T] over class schema S, the set of all J-induced PFDs,
written F3, consists of all PFDs over S of the form Q(riopf—1nopf), where
nopf,0pf € Terms(Q) and either ¢y =4 € Jor 15 = t1 € J. For i >0, F3(i) denotes
all PFDs Q(t; — #;) € F3 where Len(#;) < i and Len(ry) < i.

(m}

Soundness of an inference axiom permitting the derivation of Q(t1 — 1) from 11 =15,
which establishes the admissibility of PFDs in F3, is a simple consequence of the defini-
tion of join condition satisfaction, and transitivity of equality. The sense in which Fs

satisfies a limited form of completeness is expressed in the following theorem.

Theorem 9. Given a query [Q,], T] over class schema S, 1 FEgti =1 only if
F3 - Q1 = 1).

Proof. Let J* denote any join condition derivable from J by symmetry or attribution of
equality alone (i.e. by axioms E2 or E4). Clearly, Qt1—n) € F3iff 1 =1, € J+. We
show that a derivation of #; = #, from J can be modified to a derivation from J+ by reflex-
ivity and transitivity of equality alone (i.e. by axioms E! or E3). The derivation of
Q(#; ~ t1) from F3 can then be obtained in a straightforward manner by replacing any use

of EI by a use of Al, and any use of E3 by a double use of A3 (in order to preserve sym-
metry).

First observe that any use of E2 or E4 to derive a join condition Jjca from another
join condition je; justified by EI is unproductive in the first case, and unnecessary in the
second since EI will also suffice to justify jc. If jei is justified by E3, then this use of
either E2 or E4 can be replaced by a use of E3 on new uses of E2 or of E4 introduced
earlier in the derivation. For example, without loss of generality, the necessary modifica-
tion for the case where E4 is applied to a join condition derived by E3 is illustrated as fol-
lows.

Join Condition Justification Join Condition Justification
n. h=~th ? n. h==n ?
n+l. n==n ? n+l. HoP=pgoP (n and E4)
n+2. H=1n (n,n+land E3) n+2. H=1 ?
n+3. HoP=poP (n+2 and E4) n+3. $oP=r0P (n+2 and E4)
nt4. H=n (n, n+2 and E3)
n+5. HoP=pgoP (n+1, n+3 and E3)
(before) (after)

—32 —

Thus, by a simple induction, the derivation can be modified to a form in which a use of

El or E3 is never followed by a use of E2 or E4.
g

Corollary 2. Let [Q, J, T] and F U {Q(Props(Q) —1dq)} denote a query and a set of
PFDs over class schema S. The query is single solution limited if

Idq € Closure(T, PathFuncs(Q), F1U FaU F3)

(where Fy and F, are generated with respect to Q).

Proof. The corollary is a simple consequence of Theorem 9 above, Theorem 5 in the
previous section, and the admissibility of PFDs in F;.
| :

An approximate procedure for determining if a query is single solution limited
derives in a straightforward manner from Corollary 2. If the schema is acyclic, or at least
that part of the schema referenced by the query is acyclic, then all argument sets to the
closure construction are finite. Otherwise, the procedure can be supplied with a limit on
the maximum length path function to be considered.

One special circumstance for cyclic schema happens when all PFDs mentioned in F
are key PFDs, and when all join conditions mentioned in the query have equal length
argument terms. In this case, a simple generalization of Theorem 7 in the previous sec-

tion applies.

Theorem 10. Let [Q, J, T] and F U {Q(Props(Q) —1dq)} denote a query and a set of

key PFDs over class schema S in which all join conditions have equal length argument

—33 —

terms; that is, where ty =t € J implies Len(t1) = Len(t3). Also let o equal

W Lenh + oo Dy o (g L)

(i.e. the length of the longest selection condition plus the length of the longest path function
mentioned in F). Then

Idg € Closure(T, PathFuncs(Q), F1U FaU F3)
is true iff
Idg € Closure(T, PathFuncs(Q, o), Fi{a)u Fa(a)u F3(a))

