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ABSTRACT

Register transfer (RT) abstractions have several properties which
make them particularly suitable for modeling VLSI designs. Nonetheless,
compared to the success and widespread acceptability of circuit, switch,
and logic abstractions, the RT abstraction has received limited recogni-
tion. In this paper we discuss some of the properties that a design
abstraction must have in order to be accepted, and make suitable propo-
sals for the RT abstraction.

To meet this goal, we propose a small set of design primitives with well-
defined behaviors, and give rules for their composition, all within the
framework of a strongly-typed signal environment known as the SDC
Model of register-transfer design. We use the typed nature of the signal
environment to enforce correct design compositions.

The primitives were chosen to permit a mathematical treatment of
designs, but they are also highly design-oriented, and provide the designer
with a useful and friendly set of building blocks. We also present user-
friendly graphical and textual interfaces to the model.

To prove our designs correct, we use Algorithmic State Machines (ASM)
as the frameworks for analyzing and reasoning about an SDC-based
design. We employ a slightly modified version of the Floyd-Hoare
method of inductive assertions to reason about the ASM diagrams. To
this effect, we establish a link between SDC-based designs and their
corresponding ASM diagrams, by formulating the SDC designs in terms
of a functional model influenced by Gordon’s work at Cambridge. We
present the model from a different point of view, and in a way closer to
the reality of RT designs.
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1. Motivation

The register transfer abstraction has a number of properties which make it suitable for
modeling VLSI designs. Among these properties are the following:

1) RT models are a high-level abstraction with flexible modeling power, and lead to
concise definitions; the importance of this property is self-evident, given the size of
most VLSI designs.

2) RT abstractions are suited to capturing design regularities, a desirable feature of
VLSI design [1].

3) Most other design abstractions present difficult placement and routing problems,
while RT-type designs enjoy a natural and efficient layout strategy.

4) RT-based specifications are close to the normal design experience, thereby simplify-
ing the design process and facilitating communication between designers.

These advantages have already been recognized, and RT level designs have been advo-
cated by respected research institutions, as well as individual researchers [2-8]; several
serious efforts have been made to apply them to real design environments [9-11].
Nonetheless, RT designs have received limited recognition, compared to the success and
widespread acceptability of circuit, switch, and logic abstractions. We suggest several
factors which may have contributed to this in the following section.

2. RT-Design: Problems and Prospects

For a design abstraction to be accepted, it has to provide designers with two environ-
ments, one design oriented and informal, the other analytical and formal, with well-
defined, preferably automatable, mapping rules between the two.

The informal design environment should be user friendly and powerful. This is achieved
by providing the designer with well-defined and simple, yet powerful, building blocks,
and rules for their compositions. The building blocks form the given abstraction’s design
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primitives. Lumped circuit components (resistors, capacitors, etc.), switch level com-
ponents (switches, attenuators, and wells), and logic gates (i.e. AND, OR, and NOT
gates), are examples of such design primitives.

In addition to the rules for combining primitives into large systems, the designer should
also be given a set of guidelines, namely, a set of do’s and don’t’s, for producing good or
acceptable designs in a reasonable time. We often refer to these guidelines as a design
methodology; hierarchical design is a useful example of such a guideline. Other digital
abstraction guidelines include the Mead-Conway methodology for nMOS designs, the
synchronous design technique for facilitating design analysis, and the Huffman model to
help with sequential synthesis. With this mind, we have proposed a small set of RT
primitives and a design methodology which satisfies the requirements discussed above;
we have also shown their application to a number of design examples [12-14].

The formal environment should be an effective mathematical system for analysing,
manipulating, and verifying the design. Different mathematical tools are applied to dis-
tinct aspects of a design. The tools may already exist, as in the use of differential equa-
tions, boolean algebra, and lattice theory for circuit, logic, and switch models, respec-
tively; it may be tailored to the abstraction starting from some existing mathematical
technique, such as the use of denotational semantics in modeling register-transfer
behaviour [8]; or it may even be invented for that purpose, for instance, Milner’s Cal-
culus of Communicating Systems [15].

Finally, there should exist simple, effective, and hopefully automatable, mapping
methods between the design structures and the formalisms used in their analysis. Some
design methodologies aim to make this mapping simpler, or even possible. For example,
one can point to network theory, which deals with mappings from circuit structures into
complex variables and differential equations. The existence of Spice-like simulators sug-
gests the degree to which such mappings can be automated. At the switch level, the
results are still new, and have not reached the maturity enjoyed by network theory;
nonetheless, Hayes [16], Bryant [17], and Brzozowski [18] propose methods for mapping
from switch level structures into lattices, boolean equations, and graphs, respectively. At
the logic level, the mappings between the gate networks and Boolean algebra are so
direct and natural that the differences between the two are often obscured. In the rest of
this section we point to a few ad-hoc developments at the RT-level of design and
analysis, and argue that the link between design-oriented works and mathematical
models, if any, is still very weak; this is, in our opinion, the main reason behind the
apparent lack of RT design maturity.

The most well-known efforts to use the RT abstraction as a design medium are: the
CMU design automation activities [5, 6], work at Karlsruhe and Kaiserslautern under
Hartenstein [19], and several ad-hoc silicon compiler developments at Caltech [9] and
MIT [10]. To the best of our knowledge, none of these design-oriented developments
are supported by or linked to a semantic model that can be used for analysis and
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reasoning, nor have the mathematical models proposed to-date [8, 20] been based on a
set of useful design primitives or guidelines that lead to sound RT-level designs.

One possible exception to the separation of design efforts from modeling at the register-
transfer level is the work by Eveking at Darmstadt [21, 22]. Eveking proposes a map-
ping from members of the family of CONLAN languages [23] to mathematical struc-
tures that are based on: a language in the predicate calculus, a number of logical and
non-logical axioms derived from the specification language and the design, and rules of
inference. He calls this the corresponding hardware’s theory. He then argues that the
correct statements about the behaviour of a design can be derived as theorems in the
corresponding theory. Although used primarily to reason between different levels of
abstraction, Eveking’s method can be used to reason about the designs specified in an
RT-level CONLAN member and their implementations.

What distinguishes our work from that of Eveking is our use of inductive assertions and
the ASM charts, both well-known techniques, particularly suited to specifying and rea-
soning about register-transfer designs.

Hanna and Daeche discuss desirable properties of the proof techniques [24], and argue
that the “formal systems should already exist”, “be powerful and concise”’, and “not too
removed from the digital engineer’s intuition.” It is our contention that the combination
of inductive assertions, algorithmic state machines, and the proposed design environment
meets these criteria.

