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OPTIMAL TRIANGULAR MESH GENERATION BY
COORDINATE TRANSFORMATION

E. F. D’AZEVEDO *

Abstract. This paper presents the motivation and construction of coordinate transformations
that generate optimally efficient meshes for linear interpolation. The coordinate transformations are
derived from a result in differential geometry in the characterization of a “fat” space. The optimality
results are demonstrated for some numerical examples. Adaptive meshes produced by PLTMG are
included for comparison. The paper concludes that coordinate transformation is a promising strategy
for investigation into more complex optimal meshing problems in finite element analysis.
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1. Introduction. The novelty of this paper is in the construction and demon-
stration of coordinate transformations that generate optimally efficient meshes for
linear interpolation.

Consider the problem of interpolating a function with piecewise linear patches
over a domain to within a given error tolerance. A triangular mesh that achieves
this error tolerance with the fewest number of triangles is defined to be optimally
efficient. The goal of this paper is the computation of an optimally efficient mesh
where we assume the error tolerance is small and the influence of domain shape on
triangulation is insignificant.

This paper is a basic study on optimal meshes with the intention of providing
insight into the more complex meshing problems in finite element analysis. The en-
gineering community is interested in finding optimal meshes under the criterion of
minimizing the error in energy norm of variation problems in finite element analy-
sis [14]. Some attempt have been the application of mathematical programming to
find an optimal placement of mesh nodes, however such schemes are computationally
expensive and typically encounter problems in mesh entanglement [4,6,7]. Others have
applied effective heuristics in the generation of near optimal meshes [5,8,9,10,13,15].
This paper presents the approach of coordinate transformation of a regular mesh as
a promising strategy for optimal mesh generation.

Coordinate transformation, especially conformal mappings obtained by the solu-
tion of Laplace’s equation, is a technique in the generation of boundary-conforming
curvilinear coordinate systems in finite difference solution of fluid dynamics. One
aim of this transformation is to map a rectangular grid to fit the computation do-
main, maybe an aircraft wing, with some prescribed boundary conditions. Thomp-
son [18,19,20] contain an extensive treatment on this subject. The coordinate trans-
formation described in this paper is not determined by geometric considerations but
derived from error properties in approximation.
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efdazevedo@watfun.uwaterloo.ca. This work was supported by the National Sciences and Engineer-
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Nadler [11] and the author [2] have studied local coordinate transformation for
generation of optimally efficient meshes. Peraire et al. [12] applied such local coordi-
nate transformation in mesh generation for dynamic remeshing in solving compress-
ible flow computations. In these works, piecewise linear approximation of a quadratic
function is used as the model for local analysis. This paper extends the local results
on optimally efficient meshes to apply globally for a class of functions, which includes
harmonic and quadratic functions. In the following discussion, we focus our attention
on the approximation of harmonic functions.

An outline of the paper follows. In Section 2, we derive the linear transformation
that maps a regular mesh into an optimal mesh for the interpolation of a quadratic
function. The transformation is suggested by the simplification of the exact error
expression. In Section 3, this simplification of the local error expression motivates the
extension of the coordinate transformation for optimal mesh generation to a wider
class of functions. To state the condition for finding such transformations, we invoke
a basic result in differential geometry for the characterization of a “flat” space. The
condition can be shown by direct consideration of the integrability of some differential
equations. We show that these transformations can be computed as the solution to a
system of ordinary differential equations posed as an initial value problem. Section 4
contains discussions and error profiles of numerical experiments in the interpolation
of harmonic functions. The results show remarkable agreement with the theoretical
predictions. Experimental results for the meshes generated by PLTMG, a PDE solver
with adaptive mesh refinement, in solving Laplace’s equation with Dirichlet boundary
conditions are included for comparison. The error profiles show the optimality of the
triangulation, and also provide a measure of the efficiency of the adaptively generated

mesh. Finally, in Section 5 we state our conclusion and suggest directions for further
research.

2. Local Analysis by Quadratic Model. In this section, we show how a
linear transformation of a regular mesh of optimal shape triangles yields an optimally
efficient mesh for interpolating a quadratic function.