Proof. Clearly, if all join conditions have equal length argument terms, then no PFD in
F3 will have a right-hand-side path function that is shorter than its left-hand-side path
function. This observation allows a simple generalization of Lemma 8 to be used in a

proof of the above which is entirely analogous to the proof of Theorem 7.
O

6. APPLICATIONS

6.1. Choice of Index Type for Interactive Information Systems

Assume a combined index on an arbitrary choice of m properties of a class scheme
C{Py:Cy, -+ ,P,:C,}is declared as an m—+1-tuple of the form

[<IndexType>,P;, - -+ , Pl

where <IndexType> is the kind of index, such as "BTree" or "LinearHash", and where
the sequence of properties Py, establish the search criteria of the index. Clearly, any con-

junctive query

[Q{V:C}’{}’{Pila ’Pin}] (6.1)

specifying selection conditions on the m properties can be efficiently evaluated by using

the index.

For many applications, it will be important to know that the index can also be effi-
ciently maintained. Most interactive information systems, for example, have "on-line"
transactions that are small-scale, involving very few changes. The overhead of maintain-
ing a combined secondary index for such transactions may be unacceptable if the indexed
properties have very little selectivity, since this will invariable require searching lengthy
accession lists for individual entries. A simple application of our results helps to resolve

the issue. If a query of the form (6.1) is single solution limited, then any combination of

—-34 —

values for the indexed properties of the index can locate at most one index entry — there-

fore ensuring that no search of lengthy accession lists will ever be needed.

The application can be extended in two ways. First, an answer to the same question
can help with index type arbitration; that is, with selecting from among a variety of index
types. For example, if it is imperative that some index exists supporting the above query,
then determining that the query is single solution limited suggests a choice of a hash index
such as [LinearHash, P;, , - - - , P;]. Otherwise a choice of an ordered index with the

identity property added, such as [BTree, P;, , - - - , P;,, Idc], can still be used.

However, the theory is still overkill in the sense that these applications never require
reasoning about path functions with more than one property. This is not true for data-
bases that are memory resident. In this case, there is considerable performance incentive
to allow more general path functions as search conditions for an index.[16, 17] The
second way that this application can be extended therefore relates to the evaluation of
memory resident combined indices of the form [<IndexType>,pfi, - , pfm]- The

same issues of maintenance overhead and index type arbitration continue to apply.

6.2. Projection Elimination
Let m,(Q) denote the projection of the set of n-tuples that are solutions to the query
[Q{Vl:cl, ctt ,Vn:Cn}’ {jcls c ,jcl}’{tl’ st ;tm}] (6'2)

on the first i components. Informally, 7(Q) might be expressed in an SQL-like manner
as

SELECT Vi, --- ,V;
FROM G, - ,G
WHERE EXIST(SELECT Vig, -+« ,Va
FROM Cyy, -+ ,Cn
WHERE jc; AND - - - AND jc; AND

ti=¢1 AND --- AND ¢, =c,)

where the ¢; are a choice of constants for the selection terms of Q. Often, a projection is
necessary when evaluating a query because of the possibility of duplicate solutions; that is,
the possibility that the number of solutions to 7;(Q) is less than the number of solutions to
Q. Since projection operations are expensive (they require temporary storage of solu-
tions, along with special indices on the temporary store or a sort in order to efficiently

eliminate duplicate solutions), there is a performance incentive to be able to determine

—135—

when this cannot happen.

Another application of our results derives from the observation that the number of
solutions to 7,(Q) and to Q must be equal if the first i query variables are a "key" of the
relation consisting of all query solutions to Q. This is certainly true if Q is single solution
limited, and will also be true if the PFD

Q(V1 P v1_>VI+1 e Vn)

can be derived from the user specified PFDs and the PFDs induced by the join conditions
of Q. A more efficient way of stating this, involving fewer terms, is to determine if the

alternative query
[Q{V[+1:Ci+1, te ,Vn:C,,},J,T]

is single solution limited, where the join conditions J and selection terms T are derived
from (6.2) in the following manner. First, each join condition of Q contributes a join
condition, a selection condition or nothing at all to Q, depending on occurrences of

Vi, 1<k <i. And second, each selection term ¢ of Q is added to T if ¢ € Terms(Q).