In the remaining part of this paper we present an overview of a register-transfer level
digital design and analysis environment, under development at the University of Water-
loo, that satisfies many of the goals we believe to be crucial to the success of register-
transfer level design. We do this by first presenting the model. This is followed by pro-
posing a high-level user interface to the model. The paper ends by proposing a frame-
work for proving the correctness of designs represented by model, and by proving the
correctness of a design discussed throughout different stages of the paper.



3. Mathematical Preliminaries

In this section we use an extension of the Lambda calculus to model digital designs.
Later we will use this formalism to map between hardware designs and the correspond-
ing ASM charts. We introduce separate notations for specifying combinational and
sequential behaviors, both of which are closely related to the formalism proposed by
Gordon [8]. We also present a formalism for specifying composite designs which,
although still based on Gordon’s work, proposes a very different approach to the specifi-
cation of port names and interconnection nets.

3.1. Defining Combinational Modules

We define an m-input, n-output ( mXn-put ) combinational device D , shown in Figure
1.a, by

D = )‘(7719772’ o m ) (EE g - o Ey), (1)
where the right hand side of (1) is a short form for

>\(771,772,"',77m)~Ei, 1S1S’1 >

and where n;, 1< j<m, is the j—h input port’s value, and \(n1, 72, * * * » 7m ). Ex,
1 <k <n, defines the k —h output port’s value.

| vV V . \Y
vV V V_V V \Y/ n o0 n
no o n o n n 1 2 m
s s s 1 2 q q+1 q+2 q+m
. T F F...F, E E...E
1 2 *lg v1 v v” E1 E2 En
—J T T N AN A

Figure 1. Graphical representation of modules with m inputs
and n outputs: a) combinational module, b) sequen-
tial module with ¢ state variabless;, 1 <i <gq.



3.2. Defining Sequential Circuits

At every state, the behavior of a Mealy-type sequential machine B, shown in Figure 1.b,
has two components. The first component is its combinational behavior, B, , under the
influence of the current state and input ports, and the second component is its next state
behavior, B,,, , under the influence of the state and input ports at the time of transition
to the next state. Therefore, the behavior of an mXn-put, g-state sequential machine B
can be defined by

(EI’EZ’ L E )
(FI’F25 "'7Fq)7

Bemp
{ch }=>\(7I1,712,"',77q,77q+1,"',77q+m)-{ (2)

seq

where

® the ¢+ m inputs represent the m input-port (environment) and ¢ input-state
values.

® EE, ---,E, are the n output-port (environment) values produced in response
to the corresponding input-port and input-state values at all times.

® Fy,F,y ---,F, are the ¢ next-state values produced in response to the
corresponding input-port and input state-values at every step. They are evaluated
at the time of transition to the next state.

Combining the two components of (2) into a single definition, we write
B(SI’SZ’ "',Sq)=>\(771,772,"',71m)- (3)
(EpEgy - v Ey), B(F,Fg, - an))

to explain the behavior of the sequential machine B, where:

® to distinguish between the state and the environment inputs, we have moved the
input-state bound variables to the left of the equality sign, while keeping the
environment inputs on the right side of the definition.

® wewrite B(sq, 55, *°°, s, ) to represent module B at state (s, s5, - - -, 5,), and
B(Fy,Fy ---,F,), to define the next-state (Fy, F,, ---,F,) for B, where
F;,1<j <gq, is the new value for the j — state variable.

We also write
Bomp (51,52, " 55, )=X01:M2, "~ * lim) - (E,E 2, -« * LEy,) 4
and

Bseq (s1, 52 P ) =AM 0 ) - (FI’F2’°"an) (5)

to represent B’s combinational and sequential behaviors, respectively.



3.3. Composite Modules

An mXn-put composite module f ¢ is defined as the interconnection of w submodules
£9¢1 ..., ¢£" ! and a (hypothetical) nXm-put environment module £ ¥ , where the
input and output ports of f ¥ define the output and the input ports of £ ¢, respectively,
as shown in Figure 2.

Environment

Al
§ Modules § Modules s\%}}&
\ 0to \ —_ 0 to \\\\\
\ w- 1 \ w-1 W

N |- I S

Figure 2. Modeling the environment of modules 0 to w-I as
the module w.

Furthermore, we define

w w
® 1 -=yUs and O = JO! as the set of internal input and output ports, respectively,
1=0 i=0
where I1', 0<i <w,and 0°, 0<i <w, are the sets of input and output ports
of the i —h module.
® P ={py,p2 °--,p } as the set of nets used in connecting the submodules, such

that h: OUTI — P is a total function assigning a single net to every port, where
h:0 — P is one-to-one and h: I — P is onto.

To model the ner connections of a module, say £ ! (m! X n' —pur , q° —state ), we write
(Y1, 92 "> ¥0) =F gup(sq, 5, s ) (X, x5 0 x,0) 6)
as a short form for
Yi =N, Mz N Mgty Mgt ae T Mgty i) - Ej) (7)
(51,82, * ", 80, %1,%2, " LX), 1<) <n',

where
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f cimb =)‘(771’ M2s «vve) nqi’ nqi+1a nqi+2’ vt nqi+mi) . (El, E, - - ,Eni),

and y; €h(0%), 0<j <n', and x; €n(I'), 0<j <m', are the values of the nets
connected to the corresponding ports. Thus, the behavior of module f ¢, composed of
the interconnection of submodules £ %, ¢ 1, --- ¥, using the connection nets P , can
be defined as

£°sL,s2 -, 8" Y =Nh(0")). (rec
(Y =f 5 (S))(X") 1<i<w—1) (8)
in (A(I”),£° (f L (S)(Xx) 1<i<w-1))),

where
Y =(yi,y4h, - Lyl yfEP—Rr(0"), 1< <nt,1<i <w-l,
and
X\ =(x{,x}, ---,x"‘;,- ),xjiEP, 1<j<mi,1<i <w,
are the ner values, S = (st , s}, ---,s;.- ) is the set of states of f ?, ¢’ is the number

of state variables in f !, 1<i<w, and rec and in are defined as in [25].



4. The SDC Model

The power and novelty of SDC-based modeling is characterized by the selection of
its design primitives, by the enforceable methodology it expects, by the signal typing it
supports, and by the ease by which the SDC-based designs can be translated into the
integrated circuit layout. It is the purpose of this section to present the SDC model, and
to discuss the significance of its features to the design process. In Section 5 we present a
few SDC-based design examples.

