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ABSTRACT

We consider a popular representation for temporal relationships
between intervals introduced by James Allen and its associated compu-
tational or reasoning problem of, given possibly indefinite knowledge of
the relations between some intervals, computing the strongest possible
assertion about the relations between some or all intervals. Determining
exact solutions to this problem has been shown to be (almost assuredly)
intractable. Allen gives an approximation algorithm based on constraint
propagation. We present new approximation algorithms, examine their
effectiveness, and determine under what conditions the algorithms are
exact.
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1. Introduction

Allen (1983) gives an algebra for representing and reasoning about temporal relations
between events represented as intervals. Possible application areas of the algebra
include natural language processing (Allen, 1984; Song and Cohen, 1988), planning
(Allen and Koomen, 1983; Hogge, 1987), and a part of a knowledge representation
language intended for software development applications (Koubarakis et al., 1989).
This algebra has been cited by others for its simplicity and ease of implementation
with constraint propagation algorithms. The elements of the algebra are sets of the
thirteen basic relations that can hold between two intervals.

relation symbol converse meaning
x before y b bi XXX Yyyy
X meets y m mi XXXYYY
x overlapsy o oi XXX
Yyy
x during y d di XXX
x starts y S si XXX
x finishes y f fi XXX
X equal y eq eq XXX
yyy

There is a natural graphical notation where the vertices represent intervals and
the directed edges are labeled with elements from the algebra representing the set of
possible relations between the two intervals. Here is an example.

{o, s} ~(B) {m}

When the relationship between two intervals is ambiguous or indefinite we label the
edge with the set of all the possible relations. So in our example, interval A either
overlaps or starts interval B (but not both since the thirteen basic relations are mutu-
ally exclusive). Let {I} be the set of all basic relations, {b, bi, m, mi, o, oi, d, di, s, si, {,
fi, eq}. The set of all possible labels on edges is 2t} the power set of {I}. Any edge for
which we have no direct knowledge of the relationship is labeled with {I}; hence, the
graphs are complete. Inference is done in this scheme through composition of relations:
given a relation between A and B and between B and C we can compute a constraint
on the relation between A and C. Doing this for our example we determine that our
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knowledge of the relationship between A and C can be strengthened to {b}. To see
that this is true we show the two possible arrangements of the intervals along an ima-
ginary time line.

A overlaps B in the diagram on the left, A starts B in the one on the right, and B
meets C in both. We see that in both diagrams A is before C. Hence the result.

1.1. Statement of the Problem

Suppose we are given a set of events, represented as the intervals they occur over, and
knowledge of the relationships between some of the intervals. The problem is to make
explicit the strongest possible assertions about the relationships between intervals. We
now make this somewhat more formal. Given is a directed graph with labels on the
edges from the set of elements of the interval algebra. A consistent singleton labeling
of the graph is a labeling where it is possible to map the intervals to a time line and
have the single relations between intervals hold (as in the example above). The
mintmal label corresponding to a label consists of only the elements of that label capa-
ble of being part of a consistent singleton labeling of the graph. The problem then is
to determine the minimal labels, removing only those elements from the labels that
could not be part of a consistent singleton labeling. Call this the minimal labeling
problem (MLP). Vilain and Kautz (1986) show that determining an exact solution to
the MLP is NP-hard. This strongly suggests that no polynomial time algorithm exists.

Supposing that we still wish to solve instances of the problem, several alternatives
present themselves:

e Exponential algorithms: Solve the problem exactly but devise efficient
exponential algorithms. These may still be practical even though their worst case
is exponential. Valdés-Pérez (1987) gives a dependency-directed backtrack algo-
rithm but it only finds one consistent singleton labeling of the graph or reports
unsatisfiability.

e Easy special cases: Interesting special cases of an NP-Hard problem may be
solvable in polynomial time. This alternative often takes the form of limiting the
expressive power of the representation language.

e Approximation algorithms: Solve the problem approximately using an algo-
rithm that is guaranteed polynomial. That is, design algorithms that do not
behave badly—in terms of the quality of the produced solution—too often, assum-
ing some probabilistic distribution of the instances of the problem. Allen’s (1983)
O(n®) algorithm is just such an approximation algorithm.



1.2. Overview

The purpose of this paper is to investigate the latter two alternatives: efficient algo-
rithms for computing approximations to the minimal labeling problem and some special
cases where approximation algorithms are exact. We consider two versions of the
problem: an all-to-all version where we compute the minimal labels between every pair
of intervals, and a one-to-all version where we determine the minimal labels between
one interval and every other interval. Below we give an overview of our results.

In general, Allen’s algorithm, being an approximation algorithm, will not always
compute the minimal label between two intervals. In section 2, we explore better (and,
unfortunately, more expensive) approximation algorithms. Allen’s algorithm is a spe-
cial case of path consistency algorithms for constraint satisfaction problems (Mon-
tanari, 1974; Mackworth, 1977). We develop an O(n*) consistency algorithm that com-
putes a better approximation to the exact solution. The labels computed by the algo-
rithm, as with Allen’s algorithm, will always be a superset (not necessarily proper) of
the minimal or true labels. The algorithm computes a better approximation in that
there are fewer disjuncts that could not be part of a consistent singleton labeling of
the graph.

In section 2, we also explore how far we must restrict the expressive power of the
representation language to guarantee that we can solve instances of the all-to-all prob-
lem exactly in polynomial time. Valdés-Pérez (1986) shows that graphs with labels res-
tricted to the thirteen basic relations can be solved exactly in O(n®) time using Allen’s
algorithm. Vilain and Kautz (1986) define a time point algebra and claim that Allen’s
algorithm is exact for computing the minimal labels between points. The consequences
for the interval algebra are the following. Vilain and Kautz show that a subset of the
interval algebra can be translated into the point algebra. If their claim is true we can
solve that subset of the interval algebra exactly by first translating into the point alge-
bra. However, their claim is false. We present a counter-example to their theorem.
We show that Vilain and Kautz’s point algebra and the subset of the interval algebra
that can be translated into the point algebra can be solved exactly using the O(n4)
consistency algorithm discussed above. We also characterize the subset of the point
algebra and the interval algebra for which Allen’s algorithm is exact. Unfortunately
the subsets of the interval algebra are small. We must quite severely restrict our
representation language to guarantee efficient and exact solutions.

Allen’s algorithm determines an approximation to the minimal labels between
every interval and every other interval (the all-to-all version of the problem). If we are
only interested in the relationships between a few of the intervals then, in computing
the relationships between all intervals, we may be doing too much work. In section 3,
we define a one-to-all version of the problem, where we only determine the relationship
between a single source interval and every other interval. Our solution to this version
of the problem is an adaptation of Dijkstra’s (1959) algorithm for computing the shor-
test paths in a graph. The algorithm produces good quality solutions for certain
classes of instances of the problem and is shown to take O(n?) time. As in the previ-
ous section, we characterize how far we must restrict the expressive power of the
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representation language to guarantee that our one-to-all approximation algorithm is
exact.