Let E(z,y) be the error function obtained in the interpolation of a quadratic
funetion

f(z,y) = (z,9)H(z,y)" + diz + day + ds

over a triangle T. By definition, the error function E(z,y) is a quadratic function
and its level curves form a family of conics with a common center. It is a family of
ellipses if det(H) > 0, and a family of hyperbolae if det(H) < 0. Let the center be at
(¢, ye). The error at a displacement from the center is given by

1) E(a. + d,y. + dy) = £ — (dz, dy) H(dz, dy)’

where £ = E(z.,y.). The derivation of (1) is by straight forward algebraic manipula-
tion and the details are contained in Appendix A.
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We see that if the symmetric matrix H is diagonalizable as

(2) m-(% 5 )e=r(} ")

where

(3) R = ( |/\1(l |)‘3 )Q , €= sign(det(H))

then with (dz, dj)t = R(dz,dy)!, the expression (dz, dy)H (dz, dy)* reduces to (d&)? +
¢(dj)?. The error function can be rewritten as

E(z. +dz,y. +dy) = & — (dz,dy)H(dz,dy)"
= £ —((d2)* + (dj)*)
E(z. + d&,y. + dy)
where E(%,3) denotes the corresponding error function under transformation R.
In the following, we shall determine the best triangle shape for approximation.

Consider first the case where f(z,y) is convex shape, then the level curves or contours
of E(%,7) are concentric circles given by

E(z. + dz, 9 + d§) = € — ((d&)* + (d§)”)

Let T be the transformed image of triangle T with vertices at (£;,%1), (£2,92) and
(23,%s). The circumcircle of T corresponds to the level curve of value zero. Hence
the radius of this circumcircle is sqrt(|€|) and relates directly to the maximum error
attainable. We can easily see that an equilateral triangle covers the most area for a
fixed circumcircle; therefore an equilateral triangle is of optimal shape.

Consider next the case where f(z,y) is not convex but of a saddle shape, then we
have

E(2,9) = E(3+ d3,5. + df)

€ —((d2)* — (d§)*)

€ —((8— %) — (§— 5)")

We note that the error function E(:’é, ¥) is a harmonic function and attains its extrema

on the boundary of T. By calculus, we can show that the local extrema along edge
(2:, %), (£;,9;) is attained at the midpoint with value

N R (U 1V VA
E( ‘2 1, 3 J)=Zl(wi—‘%)z—(yi—yj)zl
Thus the maximum error attained is

1 . - - -
7 max (& — %;)* — (& — 9;)°
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Fi1G. 1. Optimal triangle geometry for saddle shape function



The details in finding the optimal shape triangle is found in Appendix B. The optimal
shape triangle geometry in this case is not unique and attains the same error on all
three edges. Figure 1 shows an optimal shape triangle geometry chosen for the saddle
shape functions.

Applying the results on optimal shape triangles, we see that a regular mesh of
optimal shape triangles over the transformed plane corresponds to an optimally effi-
cient mesh. Every triangle attains the same maximum error; moreover, these triangles
cover the most area for the error attained and so are optimally efficient. Since the
transformation R in (3) is basically a rotation followed by a rescaling of coordinate
axes, we find the areas of triangles are scaled accordingly. Hence the inverse trans-
formation R~!, maps this regular mesh to produce an optimally efficient mesh in the
original plane.

3. Coordinate Transformation. Now locally, a function behaves as a quadratic
given by its Taylor expansion

H(o + dyy + dy) ~ (de, dy)H(da, ) + (d2, d9)V f(2:9) + f(210)

where H is the hessian matrix at (z,y). Hence we can define local coordinate trans-
formations for generation of optimally efficient meshes. The main goal of this section
is to investigate into the extension of these local results to a wider class of functions.

3.1. Generalized Equidistribution. Mesh generation by equidistribution in
one-dimensional problems can also be viewed as optimal mesh generation by coordi-
nate transformation. Consider again the problem of linear interpolation of a quadratic
function over an interval [a,b]. Let the error function be represented as,

E(z) = (z — a)(z — b)f:
By calculus, E(z) achieves a local extremum at z. = (a +b)/2.
E(z. +dz) = ((zc+ de) —a)((zc +dx) - b)f2
(o — a) + do)((ze ~ b) + da) o
= (e~ a)(we — B)fs + (2 — 0) + (e — B) de fy + (d2)’
= B(eo) +(dn)'fo
= E(z.)+ ed® where di= d:c\/|_f:| , €= sign(fz)

By extension of local analysis, we require the coordinate transformation Z(z) such
that,

(4) g = 1/ " g

One choice for #(z) is

N S v
ia) = 5 [l +c
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Ideally, a uniform mesh in Z-coordinate will yield an optimal mesh in the original
coordinate space. Then the mesh nodes {z;} are obtained by equidistribution of

/|f"(z)|, which is suggested by de Boor[3].

constant = Z;4 — Z;

= (\/_/ |F(2)|dt +C) (f/ |fFu(¢)|dt +C)
= _ﬁL RVIZOL:

Therefore optimal triangular mesh generation by coordinate transformation can
be viewed as a generalization of the techniques of equidistribution from one-dimension.
White [21] has developed coordinate transformation to map uniform meshes to equidis-
tributing meshes for solving two-point boundary value problems.

