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ABSTRACT

For a vector of k power series the notion of a Padé-Hermite residual sequence and
its corresponding cofactor sequence are introduced and developed. Two new types of
rational approximants, the weak Padé-Hermite form and the weak Padé-Hermite frac-
tion, are introduced along with an associated residual and cofactor sequence. A
recurrence relation and a subsequent piecewise offdiagonal algorithm for constructing
the two cofactor and two residual sequences is presented.

The algorithm for constructing the two cofactor sequences results in a fast algo-
rithm for calculating a Padé-Hermite approximant of any given type. When the vector
of power series is normal, the algorithm is shown to calculate a Padé-Hermite form of
type (ng, - -+ ,ng) in O(k-(n¢ + - - - + n2)) operations. This complexity is the same
as that of other fast algorithms for computing Padé-Hermite approximants. However,
unlike other algorithms, the new algorithm also succeeds in the non-normal case, usually
with only a moderate increase in cost.

Key words: Vector of power series, Padé-Hermite fraction, Padé-Hermite approxima-
tion rational approximation, Sylvester matrix
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1. Introduction

Given a formal power series

Alz) = Za,-zi (1.1)

with coefficients from a field F, a Padé approximant of type (m,n) for A(z) is a pair of polynomials

(U(2),V(z)) of degrees at most m and n, respectively, satisfying
A(2)V(z) = U(z) + O(z™ 1), (1.2)

We can think of (1.2) as

Az) ~ L) (1.3)

50 in a sense a Padé approximant is a realization of the formal power series as a rational expression

ulz)
V()

, at least to a specific set of terms.
The notion of a Padé-Hermite approximation is somewhat similar. First, following Padé [12] in his

classic thesis, we wish to select k41 polynomials so that for y(z) as the given power series we have

. +nk+k)

Polzy(2)* + Pi(2)y(2) " + -+ + Puy(2)y(2) = Bi2) + O(z™" , (1.4)

where the {n;} are the degrees of the polynomials {F;(z)}. For example, when k=2, then (1.4) can be

thought of as

Py(z)y(2)* + Pi(z)y(z) — Pfz) = 0 (1.5)
that is,
y(z) ~ —hl) + \/ZIPO(Z; LAl Fle) (1.6)

which is also a representation of y(z) as a rational expression. We could also equally well consider

Rl 4 p) EVEL oy P ) = B + O, )

in which case we wish to realize y(z) as a power series solution of a linear differential equation, again up

to at least a specific number of terms. Generalizing further, consider



ngt +nk+lc) (1.8)

7

Po(2)Al(2) + - - - + Ag(2)Pi(2) = O(=

where the A;(z) are any desired set of functions of the given formal power series of y(z) (it is usually true
that we can further assume that A;0) ¢ 0 for at least one value j). In this last example, the polynomials

(Fo(#), -+, Py(2)) define a Padé-Hermite approximant of type (ng, - - -, n;) for the given system of
power series (Ag(z), - - -, Ax(2)).

Padé-Hermite approximants were introduced by Della Dora and Dicrescenzo [4] as a generalization
of the quadratic approximants of Shafer [14] and the D-Log approximants of Baker [1]. Both of these con-
cepts, in turn, began with ideas that originated from the thesis of Padé and some previous work of Her-
mite[7].

In addition to introducing the concept of Padé-Hermite approximants, Della Dora and Dicrescenzo
also defined the notion of a Padé-Hermite table. This is a generalization of the normal definition of the
extended Padé table (c.f., Gragg [ 5]). Relationships between neighboring entries in the table were then
discovered that provided an algorithm to calculate such approximants. Other relationships in the Padé-
Hermite table, and subsequently an alternate algorithm to calculate these approximants, were also

discovered by Paszkowski [13].

The resulting algorithms, however, cannot be applied to arbitrary power series. The algorithms of
both Della Dora et al and Paszkowski require that the vector of power series be normal (c.f., Paszkowski
[13]). Della Dora and Dicrescenzo call such vector power series perfect rather than normal. Related to
the concept of a Padé-Hermite approximation is a linear system of equations having a generalized Sylves-
ter matrix as its coefficients. The normality condition requires that the coefficient matrix, along with a
specific set of submatrices, be nonsingular. The normality requirement is a strong one. For example, the

constant terms of all the A;(z)’s need be nonzero for the system to satisfy the normality condition.

In this paper, we present an algorithm to calculate a Padé-Hermite approximant of a given type.
This algorithm can be applied to any vector of power series; no requirement of normality is needed. A
new type of rational approximant, the weak Padé-Hermite approximant, introduced in this paper, is cen-

tral to the success of this procedure. These are a type of multidimensional rational approximant that can



be transformed, if so desired, into a set of simultaneous Padé approximants (c.f., de Bruin[2]) for the given
set of power series. Also introduced in this paper is the concept of a normal point in the Padé-Hermite
table. The calculation of the desired approximant is obtained by iterating from one normal point to the
next along a piecewise linear path in the Padé-Hermite table. When k = 1, Padé-Hermite approximants
reduce to Padé approximants, and the algorithm becomes that of Cabay and Choi [3] and the scalar algo-
rithm of Labahn and Cabay[9]. When k = 1, and the input power series are polynomials, our iteration
scheme has close ties with the Extended Euclidean Algorithm. Indeed, by reversing the order of the coef-
ficients of the input polynomials and travelling along a specific path our algorithm reduces to the EEA for

these polynomials.

A cost analysis is also provided, showing that the algorithm generally reduces the cost by one order
of magnitude to other methods that succeed in the non-normal case. In the normal case, the algorithm is

of the same complexity as the algorithms of Della Dora et al and Paszkowski.

2. Basic Definitions

For a given integer k > 0, let

Al(z) = Eai,j zj ) ¢ =0, - -, kr (21)
=0

be a set of k+1 formal power series with coefficients a; ; coming from a field F. For a vector of non-

negative integers (ng,ny, * * + ,ng), let

ng .
]Dz(z)= Epi,j z? ; i=0;”‘;k; (22)
=0

be a set of k41 polynomials.
Definition 2.1 (Della Dora and Dicrescenzo [4]): The vector of polynomials (Py(z), - - - ,Bx(2)) is
defined to be a Padé-Hermite form (PHFo) of type (ng, - - - ,n;) for the vector of power series

(Ao(2), - -+ AK(2)) if

) 9(Fi(2)) <ny, fori=0, .. Kk,



nyt +nk+k'

3 AP () = 2 R(2), (23)

where R(z) is a power series, and

IIT) the P;(z) are not all identically 0.

||
R(z) is called the residual of type (ng, - - - ,n;) for the vector of power series. When k=1, and
Ay(z) = —1, then Definition 2.1 corresponds to the definition of a Padé form for the power series

A(z)=Aq(z) (c.f., Gragg [5]). When k=1, Ay(z) = A(z) and A,(z) = A(z), we obtain the D-Log approxi-
mant of Baker [1]. When k=2, Ay(z) = A%(z), A\(z) = A(z), and Ay(z) = 1, we obtain the quadratic
approximation of Shafer [14].

We extend Definition 2.1 to allow n; to take on the value -1, but where at least one n; must still be
nonnegative. When n; = —1, we define F;(z) = 0. This is equivalent to A;(z) being absent, i.e., we are
determining a PHFo for k, rather than for k+1, power series. Thus, for example, solving

A¥2)P(z) + Q(z) = O(z™* ), (2.4)
where P(z) and Q(z) are to have degrees at most m and n, respectively, is the same as determining
Shafer’s quadratic approximation of type (m,-1,n).