In section 4, we present the results of some computational experiments designed
to test the quality of the solutions produced by Allen’s and our approximation algo-
rithms. We randomly generated instances of the problem and determined how often
the less expensive approximate solutions differed from the exact solution, thus allowing
us to determine with what degree of confidence we can rely on the less expensive solu-
tions. We found that how well the approximation algorithms do is heavily dependent
on the distribution from which the relations between intervals are randomly generated.
In this section we also present a simple test for predicting when the approximation
algorithms will and will not produce good quality approximations.

Finally, in section 5, we survey selected applications of the interval algebra with
the intent of showing where the results of this paper will be of use.

2. The All-to-All Problem

The minimal labeling problem (MLP) is related to two well known problems: the alge-
braic path problem (Aho et al., 1974) and the constraint satisfaction problem (Mon-
tanari, 1974, Mackworth, 1977). Some of the algorithms and results developed for
these related problems can also be applied to the MLP. We begin by relating the MLP
to constraint satisfaction and show that Allen’s algorithm is a special case of the path
consistency algorithm for constraint satisfaction.

Constraint Satisfaction Problem (CSP)

Given are a set V of n variables {v; v, ..., v,}, a domain D; of possible values for each
variable, and binary constraint relations between variables that preclude certain combi-
nations of instantiations of the variables. A consistent instantiation of the variables
in V is an n-tuple (z; z, ..., ,), representing an assignment of x; € D; to v;, such
that the constraint relations between variables are satisfied.

Valdés-Pérez (1986), Tsang (1987), and Ladkin (1988) show how an MLP can be
viewed as a CSP. An interval is represented by its end points <A™ A*> where
A~ < A" and A” and AT are real numbers. An interval is now a variable and its
domain is the set of all ordered pairs of time points. A constraint between two vari-
ables is the label (the allowed relations) between those variables. We remark that in
viewing an MLP as a CSP the only change is that the qualitative intervals are now
seen as quantitative variables with associated domains of ordered pairs of real numbers.
The domains, however, are implicit and need never be represented. The formulation as
a CSP is then just a theoretical fiction but one that will ease subsequent proofs and
allow us to use previously known algorithms.

Mackworth (1977) discusses approximation algorithms for the CSP, called con-
sistency algorithms, that remove local inconsistencies that could never be part of a glo-
bal solution. One, two, and three consistency are generally referred to as node, arc,
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and path consistency, respectively. Freuder (1978) generalizes this to k-consistency:
For every choice of k—1 variables along with instantiations for each that satisfy all the
constraints among them, the domains are k-consistent if, for any choice of a kth vari-
able there exists an instantiation of that variable such that all the constraints between
the k& variables hold. Freuder (1982) defines strong k-consistency as j-consistent for all
J < k. Strong k-consistency is equivalent to ensuring that, for every choice of k of the
n variables, every pair of values permitted by a direct constraint is capable of being
part of a consistent instantiation of the k£ variables.

How do strong k-consistency and the consistency algorithms relate to the original
MLP? The following lemma connects the two.

Lemma 1. If the underlying CSP of an MLP is strongly k-consistent then in the
MLP, for every choice of k vertices, every element of the associated labels is capable
of being part of a consistent singleton labeling of the subgraph of k vertices. In par-
tecular, strongly n-consistent in the CSP corresponds to a minimal labeling in the
MLP.

Proof. Strong k-consistency means that, for every choice of k variables, every pair of
values permitted by a direct constraint is capable of being part of a consistent instan-
tiation of the k variables. But a consistent instantiation of the k variables is exactly a
consistent singleton labeling of the subgraph of k vertices: the instantiation of the
variables is our mapping of the intervals to a time line, the labels between variables are
singletons sets because the basic relations between intervals are mutually exclusive,
and by definition the relations are satisfied.

2.1. The Path Consistency Algorithm

In this section we present Mackworth’s (1977) path consistency algorithm with some
small simplifications because of the properties of the interval algebra. The resulting
algorithm is equivalent to Allen’s (see Figure 1).

The algorithm works as follows (a more detailed description can be found in Allen,
1983 and Mackworth, 1977). We represent the graphs of intervals and their relation-
ships as a matrix where element C;; is the label on edge (¢, j). Procedure RELATED
PATHS, given an edge (7, 5), returns a set of triples representing all the paths of
length two in which edge (7, j) participates. The labels on these paths of length two
potentially constrain the label on the third edge that completes the triangle. We main-
tain a queue of triples that still need to be processed. Each time through the loop we
process a triple. If the path of length two does constrain the third edge we update the
entry. This updated edge may further constrain other edges so its set of RELATED
PATHS is added to the queue. But note that only those triples not already in the
queue are added. How a triple is selected doesn’t change the result (Mackworth, 1977,
p. 113). It does, however, influence the amount of work done. In practice, sorting the
triples at the start in ascending order according to their labels and adding new triples
to the front of the queue works well. We defer until section 3 a discussion about



Input: A matrix C where element C;; is the label on edge (¢, 7). Output: A path con-
sistency approximation to the minimal labels for Cy;, ¢, 7 = 1,...,n.

procedure ALL3
begin
Q «— U RELATED PATHS (7, j)
1<i<j<n
while Q is not empty do begin

select and delete a path (7, k, 7) from Q@ (2.1)
t 4—01']' N Cik ° ij (2‘2)
if (t # C;;) then begin

Cij «—1

Cj; +— CONVERSE (t)

Q < Q U RELATED PATHS (¢, j)
end

end
end

procedure RELATED PATHS (¢, j)
return { (i, j, k), (k, i, N1 <k <n, bk #i,k#5}

Figure 1. An All-to-All Path Consistency Algorithm (Mackworth, 1977).

defining an order over the interval algebra.

Theorem 1 (Montanari, 1974; Mackworth and Freuder, 1985). The algorithm in Fig-
ure 1 achieves path consistency and requires O(n®) time.

To use the path consistency algorithm we need to define the operations of inter-
section and composition of two labels (equation 2.2 of Figure 1). Intersection is just
set intersection. Given that labels on edges can represent a disjunction of possible
relations between two intervals, Allen defines the composition of two labels as the
pair-wise multiplication of the elements,

Cilc . ij = {a X b Ia EC,'/C, b EC’kj } (2.3)

where X is defined over the seven basic relations and their converses and is easily
implemented as a table lookup (see appendix A for the complete table taken from
Allen, 1983).



2.2. Improving the Approximation

In this section we explore better and more expensive algorithms for determining
approximations to the minimal labels (the strongest possible assertions about the rela-
tionships) between all intervals.

Where does the path consistency algorithm fail? Determining this will help us
develop better approximation algorithms. It can be shown that for the interval algebra
path consistency ensures that for the triangle formed by any three vertices in the
graph, the labels on edges are locally minimal-—minimal not necessarily with respect to
the entire graph, but with respect to the triangle. In the interval algebra this is insuf-
ficient to even guarantee overall consistency. We give an example from Allen (1983)

ascribed to Henry Kautz.