The generalization of (4) for triangular mesh generation requires the determina-
tion of coordinate transformations #(z,y), (z,y) to satisfy

(5) (dz, dy)H(dz,dy)! = (dz)* + €(dg)®

where H is the hessian matrix, and ¢ is the sign of det(H). We can see that the mesh
density function /|f"(z)| applied in one dimensional equidistribution is generalized
to use the hessian matrix. The constant € appears in the canonical form (5) since
the hessian matrix is not positive (nor negative) definite for a saddle shape function.
Note that by the same strategy of transforming a uniform mesh into an optimal mesh,
we see that the error equilibrating property of optimal meshes in one dimension is
extended to two dimensions.

The conditions for finding transformations #(z,y), §(z,y) are in a classical result
in differential geometry on the characterization of a “flat” space. To be consistent with
notation used in differential geometry, we rename the original space coordinates (z,y)
to (z1,%2), the transformed coordinates (Z,3) to (¥1,y2) and entries in the hessian
matrix as {gi;}. Let y1(®1,22), y2(z1,22) be the required transformation, then

2
(dyl)z + f(dyz)2 = (3y1 gy: dﬂ!z) + G(Zyi 1+ Zy—zzdfcz)

o () e (@) ) e

By O | By Bys
+2(8a:1 8:132 + 63231 62!2 dz1d$2

= gu(d:lh)2 + 2g12(dz; )(dz2) + gzz(dwz)2




Therefore the transformation being sought must satisfy

ENCAYEAY
o = (5) +<(5)

oy 0y, v Oy,
321 61!2 31!1 832

2 2
o = (o) +(a2)

3.2. A Classical Result in Differential Geometry. The basic question in

differential geometry is, given a symmetric tensor g;;(z), under what restrictions on
g:; can there be a coordinate system defined by

(7)

912

i = yi(zls ooy zn), ('l =1,..., n)

in which the transformed tensor g;;(z) has constant components h;; everywhere. A
classical result in differential geometry gives the necessary and sufficient conditions
on g;;(z). Details can be found in text books such as [16,17].

THEOREM 1. [16, page 96] A necessary and sufficient condition that a symmetric
tensor g;j(z), with |gi;| # 0, reduce under a suitable transformation of coordinates
to a tensor h;j, where the h;;’s are constants, is that the Riemann-Christoffel tensor
formed from the g;;’s be a zero tensor.

Synge and Schild in their book [17] have shown that the quadratic form

(8) (ds)? = hudwn® + haadys® + 2h12dyn dy,
can be further reduced by a non-singular linear transformation to
(9) (ds)? = dip* + edfip”

where ¢ is sign of det(h;;).

For the special case where the metric matrix {g;;} is a hessian matrix, the Christof-
fel symbols simplify to the following:
To simplify notation, let

g _ 99 grz = 8911 _ Og1»
111 8z, ' 112 9z, _——B:cl
0922 8912 _ 0922

g222 = Bz, y Q122 = oz, = Bz,

9 = gugn— g’
Then the Christoffel symbols of the second kind are,

1 _ 922011 — 9120112 2 | _ 919112 — 120111
11 2g n 29
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{ 1 } 9220112 — 9120122 { 1 }__9229122—9129222
- ?

12 29 22 29
2 _ 919222 — 9120122 2 | _ 9118122 — 120112
22 [ 2g ’ 12 | 2g

and the independent components of the Riemann-Christoffel symbols can be simplified
to,

g22 12
Rzluz = Z;; ’ ha = :l—g—ir
—g12 —d11
R;u = 4g? r, R1212 = 4g? r
(10) r = .911(91222 - 92229112) + 912(91119222 - 91129122) +

_¢]zz(.¢]uz2 - 91229111)

One can easily verify that if for some constants K,;, K;, K3, the entries in the
metric matrix satisfy,

Kig1:1 + K2g12 + K3g22 =0

then the Riemann-Christoffel tensor given by (10) vanish identically. In particular,
harmonic and quadratic functions satisfy the above condition.