For ease of discussion, we use the following notation. For any polynomial
Plz)=po+ p1z + - + pu2", (2.5)
we write P (i.e., the same symbol but without the z variable) to mean the n+1 by 1 vector

P [po,“',pn]t. (2.6)

Let



Qo0 Q0
l |
k0
o0 I l
S("ov"""k) = | ) s ‘ . , (2.7)
| |
Aoy - Go)r—n, l I ary - ak,)«—nkj
where
AN=ng+ - +n+ k-1, (2.8)
denote a generalized Sylvester matrix of type (ng, - - -, n;) for the vector (Ay(z), - - -, Ax(2)). By equat-
ing coefficients of z? for 0 < p < A, equation (2.3) can be written as
By
g | | = 0. (2.9)
P

Theorem 2.2 (Existence of Padé-Hermite forms): For any vector of power series

(Ag(2), - -+, Ax(2)) and for any vector of integers (ng, - - -, ny), where n; > —1 for all i and n; > 0 for

at least one i, there exists a PHFo of type (ng, - - -, ny).

Proof: The homogeneous system of linear equations (2.9) has (A+1) equations and (A42) unk-
nowns, where X > —1, and hence has a nontrivial solution. Let [P, - - -, P%]’ be one such nontrivial solu-
tion vector, with P, having n;+1 components. Then Fyz), - - -, Pi(#) determined according to the con-

vention (2.5) and (2.6) satisfy (2.3). Clearly conditions I and III of Definition 2.1 are also satisfied, and

hence (2.9) determines a PHFo of the correct type.

From the proof of Theorem 2.2, it follows that there are many possible choices for a PHFo of a
given type. As in the case of Padé approximants, it is desirable to have PHFo’s that are unique, at least

up to a multiplicative constant.



With X defined by (2.8), let

g
Qp,0 aio
| |
Gk,
ag,0 I |
Ty ) = |, . e _ ' . (2.10)
| l
Qox+1 - Ao h—ngtl | | Qe ra+1 - ak,k—nk+lj
and set
0, if n; = —1 for all 7,
ding, - my) = (2.11)
w22 ) det(Ting, - - - 1ny))s otherwise.
Thus T(n, ...y is @ (A+2) X (A+2) matrix formed by bordering Sng -+ ,ng) With one additional row.

Then, a sufficient condition for PHFo0’s to be unique up to a multiplicative constant is given by

Theorem 2.3. If d("ov . # 0, then PHFo’s are unique up to multiplication by a non-zero element of

'"'k)
the field F. In addition, the first term, R(0), of the residual in condition II of a PHFo,

Ag(2)Py(2) + -+ + A2)P(z) = 22TR(2), (2.12)
is nonzero.

Proof: Equation (2.3), (2.9) and (2.12) are each equivalent to

B 0
(ngy -~ mg) = 0 s (2.13)
B, ro

where ry = R(0). Now suppose ry = 0. Then, because T(no, Ce ) is nonsingular, F; = 0 for all 0 <¢ < k.
But then FP;(z) = 0 for all 0 < ¢ < k which contradicts condition III of Definition 2.1. Hence, we must

have that ro # 0 when dj,, ... ») # 0.

"k



To show uniqueness up to a nonzero constant, suppose (Py(z), - - -, Pp(2)) and (P(z), - - -, P/(2))
are both PHFo’s of the correct type. From the previous paragraph, the leading terms of the residuals, r,
and r'y must be nonzero. Hence there exists a nonzero constant, ¢ such that ¢-ry = r’;. Then, from

(2.12), the vector

el -1 (2.14)

is a solution to a homogeneous system of equations with coefficient matrix T(nO, e Since by assump-

,nk)'

tion this matrix is nonsingular, the solution must be zero. From this it is easy to see that
¢ Fy(z) = F'(z) (2.15)

for all i. Hence the PHFo is unique up to multiplication by a nonzero element of the field F.

Weak Padé-Hermite Forms and Fractions
For the rest of this paper we will assume that a;,# 0 for at least one i (this must be true, for

example, if ever d(n@ ) 0). For clarity of presentation and without a loss of generality, we assume
this is true for i==0, i.e., agg # 0. Set
A(z) = Adz), B(z) = (Aifz), -, A(2)) (3.1)

where we view B(z) as a 1Xk matrix of power series. Let P(z) be a polynomial and Q(z) be a kX1 matrix
polynomial. Then, Definition 2.1 can be expressed alternately in matrix form as

Definition 3.1. The pair (P(z),Q(z)) is a Padé-Hermite Form (PHFo) for (A(z),B(z)) of type
(nO’ e ;nk) if

I) 8(P(z)) <ngand 9(4(Q(z)) < nj, where 0 ;) denotes the degree of the j th row,

) A(z)P(z) + B(2)Q(z)=2"" """ """ R, (3.2)



where R(z) is a power series, and

III) at least one of P(z) or Q(z) is nonzero.

]
That Definition 3.1 and Definition 2.1 are equivalent follows by setting
Py(z)
Plz) = Fz), Q(z)= |. (3.3)
Py(z)
in Definition 3.1.
The fact that agq 7 0 has some implications, which will prove useful later. If n; = —1, for
t =1, ++- , k, then ng > 0 and the PHFo is given trivially by
(Po(z), + , Bul2)) = (2"%0,, -~ ,0). (3.4)

On the other hand, if n; > 0 for some i, 1 <7 < k, then (3.2) together with the assumption that ago # O
implies that @(z) # 0. In this case, condition III in Definition 3.1 and 3.2 can be replaced by the simpler
requirement that Q(z) # 0.

As noted in Section 2, PHFo’s are equivalent to solutions of the linear system of equations (2.9) hav-

ing S("o' e my) 35 @ coefficient matrix. Consider now the linear system that results from the deletion of

the last k — 1 rows of the Sylvester matrix (2.7). The system (2.9) now is guaranteed to have, not one,
but at least k linearly independent solutions. Each solution still satisfies (3.2) but only with a relaxed
order condition. Thus, it is only a kind of PHFo, defined in this weakener sense. Such solutions are
introduced in this paper primarily to facilitate the development in Section 5 of an algorithm for comput-
ing the genuine PHFo’s satisfying Definition 3.1. Arranging k such solutions by columns, formally, we

have

Definition 3.2. Let agg # 0 and let U(z) and V(z) be matrix polynomials of size 1Xk and kXk, respec-
tively. The pair (U(z),V(z)) is a Weak Padé-Hermite Form (WPHFo) for (A(z),B(z)) of type

(ng, -+ +, ng), where n; >0 for 0 <7 <k, if



I) 9(U(2)) < ngand 3(;(V(2)) < ny, where 8 ;) denotes degree of the j th row,

H) A(z)~U(z) + B(Z)V(z) _ zn°+ oEmp+1

W(z) (3.5)
where W(z) is a 1Xk matrix of power series, and

IIT) the columns of V;(z) are linearly independent.

The matrix polynomials U(z), V(z), and W(z) will be called the weak Padé-Hermite numerator,

denominator, and residual (all of type (ng, - - -, n;)), respectively. When k=1, Definition 3.2 is the scalar

definition of a Padé form (c.f., Gragg [5]). Note that, just as for PHFo’s, the notion of a WPHFo can be

defined also for the case where n; = —1 for some i. This extension is not required for the following

development, however, so we will not pursue it further.