Applying the algorithm of Figure 1 results in no changes to the labels; each of the ele-
ments can be part of a consistent singleton labeling of the triangles to which the edges
belong. However, no consistent singleton labeling exists for the entire graph. The
minimal labels are the empty set.

Recall the definition of a minimal label: every element of the label is capable of
being part of a singleton labeling of the entire graph that can be consistently mapped
to a time line. The path consistency algorithm, as an approximation, ensures the labels
are minimal with respect to all subgraphs of size three. Another way to view the
action of equation (2.2) together with the definition of composition of labels (equation
2.3) is that entry C;;, the label on the edge (¢, j), gets updated to be the set of the ele-
ments of the old label that can be part of a consistent singleton labeling of the triangle
(¢, k, 7). That is, we ensure that the labels are minimal with respect to all triangles
(or 3-cliques) and composition is defined over labels on edges that share a vertex. The
simple idea for improving the approximation is then to ensure that the labels are
minimal with respect to all subgraphs of four vertices (or 4-cliques) and define composi-
tion over labels of triangles that share an edge. Equation (2.2a) and the definition of

composition over triangles that share an edge (equation 2.3a) ensure that eutry C;; gets



procedure ALL4

select and delete a 4-tuple (7, k, {, 7) from Q (2.1a)
t—Ciy N Qg+ By (2.22)

procedure RELATED PATHS (7, j)
return { (k, 4,5, )1 <k <l <n, k1 #i,5}U
{Grdn k), (b i, L <k, U <my bk #1, k14,5 )}

Figure 2. An All-to-All Four-Consistency Algorithm. Shown are changes to the
path consistency algorithm.

updated to be the set of the elements of the old label that can be part of a consistent
singleton labeling of the subgraph of four vertices.

Ny B & {(@axXd)n(bXe)la€Cy,cecy,e €Cy;, (2.32)
bE(a XC)ﬁC,l,dE(ch)ﬂOk]}

Procedure RELATED PATHS must also be altered. Instead of returning all paths
of length two in which edge (7, j) participates it now must return all structures of four
vertices in which the edge participates, taking into account symmetries to prevent
redundant computation. The necessary changes to the algorithm of Figure 1 are sum-
marized in Figure 2.

Theorem 2. Procedure All4, the path consistency algorithm with the changes of Fig-
ure 2, achieves three and four consistency and requires O(n*) time.

The idea for developing the initial better approximation algorithm can be general-
ized to develop successively more expensive algorithms that compute progressively
better approximations. But this is of theoretical interest only since higher orders of
consistency quickly become impractical for all but the smallest problems.

2.3. Easy (Polynomial Time) Special Cases

In this section we explore how far we must restrict the expressive power of the
representation language to guarantee that we can compute exact solutions in polyno-
mial time.
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Montanari (1974) shows that for the general CSP the path consistency algorithm
is exact for a restricted class of binary constraint relations. However, the relations of
interest here do not all fall into this class. Valdés-Pérez (1986) shows that graphs that
are not labeled with disjunctions can be solved exactly in O(n®) time using the path
consistency algorithm.

Vilain and Kautz (1986) claim something stronger. They define a time point alge-
bra for representing and reasoning about the possible relations between points, as
opposed to intervals. Let PA* denote Vilain and Kautz’s point algebra. PA™ is the
algebraic structure with underlying set {<, <, =, >, >, #, ¢} and binary operators
intersection and composition. Note that <, for example, is an abbreviation of {<, =}
and ? means there is no constraint between two points, {<, =, >}. Intersection is
then set intersection. Composition is defined as in the interval algebra (equation 2.3)
except that multiplication is now given by,

X <| =| >
<[l <l <| ¢
= <| =| >
> 7L > >

Vilain and Kautz show that a subset of the interval algebra can be translated into this
time point algebra. As an example translation, the interval algebra label

A—Lem 6

translates into the following inequalities on the endpoints of the intervals (where A~
and A% represent the start and end points of interval A, respectively)

A- # B~ A~ < Bt At > B~

At < Bt AT < At B~ < Bt

Let SP” be the set of labels in the interval algebra that can be translated into rela-
tions between the endpoints of the intervals using the underlying set of PA™ (see
appendix B for an enumeration of SP”).

Vilain and Kautz assert (Theorem 4, p. 380) that the path consistency algorithm
(Figure 1) is exact for computing the minimal labels between points. The consequences
for the interval algebra are the following. If their claim is true we can solve the subset
SP”* of the interval algebra exactly by first translating into the point algebra. How-
ever, their claim is false. Here we present a counter-example demonstrating that the
path consistency algorithm is not exact for Vilain and Kautz’s point algebra. The
counter-example also shows that path consistency is not exact for SP* if, instead of
first translating into the point algebra, we use the interval algebra representation
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directly. Below is the interval algebra representation of the example with labels chosen

from SP™.

{eq, b, di, o, s, si, fi}

where
L ={d, di, o, o, m, f, fi}

The translation into the point representation is the following

A~ AY| B~ BY| ¢ c¢*| D D*
ATl = <[ # <£| £ <] # <K
At > = ? # ? > ?
BT #+ < | = <| # <| # #
BY| > ¢ > == 7 > 2
Cl =2 #|# | = <] °?
ct| > ¢ > 7 > =] > >
D7 # < | # </| ? <| = <
DI =2 7 # | # <| > =

Applying the algorithm of Figure 1 results in no changes; the relations between
points are all considered to be minimal. However, the relation A~ <B%* is not
minimal, thus demonstrating that the algorithm is not exact for the point algebra. The
minimal or true relation is A~ <B*. This change is also reflected in the original inter-
val algebra representation: the minimal label between vertex A and vertex B is {d, di,
o, oi, f, fi}, with the meets relation having been dropped because it could not
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participate in any consistent singleton labeling of the graph. Interestingly, the path
consistency algorithm is also not exact when applied to the interval algebra representa-
tion of this example, whereas the algorithm we proposed in the previous section com-
putes the minimal labeling. To reiterate, the counter-example shows that the path
consistency algorithm is not exact for SP* and PA*. Ladkin and Maddux (1988) show
that for PA* path consistency does guarantee that, if the minimal labels on edges is
the empty set, this will be detected.

Define a new point algebra, PA, with the same binary operators and underlying
set as PA™ with the exception that # is excluded from the underlying set. Let SP be
the set of labels in the interval algebra that can be translated into relations between
the endpoints of the intervals using the underlying set of PA (see appendix B for an
enumeration of SP). We next prove that the path consistency algorithm is exact for
SP. A corollary shows that path consistency is exact for PA as well. The following
lemma on the intersection of convex sets will be useful in the proof of exactness.

Lemma 2 (Helly’s theorem; ref. Chvital, 1983). Let F be a finite family of at least
n+1 conver sets in R" such that every n+1 sets in F have a point in common. Then
all the sets in F have a point 1n common.

Theorem 3. The path consistency algorithm of Figure 1 is exact 1f all labels are
chosen from SP.

Proof. The theorem is proved by showing that if all labels are from SP and there is
path consistency then the graph is strongly k-consistent for all ¥ < n. Hence, the
graph is strongly n-consistent and by Lemma 1 the labeling is the minimal or exact
labeling.