Sokolnikoff [16, page 93] shows that yi(z1,%2), y2(21,22) satisfy the same system
of first-order partial differential equations

O _
321 =
Oy
O:cz = U

(11)

8z, 11 (YT 1 (%
Ou,y 1 2
8z, {22}“l+{22}“2

3.3. Initial Value Problem. Due to the special structure of the exact differ-

ential equation in (11), y1(21,%2) can be integrated as the solution to an initial value
problem.

From (11) and by a basic property of line integrals,

y1(21,32)—yl(a,b) = /I;dyl

Q
= ﬁ, a 231+'5;;;d~’82

Q
= _/}; uld.'cl + U2d$2



where the line integral from P : (a,b) to Q : (z1,z2) is path independent. Let
(z1(t), z2(t)) be a parametrization of a continuous curve from (a,b) to (z;,z;). Then
(11) can be formulated as a system of ordinary differential equations,

!

d d
ry = E:cl(t) , zlz = "-i—t'mz(t)
4
dtyl

d 1 ? 1 ’ 2 ! 2 ’
e (3 b)) (2o (20
d 1 1 P 2 ' 2 '
e (e e ) R (P RS E O

If the function to be approximated is a harmonic function, (12) can be further sim-
plified to

4 1
= U1Z1 + U2,

(12)

o = uy 2y + uyz’s

d

a—zul = (az'y + Bz'2)u; — (Bz'y — az'y)u,

(13)
d
-d_tuz = (Bz';y — az's)uy + (az'y + Bz'y)us
108 190
a = Zalnldet(ﬂﬂ , B= Z—a—:;;lnldet(H)]

Hence with initial conditions for y,(a,b), u,(a,b), uz(a,d), (12) can be solved as
an initial value problem. In particular, the path of integration can be chosen to be
taken along only horizontal and vertical directions. First integrate horizontally from
(a,b) to (z1,b) by

. a:1(t) =t , :c'l(t) =1 ) a S t S L1
(14)
z(t) = b, al3(t)=0

then vertically from (z,,5) to (z1,z2) by

z(t) = 2 , Zi(t)=0
(15)

zz(t) = 1 ’ 2}’2(t) =1 ’ b S i S_ Lo

Since y;(1,z;) also satisfies (11) and therefore (12), y2(z1,22) can similarly be
integrated as y;(z1,z2). The coefficients in the transformed metric tensor are con-
stants and obviously independent of (y;,¥2), therefore the tensor can be determined
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by consideration at any point. To achieve (9) and to be consistent with transformation
used in local quadratic model, the initial values of (u3,u2), for (1, z2), y2(z1,22),
are chosen to be the orthogonal scaled eigenvectors of the hessian matrix at (a, b),

(16) (uy,u2) = \/l)\_1_|-(¢111,‘121)

for y1(z1,22) and for ya(21,22),

(17) (u1,u2) = \/P‘—zi(fhz,m)

where
_ [ m @ tHO = A 0)
? (‘121 922) » QHQ (OAz
The metric tensor then satisfies (9). Therefore, the coordinate transformation g, (z1,22),
y2(Z1,22) can be numerically computed as solutions to initial value problems.

3.4. Conformal Mapping. If the function to be approximated is a harmonic
function, the coordinate transformations, (y1(21,%2), ¥2(21, z2)) determined by initial
conditions (16), (17) can be shown to be a conformal mapping. Now the transformed
metric tensor is diagonal, hence the gradient vectors for yi(21,22), y2(Z1, zy) are or-
thogonal,

8.‘/1 8y2 8y1 ayz _
(18) 6131 621 632 332 =0

By (7) the transformations (y1(z1, 22), Y2(21, %2)) satisfy
_ (m) _"”_yz)z
gu = 8231 8&!1
2 2
_ (9% Oy,
g22 = —gu-= (—&cz) - ('—azz)

3y12+3y12=8y22+3y22

which implies

(19) 82!1 6232 831 8232
From (18) and (19), we can show either,

0 _ Oy2 Oy _ @3_
(20) 31:1 - 83:2 ’ 6232 - 61!1
or
(21) ) ayl _ ayZ 3!!1 _ _@1

8(62 - 831 ’ 3231 - ' 6&32
We recognize (20) and (21) are related by exchange of coordinates z1, z; and (20) as
the Cauchy-Riemann equations for a complex function. Therefore (y1(z1, 22), y2(z1,2))
is a conformal mapping. Note in contrast to the classical applications of conformal
mappings, this mapping is determined by consideration of error properties and not by
geometric considerations of transforming the region of computation to some canonical
domain.
10