Let
Vi(z)
V()= | (3.6)
Vi(z)
and
Ue) = St ile) = S, (37)

as
ng + ny+1
Af2)Ulz) + A(2)Vilz) + -+ + A(2)Vyle) = 2°° W (), (38)
and hence
FU
Vi
Sy |- | =0, (3.9)
Vi
where S*(no, ) is given by



- 10 -

. .
p,0 Ao
| |
Q0
' 0,0 | |
S g+ my) (3.10)
| |
Qon - Qop—n, | | gy - Ap—n,
and n =ny+ -+ ng.
Theorem 3.3 (Existence of WPHFo’s): For any pair (A(z),B(z)) and (ng, - - -, ny), where n; >0,
0 <¢ < k,, there exists a WPHFo of type (ng, - - -, ny).

Proof: The proof of Theorem 3.3 parallels the proof of Theorem 2.2. The system of equations (3.9)

having 5"( - ny) B8 its coefficient matrix has n+1 equations and #+k+1 unknowns. Thus (3.9) must

ng

have at least k linearly independent solutions (of course there may be more). Any set of k linearly

independent vectors can be arranged by columns to yield a solution [U*, Vi, - - - | VI]! of (3.9).
The contention is that the columns of [V, --- | V}] are also linearly independent. For suppose
that there exists a nontrivial k-tuple, @ = [y, - - - | ;]", where o; are from the field F, such that
Vi, -, Viffa= 0. (3.11)

Then, multiplying (3.9) on both sides by o yields

Qp,0
o, a0 U-a = 0. (3.12)
Qo @0,n—nq
Thus,
Ua=0 (3.13)

since agg # 0. Equations (3.11) and (3.13) then together contradict the assumption that the columns of

U, Vi, - -+, Vi]' are linearly independent.



11 -

Organizing the matrix polynomials U(z) and V(z) according to (3.6) and (3.7) and using the conven-

tions of (2.5) and (2.6) determines a WPHFo of the correct type.

From the proof of Theorem 3.3, it follows that if S*( o) has maximal rank, then WPHFo’s are

ng - -
unique up to multiplication of U(z) and V(z) on the right by a nonsingular kXk matrix. On the other

hand, if the rank of S*( <) is less than maximal, then more than one independent WPHFo exists.

"y -
Definition 3.4: A pair (U(z),V(z)) is a weak Padé-Hermite fraction (WPHFr) for (A(z),B(z)) of
type (ng, - - -, my) if
1) it is a WPHFo of type (ng, - - -, ng) for (A(z),B(z)), and
IT) the constant term, V(0), of the weak Padé-Hermite denominator is a nonsingular matrix.

When k = 1, a WPHFT is the same as a scalar Padé fraction (c.f., Gragg[5]). Note that, unlike the

case for WPHFo’s, a WPHFT can only be defined when all the n; are nonnegative integers.

A WPHEFT can be interpreted as providing a a set of simultaneous Padé approximants for the quo-

Ai(z)
Aq(2)

tient power series (c.f., de Bruin[2]). Indeed, since V(0) is nonsingular, the inverse of the matrix

polynomial V(z) can be determined as a matrix power series. Thus, we obtain

~ ~U(z) V(=)™ (3.14)

Since
U(z)V(z) = U(z)-adj(V(z))/det(V(z)), (3.15)

equations (3.14) and (3.15) give a simultaneous rational approximation for each power series

~ '),5=L“,k (3.16)

It is not difficult to see that IV;(z) has at most degree N — n; and that D(z) has at most degree N—nq,

where N = ng+ -+ + n;. Hence, the polynomials (D(z), Ni(z), - -+ , Ni(2)) form a set of



~12 -

simultaneous Padé approximants to the power series A(z)/Ay(z), - , Ax(2)/Ao(z) of type
(no, * - , ng). This can also be represented as a solution to the German polynomial approximation prob-
lem of type (ng, - - - , n;) for the power series (Ay(z), * - - , Ag(z)) or as directed vector Padé approxi-
mants for the vector of power series (Ag(z), - - , Ax(2)) in the unit coordinate directions (c.f., Graves-
Morris(6]).

Finally, it can also be shown that the approximation (3.14) is also a reduced approximation; that is,

there are no nontrivial common right divisors of both U(z) and V(z) (a nontrivial matrix polynomial is one

whose determinant degree is greater than 0).

Unlike WPHFo’s, a WPHFr of a given type need not always exist. However, in a manner similar to

that of PHF0’s, we obtain a sufficient condition for existence of a WPHFT in certain cases.

Let
0,0,0 0 0 0
o0 | 410 | | @k0
. | B
. . a0 | | . a0
T (ng -+ ymy) = . . ago |. | | . , {8.17)
| I |
I | I
Ao, Qo,n—1 aom_no ay1n~1 al,n—n1 A ak‘,f]—nk
and set
d*(no, R det(T*(nO, ... y"k))' (3.18)

We then have

Theorem 3.5. If d*( ny) # 0, then every WPHFo of type (ng, -+ -, nyg) i1s a WPHFr. In addition,

gy
any WPHFT of type (ng, - - -, ny) is unique up to multiplication on the right by a nonsingular kXxk matrix
with coefficients from the field F.

Proof: Equation (3.9) may be rewritten as



—13 -

U1,1 . . V1,0

mo ) o == [ (3.19)
Vg0

Vg1

vlc,nk

Therefore d*("Ov ... n,) # 0 implies that all the solutions of (3.19) can be obtained by first assigning arbi-

Mg

trarily the kXk matrix

V(o) = | (3.20)

(recall that each v

; ; represents a 1Xk vector) and then solving for the remaining components

Ug, * s Uy, Uity T Uk, If V(0) is chosen to be a singular matrix, then the solution obtained by

solving (3.19) violates condition III in the definition of a WPHFo. Thus, in this case, all WPHFo’s are in

fact WPHFr’s.
Note that equation (3.19) still holds in the special case when n; = 0 for any i, 1 < ¢ < k, even

though there are no v; ; in the left side of (3.19) in this case. For such an i, there are also no a; ; in

*

T (n yet the right side of (3.19) can still be formed. The rest of the arguments above also hold in

Y
this special case.

To show uniqueness, suppose (U(z),V(z)) and (U"(2),V"(z)) are two WPHFr’s for (A(z),B(z)). Then,
the corresponding matrices V(0) and V'(0) in (3.20) for each solution are both nonsingular matrices with
coefficients from the field F. Thus, there exists a nonsingular matrix, C, with coefficients from F, satisfy-

ing
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Yk,0 V ko

It follows from (3.19) that
(2)C, (3.22)

and so uniqueness holds.

Up to this point Sections 2 and 3 have only their similarity in development in common. However,

for a vector of integers (ng, - - - ,n;) where n; > 0,1 < ¢ < k, we have
Qo,0 210 ag.0
l @10 | | . a0
I‘(no—l, PN ’"’k"l) = . (1010 : . : : . (323)
g a aq,_ '
0,n—1 aO,’I—'no 1,m—1 Ln—n, ak,n—l ak,17~nk ]
. . * . . v .
which is the same as T’ (ng - -, n;) With the first row and column eliminated. Thus,
ag,0, if n; = 0 for all ¢,
d’ =1 (3.24)
(ng -+ ng) 0,0 " Aing-1, - - - m,—1), Otherwise. -

Central to our results is the fact that Theorems 2.3 and 3.5 actually classifies when the Sylvester

determinant is nonzero. Indeed we have

Theorem 3.6. Let (A(z),B(z)) be as in (3.1) and let (ng, - - -, ny) with n; > —1, be a vector of integers.