4.1. Design Space

We have observed that signals flowing in most register-transfer type designs belong
to one of the three categories of data ( D ), control ( C ), and status ( S ). A more
detailed explanation of these types and their motivation is as follows:

® D signals carry data values from one module of the data-path slice to other modules
of the same slice. The inputs and outputs of register and ALU slices are examples
of D signals. D signal elements correspond to the basic symbols of data representa-
tion; their nature and number will depend on the type of slice being defined. For
example, D, ={0,1} for binary data-path slices, and
D, ={0,1,2,3,4,5,6,7,8,9} for a decimal slice. The D signals also form the
data inputs and the data outputs of the design. We use solid lines to represent D
signals in the graphical design examples of this paper.

® C signals are the command inputs from the control-unit to the data-path, where
they help to dynamically re-configure the data-path and route data values through
different paths of a data-path, at different times. The ‘load’ command to a register,
and the ‘operation-code’ command to an ALU, are examples of the C signals. We
use dotted lines to represent C signals.

® S signals are indicators of the status of a data-path. They inform the control-unit of
the prevailing conditions inside the data-path. The ‘carry’ signal out of an adder or
the ‘greater-than’ signal out of a comparator are examples of S signals. We
represent S signals with dashed lines.

In the remainder of this paper we will use lower-case letters to represent signal variables,
and ‘()’, ‘[],and ‘ {}’ toenclose S, C, and D signals, respectively.

Elsewhere we have generalized the signal typing scheme by assigning each signal type to
one of the co-ordinates of a multi-dimensional virtual design space [26, 27], and have
shown that the placement and routing issues facing the designer can be formulated in
terms of projection strategies from this multi-dimensional space into the two-dimensional
space of integrated circuits. The informal graphical notation deals only with the two-
dimensional projections of the three-dimensional register-transfer objects.



4.2. The Design Primitives

A model of a synchronous system solely as a network of combinational and unit-
delay elements has already been used in theoretical studies of automata. For an exam-
ple of applying this simple model to the analysis of synchronous designs, see the Leiser-
son and Saxe paper on the retiming of automata [28].

In this work, we keep the unit-delay element intact, but differentiate among three
categories of combinational elements, namely, selectors, controllers, and functionals.
Later in this paper we show that this differentiation leads to advantages in the design
process, improves design efficiency, and presents a more useful mathematical formula-
tion of the subject. We now present these design primitives and discuss how each new
category affects the design process.

4.2.1. Functional Primitives

We refer to the family of primitives responsible for manipulating and transforming the
data items in their flow through data-path slice as functionals; functionals preserve much
of the original character of the combinationals as the data operators.

Stated formally, a functional-slice is a (m + k )X(n + k )—pur combinational device of type
(D" xS*) > (D"xs*), wherem >1, k,n €{0,1},and n+k >1.

(b) - (c)

Figure 3. Data-path primitives: a) selectors, b) functionals, c)
unit-delays. Data, control, and status signals are
shown as solid, dotted, and dashed lines, respec-
tively. Modules are enclosed in patterned boxes to
indicate their interface boundaries.
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The behavior of a functional primitive can be defined by one of the following three
schemes:

>‘{d1’d2’ ""dm}<s>'{E}<F> (9)
)\{d19d2’ ""dm}<s>'<F> (10)
>‘{d1’d2’ ""dm}'{E} (11)

Depending on the nature of the application, the number and type of operators used in E
and F expressions may vary. As an example, multiplication might not be allowed when
the model is used as the input to a silicon compiler, while its use might be allowed in
simulation applications. In a similar way, addition might prove to be unacceptable when
the model is used for some forms of reasoning about the hardware, but acceptable when
the model is intended for silicon implementation.

In Figure 3.b we have shown the graphical symbol used to represent the functional primi-
tives corresponding to definition scheme (9). One or more of the signal lines will be
missing from Figure 3.b in the case of definition schemes (10) and (11). We now
present three typical functional-slices , each specified according to one of the definition
schemes.

Ex.1- The Binary ‘and’ Slice
A binary and slice is a D,2 — D, type device defined by

and =X {a,b}.{aAb}. (12)

Ex.2- The Binary ‘comparison’ Slice

A binary comparison slice is a D,>x S — S type device defined by
comparison =X{a,b}{s).(s A(a b)), (13)

where a and b are the slice’s data inputs, s is the status input indicating the result of
comparisons at more significant slices, and sA (@ @ b ) is the status output to the less
significant neighboring slice.

Ex.3- The Decimal ‘add’ Slice
A decimal add slice is a D42xS — D, XS type device defined by

add =X a,b}(s).{mody(a+b+num(s))}{num(s)+a+b >9). (14)

Here a and b are the slice’s data inputs, s is the carry input from the less significant
neighboring slice, (mod 1g (a +b +num (s)) ) €D 4 is the  data output,
(num (s)+a+b>9 ) €S is the carry to the more significant neighboring slice, and
num : 8 — D is a function that converts the starus signals into their equivalent numerical
value, typically a logical ‘1’ to a numerical “1°.
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4.2.2. The Selector Primitive

Selectors are used to realize the dynamic nature of the data-path. They route the data
items from one of their two data inputs to their only data output, under the control of
their only C type input. As will become clear later, recognition of selectors as a category
of combinational elements, distinct from functionals and controllers, is crucial to our for-
mulation of register-transfer type designs.

Stated formally, the selector slice sel (Figure 3.a) is a combinational device of type
(D XD XC) — D XC , defined by

sel =X\dy,dy}lc].{c —dy dyjlc], (15)

where ‘—’, in the context of an expression, stands for the if-then-else operator. Defini-
tion (15) indicates that the output of a selector is equal to one of its two data inputs, d ,
or d,, and the selection is made according to the value of input ¢ : C . The control input
c is passed to the next slice without change.

4.2.3. The Controller Primitives

Controllers are a family of p Xg —put combinational modules, introduced to capture the
properties of programmed logic arrays (PLAs), and can be used as the main component
of a control-unit.

Syntactically, a controller T is defined by a two-dimensional array of m columns and »
TOWS, where m=p +q,n <27, p >0, qg >1, and
t; €{1,0,x },1<i <m ,1<j <n. T is composed of two sub-arrays: K, the condi-
tion sub-array, and A, the action sub-array, of n rows and p and ¢ columns, respec-
tively. Each column of K is associated with one of the inputs of the module and each
column of A with one of the outputs of the module.

Operationally, we define the i —» row of T to be enabled if the input values match the
corresponding K entries. The x entries of the table match both the 1 and the 0 values of
the input. When the i —4» row of T is enabled, the corresponding elements of A appear
as the module’s outputs. An x output indicates a floating output. Certain input values
may enable more than one row of the table. When more than one row is enabled,
“strong” entries (1 and 0) in the same column should not conflict; the x entries are over-
ruled by strong 1 and 0 entries.