6.3. Cut Insertion

Mendelzon {11] has demonstrated an application of functional dependency theory to the
problem of automatically inserting "cut” operations into the Horn clauses of a Prolog pro-
gram. An analogous application of the theory applies to circumstances where the nested
iteration method is used for evaluating join operations. However, before proceeding with
further discussion, we shall require some notation for expressing an evaluation strategy for

a query, sometimes called an access strategy language (ASL).

A simple ASL that will suffice for our illustrative purposes consists of sentences that
are a finite sequence [e; , - - - , e,], where each element ¢; can have one of four possi-
ble forms: 1) a query variable V : C, 2) a join condition #; = #;, 3) a selection term ¢, or
4) a cut operator !V. Sentences also satisfy the property that any query variables men-
tioned in a join condition, selection term or cut operator occur previously in the sequence.
Recursive "re-write" rules suggestive of an operational semantics for the ASL, in terms of

a Pascal-like language, are as follows.

—36 —

[v:C, ---1] = CutV := false;
V := "first C object”;
while not CutV and not V = nil do begin

[
if not CutV then V := "next C object"
end
[1=1, ---] = ifty=1rtsthenbegin] -+]end
[£, ---] = if + = "the selection value for " then begin
[-]
end
v, - -+ 1 = CutV:=gue;[---]
[] = "remember the solution”

Example. Consider the enrollment query
[Q{E : Enrollment }, { }, {E.S.Name, E.C.Time}]

denoting all enroliments for a given combination of student name and course time. Since
the query is single solution limited (according to step 10 in Table 3), a strategy for
evaluating the query can use a cut operator.

[E:Enrollment, E.S.Name, E.C.Time, !V]

Assuming "Fred" and 900 are the selection values for terms E.S.Name and E.C.Time
respectively, then the above operational semantics defines this strategy as the following

Pascal-like code.

—137 —

CutE := faise;
E := "first Enrollment object";
while not CutE and not E = nil do begin
if E.S.Name = "Fred" then begin
if E.C.Time = 900 then begin
CutE := true;
"remember the solution"”
end
end;
if not CutE then E := "next Enrollment Object"

end

Clearly, the cut operator improves the performance of the strategy since it terminates the
scan of enrollment after finding the first (and necessarily last) enrollment object that satis-

fies the two selection conditions.
(]

In general, we would like to know when cuts may be safely inserted; that is, we

require a means of determining if a sentence in our ASL of the form

["',V:C:""el’ei+1""] (63)

produces the same set of query solutions as the sentence

[""V:C""ieia!V:eH-l’"'] (6.4)

The application of our results to this problem should now be clear: (6.3) can be replaced
by (6.4) if the query

[Q{V:C}L] T]

is single solution limited, where the join conditions J and selection terms T are deter-
mined from those occurring in the sequence prior to entry e;41 in the following manner,
First, a join condition entry contributes a join condition, a selection term or nothing at
all, depending on occurrences of V. And second, each selection term entry ¢ is added to
T if t € Terms(Q).

‘Two obvious ways that this application improves on that of Mendelzon’s are due to
the more general form of functional dependency considered and to some accounting of
the effects of join conditions. Another less apparent improvement derives from the fact
that cuts in our case name a particular variable. For example, there is no possible annota-

tion of horn clauses with cut operators that will result in the same evaluation Strategy as

—38 —

the following ASL sentence.

[, Vi:Cp, - Vi Gy oo e IV, o IV, -]

7. DISCUSSION AND SUMMARY

Object-oriented data models manifest a more general form of aggregation abstraction in
comparison to the relational model. In particular, they allow objects to have properties
which are other objects which may themselves have properties and so on. Typically, this
results in a query language in which terms can navigate from entity to entity by following
a property value path. Since all objects are assumed to exist separately, such paths may
be of zero length.

We have proposed a more general functional dependency constraint, called a path
Junctional dependency (PFD), to account for this circumstance. First, we allow com-
ponent attributes to correspond to a sequence of property names, called property induced
path functions. Such sequences are a means of characterizing a property value path of
non-zero length in an object-oriented database. Second, we allow component attributes to
correspond to what we call identity path functions, which are a means of describing zero-
length paths; that is, a means of referencing object identity directly. And third, we
require each PFD to name a particular object class for which it applies.