Then d("o' - my) # 01f and only if
1) there exists a PHFo (P(z),Q(z)) of type (ng, - - -, n;) having a nonzero leading term in the residual,
and

2) there exists a WPHFT of type (ng+1, - - - ,n,+1) for (A(z),B(z)).
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# 0. The converse is clearly true from

Proof: We show that if 1) and 2) are true, then Qg -, ny)
Theorems 2.3 and 3.5. Suppose there are solutions to equations (2.13) and (3.19) (with (ny, - -+ , ng)
replaced by (ng+1, - - , ng+1)), but that
d(no—l, 1) = 0, (3.27)
that is, suppose T(nw ) is singular. Then, there exists a nontrivial solution to the homogeneous system

of equations
('307 o is)\+1)"—r‘(n0, ceemg) T 0. (328)

Equation (2.13) together with (3.28) then yield

Po,o
Sx+1To = (80, " :3x+1)’T(n0, o) | = 0. (3-29)
-plc,nkJ
Hence sy 4; = 0, since by assumption (1), rg # 0.
Given that apg % 0, let us determine 7 such that
(7,80, ", sy+1)(agg, =+, ao,x+2)t = 0. (3.30)
Then,
(T80 " s AT (art, -, mgrr) = 0, (3.31)
where T*(n0+1, .-« mg+1) is given by (3.17). Note that with (ng, - - ,n;) replaced by

(ng+1, -+ ,mp+1), 7 = X + 2in (3.17). Equations (3.19) and (3.31) then yield
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a0 Gk,0 vy 0
(7, 80, "+ ons1) |- cee 1| =0, (3.32)
Uk,0
15 +2 Bk 2+2
where, by assumption (2),
Y1,0
V(o) = |. (3.33)
Vk,0
is a nonsingular matrix. Hence,
21,0 ar,0
(7,80, " ,sng1) |- SR = 0. (3.34)
a1 a+2 Ak N+2
Therefore, from (3.28), (3.30) and (3.34), we get
( @o,0 Gr,0
| |
| | Q0
(7,80 " " 8ag1) | - ag0 | . . = 0. (3.35)
| I
I |
Ao\ +2 o, \—ny+2) Aep+2 g a—n+2
Equation (3.35) coupled with sy,; = 0 implies that
(7, 89, " " ,s)\)-T(nw comy =0 (3.36)
An induction argument can then be used to show that
Sp =8 = ' s=0, (3.37)

which contradicts the assumption that there is a nontrivial solution to (3.28). Hence, T(no. e ng) is non-

singular.
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The converse of Theorem 3.6 is clear from Theorems 2.3 and 3.5.

Remark 1: When k = 1, Theorem 3.6 was proved in [10].

Remark 2: Notice that the proof of Theorem 3.6 gives necessary and sufficient conditions for the non-

singularity of a generalized Sylvester matrix. Indeed, if

80’0 SO,mO Sk,0 slc,mk
I l
I |
S = | |. (3.38)
| |
So,N 80,N+my Sk,N $k,N+my,
with N = mp+ --- + my + k, then, using arguments similar to those used in the proof of Theorem
3.8, it can be seen that S is nonsingular if and only if there exist solutions to the equations
S'(mo(i): T )xN(i))t = —(si,mi+17 T 75i,N+mi+1)t for 7 e 07 t )k (339)
S(yo - un) =(0, - 0, 1) (3.40)

4. Padé-Hermite and Weak Padé-Hermite Residual Sequences

Following Della Dora and Dicrescenzo, we define a Padé-Hermite Table for a 1X(k+1) vector of

power series (A(z),B(z)) to be an infinite (k+1)-dimensional collection of Padé-Hermite forms of type

(g, - -+, mg) for myj = —1,0,1,2,--- . It is assumed that, with the exception of the case where
(ng, -+ ,mnp)= (=1, --- ,—1), there is precisely one entry assigned to each position in the table.
From Theorem 2.2, it follows that a Padé-Hermite table exists for any given (Ay(z), - - -, Ap(z)). How-

ever the table is not unique. This is unlike the definition of the usual Padé table (when k = 1), since

there a Padé table consists of a collection of Padé fractions (c.f.[9]), which are unique.
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Corresponding to a similar notion introduced for the usual Padé approximants, a vector of power

series (Ag(2), - -+, Ax(2)) is said to be normal (c.f., Paszkowski[13]) if ding, - - mg) # 0 for all n;. (Della

Dora and Dicrescenzo [4] use the term perfect to describe this property). When the vector of power
series is normal, it follows from Theorem 2.3 that every entry in the Padé-Hermite table is unique up to
multiplicative constant. Also from Theorem 2.3 it can be seen that the Padé-Hermite table for normal

vectors of power series can be made unique by insisting that the first term, R(0), of the residual be set to

1.
Notice that any vector of integers (ng, - - ,n;), where n; > 0 for at least one i, can be associated
with a point, (mg, - -+, m;) in the Padé-Hermite table by setting
n; ifn;>-—1,
m; = (4.1)
—1 otherwise.
The point (my, - -+ ,my) is called the representative of (ng, - - - ,ny) in the Padé-Hermite table. When

n; <0, the representative point in the Padé-Hermite table excludes the power series A;(z). Correspond-

ingly, we also extend the definition of the Sylvester determinant (2.11) to arbitrary vectors of integers by

setting
d("Ov ) = d(’"o: e my) (4.2)

that is, the Sylvester determinant becomes that of its representative.

Given a vector of power series (2.1) and a vector of integers (ng, - - - ,n;), a corresponding PHFo
can be determined by solving (2.9) using Gaussian elimination, say. This has the advantage that there
need be no restriction on the input vector of power series. A similar remark may be made about the cal-
culation of WPHFo’s via the solution to the system (3.9). However, such calculations do not take into
account the special structure of the coefficient matrices of the systems. The goal of this section is to
describe a recurrence relation that will lead to an efficient algorithm for both the determination of a
PHFo or a WPHFo of any type. The resulting algorithm will take advantage of the special structure of

the coefficient matrix of (2.7) and (3.10), and at the same time it will not require any restrictions on the
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input. In particular, the assumption of normality will not be required.

Given a vector of power series (2.1), along with a vector (ng, - - -, n;) of nonnegative integers, per-

mute the components so that
Ag(0) # 0, - -+ ,A(0)# 0 and A 0) =0, for 7 >1
and

ng> - 2n, and gy < e <ing.