Behaviorally, controllers are a family of p Xq —put devices of type C* XSS! = C*xS",
where p =s+r and g =u+v,s >0,¢r >0, u >1, and v >0. We can express their
behaviour as

Meqg, €0, - - ,cs]<s1,s2, ot 7st> (B, By - ’Bu]<S1»st T ’Sv> ) (16)

where B;, 1<i <u, and §;, 1<i <v, are the sums of the products of the bound
variables and their complements.
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Controllers are either automatically generated as the result of compiling the SDC input
language to the internal form (see Section 5), or are explicitly defined whenever the
designers wish to do so. We have used the tabular forms in the graphical definition of
examples throughout this paper.

4.2.4. The Unit Delay primitive

Unit-delays, as the name implies, delay the transition of values from their input to their
output by one clock unit without changing the value in any way. They can be used to
delay signals of all types although, within our methodology, their use is limited to that of
delaying the data signals within the data-path, and status and control signals within
control-units. Stated formally, a unit-delay del is a 1x1—pur , single-state, polymorphic
[29] sequential device (see Figure 3.c) defined by

del (n) =X(i).(n,del(i)). (17)

4.3. Design Methodology

To enforce some discipline in connecting the ports of the submodules of a composite
module, we extend the concept of typed ports to that of typed nets. This assumes that
the nets of a particular type connect ports of the similar type.

In section 4.3.1 we will develop a formalism for typed composition of submodules, and
give a formal definition for a data-path ‘slice’. This is followed by a definition of data-
paths in section 4.3.2, where we also discuss an important property of slice-based design,
exploited so far without proper reference to the underlying assumptions.

4.3.1. Typed connections

We continue to use the parenthesis pairs [ ], and {} and ( ), to enclose control, data, and
status -type nets, respectively.

In this spirit we partially re-write (6) as
{yl’y2’ o ’ynd}zf emb (1,52, ~ - ,sq)(xl’xZ, U L Xm ), (18)

to emphasize the data type connections of the output ports of f, where n; is the number
of data outputs of f.

We can specify the control and status type connections in a similar way, including the
inputs if needed, and extend the definition (6) into a single statement of the form

{Yp MY Ys) =1 cmp (SH Xp )} Xc I X5 ). (19)

We also write
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{f cmb(S){XD }[XC]<XS>}a
[f cmb(S){XD}[XCKXS)]a

and

(f cmb(S){XD }[XCKXS»
to refer to the ner sets: Y, , Y, and Y, respectively.

Extending this convention to the sequential behavior, we write

f seq ( N ){ XD }[ XC ]< XS > (20)
to refer to the next-state values of f.
We call the composition of s 41 sub-modules F = {f % f1, r2 --. | r*~1 £} where

f ¢ is the environment sub-module, a data ( control, status ) composition of F if and
only if the corresponding » (O — O® )nh (I —1I°% ) contains only data ( control, status )
type nets.

Finally, given slice submodules G = {g% g!, g2 --- ,g°"',¢g°}, where g* is the
environment slice, a slice composition of G is defined to be any data composition of G .
The functional, selector and the unit-delay primitives of the SDC model form the set of
primitive slices.

4.3.2. Multi-Slice Data-Path Definition

Given a data-path siice f and a positive integer n, an n -slice data-path is formed by
concatenating » such slices along their control and status ports, as shown in Figure 4.

: !

D nth. Slice |

T ] ]
1 n-1

D, st Siice | Dol (n-1)-th. Slice |—
T e
(a) D st sice |
A
(b)

Figure 4. A graphical representation of an n-slice data-path.
a) A single slice data-path. b) Converting an n-1
slice data-path to an n-slice data-path.
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Therefore, the behavior of an n -slice data-path F is defined by

DP(f,n)=F (', 82 - -,8") =
MpL,D2 --- ,D"YC].(
n=1—(
{f ems (§ H{D H}C KW}
(f ams (S H{D 1} [€ KWD), (21)
£ seq SHDHIC KDY,
) (
{fomp S")YD"HC KDP (f ,n—1){D', D%, - -, D"7HC )
(Foms S")D"HCKDP (f ,n-1){DY, D2 -, D" HC])),
Fog D HCKDP (f ,n-1){P', D2 --- ., D"HC])).
)
)
Here S =s},s%, ---,s}, 1<i <n, are the values, and ¢ is the length of the state
vectors of the i —th slice; D' =d4,db, ---,d},1<i <n, are the m data input values

to the i —h slice; C is the same control input vector applied to each slice; and v is the
first slice’s sratus initialization vector.

A few observations are in order at this point:

®  Since slices are identical, structural concatenations are realized by the abuttment [1]
of the corresponding layouts.

® We have assumed that the status information is passed from the lower indexed
slices to the higher indexed ones. Assuming that the smallest indexed slice is also
the least significant slice of the representation scheme, this formulation satisfies the
requirements of certain functionals, such as the carry propagations in a sliced
adder.

® A similar formulation exists for cases in which the status signal has to propagate in
the opposite direction (for example, a sliced comparatort). Since control signals are
passed through the slices without any modification, simultaneous flows of both for-
mulations does not lead to infinite recursion.

+- A comparator can also be designed with lsb-to-msb signal propagation but it tends to become
rather complicated.
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® In the past, designers have automatically extended the properties of a slice to that
of its n-slice data-path. Definition (21) can be used to extend the slice properties to
that of the data-path itself, using the structural induction proof.

4.4. SDC-Based Design Examples

In this section we present two examples of SDC-based designs. In each case we present
an informal graphical representation of the design and a formal functional model of its
behavior.

The first example is simple, representing the data-path of a shift register. This example
may be helpful because of the way its shift element is defined. The last example is that
of a complete design for calculating the greatest common divisor (GCD) of two positive
integers presented at its inputs. This example will also be used in the subsequent sections
of this paper.

4.4.1. The "shift-register" Slice:

The following is the behavioral definition of one slice of a shift register, shown in Figure
5. The sub-modules sel, and del used in the composition of the "shift-register" slice are
defined in the usual way.