Basis: k =1,2, or 3. True by construction of CSP and by the assumption of path
consistency.

Inductive step: We assume strongly (k—1)-consistent and show k-consistent. The
domain of variable V; is the set of ordered pairs of points <V§, V> with Vi < V{. The
inductive assumption implies that variables Vi, ..., Vi,_; can be consistently instan-
tiated. That is, they can be given values <s;, €;>, ..., <S;_q, €x_1> that satisfy rela-
tions Cj;, %, j = 1,...,k—1. We wish to show that variable V, can be given a value
that, together with the previous values, satisfies relations Cijy 1, J = l,...,k. Restating
the assumption,

<3i7 6z'> Oij <3j, €]> 'i, ]' = 1,,k—1
At completion of the algorithm we have path consistency so every instantiation of vari-
ables V; and V; allowed by the direct relation between V; and V; is also allowed by the
composition of relations along every path between V; and V;. And, in particular, is
allowed by the path through variable Vj. So, for each <s;, ¢;> and <s;, ;> there
exists instantiations of Vi, dependent on the instantiations of V; and V}, such that the
relations hold.
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<Si9 6i> Oilc <3/c9 elc>ij ij <Sj, 6j> ’I:, j = 1,...,k—1 (2.4)

We must show that there exists at least one instantiation of V} that makes all relations
true. We do so as follows. View the constraints between variables (Cj; and Cy;) as
being represented by their translation into the point algebra. Then, for each 7, 5 in
equation (2.4) we get bounds on instantiations of Vi and V. The key is that the
bounds on the end points are convex sets so by Lemma 2 it is sufficient to show that
any three bounds have a point in common. There are two cases depending on whether
one of the three bounds is Vi < V.

Case 1: Each of the three bounds is strictly in one or the other of Vi and Vj, the
bound that involves both is not included. Because each bound is only in one variable
it is sufficient to show they are pair-wise consistent to show that together the three are
consistent. But any two bounds are always part of a single triangle and are consistent
by the assumption of path consistency.

Case 2: Two of the bounds are strictly in one or the other of Vi and Vj, the third
bound is Vi < Vi. In this case, all three bounds are always part of a single triangle
and again are consistent by the assumption of path consistency.

Hence, there exists at least one instantiation of V), that makes equation (2.4) true for
all ¢ and 7 and we have shown the graph is k-consistent.

<Si’ e,-> C” <Sj, 6j> ’L., j = ].,...,k

Adding the inductive assumption gives the desired result.

Corollary 1. The path consistency algorithm of Figure 1 is exact for PA, the time
point algebra that excludes the # relation.

Proof. The proof is similar. Here we need only show that the intersection of any two
bounds is non-empty and this follows directly from path consistency.

Thus, any algorithm that achieves path consistency is exact for SP and PA. Aho
et al. (1974) give an algorithm for the algebraic path problem that achieves path con-
sistency if certain conditions hold. SP and PA can be shown to meet these conditions
with one provision. Composition does distribute over intersection provided the inter-
section of two elements is not equal to the empty set (proposition 1 & 2 of section 3.2).
Clearly, this will not always be true. Does this restrict the applicability of the algo-
rithm? Fortunately not. In the algorithm, the intersection of two elements to get the
empty set means the graph is inconsistent. If this occurs the algorithm can stop and
report inconsistency.

In the remainder of this section we show that the four consistency algorithm
developed in section 2.2 is exact for SP* and PA*. The strategy is to first identify
why path consistency is not sufficient and where the proof of Theorem 3 fails for SP”*
and PA™ (recall PA” includes #, PA doesn’t).
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In the proof of Theorem 3 for the exactness of path consistency for SP and PA
the inductive step showed that if £k—1 of the variables were consistently instantiated
then, for any choice of a kth variable, that variable could be instantiated such that all
k variables together were consistently instantiated. Showing this relied on the fact
that the bounds on the instantiations of the kth variable were convex sets. If # is per-
mitted in the language of the point algebra, the bounds are no longer convex sets and
while the intersection of any two bounds cannot be empty, the intersection of three
can be empty. Here is an example. The example is also the smallest counter-example
to the exactness of path consistency for PA™ and, up to isomorphism, is the only
counter-example of four vertices.

The graph is path consistent. Let A, B, and C be instantiated as a, b, and ¢ such that
a = b = c. The instantiation is consistent. The bounds on the instantiation of D are
D <a, b <D, and D # ¢. Using standard interval notation and substitution of equals
the bounds are (—oo, al, [a, +09, and (—oo, a) U (a, +0o9. It is easily seen that the
bounds are pair-wise consistent but together are inconsistent. If the graph was also
four consistent, say by applying algorithm All4, the label between A and B would be >
and this counter-example could not occur.

The counter-example then is unique for n = 4 and cannot occur if the graph is
three and four consistent. But can we find a counter-example for n > 4? No. Any
larger counter-example must take & >3 sets and show their intersection is empty.
The counter-example must, of course, involve #. Suppose we have any two and any
three bounds consistent but there exists a & > 3 such that k& sets taken together do
not have a point in common. The disjoint case can be dismissed immediately because
some pair would also be disjoint. The bounds on instantiations of variables and their
intersections are almost convex: except for at most n holes. So, for the intersection to
be empty we must have one or more of the bounds assert # and the intersection of two
or more sets be exactly a point, that point being a hole. But if the intersection of a
finite number of intervals is a point then some two of them must also intersect to be a
point. But this case is ruled out. We have just shown the following.
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Theorem 4. The three and four consistency algorithm of Figure 2 is exact if all
labels are chosen from SP”.

Proof. The proof of theorem 4 follows the inductive proof of theorem 3 except that
we can no longer rely on Lemma 2 and the convexity of the bounds to show the bounds
are consistent. But, by the above discussion, the bounds are consistent if the graph is
path consistent and also four consistent.

Corollary 2. The three and four consistency algorithm of Figure 2 is exact for PA™,
the time point algebra that includes the # relation.

We characterized the subsets of the interval algebra for which the path con-
sistency algorithm and our four consistency algorithm are exact. Unfortunately these
subsets are small. We must quite severely restrict our representation language to
guarantee efficient and exact solutions.

3. The One-to-All Problem

The algorithms given in the previous section compute approximations to the minimal
labels between every interval and every other interval (the all-to-all version of the
problem). If we are only interested in the relationships between one interval and every
other interval or between two particular intervals then, in computing the relationships
between all intervals, we may be doing too much work. In this section we present an
efficient algorithm for the one-to-all version of the problem and show that the algo-
rithm is exact for a useful subset of the interval algebra and of the point algebra.

3.1. A One-to-All Approximation Algorithm

The algorithm (see Figure 3) is an adaptation of Dijkstra’s (1959) algorithm for com-
puting the shortest path from a single source vertex s to every other vertex. The algo-
rithm maintains a list, L, of vertices to be processed that have not yet had their labels
fixed. Each time through the while loop we choose a vertex, v, from L such that the
label on the edge (s, v) is a minimum and use the label to update the remaining
unfixed labels. In Dijkstra’s algorithm this minimum label is now considered fixed. His
algorithm, which can be categorized as a label-setting algorithm, produces poor quality
solutions when applied to the interval algebra.