4. Numerical Experiments. In this section, we shall examine some results
from numerical experiments of optimal mesh generation for interpolating a harmonic
function over the unit square. Three mesh generation strategies are used for each
example. One strategy is to generate a mesh by mapping a regular mesh of optimal
shape triangles into the interior of the unit square. To cover the unit square exactly,
boundary triangles must be distorted from the optimal shape to fit the boundary
edges, thus incurring a change in error properties. This phenomenon is exhibited
by a mesh obtained by tiling the transformed unit square with equilateral triangles.
The equilateral triangles are generated by DO3MAF of the NAG library. Lastly, we
included a mesh obtained by PLTMG. PLTMG[1] is a multigrid package with adaptive
triangular mesh refinement for solving second order partial differential equations.
Since a triangular mesh in PLTMG is stored in a complicated data structure of nested
trees of triangles, the mesh node positions from PLTMG are simply extracted to form
a delaunay triangulation to be used in this comparison. The maximum interpolation
error over each triangle is plotted in ascending order to form an error profile. Ideally,
by the equilibrating property of an optimal mesh, the error profile should be almost
level.

DO2CBF, a variable step Adams code in the NAG library, integrates the initial value
problem (12) as described in (14) and (15), to yield values of y;(z1, z2), y2(21,z2) over
a regular 40 x 40 grid. Note that the unit square is distorted over the transformed
plane by the coordinate transformation. DO3MAF of the NAG library triangulates this
distorted region by equilateral triangles. The corresponding triangulation in the orig-
inal coordinates is determined by the inverse mapping of this regular mesh. The
inverse mapping is computed by assuming that each rectangular cell on the square
grid determines a bilinear function. More sophisticated bicubic splines approximation
and numerical techniques for inverse mapping had been tried and found to give no
significant improvements over this simple technique.

The triangular meshes produced by DO3MAF are compared against meshes gen-
erated by PLTMG , in solving Laplace’s problem with Dirichlet boundary conditions.
A regular triangulation by optimal shape triangles over the interior of the domain
is used to demonstrate the equilibrating property and act as a indicator of closeness
of PLTMG to an optimal mesh. The comparison is not precise since the number of
triangles used cannot be tightly controlled. :

Four interpolation examples are chosen to demonstrate the effectiveness of optimal
mesh generation by coordinate transformation. Since these examples exhibit sharp
increases, we expect to see triangles sizes to vary accordingly.

Example 1 Exponential increase along z,-axis
f(z1,22) = exp(5z:) sin(5z2)

The coordinate transformations are

yi(z1,z2) = % (exp(5z1/2) (cos(b5:cz/2) + sin(5z2/2)) — 1)

11



y2(z1,22) = —5—5 (exp(5z1/2) (cos(5z2/2) — sin(5z,/2)) — 1)

Example 2 A near singularity with z = z + Iy and 20 = zo + Iyo = (1/2) — (1/5)]
f(z1,22) = Re1/(z— z)?

(31 - wo)z - (zz - yo)2
((z1 = 0)? + (22 — %0)?)’
The coordinate transformations are
- i)
yl(mlsz) (m]_ —_ 2!0)2 + (zz — yo)z

Z32 — Yo
T1,% = \/E
yz( 1y 2) (2’1 _ 330)2 T (232 — yo)2

Example 3 A more severe near singularity

f(z1,22) = Rel/(z—z)*
(21— 20)? + (22 — ¥0)?)’ — 8(z1 — 20)?(22 — 30)°
((z1 — 20)? + (22 — 90)?)"
The coordinate transformations are
T za) = (z2 — %) — (21 — 20)? )
Yi(z1,22) = V5 (1 + (%1 = 20)? F (22 —90)?)?