(4.3)

(4.4)

This ordering is for presentation purposes only. If A;(0) = 0,0 < ¢ < k, it is only necessary to remove

the largest factor, z°, from all the power series. Any PHFo or WPHFo of type (ng, - , ng) for
(z7P-A2), -, 27P-A,(2)) is then also a PHFo or WPHFo, respectively, of the same type for
(Aol2), ~ -, Al2))
We introduce a sequence of integer vectors in k+1 space
(0, -+, 1), (g, m D), (g, -, ) (15)
by setting
(“0(0); ) "k( )) =(ng— M,n; — M, g — M) (4.6)
and
(mel*, - ) = (D, - @) 4+ (s, sy) (4.7)
where s; > 1 and
ng + 1, if ny > ny,
M= {mam(nl, ng) + 2, otherwise. (4.8)
In (4.7), the s;, 7 > 0, are selected so that
T R G (4.9)

and
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d(no(i)+j, - ynk(i)'i‘.f) =0,7=1, -+, s~-1. (4.10)

Observe that the ordering (4.4) implies that no(l) > 0, since otherwise the Sylvester matrix would
have at least one zero row. The requirement that n()(i) > 0,¢ > 1 is important in the recurrence relation

described latter in this section. Also, note that
() = ng®, - D — D) = (ny—ng, - - np—ny), (4.11)

for all i, and consequently the sequence (4.5) lies along a straight line in k+1 space. The points

(no(” ce ,nk(")), for + > 1, are called the nonsingular points along the off-diagonal line starting at
(nd?, - -+ ,n[9) in the direction (M, - - - ,M).
The sequence of nonsingular points (4.5} determines a sequence

(mO(O)’ T, mlc(O))7 (m()(l): ) mk(l)): (m0(2), Ty, mk(z))’ o (412)

of points in the Padé-Hermite table, where (md"), - - -, m[9) is the representative of (nd"), - - - ,nf).
The resulting points are called normal points in the Padé-Hermite table. The normal points representing
the sequence (4.5) lie on a piecewise linear path in the Padé-Hermite table of (A(z),B(z)).

Example 4.1: Let k=3 and let (ng,n;ngng) = (7,4,1,9) (hence, according to the ordering (4.3),
As(0) must be 0). Then M =38, (nd®n® ndY n{0) = (—1,—4,~7,1), and the nonsingular points
(no(i),nli),nQ("),né")) ¢ > 1, lie along the off-diagonal line starting at (0,-3,-6,2) in the direction (1,1,1,1),
that is, along the straight line in 4-space from (0,-3,-6,2) to (7,4,1,9). The corresponding representative
points (m()(i),ml(i),mg(i),mg,(i)), 1 > 1, then lie along the piecewise linear path defined by the line segments
from (0,-1,-1,2) to (2,-1,-1,4), from (2,-1,-1,4) to (5,2,-1,7), and from (5,2,-1,7) to (7,4,1,9).

|
For i = 1,2, .., let (F¥)(2),Q)(z)) be a PHFo of type (m{"), -+, m{) for (A(z),B(z)). Thus,

according to Theorem 2.3, there exists a power series R()(z) such that
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méi) + - mk(d) + kR(i)

A(2)PI(e) + B(2yQW(z) = 2 (2) (413)

where R(i)(O) # 0. This PHFo is made unique by insisting that R(i)(O) = 1 (c.f. Theorem 2.3).

Definition 4.2. The sequence

{R(")(z)}, i=1,2, -, (4.14)

with R(i)(0)= 1 is called the Padé-Hermite residual sequence for the vector of power series

(A(z),B(z)). The sequence

{(ﬂZ)(z),Q(z)(z))}} 1=1,2 -, (4.15)

is called the Padé-Hermite cofactor sequence.

|
Similarly, for i =1, 2, ..., let (U(z),V)(z)) be a WPHFr of type (md+1, -, m{+1) for
(A(z),B(z)). Then, there exists a vector of power series W)(z) such that
() ) mo(“ + - mk('.) +k +2 7)
A(2)UW(2) + B(z)V(2) = 2 W)(z) (4.18)

where det(V)(0)) % 0. This WPHFT is made unique by insisting that VE)(0) = I (c.f. Theorem 3.5).

Definition 4.3. The sequence

{Wf")(z)}, i=1,2, -, (4.17)

is called the weak Padé-Hermite residual sequence for the vector of power series (A(z),B(z)). The

corresponding sequence

{(U(")(Z),V(”(Z))}; i=1,2 <, (4.18)

with V(0) = I is called the corresponding weak Padé-Hermite cofactor sequence.

Example 4.4. Suppose (ng, - -+ ,n;) is ordered as in (4.4) and that ng>ny > ng. Then M =n; + 2

and (no(o), w9 = (ng—n—2, =2, ng — n; — 2, - -+, ny—n; —2). Furthermore =, = 1. ~ince ago # 0
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implies that the matrix (2.9) for the representative (ng—n;—1, —1, - - - | —1) of the point (no(o), el nk(o))
is
Qo0
(ng—ny—1,=1, -+ 1) T | ) (4.19)
a0,ng—n,~1 o0
which has nonzero determinant. To obtain the PHFo of type (mo(l), SR mk(l)) = (ng—n;—1,—1, - - - ,—1),
we solve
Qo0 Do 0
= ol (4.20)
Qong—n=1 90| |Pag—n,—1 1

and, so in this case,

0
PY(2) = agp7t2" mt QW(z) = ) (4.21)
0
To determine the WPHFT of type (ng—n,,0, - - - ,0), we solve
ap,0 Ug a0 k.0
= - . (4.22)
aO,no—nl a0,0 uno— n al,no— ny ak,no— ny
Thus, in this case, the WPHFT of type (ng— n,,0, - - - ,0), is given by
UM (z) = =A™Y(2)-B(z) mod 2" """ and VIU(z) = I. (4.23)
]

Examples 4.1 and 4.4 illustrate the effect of the definition of M in (4.8). When n; > ng, as in Exam-

ple 4.1, a nonsingular point cannot occur for coordinates on the off-diagonal path smaller than

(0, ny—ng, =, ng—ng). In (4.8), therefore M is selected so that n{) > 0. When n, < ny, as in Exam-
ple 4.4, M is selected so that (no(l), ce nk(l)) is the smallest point which has at least two coordinates in

common with its representative. The desired effect, which has consequences in the subsequent
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development, is that in both cases no(l) >0 and (no(l), SR n,c(l)) has at least two coordinates in common
with (md, -+, m{)).
Theorem 4.5: The Padé-Hermite and weak Pade-Hermite residual sequences and cofactor
sequences (4.14), (4.15), (4.17) and (4.18) exist uniquely.
Proof: The result is a direct consequence of Theorem 3.6.
|
The algorithm described in Section 5 for constructing a PHFo of type (ng, - - - , n;) for (A(z),B(z))

involves the computation of all terms in the Padé-Hermite and weak Padé-Hermite cofactor sequences up

to the point (ng, - - , ng). Theorem 4.7 and the proof of Theorem 4.6 below give a relationship of the
(i+1)-st terms of the sequences with the i-th terms, providing an effective mechanism for computing the
sequences.

For each integer i, let
(Af), a8 = 0, m—n®, . - mf_pnf) (4.24)

be the difference between the nonsingular point and its representation as a normal point. Because of the

ordering (4.3) we have that

A <A< - <A and A8 > - >af. (4.25)

The main result of this section is
Theorem 4.6. Let R'(z) and W/(i)(z) given by (4.13) and (4.16), respectively, be the residuals at the non-
singular point (ng, - -+ , ng). For any integers s > 1 and ¢ > 1, (n()(i)+s, I n,c(i)+s) is a nonsingular
point for (A(z),B(z)) if and only if (s—2, s—1—-A) .- s—1—-Af)) is a nonsingular point for
(R(2)WE)(z)).