In the algorithm of Figure 3, a label is allowed to change after it has been tenta-
tively fixed and perhaps further constrain other labels. This is accomplished through
two simple changes to Dijkstra’s algorithm: (i) the for loop now cycles through all ver-
tices, V, rather than just through the unfixed vertices and (ii) a vertex is added to L if
its edge label changes. These changes turn the algorithm into a label-correcting algo-
rithm where no labels are considered final until the procedure halts. These changes to
Dijkstra’s algorithm also appear in Edmonds and Karp (1972) in the context of finding
shortest paths where negative arc lengths are allowed. Johnson (1973) showed that, if
the labels are integers, these changes makes the algorithm exponential in the worst
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Input: A source vertex s and a matrix C where entry C;; is the label on edge (7, 7)-
Output: An approximation to the minimal labels for Cg;, 7 = 1,...,n.

procedure ONE3
begin
L+«—V-{s}
while L is not empty do begin
select a vertex v from L such that C,, is a minimum
L+~—L—-{v}
for each ¢t in V do begin
! <""Ost‘ N Csu ) Ovt
if (I # C,) then begin
Cst —I
L~—LuU{t}
end
end
end
end

Figure 3. A One-to-All Algorithm.

case. In this context, though, the algorithm is O(n?).
Theorem 5. The label-correcting algorithm of Figure 3 requires O(nz) time.

Proof. Initially our free list, L, is all the vertices. A vertex, ¢, is put back on the
free list only if the label on edge (s, t) loses one or more of its elements. A label can
have at most 13 elements initially, so each vertex can reappear on the free list at most
13 times. For each element in L we do O(n) work. Hence O(n?).

The label-correcting algorithm requires the operation of finding the minimum of a
set of labels. However, the final result of the algorithm is independent of the minimum
used, so a minimum function that simply returned the first element in the list would
suffice. But the choice of label does affect the number of iterations. We found that in
practice the following order on the set of all labels halved the number of iterations of
the algorithm compared to a random minimum. We assign weights to the 13 primitive
relations based on the sum of the cardinality of the primitive relation successively com-
posed with every possible label. The weight of a primitive relation is a measure of how
restrictive the relation is. With suitable scaling we get the following weights for the 13
primitives: (1, eq), (2, fi), (2, f), (2, mi), (2, m), (2, si), (2, s), (3, bi), (3, b), (3, di), (8,
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d), (8, oi), (8, 0). The weight of a label is then the sum of the weights of its elements.
This same weighting was also found to be useful for pre-sorting the labels in the all-
to-all algorithm of Figure 1.

3.2. Easy (Polynomial Time) Special Cases

In this section we explore how far we must restrict the expressive power of the
representation language to guarantee that our one-to-all approximation algorithm of
Figure 3.1 (One3) is exact. Note that the all-to-all algorithms compute approximations
to all the minimal labels but even the labels we're not interested in help us by further
constraining the labels we are interested in. One3 does not do this; it uses less infor-
mation to compute its approximations. Hence, in general its approximations are poorer
than those of the all-to-all algorithms. Surprisingly though, One3 is exact for the same
subset of the interval algebra for which the path consistency algorithm (All3) is exact.
First we state some of the properties of SP, the subset of the interval algebra for which
All3 is exact, useful in the proof of exactness.

Proposition 1. The following properties of SP are easily ver: fied:
(i) SP s closed under composition.
(ii) SP s closed under intersection if we include the empty set or null relation.

(ili) Composition distributes over intersection, that i3, a *(bNc)=a-bNa-c
and(bNec)-a=b-aNc-a, forall a, b, c in SP such that b N ¢ # J

Theorem 6. The label-correcting algorithm of Figure 8 is exact ¢f all labels are
chosen from SP, provided there exists at least one consistent singleton labeling of the
graph.

Proof. We will prove that, for those labels computed by One3, the results are

equivalent to those of All3. Then, since All3 is exact by Theorem 3, so is One3.

Let Cyj, j = 1,...,n be the labels computed by One3 with source s. At completion of
the algorithm the following is true,

Csj g Csk : ij, j, k= 1,...,'n (3.1)

Suppose, to the contrary, that there exists a C, such that All3 computes a better
approximation than One3. We know that,

Cst g CSU * C’Ut’ V= 1,...,’"/ (3.2)

For such a Oy to exist, there also must exist some path v,w;,wg,...,w,,,t that the algo-
rithm doesn’t look at and that constrains the label on the edge (v, t) and invalidates
equation (3.2). That is, a path such that

Coy - (Cuwl : Cw1w2 e Cw,,,t NCy) CCy € Cyy - Cy

But by distributivity we have,
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Lhis. = Qg " Cpy, " Crypp,” " * " Cye N Cyy - Cy
By associativity,
= (Cop " Cou) " Cup) = =+ *Cp ) N Cgy * Cy
Applying equation (3.1) repeatedly,
2 Cyq N Cyy - Cy

= Cst

A contradiction.

From Proposition 2 stating some of the properties of PA, the time point algebra
that excludes the s relation, we have also proved that One3 is exact for PA.

Proposition 2. The following properties of PA are eastly ver:fied:
(i) PA s closed under composition.
(i) PA s closed under intersection if we include the empty set or null relation.

(iii) Composition distributes over intersection, that s, a *(bNe)=a-bNa-c
and(bNe)-a=b-aNc-a, forall a, b, c in PA such that b N ¢ #

Corollary 3. The label-correcting algorithm of Figure 3 is exact for PA, provided
there exists at least one consistent singleton labeling of the graph.

The proof of the theorem and the corollary uses the property that composition distri-
butes over intersection. By Propositions 1 and 2 this property is true for SP and PA,
respectively, only if it can be guaranteed that the intersection of two labels will never
result in the empty set. That 1is, only if all triangles are consistent
(Cij N Cy - Cpj #+ By 1,4, k =1,..,n). Hence the proof fails for SP and PA if any
triangle is inconsistent. The algorithm will correctly label the edges with the empty
set if there exists an inconsistent triangle involving the source vertex, s, but since the
algorithm does not look at all triangles it is easy to find counter-examples to show that
the above theorem is false if there is even one inconsistent triangle in the graph.

The exactness results for the one-to-all algorithm have the appearance of being
less than useful. To know whether the algorithm has computed the minimal labels we
must first know whether the graph can be consistently labeled at all. But determining
this is itself a difficult problem. Given that the graph is labeled with elements from
SP or PA, the path consistency algorithm will correctly determine whether the graph
can be consistently labeled but then the one-to-all algorithm is redundant. When and
how then can we use the algorithm? There are two scenarios.

e We know a priori that the graph can be consistently labeled. (In section 5 we
discuss an example application where this is reasonable: extracting the temporal
relations between events mentioned in a narrative. The assumption is that the
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narrative is coherent.)

e We build the graph incrementally, applying the algorithm after the addition of
each vertex. Suppose we know the relations between intervals are consistent and
we add a new interval s and the relations between s and some of the previously
entered intervals. The One3 algorithm is then guaranteed to detect any incon-
sistency since it will detect any inconsistent triangle involving the source vertex,
s. This gives an online algorithm useful when the arrival of new intervals and
queries about the relations between intervals are interspersed.