7

.otz

oo (onin)- -
S

in

Figure 5. Graphical representation of a shift register slice.
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The shift slice is a new functional primitive defined by

shift = \{in {}(in ) . {iny} (in{) .
We now write the composition rule for the shift-register slice, using the above submo-
dules and the nets y1, y3, ¥3, Y45 i 5 Cin)> Cings Sin s €ory» €or, @A 5, . According to (8)

we get
shift —register ( n) = \{in }cin , €in,J(sin ) - (rec (
{y 1Heor ] = sl cmp {y 4, in Hew )
{ 2Heor,) = sel gy {3, ¥ 1}lein,1s
{3} =del oy (n){y 2}
{¥ aX(s0r ) = shift ey {¥ 3X(s:0 ))
in ({ ¥ 3}cor,» CorJS0r ) »
shift —register (del ,,, (n )(y2)))) .
This is expanded to
shift —register ( n) = \in Ycn , €10, J(sin ) - (rec (
Y1=Cin, = in, ¥4
Coty = Cin >

y2=cin2_’y1’ Y3

Cot, = Ciny
Yz=mn,;

Ya=Spu;
Sot =¥3)

in ({y 3}[co 1> Cot 2]<sot > , shift —register (y 5))) ,
and reduced to
shift —register (n) = M in Y{c;n > cin 2](.9,-,, Y. ({n Hein > Cin 2]<n Y,

shift —register ( c;,, — (cjp, —>in, siy )sn )) .
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4.4.2. SDC-based design of a GCD Hardware Module

The SDC-based graphical representation of the GCD circuit is shown in Figure 6. It cal-
culates the GCD of the two values at its data-input ports ‘in,’ and ‘in,’, and producing
the result at its data-output port ‘or .

The input values are sampled at the last assertion of the ‘r’ (reset) control input; the avai-
lability of the result is signaled by the first assertion of the ‘¥ (finish) status output. The
hardware follows the usual GCD algorithm of repeated subtraction of the smaller value
from the larger value until the two values match. We will develop the functional models
of the data-path and the control-unit parts independently, and then combine them to
form the total module’s behavioral model.

We start by applying composition rule (8) to the data-path. Given functional primitives
eql =X\{a,b }.{(a=b),
gt =Xa,b}.(a>b),
and
sub =X{a,b }.{a —b },
the ged_path, shown in Figure 6.a, is defined by
ged_path (a,b) =Ninq, in, Y[ j, k,la,b] . (rec(
{y1t=selem{y7in1}[Jjl;
{ya2}=sel oy {y7iny}[Jjl;
{ot }=regemp(a){yi}[la];
{yat=reg o (b){y2}[b];
(s1)=edl gmp {01, y4};
(sa)=gtem{ot,y4};
{ys}=sel oy {yg 0ot }[K];
{yet=selgm{ot,ys}[k];
{y7}=sub p{ys y6})in(
{or }(s1,52), ged_path (reg .., (a ){y1 } la],
(reg oo (2){y2}{ 6 D)) .

Note that in this example we have used a single slice and a data-path of those slices in
an interchangeable form. As a result, we have also assumed that the status inputs to the
data-path receive proper initialization without explicitly referencing them.
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Figure 6. Separate representations of a data-path (a) and a
control-unit (b) to calculate the greatest common
divisor of two positive integers at inputs in; and
in,. Input r signals the start of the computation.
Output f signals the availability of the results at
ot . The combined form, called GCD, is shown in
(c). Boxes labeled as a and b depict registers.
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After expansion and simplifications, ged_path behavior reduces to

ged_path (a,b) =X{iny,iny Y j,k,la,lb].({a}{a =b,a>b),
ged_path ((la = (j —inq, (k= (a—b),(b—a))),a), (22)
(b —(j—ing, (k= (a—b),(b—a))), b)) .
This completes the definition of the data-path part.

The control part consists of two submodules: a PLA and a unit-delay (Figure 6.b). The
PLA realizes the microprogram to be executed by the module. The unit-delay holds the
state of the control-unit. We start by defining the PLA part, called pla, and then com-
bine it with a unit-delay element to form the complete control-part, called contunit.
These two steps follow:

pla =X[r]{(sp,52,¢).(c',j,k,la,b(f ),
which is expanded to
pla =X[r](sq,s2,¢ ). ([((FATAsI)VFAC),
P (FASIASIAT), (rV (FASIASIAT)),
(rV(FASIASIAENI(FAC),
and
contunit (p ) = M\ r{ s, s,).(rec (
[y d ok, la, b f)=pla gl risy, 52,520
(y2) =del jp, (p)[y1]) in (
[J,k,la,b](f ), contunit(del, (p)yi])),
which is reduced to
contunit (p) =X[r] (s, 5,).([r,FASINSAP,
rV(FASIASIAD ), r V(FASIA 52A P )] (23)
(FAp ), contunit (FAFAs)OVFEAD))) .

Combining ged and contunit to form the complete module, called ged, as shown in Fig-
ure 6.c, leads initially to

gcd(a,b,p)=)\{in1,in2}[r].(rec(

out { 51, s5) =ged_path _,, (a,b){iny, iny}[ j,k,la,lb];
1 2 cmb
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[J.k,la,b](f )= contunit sy (p)[r {51, 52))
in ({out ¥ f),
ged (ged_path o, (a, b){iny, iny}[ j, k,la,ib],
contunit o, (p)[ 7 [( 51, 52))) ;
this is expanded to
ged(a,b,p)=NXNiny, iny}[r]. (rec(
out =a;
si=a =b;
sp=a>b;
j=r;
k =FASIANSIAD;
la =rV(FASIASIAD);
b =rV(FASIASIAF);
f=Fap)in ({omXf),
ged ((la—(j—ing, (k—(a—b),(b—a))), a),
((b—(j—ing, (k—(a—b),(b—a))),b)),
(FAPAS)V(FAP))),

and can eventually be reduced to

ged (a,b,p)=Miny,iny}[r]. ({aFAp), ged(
((rAg)=(r—in;, (¢g—(a—b),(b—a))),a),
((rAg' )= (r—iny, (g—(a—b),(b—a))),b),
(FAPAsV(FAP))))
where

q =rA(a =b)A(a>b)Ap

q'=rA(a =b)AN(a>b)APp .

(24)
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5. The SDCL Hardware Description Language

The SDC model presented so far is a precise and powerful form for specifying RT
designs, but it lacks a friendly design interface. The graphic interface used is too infor-
mal, and lacks a suitable control specification mechanism; the functional representation,
although precise and flexible, is hard to read and write.

To overcome this problem we have developed a hardware description language, called
SDCL (for SDC Language), which is tuned to the SDC model and provides a friendly
high-level interface to it. This section gives a brief description of this language and its
highlights.