Proof: We first examine the representatives of all relevant points. Because of the ordering (4.4) we

can define integers a and d so that, for 7 > 1,
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n)< -1, j=a+1, -+ ,d-1. (4.26)

Using (4.7) and (4.8) note that a >0 and that either @ >1 or d < k. The representative of

(nd, -+, n() is then
(m()(i)) o 7mk(i)) = (n()(i); e )nagi)y""]-) cr,—l n(;i)i T ynk(i))' (427)

For s > 0, let b and ¢ be integers such that

n}i)+820, 7=0, -+ b and j=¢, ‘- k
nf)4s<0, j=b+1, -+ ,c—L (4.28)
Clearly, from (4.26), a < b < ¢ < d. The representative of (n(,(i)+s, cee nk(i)+s) is therefore
(nd+s,  nff+s,—1, -+ =1, nllys, - nilts). (4.29)

Finally, from (4.24) and (4.27), observe that

8_1’ 1 S .7 S a,
s—l—AJ(i) = s—1+nj(i)—m1(") = nj(i)+s, a+l1 < 5<d-1, (4.30)
s—1 d<j<k

Thus, from (4.28) and (4.30), it follows that the representative of (s—2,s—1—A{) ... s—1-Af)) is
(s—2,s—1, - - ,s——l,na(i)l+s, ceonfiys -1, —1nfgs, - nd) +s,s—1, - ,s=—1)  (4.31)
By assumption, (no(i), s ,nk(i)) is a nonsingular point, and so (4.27) is a2 normal point in the

Padé-Hermite table for (A(z),B(z)). Thus, according to (4.13), the PHFo (P{)(2),Q1)(2)) of type (4.27)

satisfies
A(2)P)(z) + B(2)Q¥(z) = z#RU)(2), (4.32)

where RC)(0) = 1 and
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=nd+ - + 0D+ + - 1)+ a—d+k+1. (4.33)
Furthermore, the WPHFr (U®)(2),V1)(2)) of type
(nd +1, -, +1,0,---,0,nf) + 1, nflt1) (4.34)
satisfies
A()UG(2) + B(z)V(2) = 2#*2Wl)(2), (4.35)
where V)(0) = I.
It is required to show that (4.29) is a normal point in the Padé-Hermite table for (A(z),B(z)) if and

only if (4.31) is a normal point in the Padé-Hermite table for (R)(z),Wl)(2)). The proof proceeds by exa-

mining the PHFo’s and WPHFo’s at these two points.
For s > 1, let (P'(2),Q'(2)) be a PHFo of type (4.31) for (RE)(2),W)(2)) and let (U'(2),V(z)) be a

WPHFo of type
(s=1,s, - snli+s+1, - nf+s+1,0, - Onlrs+1, - nf4s+ls, - s)  (4.36)

for (RE)(2),W)(2)). Then,

RO(2)-P(2) + Wi(2)Q!(z) = 2"R(z) (4.37)
RO(2)U(z) + WO ()V(2) = 2/ *2W0(2), (4.38)

where
v=n@+ - +ndtnD+ - 10 +(b—c+k+2)s—(a—b+c—d+2). (4.39)

Note that Q(z) # 0 and V/(z) 0, because R()(0) 5 0 and either a > 1or d < k. Let
P(z) = U(2)-Q'(z) + 22P%)(2)-P!(z), (4.40)

Q'(2) = VI(2)Q'(z) + 2°QW(=)-P(z), (4.41)
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U'(z) = UD(2)V!(2) + 22P(2)U'(z) (4.42)
and

V'(z) = VO()V(z) + 22Q0)(2)U'(z). (4.43)
We shall show that (P*(2),Q"(2)) is a PHFo of type (4.29) for (A(z),B(z)) and that (U'(2),V'(2)) is a
WPHFo of type

(nd+s+1, - nf+s+1,0,- - 0, nDps+1, - -+ nys+1) (4.44)

for (A(z),B(z)). It is a trivial matter to show that P*(z) , Q(2), U'(z) and V'(z) have correct degree,
that is, that condition I in Definitions 3.1 and 3.2 for PHFo’s and WPHFo’s is satisfied.

Furthermore, because R)(0) % 0, Q'(z) # 0, V() = 0 and VI)(0) = I, it follows that @ "(z) ¢ 0
and V*(z) # 0, so that condition III in Definitions 3.1 and 3.2 is satisfied. More specifically, suppose that

Q'(z) = 0 in (4.41). Then
Q'(z) = —=>[V¥(z)| - Q¥)(z)-P(2). (4.45)
Since @'(z) # 0, then also P'(z) # 0. Substitution of (4.45) into (4.37) yields
{RD(2) —2WO(2) V()] 1QW(2)}-Plz) = 2R'(2). (4.46)
However, from (4.31) and (4.39), it is seen that
O(P(z)) <s—2<w. (4.47)
Then (4.46) and (4.47) imply that RC)(0) = 0, which is a contradiction. Thus, @ “(z) 0 and similarly
V(z) # 0.

Tt remains to verify that (P'(z),Q (z) and (U'(2),V'(z) satisfy condition II of Definitions 3.1 and

3.2, respectively; that is, it remains to verify that

*

A(2)P'(z) + B(2)Q(z) = 2“'R(2) (4.48)

and
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A(2)U'(2) + B(2)V'(z) = 2“T2W"(2), (4.49)
where
w= nl+ - nOinlly - pnfd 4 (b—ct+k+2)s+(b—ct+k+1). (4.50)
Using (4.32), (4.35), (4.37), (4.40) and (4.41) we obtain
A(2)P(2) + B(x)Q (2) = A(2)UMN()Q(2) + 2P(2)P(2)] + B(z)[V(2)Q'(2) + QW) (2)P(2))
= A(2)U(2) + B(z)VI(2)Q'(2) + 2%A(2)P)(2) + B(2)QC)(z)P(z)
= 2"PRO(2)P(z) + Wi(2)Q'(2)]
= ZHHHIRI(z)
= z¥'R/(2). (4.51)
Thus,
R'(z) = R'(z). (4.52)
Similarly, using (4.32), (4.35), (4.38), (4.42) and (4.43), we obtain
A(2)U'(2) + B(2)V'(2) = A(2)[UCN)VI(2) + 22PO(2)U"(2)] + B(2)VE()V(2) + 22QEN2)U'(2)]
= A(2)U9(2) + B(z)VO(2)V'(2) + 22A(2)P9(z) + B(2)Q¥)(2)U'(z)
= 2RO U (2) + WE(2)V'(2)]
= ()
=z T 2W(z). (4.53)

To conclude the proof of the theorem, from (4.43) and (4.52), observe that R(0) % 0 and V"(0) is
nonsingular if and only if R'(0) # 0 and V'(0) is nonsingular. From Theorem 3.6, we can then conclude
that (4.29) is a normal point in the Padé-Hermite table for (A(z),B(z)) if and only if (4.31) is a normal

point in the Padé-Hermite table for (R()(z),Wl)(2)).
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Theorem 4.7: The cofactor Padé-Hermite sequence along with the associated weak Padé-Hermite

cofactor sequence for (A(z),B(z)) satisfy
Ut+l(z)  PE+(e) Udz) POGE)| [T o Vi(z)  Q'(2)
= ' : (4.54)
Vit(z)  QUH(z) V() @Wz)| |0 22| LU(z) Plz)
where (P'(2),Q'(z)) is the PHFo for (RO(2),W)(2)) of type (m's, --- ,m') which represents the first

nonsingular point (s;—2, s;i—1=Af) o | s5;—1-Af)) and (U'(2),V'(2)) is its associated WPHF'.