4. Experimental Results and a Predictive Test

In this section we present the results of some computational experiments comparing
the quality of the solutions produced by Allen’s and our approximation algorithms.
The experiments give a partial answer to the question: with what degree of confidence
can we rely on the less expensive approximate solutions? We also present a simple test
for predicting when the approximation algorithms will and will not produce good qual-
ity approximations.

For each problem of size n we randomly generated a consistent singleton labeling
and then added uncertainty. To generate a consistent singleton labeling we randomly
generated the end points of the intervals as integers in a specified range and then
translated this into the interval algebra. The uncertainty was in the form of additional
disjuncts on the possible relations between two intervals. We then applied the three
approximation algorithms, chose a particular edge, determined the minimal or exact
label on that edge using an exact backtracking algorithm, and recorded whether the
less expensive approximate solutions differed from the exact solution.

We found that how well the algorithms do is heavily dependent on the distribu-
tion from which the uncertainty is randomly generated. Figure 4 summarizes the
results for two distributions. Distribution one was chosen to approximate instances
that may arise in a planning application (as estimated from a block-stacking example
in Allen and Koomen, 1983). The important parameter in the planning application is
that the relations between most of the actions are originally unconstrained (denoted by
{I}, the set of all basic relations). The values of n were also chosen to represent practi-
cal values. Fortunately, for the class of problems that may arise in the planning appli-
cation, experimental results suggest that for a reassuringly large percentage of the time
we can use All3, the path consistency algorithm, with near impunity: the outcome is
the same as that of using an exact algorithm. With a different distribution, however,
up to two-thirds of the labels on average were not minimal.

We note that the choice of how to generate random instances of the problem was
largely dictated by what kinds of problems could be solved exactly in a reasonable
amount of time. It would be interesting to know, for example, if it is true in general
that the quality of the approximation improves as the problem size increases (as exhi-
bited in Figure 4). There are indications that if the random instances have, before
adding uncertainty, at least two distinct singleton labelings this is not the case but few
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Distribution 1: About 75% of the time the uncertainty added is {I} and the remaining
time comnsists of from 0 to 3 of the basic relations. Distribution 2: All labels are
equally likely to be added as uncertainty. 150 tests performed for each problem size,
n.

Distribution 1 Distribution 2
n One3 All3 All4 | One3 All3 All4
20 6.0 0.0 0.0 72.7 66.0 36.7

30 10.7 0.0 0.0 88.7 41.3 9.3
40 18.0 1.3 0.7 95.3 12.0 3.3
50 12.7 0.0 0.0 90.7 4.0 2.0
60 18.0 0.7 0.0 84.0 0.0 0.0

Figure 4. Percentage differences between the approximation algorithms and
an exact algorithm for various problem sizes.

experiments were performed because exact solutions could not be computed in a rea-
sonable amount of time.

We present a simple test for predicting when the approximation algorithms will
and will not produce good quality approximations. Let SP be the subset of the interval
algebra discussed earlier that can be solved exactly using the path consistency algo-
rithm. Computational evidence shows a strong correlation between the percentage of
the total labels that are from SP and how well the One3, All3, and All4 algorithms
approximate the exact solution. Recall that Theorem 3 (Theorem 6) states that All3
(One3) is exact when all the labels are from SP so we cannot improve on that. But, as
the percentage of the total labels that are from SP nears zero, up to three-fifths of the
labels (on average) assigned by All3 and more than four-fifths of the labels assigned by
One3 are not minimal (see Figure 5). Thus we have an effective test for predicting
whether it would be useful to apply a more expensive algorithm.

5. Applications

In this section we survey three example applications of Allen’s interval algebra chosen
from the literature to show where the results of this paper could be useful.

Example 5.1.

Koubarakis et al. (1989) use Allen’s interval algebra in a knowledge representation
language for software development applications to allow the representation of and
queries about the history of the domain and about the system’s beliefs about that his-
tory. They wuse only the thirteen basic relations, foregoing representational
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Average difference (%)

. One3 algorithm
- All3 algorithm
All4 algorithm

0 10 20 30 40 50 60 70 80 90 100

Labels in SP (%)

Figure 5. Percentage differences between the approximation algorithms and
an exact algorithm for various percentage of labels in SP. 250 tests performed
for each subinterval; problem size is 25.
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completeness in favor of guaranteed exact answers in quick time. (Their system main-
tains the network of relations between the end points of every interval using the point
algebra of Vilain and Kautz. Since they restrict the relationships between intervals to
the 13 basic relations, the counter-example we gave in section 2.2 to the exactness of
Vilain and Kautz’s point algebra does not affect this application.) Our characteriza-
tion of SP, the subset of the interval algebra for which the problem can be solved
exactly and efficiently using the path consistency algorithm, shows that the expressive
power of their temporal language could be expanded without compromising efficiency
or exactness. As well, the one-to-all algorithm, whether we first translate into the
point algebra or reason directly with SP, may be of significant use in a system that
allows queries about the temporal relations between events in the domain. This will be
especially true as the problems to be represented grow larger.

Example 5.2.

Song and Cohen (1988) use Allen’s interval algebra in their solution to a problem in
natural language processing: extracting and representing the temporal relations
between the events mentioned in a narrative. In narrative, the relations between
events are sometimes explicitly stated using adverbs or connectives but at other times
are left vague. Song and Cohen restrict their representation language to the thirteen
basic relations plus two defined relations—precedes (defined as {b, o, m}) and includes
(defined as {eq, d, s, f})—to capture vagueness. It turns out, however, that this subset
of the interval algebra is also a subset of SP. Thus, once we have extracted the possi-
bly vague relationships between some of the events mentioned in the narrative, we can
determine exactly the strongest possible assertion about the relationship between all of
the events using the path consistency algorithm described in section 2.1.

Example 5.3.

The interval algebra is used in planning (Allen and Koomen, 1983; Hogge, 1987). In
classical planning actions are viewed as instantaneous and thus the only allowed rela-
tions between actions are <, >, and =. Viewing actions as having temporal extent and
using the interval algebra to represent the relations between actions allows plans to
have actions that overlap. Given a plan library with temporal constraints, Hogge gives
the following three steps for using his planner: (i) specify the planning problem as a
set of facts, goals, and temporal constraints between them; (ii) run the planner; (iii)
select among the possible temporal orderings of the operators applied in the plan. The
full interval algebra is used in Hogge’s planner so the exactness results do not apply
here (whether useful planning can be done with the possible relations restricted to SP
and SP” is worth further exploration).

The planner tests whether the problem specification is temporally consistent and
adds an operator to the plan if, among other things, it is temporally consistent. The
four consistency algorithm may be useful here as it detects inconsistencies that the
path consistency algorithm does not. Doing these checks for consistency will take
resources, but for certain applications it is important to produce a plan that will not



— 99 _

fail. In cases where the temporal constraints between the goals are inconsistent, it is
important to detect this early.