(z1 — 2o0)(z2 — Yo)
2V5 (or = 20) + (o1 = o)

yz(znzz) =

Example 4 Example 2 is modified by a rescaling of z;-variable to satisfy

&f &f
32!161‘.1 + 10

313262:2 =0

Then

(z1 — 20)? — (VBzs — yo)?
(21 — 20)? + (V522 — yo)?)”

f(z1,22) =

The results of the numerical experiments are summarized in Tables 1, 2, 3 and
4. Error profiles for the four problems are contained in Figures 2, 3, 4, 5. Meshes ob-
tained by transformation of optimal shape triangles show an almost level error profile
and remarkable equilibrating properties in agreement with theoretical prediction (see
Figures 10, 15, 20, 25). Meshes produced by DO3MAF by tiling the transformed domain
by equilateral triangles are shown in Figures 8, 13, 18 and 23. The error profile shows

12



TABLE 1
Summary of results for Ezample 1

f(z1,22) = exp(52;) sin(5z,)

minimum | median 90 maximum | number of
error error | percentile error triangles

optimal 13.60d-2 | 13.79d-2 | 13.94d-2 | 14.16d-2 1098
shape 5.273d-2 | 5.390d-2 | 5.498d-2 | 5.740d-2 2933

equilateral | 1.945d-2 | 6.644d-2 | 6.793d-2 | 14.88d-2 3190

PLTMG 1.912d-2 | 7.600d-2 | 14.10d-2 | 21.77d-2 3080

EXAMPLE 1
2*31})‘.}01‘ (10%*(-2)) ERROR PROFILE
i
20.00 - {
15.00
10.00 4
5.00 _.-,— - ":"—..;7“-";.:.: ———————————————
Q'm 1 T | ¥ 1 1 1
0 500 1000 1500 2000 2500 3000 3500
Legend: TRIANGLE NUMBER
EQUILATERAL
........... PLTMG
----- OPTIMAL SHAPE

Fi1Gc. 2. Error profiles for Ezample 1
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TABLE 2
Summary of results for Ezample 2

f(z1,22) = Re 1/(z — z,)?

minimum | median 90 maximum | number of
error error | percentile error triangles
optimal 4.442d-2 | 4.680d-2 | 4.853d-2 | 5.310d4-2 436
shape 1.876d-2 | 2.009d-2 | 2.155d-2 | 2.566d-2 1072
equilateral | 0.747d-2 | 2.181d-2 | 2.320d-2 | 4.616d-2 1376
PLTMG 0.848d-2 | 2.890d-2 | 5.213d-2 | 8.426d-2 1168
EXAMPLE 2
ERROR (10%(-2)) ERROR PROFILE
8.00
S
0.00 r . T ; . :
0 250 500 750 1000 1250 1500
Legend TRIANGLE NUMBER
EQUILATERAL
........... PLTMG
----- OPTIMAL SHAPE

F1G. 3. Error profiles for Ezample 2
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TABLE 3
Summary of results for Ezample 3

f(z1,22) = Re 1/(z — 20)*

minimum | median 90 maximum | number of
error error | percentile error triangles
optimal 2.146d-2 | 2.366d-2 | 2.597d-2 3.379d-2 300
shape 1.021d-2 { 1.160d-2 | 1.322d-2 1.696d-2 650
equilateral 0.837d-2 | 1.567d-2 | 1.886d-2 3.725d-2 661
PLTMG 0.145d-2 | 1.690d-2 | 3.055d-2 5.184d-2 720
EXAMPLE 3
ERROR ERROR PROFILE
]
5.00
1
800

TRIANGLE NUMBER

EQUILATERAL
PLTMG
OPTIMAL SHAPE

F16. 4. Error profiles for Ezample 3
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TABLE 4

Summary of results for Ezample 4
minimum | median 90 maximum | number of
error error | percentile error triangles
optimal 10.15d-2 | 12.46d-2 | 14.61d-2 18.10d-2 162
shape 2.433d-2 | 3.169d-2 | 4.059d-2 6.004d4-2 711
equilateral | 1.990d-2 4.237d-2 | 5.665d-2 11.35d-2 701
PLTMG 0.368d-2 | 5.914d-2 | 18.44d-2 47.23d-2 796
EXAMPLE 4
ERROR (10°¢2)) ERROR PROFILE
40.00 -
30.00 - &
20.00
10.00 4 . J’/
........... ) —
Foom o e T T T
0'00 = 1 T ¥ T 1
0 200 400 600 800 1000
Legend: TRIANGLE NUMBER
o EQUILATERAL
........... PLTMG
----- OPTIMAL SHAPE

F16. 5. Error profiles for Ezample 4
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a level curve with an abrupt increase in error. The anomalous increases are caused by
distortion of triangle geometry along the boundary (see Figures 11, 16, 21). Note that
by the maximum principle, extremal values of harmonic functions occur also along
the boundary. Figures 9, 14, 19, and 24, show the corresponding meshes produced by
PLTMG.