Proof: Since (P%(2),Q@®)(z)) and (PE+Y(2),QC*Y(z)) are successive elements of the cofactor

sequence (4.15), then, according to (4.7), (4.9) and (4.10), (nd”), - - -, nf?)) and (ndi*Y, - - - n i) are
successive nonsingular points along the offdiagonal path starting at (no(o), SRR nk(o)). By Theorem 4.6,
then s; is the smallest positive integer for which (s,-—2,si-1—A1(i), cee s,--l——A,gi)) is a nonsingular

point for (RU)(z),W(2)). Accordingly, we can determine (P'(z),Q'(z)) to be a PHFo of type
(mly, - -+, m"), where (m'y, - -+, m'y) is the representative of the point
(8;—2,8,—1—AF), -, s;—1—Af)) in the Padé-Hermite table of (RU)(z),W)(2)). The leading term of
the residual satisfies R'(0) = 1. In addition, we can determine its associated WPHF'r (U'(2),V'(z)), where
V'(0) =I.

Let P*(2), @ "(2), U'(2) and V'(2) be defined by

U'z) P(2) Utidz) Piz) (|1 0 Vi(z)  Q'(z)
= ~ : : (4.55)

V() Q(2) Viz) QWz)| |0 21| LU(z) Plz)

Using the same arguments as in Theorem 4.6 it is clear that (P(2),@(2)) is a PHFo of type

(n(,(i)+si, R n,c(i) + s;). In addition, the leading term of the residual is one. Because of the uniqueness

of Padé-Hermite residual and cofactor sequences, (P'(2),@ (2)) is the (i+1)-st term of the cofactor

sequence. Similarly, (U (#),V'(2)) can be shown to be the unique (i+1)-st term of the weak Padé-Hermite

cofactor sequence.
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Theorem 4.6 and Theorem 4.7 reduces the problem of determining a PHFo (or a corresponding
WPHFo} to two smaller problems: determine a PHFo and an associated WPHFr up to a nonsingular point
(no(i) ce ,n,c(i)), and then determine a PHFo (or, a WPHFT) of type (s—2, s—1—A{) - .. s~—1——A,£i)).
The overhead cost of each step of this iteration scheme is the cost of determining the residual power
series plus the cost of combining the solutions, i.e., the cost of multiplying equations (4.40), (4.41), (4.42)
and (4.43). This overhead cost is generally an order of magnitude less than the cost of simply solving the

linear systems (2.9) or (3.9).

In the special case when k& = 1, a WHPFT is the same as a Padé fraction. In this case equation
(4.16) is given by

danl) 4 3

AUO(E) + B()VO(z) = 2" W(z) (4.56)

and (U)(2),V1)(z)) is a Padé fraction of type (n")+1,n{)+1) for (A(z),B(z)). If

WO(z) = 25 W(z) (4.57)

where W(0) = @, 5 0, then it is possible to show that

A

Pit)(z) = 2 U(), QU+(z) = 2t V(2), and RO(z) = 5 - W(2).  (4.58)

Travelling from one nonsingular point to the next can then be shown to to the same as power series divi-
sion of one residual into the next.

When &k = 1, the Extended FEuclidean Algorithm for computing polynomial GCD’s is closely related
to the calculation of Padé approximants (c.f., McEliece and Shearer[11] or Cabay and Choi[3]). When the
input power series A(z) and B(z) are polynomials of degree m and n, respectively, then reversing the order

of the coefficients in equation (4.56) gives
A'(2)P"(z) + B'(2)Q "V(2) = R")(2). (4.59)

Here A*(z) = A(z"l)z"‘, -+ etc. Equation (4.59) is similar to the type of equation found in the EEA
applied to (A*(z),B*(z)). In fact, when we are calculating the Padé approviimant of type (n,m) for
(A(z),B(z)), the reversed residual R“C)(z) is the i-th term of the remainder scquence calculated in the~

EEA, while (P"®)(2),Q "¥)(2)) is the i-th term of the cofactor sequence calculated in the EEA. Indeed, this
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is the primary reason for the naming convention of Definition 4.1 and Definition 4.2.

5. The Algorithm:

Given non-negative integers (ng, ' - -, ny), the algorithm PADE_HERMITE below makes use of
Theorem 4.7 to compute both the Padé-Hermite and weak Padé-Hermite cofactor sequences (4.15) and
(4.18), respectively. Thus, intermediate results available from PADE_HERMITE include those PHFo’s for
(A(z),B(z)) at all nonsingular points (nd, -+ ) i=12, - -1, smaller than (ng, --- , n;) along

the straight line path from (nd?, - - -, n{9) to (ng, - - + , ny)),together with those WPHFr at the succeed-

b

ing points. The output gives results associated with the final point (no(l), R nk(l)). If this final point is
a nonsingular point, then the output (P(l)(z),Q(’)(z)) is a PHFo having residual beginning with a one, and
(UW)(2),V)(2)) is the WPHFr at the successor point. If (ng, - - - ,n;) is a singular point, then the output
(PM(2),@Y(2)) is a PHFo of type (ng, - - - ,ng), while (UY)(2),V)(2)) is a WPHFo at the successor point.
Note that when a WPHFo is required at (ng, - --,n;), the input to the algorithm should be
(ng—1, - * - ;ng—1), rather than (ng, - - - 1)

The algorithm is presented in two parts. The first, INITIAL_PH, takes as its input (1) a power
series, R(z), with a nonzero leading term, (2) a 1Xk vector of power series W(z), (3) a (1X(k+1) vector of
integers (n'y, - + -+ ,n';), representing the first location on the offdiagonal line to search for the nonsingular
point, and (4) a nonzero integer M representing the maximum distance to travel on the offdiagonal line.

The algorithm returns (1) the distance s to the first nonsingular point along the specified offdiagonal line,

with s = M if all nodes are singular, (2) the PHFo at this point, and (3) the WPHFo at the successor
point.

The main algorithm, PADE_HERMITE calls INITIAL_PH to iteratively construct PHFo’s and
WPHFo’s for the residuals, (R®(z),W0)(z)). The PHFo’s (P)(2),Q¥(z)) and the WPHFo’s
(UB)(2),Vi)(2)) for (A(z),B(z)) are computed using the results of Theorem 4.7. The validity of the algo-

rithm, therefore, rests with the correctness of Theorem 4.7.



~31 -

INITIAL_PH(R(z),W(z),(n', - - - ,n's),M)

1) s «+0

2) d «0

I-3) Do while s < M and d =0
I-4) s+—s+1

I-5) (mly, - ,ml) — (nlots, -, nly+s) + (A, - - A),

where A, = —1—n';—s if n'; + s < —1, and Al; = 0 otherwise

I-6) Compute d «— det(Tipr, ..., mr))

End do

I-7) Solve (c.f. (2.9))
—Po,o

S(MIO’ N ’m,k)' po’mro = 0

_pk,m’k ]

if m'; <0, then P,(z) = 0 and p; ; does not appear on the left side
¥

I-8) Solve (c.f. (3.9))

Ug

um’0+1

, Y10
S(m’0+1, s, mi 1) | = 0.

U1,m'+1

Uk,m’k+1J

1-9) Set
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r

r
m 0 .
7
> Py, 5%
=0

m!y )
Plz) + Xlpos27 ,  Q'(2) «—
7=0

m’o .