Suppose a disjunction of possible temporal relations between operators is deter-
mined by the planning component. A temporal ordering of the operators must be
selected (step (ili) above). The aim should be to eliminate as much as possible disjunc-
tions that cannot possibly be true as the selection process is simplified if no incorrect
labels persist. Using the more expensive four consistency algorithm may be useful, as
it allows greater confidence that no incorrect labels exist. Here extra work is sacrificed
for extra confidence that there is not an impossible disjunct on a label. So, for applica-
tions where the tradeoff of extra work is worth the benefit of a smaller chance for
incorrect plan selection, the four consistency algorithm will be useful.

We may also want to allow the user greater input in the selection process. The
user could iteratively eliminate disjunctions of possible relations between operators by,
at each stage, choosing a single relation from the disjunction of possible relations
between two operators and propagating this choice by running the path consistency
algorithm. The iterative procedure would stop when no disjunctions remain.

6. Conclusions

We considered a popular representation for temporal relationships between intervals
introduced by James Allen and its associated computational or reasoning problem of,
given possibly indefinite knowledge of the relations between some intervals, computing
the strongest possible assertion about the relations between some or all intervals.
Allen gives an approximation algorithm based on constraint propagation. We
presented an algorithm for computing better approximations for the all-to-all version of
the problem and a test for predicting when this more expensive algorithm is useful.
We presented an algorithm for the one-to-all version of the problem and a test for
predicting when this less expensive algorithm is useful. We gave a counter example to
a result in the literature and identified easy (polynomial time) special cases of both
versions of the problem.
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Appendix‘A

Allen’s transitivity table (reproduced from Allen, 1983). The "equals" relation is omit-
ted, "con" is defined as {di, si, fi}, and "dur" is defined as {d, s, f}.

Br2C < > d a ° o m m™ s ] t fi
A3
“betora” . < no <o < < <o < <o < < <o <
< info md md mad md
[ s s s
“after” no > >a > > o > >0 > > o > > >
> info md md md md
f - t ¢ !
“dunng” < 1 > a no <0 [ >o < > d > o d <o
info md mid mi ¢ md
s -t s
“contains’ <o | >o oo | o | odi |oa | odi | cidi | difs di gisi | &
di mdi | dim | dur ti si fi si 0 oi
fi St con
“overdaps” < > oi 0 <o < ool < o o di d <
o B dim [*] ma o dur di fi s 0
s H fi m '] con st -] Q m
“over- <o| > o0 | >aloa | > | o > oi oi oi oi
lapped-by” madi d midt | dur o -] d > di
ot fi t ] con mi fi f m L]
“meets” < >0t | o < < -] < t m m d <
m m -} d fi s
s s s = -]
“met-by” <o > oi > “on > s > d > mi m
mi . mgi d d o {
{ t - o
starts” < > | d | <o} <o o < | m ]| s |ss| @ |<m
-1 mdi m at |- = o
“started by” <o > ol di o o 0 m s si ot di
s = I mdi df - gifi gifi =
fi
“firmshes” < > ¢ | >0i| o |>a] m > d | >a ] t th
f me di d m mi =
* si s
“firished - by” < > oi ° di o oi m 8ot o di th f
fi mi di d disi di =
si s
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Appendix B

Below we enumerate the restricted subset of the interval algebra that can be
translated, using the relations {< < =, >, >, #, #}, into disjunctions of relations
between the endpoints of the intervals. We partition the elements into two sets depen-
dent on whether # is required in the translation. A~ and A™ represent the start and
end points of interval A, respectively, and A~ < A* and B~ <B" are true for every
translation.

ATB~ AB* A'BT A'B* A"B” ABY A'BT A'B*
{eq} = < > = {eq, 4, s, f} > < > <
{b} < < < < {eq, di, si, i} < < > >
{bi} > > > > {eq, o, s, fi} < < > <
{d} > < > < {eq, oi, si, [} > < > >
{di} < < > > {b, o, m, fi} < < ? <
{o} < < > < {bi, o, mi, f} > ? > >
{oi} > < > > {b, 0, m, s} < < ? <
{m} < < = < {bi, oi, mi, si} > ? > >
{mi} > = > > {4, o, m, s} ? < > <
{s} = < > < {di, oi, mi, si} ? < > >
{si} = < > > {d, oi, mi, f} > < > ?
{r} > < > = {di, o, m, {i} < < > ?
{ri} < < > = {eq, o, m, s, fi} < < > <
{eq, f} > < > = {eq, oi, mi, si, } > < > >
{eq, fi} < < > = {b, d, 0, m, s} ? < ? <
{eq, s} - < > < {bi, di, oi, mi, si} ? ? > >
{eq, si} = < > > {», di, o, m, fi} < < ? 7
{b, m} < < < < {vi, d, oi, mi, f} > ? > ?
{bi, mi} > 2 > > {eq, b, 0, m, s, fi} < < ? <
{4, 1} > < > < {eq, bi, oi, mi, si, f} > ? > >
{di, fi} < < > > {eq, 4, 0, 5, 1, 11} ? < > <
{4, s} > < > < {eq, di, oi, si, , fi} ? < > =
{di, si} < < > > {eq, 4, oi, s, si, f} 2 < > ?
{o, m} < < > < {eq, di, o, s, si, fi} < < > ?
{oi, mi} > < > > {eq, d, 0, m, s, f, fi} 7 < > <
{o, s} < < > < {eq, di, oi, mi, si, f, fi} ? < > >
{oi, si} > < > > {eq, d, oi, mi, s, si, f} > < > ?
{o, fi} < < > < {eq, di, 0, m, s, si, fi} < < > ?
{oi, f} > < > > {eq, b, d, 0, m, s, I, fi} ? < ? <
{eq, 1, 1i} ? < > = {eq, bi, di, oi, mi, si, f, fi} ? 7 > >
{eq, s, si} = < > ? {eq, b, di, 0, m, s, si, fi} < < ? ?
{b, o, m} < < ? < {eq, bi, d, of, mi, s, si, f} > ? > ?
{bi, oi, mi} > ? > > {eq, d, di, o, oi, s, si, f, fi} ? < > ?
{d, o, s} ? < > < {eq, 4, di, o, oi, m, s, si, f, fi} ? < > ?
{di, oi, si} ? < > > {eq, d, di, o, oi, mi, s, si, f, fi} 13 < > ?
{d, oi, f} > < > ? {eq, b, d, di, o, oi, m, s, si, f, fi} ? < ? ?
{di, o, fi} < < > ? {eq, bi, d, di, o, oi, mi, s, si, f, fi} 3 ? > ?
{o, m, fi} < < > < {eq, d, di, o, oi, m, mi, s, si, f, fi} ? < > ?
{oi, mi, f} > < > > {eq, b, 4, di, o, oi, m, mi, s, si, f, fi} ? < ? ?
{o, m, s} < < > < {eq, bi, d, di, o, oi, m, mi, s, si, I, fi} ? g > ?
{oi, mi, si} > < > > {eq, b, bi, d, di, o, oi, m, mi, s, si, f, fi} 13 ? ? ?
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b, 0}