Although PLTMG produces meshes without the equilibrating property and incur
larger maximum errors, for the purpose of finite element computation, such meshes
can be considered to be “near” optimal since their errors are within a small multiple
of the theoretical optimum. In another perspective, the error tolerance for meshes
produced by PLTMG can be similarly obtained by meshes produced through coordinate
transformation with only a fraction of number of triangles.

5. Conclusion. This paper is a basic study on optimal meshes with the inten-
tion of providing insight into more complex optimal mesh problems in finite element
computation. The motivation and development of coordinate transformation for gen-
erating optimally efficient meshes have been presented. The effectiveness of such a
strategy is demonstrated by the numerical examples. We conclude that mesh gen-
eration by coordinate transformation is a promising strategy in the investigation of
optimal meshes.

The existence of a global coordinate transformation for optimally efficient mesh
generation relies on f(z;,2;) satisfying (10). An interesting question is whether the
class of functions in C® and satisfy (10) is dense in L, norm. Note that harmonic

functions are in C® but not dense, and piecewise quadratic functions are dense but
not in C3.

Appendix A. In this section, we derive the error expression E(z,y) obtained in
the interpolation of a quadratic function

f(z’y) = (z7y)H(z)y)t + dlz + dzy + ds

over a triangle with vertices at (z1,%1), (22,%2), (%3,¥3). Let the error function be
represented by

E(z7 y) = —((B, y)H(:‘B, y)t + blz + bzy + b3
By the interpolation condition
E(z1,11) = E(22,y2) = E(z3,y3) =0

The unknows by, b,, b3 can easily be obtained by solving the system of linear equations

z; 1 1 b, L)
z2 Y2 1 b | =| 72
T3 y3 1 b3 T3
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where r; = (z;,y:)H(z:,v:)¢. This gives

b = r1(y2 — y3) + 72(ys — )+ r3(y1 — ¥2)
1

24
ri(z3 — z2) + ra(z1 — 3) + r3(z2 — 21)
bz =
2A
be = ri(22ys — T3y2) + ro(xays — 21ys) + ra(T1y2 — T2Y1)
3 =

24
with A being the area of triangle

A= :‘12- (z1(y2 — y3) + z2(ys — v1) + z3(v1 — ¥2))

Let (zc,y.) be the solution of the linear equations

bh/2\ _ ze _ bihys — higby _ bahyy — hanby
(b,/z ) =H ( Ye ) then oe = =S 3et(@)  ° ¥~ 2dewd)

The error at displacement (dz,dy) from (z.,y.) is given by

E(z. +dz,y. + dy) = —(z+dz,y. + dy)H(z + dz,y. + dy)* +
bi(z. + dz) + ba2(y. + dy) + bs
= —(zey¥)H(ze,4.)" — (dz, dy)H(dz, dy)’
—2(dm7 dy)H(zcyyc)t + bl(zc + dz) + b2(yc + dy) + b3
= E(z.y.) — (dz,dy)H(dz, dy)t

Finally, the expression E(z.,y.) can be further simplified to

_ D13D23 D5
E(we,v.) = {5 a7 aen(m)
where
Di; = (zi—zj,5 —y;)H(z:i — 25,5 — ;)

= hu(z: — ;)% +2(zi — ;) (¥ — yj)h12 + hao(vi — y;)°

Appendix B. In this section, we shall find the geometry of an optimally efficient
triangle for approximation of a saddle shape function. We recall from Section 2 that
for a triangle over the transformed plane with vertices at (£1,%1), (Z2,%2), (£3,73), the
local maximum error along edge (Z;,%;:), (£;,9;) is

| I - .
E;; = Zl(zi — ;) — (% — ;)]

The triangle geometry shown in Figure 1 attains the same error on all three sides,

(22) E12 = Ezs = E31
18



(“‘:2 ’5"2)

(%3,¥3)

F1G. 6. (%1, §1) perturbed along the hyperbola
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We can show show that this equality of error on all sides is a necessary condition
for an optimally efficient triangle. Assume the contrary that the error on one edge is
strictly smaller,