5.1. SDCL Objects

SDCL is an object-oriented synchronous RT-level digital design specification language.
SDCL objects operate on data values at their data-input(s) and produce results at their
data-output(s), under the control of zero or more command-input(s) (see Figure 7.a).

commands status
command status ll l TT T
% soct objeat| T control part
data data 1
input output
; SDCL Object| s== | SDCL Object :
—_ —>
d data
ina;::t data'path output

(b)

Figure 7. Graphical representation of an SDCL object and its
breakdown to a control-unit part and a data-path
part. a) The SDCL object. b) The SDCL object
with its control-unit and data-path parts defined.
The data-path part itself is made of one or more
SDCL objects.

Each command-input activation initializes the execution of one or more register transfer
steps, which last over as many number of clock periods. An object with no input com-
mands or one whose commands are all inactive, performs the same (default) operation
at every clock period. Distinct command executions should not overlap. Objects may
also possess one or more status-outputs, which indicate truth values of the assertions
made about the internal state of the object.
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An example of a complete object, with all four categories of input and output terminals,
is a special type of register with the usual data input and output terminals, a ‘load’ com-
mand, and a ‘zero’ status flag. Later in this section we further explain this register.

SDCL objects consist of a control-unit part and a data-path part, where the data-path
part itself consists of one or more objects (see Figure 7.b.) The resulting tree structure of
objects is expanded recursively until all the leaf nodes of the tree are primitive objects.
Primitive objects are atomic, and we will not attempt to analyze them further into con-
trol and data-path parts. The leaf nodes of the expanded design form SDCL’s primitive
objects, and are either a Selector, a Delay, or one of several functional objects available
to the designer. SDCL is designed to help the designer generate only proper tree-based
design hierarchies.

5.1.1. Selectors

A Selector is an SDCL primitive object with two data-inputs, one data-output, and a sin-
gle command input called enable. It has no status outputs. Selector instances are
defined by declaring them as instances of the object Selector. If ‘s’ is a Selector instance,
‘enable.s’ selects the second data-input value as the value of the data-output terminal.
By default, a non-enabled Selector instance will select the first data-input terminal. The
data terminals of ‘s’ are referenced as the arguments of ‘s (in 4, in,, ot )’ where ‘in{’ and
‘in,” are the names of the nets connected to the two data-inputs, respectively, and ‘oz’ is
the name of its data-output net.

5.1.2. Delay Objects

A Delay is an SDCL primitive object, with one data-input and one data-output terminal.
It has no command-inputs or status-outputs. A Delay object delays the input to output
transfer between its two terminals by one clock period for all clock periods. Delay
instances are generated by declaring them as instances of the Delay object. If ‘4’ is a
Delay instance, its terminals are referenced as the arguments of ‘d (in, ot )’, where ‘in’
and ‘or’ are the names of the nets connected to the input and output terminals, respec-
tively.

5.1.3. Functional Objects

SDCL functional primitive objects have one or two data-inputs, and zero or one data-
outputs. None have a command-input, and thus repeat their default operation during
every clock period. They may or may not have a single status-output. They must have
at least one output of some form.

Instances of SDCL (functional) primitive objects are defined by declaring them as
instances of their corresponding SDCL object. If ‘f ’ is one such instance, then ‘cond.f ’
returns the truth value of the only assertion defined on ‘f ’. ‘cond.f ’ is undefined if
‘f ’ does not have a status-output. Such errors are detectable at compile time.
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The data terminals of ‘f > are accessible by ‘f ( < ner_tist >)’, where the net_list ele-
ments correspond to the data-input and data-output terminals of ‘f ’ in intuitively obvi-
ous ways.

5.2. Defining Modules

In this part we use the example of the register with a ‘zero’ flag, called ‘zregister’, to
explain the writing of SDCL objects. Figure 8.a shows the SDCL definition of the ‘zre-
gister’; its graphic form is shown in Figure 8.b.

1 module zregister (){
2 s1: Selector;
3 dl1: Delay;
4 z1: Ztest;
5 datapath ( in, out )
6 in: I_signal;
7 out: O_signal { 9 |1oad
8 y1, y2: node; 3 [
9 s1(y2, in, y1 ); d 2
10 dl ( y1, out ); c
11 z1 (out, y2) = |38
12 }
out
13 control () {
14 load: command;
15 zero: status; { (b)
16 load = {
17 enable.sl
18 }
19 zero = {
20 cond.z1
21 }
22 }
23 }
24 } ( a)

Figure 8. The definition of a register with zero flag, called
‘zregister’. a) The SDCL definition of zregister. b)
The graphical representation of zregister.
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A composite module’s SDCL specification has three sections. The header section (lines
1-4) starts with a module declaration line (line 1), and is followed by the submodule
instantiations (lines 2-4).

The data-path section (lines 5-12) starts with a data-path declaration statement (line 5),
through which the composite module’s data-input and data-output terminals are specified
(arguments in line 5) and their types declared (lines 6 & 7). The body of the data-path
part (lines 8-11) is used to declare the internal nets, defined as nodes (line 8), and a set
of connection statements (one for each instantiated submodule), which specify the data-
path topology by assigning submodule ports to the net names to which they are con-
nected (lines 9-11). To enforce proper register-transfer design procedures, only the
data-in and data-out terminals of each submodule are available inside the data-path sec-
tion.

Finally, the third section (lines 13-24) is used to define the control and status parts of the
definition. This is done by declaring a command procedure and a status function for each
of the commands or status terminals of the composite module. Each function or pro-
cedure has a name (e.g. ‘load’ and ‘zero’), which is the name given to the corresponding
command or status terminals, and a body, which specifies the steps or tests to be per-
formed in order to execute the procedure or evaluate the function.

The body of a status function is a set of assertions separated by ‘;’, each specifying the
condition under which the corresponding function must return the ‘true’ value. Asser-
tions are well-formed propositions, with the status outputs of submodules as their
‘literals’, and the proposition operators (A, V) as their operators. In the zregister exam-
ple, the status function ‘zero’ has a single literal assertion, cond.z1, signifying that the
‘zero’ function will return a true value if and only if the status output of z1 is true.
When a composite module is used in the specification of a higher level module, the
status function names defined in this form (if any) are used by the higher level object to
form new assertions as needed. A composite module can have one or more status out-
puts.

The body of each command procedure specifies the sequence of steps needed to complete
the task defined by that procedure. Each step in the execution (corresponding to a
micro-instruction) is a set of micro-orders separated by °,’. Each micro-order, defined
syntactically as a ‘.’-separated concatenation of a command name and a module instan-
tiation name, instructs the corresponding submodule to execute that command. All
micro-orders within the same step are executed in parallel. In the zregister example, the
command procedure ‘load’ has a single micro-order, enable.sl, signifying that in
response to each external activation of the ‘load’ command it activates the enable com-
mand input to ‘s1: Selector’. The ‘load’ command, as defined, has a single execution
step.
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The execution of any micro-order or groups of micro-orders within a single micro-
instruction can be made conditional on the existence of expected conditions in the sys-
tem, using if-then statements. The applicable tests are the same as those used as single
assertions within the status functions.