{bi, oi}

{d, o}

{4, oi}

{di, o}

{di, oi}

{s, si}

. 1}

{b, d, o}

{b, di, o}

{b, o, s}

{b, o, fi}

{bi, d, oi}

{bi, di, oi}

{bi, oi, f}

{bi, oi, si}

{d, o, m}

{d, oi, mi}

{di, o, m}

{di, o, mi}

{b, d, 0, m}

{b, d, o, s}

{b, di, o, fi}

{b, di, o, m}

{bi, 4, oi, f}

{bi, d, oi, mi}
{bi, di, oi, mi}
{bi, di, oi, si}
{4, di, o, oi}

{d, o, 1, fi}

{4, oi, s, si}

{di, o, s, si}

{di, o, f, fi}

{b, d, di, o, oi}
{b, d, o, f, fi}
{b, di, o, s, si}
{bi, d, di, o, oi}
{bi, d, oi, s, si}
{bi, di, oi, f, fi}
{d, di, o, oi, mi}
{d, di, o, oi, m}
{d, o, m, f, fi}
{d, oi, mi, s, si}
{di, o, m, s, si}
{di, oi, mi, f, fi}
{eq, b, o, s, fi}
{eq, bi, o, si, I}
{b, bi, d, di, o, oi}
{p, 4, di, o, oi, mi}
{b, d, di, o, oi, m}
{b, d, o, m, f, fi}
{b, di, 0, m, s, si}
{bvi, 4, di, o, oi, mi}

A™B™

FARBRRRIVIARIAIVER R RIVREIARRERIAVIER s A VVAASKEAAVEREIVVEAVAIAARRTRAVRVA

ATB*

SAAANRRKAINMANAANERRAAAAAAAAAR S RAAAAAINAINMARTRRYRAAAAAAAAAARA

ATB™

Voo=%RVEIVIVVIVIVVVVVERRVVVVVVVVVSE R =VIVVIVVVVVERERRVVVVVVVYL

ATB*

FPHRHARERIVIAVERARRIVERRARIVERIARYVVE A SAAVERAVIVVRYIAARYA TR VR YAVA

{vi, d, di, o, oi, m}

{bi, d, oi, mi, s, si}

{bi, di, oi, mi, f, fi}

{d, di, o, oi, I, fi}

{d, di, o, oi, m, mi}

{d, di, o, oi, s, si}

{b, bi, d, di, o, oi, mi}

{b, bi, 4, di, o, o, m}

{b, d, di, o, oi, f, fi}

{b, d, di, o, oi, m, mi}

{b, d, di, o, o, s, si}

{bi, d, di, o, i, f, fi}

{vi, 4, di, o, oi, m, mi}

{bi, d, di, o, oi, s, si}

{d, di, o, oi, m, f, fi}

{4, di, o, oi, m, s, si}

{d, di, o, oi, mi, f, fi}

{d, di, o, oi, mi, s, si}

{eq, b, d, o, s, I, fi}

{eq, b, di, o, s, si, fi}

{eq, bi, 4, oi, s, si, [}

{eq, bi, di, o, si, I, fi}

{b, bi, d, di, o, oi, 1, fi}

{b, bi, d, di, o, oi, m, mi}

{b, bi, d, di, o, oi, s, si}

{b, d, di, o, o, m, f, fi}

{b, d, di, o, oi, m, s, si}

{b, d, di, o, oi, mi, f, fi}

{b, d, di, o, oi, mi, s, si}

{bi, 4, di, o, oi, m, f, fi}

{bi, 4, di, o, oi, m, s, si}

{vi, d, di, o, oi, mi, f, fi}

{bi, d, di, o, oi, mi, s, si}

{d, di, o, oi, m, mi, f, fi}

{d, di, o, oi, m, mi, s, si}

{b, bi, d, di, o, oi, m, f, fi}

{b, bi, d, di, o, oi, m, s, si}

{b, bi, d, di, o, oi, mi, f, fi}

{b, bi, d, di, o, oi, mi, s, si}
{b, d, di, o, of, m, mi, f, fi}
{b, d, di, o, oi, m, mi, s, si}
{bi, d, di, o, of, m, mi, f, fi}
{vi, d, di, o, oi, m, mi, s, si}
{b, bi, 4, di, o, oi, m, mi, f, fi}
{b, bi, d, di, o, oi, m, mi, s, si}
{eq, b, d, di, o, oi, s, si, f, fi}
{eq, bi, d, di, o, oi, s, s, f, fi}
{eq, b, bi, d, di, o, oi, s, si, I, fi}
{eq, b, d, di, o, oi, mi, s, si, I, fi}
{eq, bi, d, di, o, o, m, s, si, , fi}
{eq, b, bi, d, di, o, oi, m, s, si, , fi}
{eq, b, bi, d, di, o, oi, mi, s, si, {, fi}
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Appendix C

In this appendix we prove that the minimal labeling problem is NP-Complete. We do
this by first proving that the following problem is NP-Complete.

Interval Algebra Consistency (IAC)

Given a directed graph G = (V, E) with labels on the edges from the set of elements
of the interval algebra, is there a consistent singleton labeling of the graph?

Vilain and Kautz (1986) give a proof sketch that IAC is NP-Hard but it is difficult to
reconstruct the full proof. We will also need the following definition.

Graph Coloring

Given a graph G = (V, E) and an integer k, is there a mapping x:V — {1, 2, ..., k}
such that (v, v) in E implies x(v) # x(u)?

Theorem A3. Interval Algebra Consistency is NP-Complete.

Proof. The Interval Algebra Consistency problem is clearly in NP since, for every yes
instance of the problem, there exists a concise certificate, a consistent singleton label-
ing, that can be easily checked for validity. Furthermore, we can polynomial transform
Graph Coloring, a known NP-Complete problem (ref. Aho et al., 1974), to it. Given an
undirected graph G = (V, E) and an integer k¥ we show how to construct a labeled,
directed graph G = (Vi Ep) such that G has a consistent singleton labeling if and
only if there is a coloring of G using k colors. We construct k vertices in V; that meet
each other in sequence. (Note that any sensible instance of Graph Coloring will have
E< [Vlso the transformation is still polynomial). For each v in V we create a vertex in
V;, with the associated arcs and labels as follows.

The idea is that in any consistent singleton labeling, the vertex, v, is forced to be equal
to only one of the k special vertices. We also must ensure that any two adjacent ver-
tices do not map to the same value. Hence, for each (v, w) in E we create an arc and
label as follows.
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@ {b, bi, m, m1}>@

Thus, an efficient algorithm for IAC would imply an efficient algorithm for Graph
Coloring. Hence, the IAC problem is NP-Complete. Vilain and Kautz show that if
there is an efficient algorithm for the minimal labeling problem then there is an effi-
cient algorithm for IAC. Hence, the minimal labeling problem is also NP-Complete.
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