Fi3 < Ejy y E,; < Egy

Then (Z1,%1) can be perturbed along the hyperbola given by
(2 = &) — (y = o) = (81 — Bs)? — (G — Gs)?
with no changes to E,3 nor Ej; (see Figure 6), however we note that the area of this
triangle increases as (£;,%:) is perturbed. The maximum error is unchanged but the
area can be increased by such a perturbation, thus it cannot be optimally efficient.
Let us consider the problem of finding a triangle geometry which minimizes the
squared ratio of Error to Area. and subject to condition (22) that all edges attain the

same error. Let a triangle of arbitrary shape be described as having vertices at (0, 0),
(cos 8,sin 8), (z,y). Then the above conditions can be formulated as

(23) min (S2200)" _ gy {60870 — ein O]

Area moin 4(y cos § — zsin 6)?
subject to
(24) z? —y® = e1(cos’ 9 —sin?0) , |a|=1
(25) (z — cos8)® — (y — 5in8)? = e;(cos® § —sin?8) , |e;| =1

Now from (25)
€2(cos® @ —sin?f) = (2 — 2z cos b + cos®8) — (y* — 2ysin @ + sin’ 9)
= (2? — y®) + (cos® 8 — sin® §) — 2(z cos 8 — ysin 6)
Hence equation (25) can be simplified to A
(26) 2(x cos § — ysinf) = (cos® § — sin? §)(1 + ¢, — €2)
Solving (26) and (24) yields two solutions for (z,y) given as
(z,y9) = (K/2cos8—vR/2sin6,K/2sin6 — v'R/2 cos §)
(z,y) = (K/2cos8+ VR/2sinb,K/2sin6 + vV R/2 cosb)

where

K=(14+e—€) , R=1-2(¢ +e)+ (& — €)?
For both values of (z,y), formula (23) reduces to
(cos? 6 — sin® §)? 16 16

4(ycosd — zsinf)2 1 - 2(e1+€e2)+ (e1 —€2)2 R
Expression R equals 5 except for (e;,€e2) = (1,1) where R is —3 which is impossible.
Thus for each orientation of angle 8, there are six configurations for an optimal
shape triangle. The results are summarized in Table 5. In particular, for zero rotation
(6 = 0), the triangle shapes are displayed in Figure 7. Note the triangle geometry
show in Figure 1 corresponds to triangle with vertex V.

20




Ve (—1/2,V5/2) V2 (1/2,V5/2) Va 3/2,V5)2)

0,0) (1,0)
Vs (-1/2,~V5/2) Vi (1/2,=V5/2) Vs (3/2,~V5/2)

F1G. 7. Optimal shape triangles for 6 = 0

TABLE 5
Summary of results for (z,y)

1=-1|WV: (\/5/2sin0+(1/2)cos0,—\/3/2cos0/2+(1/2)sin0)
2 =-1|V;: (\/g/2sin0+(1/2)cos€,\/5/2cos0+(1/2)sin0)

=1 | V3:(—+5/25in0 +3/2cos0,3/25sin6 — v/5/2 cos 6)
-1V, (\/3/2sin8+3/2cos€,3/2sin0+\/3/2c050)

; —1 | Vs: (—v/5/25in8 — (1/2) cos 9, —(1/2) sin 6 — V'5/2 cos §)
=1 |Vs: (\/5/2sin0——(1/2)cos€,—(1/2)sin0+\/§/2c050)
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F1G. 8. Mesh produced by equilateral triangles for Ezample 1
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F1G. 9. Mesh produced by PLTMG for Ezample 1
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10. Optimally efficient triangulation for Ezample 1
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Fic. 11. Top 10% Error of equilateral triangles for Ezample 1
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Fiac. 12. Top 10% Error of PLTMG for Ezample 1
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F1G. 13. Mesh produced by equilateral triangles for Ezample 2

27



;E' EEEEEEEE-‘ X,

Fic. 14. Mesh produced by PLTMG for Ezxample 2
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F1G6. 15. Optimally efficient triangulation for Ezample 2
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Fi1G. 16. Top 10% Error of equilateral iriangles for Ezample 2
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Fi1G. 17. Top 10% Error of PLTMG for Ezample 2

31




F1G. 18. Mesh produced by equilateral triangles for Ezample 3
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F1G. 19. Mesh produced by PLTMG for Ezample 8
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Fic. 20. Optimally efficient triangulation for Ezample 3
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Fi1G. 21. Top 10% Error of equilateral triangles for Ezample 3
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F16. 22. Top 10% Error of PLTMG for Ezample 3
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F1G. 23. Mesh produced by equilateral triangles for Ezample 4
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FiG. 24. Mesh produced by PLTMG for Ezample 4
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F1G. 25. Optimally efficient triangulation for Example 4
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