Inference axioms for PFDs are presented, and are proven sound and complete with
respect to a graph theoretic notion of interpretation. Decision procedures are then
derived that can be used whenever a schema is acyclic, or when antecedent PFDs are
keys. The theory was then extended to incorporate a limited form of select-project-join
query. Of particular significance is that the join conditions of a query become an addi-
tional source of PFD constraint. A limited completeness result for this more general cir-
cumstance is given. Finally, we outlined several applications of the theory to various
problems in physical design and in query optimization. The applications derive from an

ability to predict when queries can have at most one solution.

There are many interesting questions about the theory of PFDs that remain. For
example, our proof of completeness requires that one allows infinite interpretations for
cases where a schema is cyclic. Proving “finite completeness” is an open problem.
Another example concerns the general problem of PFD derivability. We know the set of
PFDs derivable from a given set is recursively enumerable, this is established in the
paper, but we do not know if the set is recursive. Even for acyclic schema, the number
of path functions that may have to be examined in the forward reasoning approach mani-
fest in our decision procedures will almost certainly be exponential in the length of path

—39 —

function permitted. Alternative goal-directed approaches are an attractive possibility.

8. References

1.

10.
11.

12.

13.

ADAPLEX: Rational and reference manual, CCA-83-08, Computer Corporation of
America (May 1983).

C. Beeri and P. A. Bernstein, Computational problems related to the design of nor-
mal form relational schemas, ACM Transactions on Database Systems 4(1) pp. 30-59
(March 1979).

M. van Bommel and G. E. Weddell, Reasoning about selection conditions for an
object-oriented data model, submitted for publication (1989).

A. Borgida, Features of languages for the development of information systems at
the conceptual level, IEEE Software 2(1) pp. 63-72 (January 1985).

D. D. Chamberlin, M. M. Astrahan, K. P. Eswaran, P. Griffiths, R. A. Lorie, J.
W. Mehl, P. Reisner, and B. W. Wade, SEQUEL 2: A unified approach to data
definition, manipulation, and control, IBM Journal of Research and Development
20(6) pp. 560-575 (November 1976).

E. F. Codd, Extending the database relational model to capture more meaning,
ACM Transactions on Database Systems 4(4) pp. 397-434 (December 1979).

A. Goldberg and D. Robson, Smalitalk-80; The Language and its Implementation,
Addison-Wesley (1983).

G. D. Held, M. R. Stonebraker, and E. Wong, INGRES - A relational data base
system, Proc. National Computer Conference 44(1975). ’

W. Kent, Limitations of record-based information models, ACM Transactions on
Database Systems 4(1) pp. 107-131 (March 1979).

D. Maier, The Theory of Relational Databases, Computer Science Press (1983).

A. Mendelzon, Functional dependencies in logic programs, Proc. Eleventh Interna-

tional Conference on Very Large Data Bases, pp. 324-330 (August 1985).

J. Mylopoulos, P. A. Bernstein, and H. K. T. Wong, A language facility for
designing database-intensive applications, ACM Transactions on Database Systems
5(2) pp. 185-207 (June 1980).

J. M. Smith and D. C. P. Smith, A database approach to software specification,
Technical Report 17, Computer Corporation of America (1979).

14.
15.

16.

17.

18.

— 40 —

B. Stroustrup, The C++ Programming Language, Addison-Wesley (1986).

J. D. Ullman, Principles of Database Systems (second edition), Computer Science
Press (1982).

G. E. Weddell, Selection of indices to memory-resident entities for semantic data
models, to appear in IEEE Transactions on Knowledge and Data Engineering, ().

G. E. Weddell, Physical design and query compilation for a semantic data model
(assuming memory residence), Technical Report 198, Computer Systems Research
Institute, University of Toronto (1987).

C. Zaniolo, The database language GEM, Proc. ACM SIGMOD Conference on
Management of Data, pp. 207-218 (May 1983).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