J
2 Dk, 5%
J=0

I-10) Set

m'+1
> vy et
J=
m'y+1
Ulz) «— 3 uz?,  Vi(z) ~
=0

'
m'y+1

J
L

v ;27
=0

If d # 0 then normalize :

I-11) Compute ry = R'(0) satisfying R(z)-P(z) + W(z)-Q'(z) = Lot Am k=

Ri(z)
1-12) P(z) = Plz) 15", Q'(2) < Q'(2) g,
[-13) U'(z) « U'(2)-V(0)™}, VI(2) «— VI(2)-V'(0)7,
End If
U'z) P(z)
I-14) Return(s, )

The main algorithm, PADE_HERMITE takes as its input a vector of power series and a vector of
integers, each having k+1 components. The vector of integers must have non-negative entries (otherwise

one calls PADE_HERMITE with a smaller value of k).

PADE_HERMITE((A(2), -, A4(2), (no, ~~ , ny)

PH-1) Find the largest 8 such that A;(z) = 2f-A;(z) are still power series. Set 4;(z) = z77-A; ().
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Reorder the power series according to (4.3) and (4.4).

ng + 1, if ng > ng,
PH-2) M +

maz(ny,n,) + 2, otherwise

PH—3) (nO(O) T, nlc(O)) - (nO_—M7 Ty nk_M)

2

UW(z) PY(z)
PH-4) (s, ) + INITIAL_PH(A(z), B(2), ({9, -+ , n{®), M)
Vil(z) QW(z)

PES) (o, -, nf) — (nd? + 50 0l + 5

PH-6) ¢ « 1

PH-7) M « M — s

PH-8) Do while M >0

PH-9) (md, -, mf) — (@, - i)+ (A, A,
where A = ~1 4 n{) if n{) < 1 and AY) = 0 otherwise.

PH-10) Determine R%)(z) from the equation

mo(z) + o +m/§i)+k.R(i) 5

A(2)PO(2) + B(2)QW(z) = 2

PH-11)  Determine W)(z) from the equation

m® + e m® k4o

A(2) U (z) + B(z)Vi(z) = z Wi(z)
Ulz) P'(z)
PH-12) (s;, ) «— INITIAL_PH(RU)(z), WO(2), (=2,—1-A0) - -+ —1-A[)), M)
Vi(z) @Q'(z)
UtiH(z)  POH(z) Uliz) PG| [T 0 Viz)  Q'z)
PH-13) — : ‘

VEH(z)  QUY(y) Vi) QUz)| |0 21| LU2) Pl2)
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PH-16) 7 +—1+1
End while
U(z‘+1)(z) P(i+1)(z)

PH-17) Return( )
V(z'+1)(z) Q(H'l)(z)

6. Complexity of Padé_Hermite Algorithm:

In assessing the cost of PADE_HERMITE, we count the number of multiplications required by most

of the steps of the algorithm, excluding from consideration the more trivial ones.
Consider first the cost of invoking the initialization algorithm, INITIAL_PH. Gaussian elimination

can be used in step I-6 to obtain a triangular factorization of T(m:m e ) Assuming that the elimina-

tion is performed by applying bordering techniques (as s increases), step I-6 requires approximately

(m's+ -+ + m' + k + 1)®/3 multiplications in F, where (m's, - -- , m';) are the values attained

upon exit from the WHILE loop I-3. In steps I-7 and I-8, the solutions (P'(2),Q'(#)) and (U'(2),V'(z)) can
then be obtained by forward and backward substitution requiring approximately

(k+1)(m's + - -+ + m'y + k + 1)? multiplications in total. Since all invocations of Initial PH specify
n; < —1, the WHILE loop [-3 yields m!; < s, for 0 < i <k, where s is the step size. Consequently, for

this step size s, the total cost of INITIAL_PH is
Cost(INITIAL_PH) = (k+1)*s+1)® + (k+1)*(s+1)?
~ (k+1)%(s+1)> (6.1)

For the main routine PADE_HERMITE, the approximate costs (in terms of multiplications) associ-

ated with the major steps are summarized in Table 6.1. In the table, we assign
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Variable Computed Step Approximate Cost
PO QM u® v | PH-4 | (k+1)>(s+1)3
RW PH-10 | X\;«(k+1)(s;+1)
wt) PH-11 | (\;+k+1)(k+1)%(s;+1)
P,Q, U,V PH-12 | (k+1)*(s;+1)®
P+ QG+ PH-13 | \;(k+1)(s;—1)
pli+) yi+) PH-14 | X\;-(k+1)%;
Table 6.1

Bounds on Multiplications per step

In steps PH-10 and PH-11, it is assumed that R)(z) and WC)(z) are computed only to the number

of terms required to obtain the next s;. This can be accomplished, for example, by declaring the power

series passed to INITIAL_PH and the integer s returned by it to be global variables.

Using Table 6.1, we obtain

Theorem 6.1. The algorithm PADE_HERMITE requires

O((k+12%ng + -+ + nd) + O((k+1)%%) (6.3)
multiplications in F, where

¢ =max(sy, s, - ) , and 7 = mazx(ng, - , n) (6.4)

In particular, the algorithm requires

O((k+1%(nd + -+ + nd) (6.5)

multiplications in the normal case.
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Proof: Let [ be the number of steps required in a PADE_HERMITE calculation. Then, it is easy

to show that

_Zs,- =17 (6.6)

1=0
and
a(m + 1) < nde. 67)
i=0
Thus,
SINisi = dsi(md?) + +m{ 4k +1)
= S Y almf)+ 1)
F=0i=0
< Xnin. (6.8)
J=
Also
El](k+1)3si3 < (k+1)392§I] s; < (k+1)>¢. (6.9)
i =0 1=0

Equations (6.8) and (6.9) along with Table 6.1 complete the proof.

When ng= -+ =n;=n, the complexity of PADE_HERMITE in the normal case  is
O((k+1)*n?). If N = (k+1)n is the size of the associated Sylvester matrix, then this says that the sys-
tem (2.9) can be solved using O((k+1)-N?) operations. This agrees with the results of Kailath et al [§]
under the same normality assumptions. In the nonnormal case, however, their algorithm breaks down
and so a method such as Gaussian elimination, with a cost of O((k+1)*>n®) operations, is required. With
the use of PADE_HERMITE however, even the existence of only one nonsingular point along the offdiag-

onal results in significant speedup. For example, if the point (n/2, - -+ , n/2) is the only nonsingular
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point on the main offdiagonal, then the cost of determining a PHFo of type (n, - - , n)is reduced by a
factor of 4.

Under the assumption of normality, the algorithm PADE_HERMITE has approximately the same
complexity as present efficient algorithms. However, when it is known a priori that the normality
assumption can be made, then we are no longer constrained in our step size. In particular, the algorithm
may be altered to have a step size of 2° at the i-th step. If M is the distance to be traveled along the
given off-diagonal in & + 1 space, then the altered algorithm will require at most log n steps. By step-
ping forward in powers of two, the residuals can be determined using fast multiplication techniques. In
the special case where ng= --- = n, = n, the result will be an algorithm that constructs a Padé-
Hermite form with a cost of O{(k+1)n-log?n) operations. In a similar manner, the assumption of normal-
ity used in conjunction with the recurrence relation (4.54), allows for the use of a recursive algorithm
based on a divide-and-conquer approach. Again, under the assumption of normality, one obtains an algo-
rithm that is faster than existing methods. That this speedup can also be accomplished without the

assumption of normality is an open question.
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