Certain steps within a command procedure can be labeled, and their status ( ‘true’ when
the corresponding statement is executing, ‘false’ otherwise) made available to the status
functions of the same control section. Such a facility, called a command-status literal, is
defined syntactically as a ‘.’-separated concatenation of the label and the corresponding
function name, and is used in a manner similar to the use of other literals. This enables
the status functions to qualify a module’s status on the basis of specific steps in execution
sequence of commands in the same control section.

The control mechanisms if-then-else and while are used to control the sequence of opera-
tions within a command procedure. In both cases, logical statements, similar to the sin-
gle assertions within the body of status functions, are used as the conditional parts of the
control structures.

The second example (Figure 9), involves the SDCL definition of the GCD module first
shown in Figure 6. The label ‘end’ within the ‘reset’ command procedure, and the literal
‘end.reset’ within the ‘finish’ status function, exemplify the command-status reporting
mechanism discussed above.
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module gcd() {
s1, s2, s3, s4: Selector;
a, b, zregister;
eql: equal;
gtl: greaterthan;
subl: subtractor;
datapath (" inl, in2, ot )
inl, in2: I_signal;
ot: O_signal {
y1, y2, ot, y4, y5, y6, y7: node;
sl (y7, inl, y1);
s2 (y7,in2, y2);
a (yl, ot);
b (y2,y4);
s3 (y4, ot, y5);
s4 ( ot, y4, y6 );
eql (ot, y4 );
gtl (ot, y4 );
subl ( y5, y6, y7)
}
control () {
reset: command;
fin: status;
reset = {
enable.sl, load.a, enable.s2, load.b;
while ( not cond.eql )
if cond.gtl then {
enable.s3, enable.s4, load.a
}
else load.b;
end: goto end

}

finish = { end.reset }

}

Figure 9. The SDCL definition of the GCD module (the
graphical representation of the same module is
shown in Figure 6). In this design we have used
the zregister module shown in Figure 8 without
using its ‘“zero’ status test capability. We could
have used a simpler register.
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6. Translation to Layout

Translating SDC-based designs into their corresponding layout involves three steps.
These consist of leaf-cell design, placement, and routing. All these activities have been
well-researched in the past, and efficient methods exist for implementing them. Regard-
ing leaf-cell design, SDC uses a fairly standard set of primitives whose layouts are avail-
able as standard designs in many IC libraries. The placement and routing of RT designs
are also well researched, and all follow a more or less standard and highly efficient
scheme reported in most silicon compilation activities.

Due to the inherent efficiency of the RT layouts and the availability of good layout
libraries, the three steps are relatively easy to perform, with reasonable overall efficiency;
nonetheless, to achieve better results, each step should be performed with attention to the
others, and tailored to the specific characteristics of each design. As part of our work
we have implemented an experimental data-path generator program that we believe is
capable of generating a superior design compared to those achievable through the stan-
dard methods discussed above.

To make the interaction between the data-path program and cell layouts flexible, we
have taken the module generator approach to the creation of the leaf-cell layouts. In this
approach, each SDC primitive corresponds to a parametrized module generator program
written in IC 2 layout language [30, 31]. 1C 2 is a locally developed layout language with
silicon compilation in mind. In 7¢? each module generator, through its parametrized
inputs, can be instructed to generate one of several variations of the functionally
equivalent cells, with inputs and outputs strategically placed on a subset of the four
edges of the bounding box, and implemented in either metal or polysilicon. In addition,
the module generator can be instructed to generate modules of different height, to match
the overall slice width to the specific requirements of each design. In Figure 10.a we
have shown a number of such leaf cells generated by our module generator program.

On the matter of placement and routing, the optimum linear placement of a number of
interconnected modules, with the aim of finding the minimum width solution, has been
the subject of study in the past. The models used in these studies are often too simple to
reflect the realities of design in a useful way. To overcome this problem, we have imple-
mented a heuristic program within our data-path generator program which places the
flattened design (consisting solely of a network of interconnected primitive modules) as
closely and as naturally as possible, while taking into account such matters as the com-
mutative nature of inputs, or their need for clock inputs.

A detailed description of the operation of the data-path generator program is beyond the
scope of this paper, and will be reported in the future. In Figure 10.b we show two
examples of two data-path slices generated by our data-path generator program.
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(b)

Figure 10. Examples of cell and slice layouts generated by the
experimental silicon compiler directly from high-
level definitions. a) Examples of cell layouts. b)
Slice layouts. Data lines are generated as horizontal
connections above and below the cells array.
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7. Correctness of the Implementation

An algorithmic state machine (ASM) is a flow-chart representation of the state-transition
functions and output-functions of a state-machine [32, 33], and can be regarded as a
variation of the state-diagram method for specifying state-machines.

Each state of a state-machine is represented by a unique state box in the corresponding
ASM chart. A state-machine’s transition from one state to the next is represented by the
flow of a hypothetical control-pointer from one state box to the next. Transitions from a
given state in the state-machine to one of several next states are shown in the ASM chart
by cascading one or more condition boxes at the exit of the originating state box. The
combination of a state box and the condition boxes at its output, if any, is called a srate
block, and corresponds roughly to the state circles used in state diagrams.

Each condition box contains a proposition on the inputs, and has two exit paths. The
choice of exit path, and therefore, the next state box, depends on the truth value of the
proposition at the time the control-pointer visits the condition box.

An ASM’s output is a list of signal names, where each name is a command for activat-
ing the corresponding signal. The ASM formalism distinguishes between outputs which
are activated unconditionally whenever a particular state is reached, and outputs whose
activations depend on certain input conditions. When ASM charts are used to specify
register-transfer designs, signal names may be replaced by the assignments they activate
in the data-path.

Traditionally, an ASM’s unconditional outputs are written inside the szare box in which
they occur, while lists of conditional outputs are written inside one of possibly several
conditional output boxes placed at the appropriate exit of a condition box. Later in this
paper, we will write the assertions inside the state boxes. To avoid confusion, we move
the unconditional output lists from their state boxes to all of the conditional output boxes
associated with the state boxes. Thus, we will refer to the conditional output boxes of our
ASM charts simply as output boxes. We illustrate the state boxes as solid rectangles, the
condition boxes as diamonds, and the output boxes as rectangles with rounded corners.

An ASM chart is particularly suited for specifying RT-type designs, since it explicitly
separates a specification into a flow-control-part, representing a design’s control-unit, and
output lists, representing the data-path operations.

Similarities between the ASM specification of hardware and the flow-chart specification
of computer programs suggests the use inductive assertions [34] for proving the correct-
ness of hardware. This method has several advantages over other hardware proof
methods; among these are:

® The existence of a body of experience, know-how, and techniques accumulated over
the past two decades.
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® A wide user familiarity with the method, which is widely taught for proving correct-
ness of algorithms in computer science and engineering programs.

® The potential to be a more practical tool than it is when applied to software, due to
the size of the useful hardware that can be proven correct compared to the size of
typical software undergoing a similar proof activity.

However, these advantages are somewhat eroded, for the following reason. ASM-based
specifications often go through ad-hoc steps of translation to hardware; thus, unless the
translation is fully automatic, confidence in the correctness of ASM representations can-
not be transferred to their implementation. To overcome this problem we propose a dif-
ferent approach to the use of ASMs in digital design: instead of using them as inputs to
the design activity, we derive them from the appropriately specified designs using the
derivation techniques discussed below.

In the remaining parts of this section, we first discuss a method for extending designs to
include their input and output strings. We then convert the extended designs into their
functional form. This is followed by presenting a method for deriving a module’s ASM
specification from its functional specification. In the final step, motivated by goals simi-
lar to those applicable to the proof of correctness of software, we assign suitable asser-
tions to every state box of the derived ASM chart. We then show that the requirement
specification will hold between the state variables of the extended module if and when
the hardware reaches its output states.

Step 1- Extending Modules to Include I/O Sequences

Assertions on the behaviour of correctly designed modules are made on the sequences of
inputs and outputs of those modules. For example, in the case of the GCD hardware of
Figure 6, we would expect that: “Each activation of the control input » will eventually
lead to an activation of the status output f, signaling the availability at data output ot of
the GCD of values m and n present at inputs inl and in2 at the time of r’s activation."

Software modules communicate with their environment in an explicit and sequential
form through the use of input and output statements. However, hardware modules com-
municate only in implicit forms, and this complicates the formalization of the above
assertion. In order to make explicit the form of the hardware communication, we extend
the hardware to include its input and output sequences.

Consider a hardware module M and an assertion A about some sequence of input-output
activities over M. The i/o_extension of M, denoted by M ', is an extension of M by a suit-
able amount of hardware to simulate the generation of inputs and acceptance of outputs
according to A.

In Figure 11 we show an i/o_extension of the GCD module that includes the sequence of
input-output activities described in the foregoing verbal assertion. In this extension, the
sequence of values input to r of contunit (Figure 6), is simulated by the design extension
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Figure 11. Extending the ged design of Figure 6.c to include
its inputs, output, control, and status signal strings.

part corresponding to the unit-delay elements r and g, initialized to 1 and 0, respectively.

The choice of the same identifier to refer to an unextended port and its corresponding

unit-delay extension (e.g., r in this case) was made for the sake of readability. As a

result of this extension, the contunit will initially receive a ‘1’ on its r input, followed by
an infinite sequence of ‘0’s. This guarantees the proper behaviour of the environment as
expected by the input r of contunit.

A similar extension of the ged_path with unit-delay elements in ¢, in 5, u 1, and u ,, initial-
ized to data values m, n, | , and | , respectively, where symbol ‘_| ’ indicates an unde-
fined value, simulates the proper input of the data values into the ged_path unit. The f
and ged (m ,n ) are both single values, so unit-delay elements f and of are used to
represent them, respectively.

The completed extension, called e_ged, lets us reformulate the assertion about the
expected behaviour of a correctly operating GCD module, as follows:
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“Given the initial relationship
(r =1)A(g =0)A(iny=m Y)A(ing=n)

between the states of an extended ged module, and a sufficient number of state
transitions, the circuit will eventually reach a new state in which the relationship

(ot =gcd(m,n ))AN(Sf =1)
holds between the new states of the extended ged.”

Later in this paper, we will show that the output assertion indeed follows the input asser-
tion after a finite number of state transitions. We do so by assigning the two assertions
to the input and the output states of the ASM chart corresponding to the extended ged
module.

Step 2- Functional Model of The Extended Module

We now write separate functional models for the extended forms of the control-unit and
the data-path of a design. In the following formulations, e_contunit and e_gcd_path
refer to the extended forms of the contunit, (23), and ged-path, (22), respectively. We
have

e_contunit (p, g ,r, f ) =X sq, ;). (rec(
[J,k,La,Lb](ys) = contunit .,y (p ) y2 X 51, 52);
{yi1}=del 4y (r )y1}
{y2}=del 4, (g )yy1})in (

[j,k,La,Lb ] ,e_contunit (contunitm(p )[yz](sl,s2> R

delseq(r ){}"1}>delseq(q ){yl}adelseq(f ){)’3})))

We expand and simplify e_contunit’s behavioural equations to the following form:

e_contunit (p,q,r,f)=Ns1,52).([q,(T AP AsiAs2),
(a V(T AP As1As2)),(a V(T AP As1AS2))]
e_contunit ((§ AP As )V (G Ap ),r,r,(q Ap))).
Similarly,
egedpath(a,b,n,m,uyuyuz)=xNj,k,La,Lb].(rec (

{y4}=delcmb(u1){y4};
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{ys}=del o, (u2){ys}

{ye}=del gy (n ){ys}s

{y7}=del gy (m )ys}

{ys X s1,52)=ged path (a,b }yeys ) Jj,k,La,Lb ])in(
(s1,52) , e_ged_path (ged_path . (a, b ) ye y7)[ . k,La,Lb ],
del o, (n ){y4q},del oo (m Y ys} del oy (ug){yq}
del o, (uz){ys}, del o, (usz){yg}))).

This simplifies to

egedpath (a,b,n,m,uy usgus)=Nj,k,La,Lb].(
((a =b),(a >b)), e_ged_path (
(La = (j —=n, (k =>(a—b ), (b—a))),a),
(Lb = (j —=m, (k =(a—b),(b—a))),b),

Wi, 2, Uy, U, a ).

Step 3- Translating Functional Models into ASM Charts

An extended functional model is translated into a corresponding ASM chart in two
phases. The first phase derives the ASM chart’s flow-control part, i.e., the interconnec-
tion of the state and condition boxes. The second phase derives the output lists, and
completes the chart by adding the output boxes.

Given the current state and the environment inputs, we use sequential behaviour model
(5) and combinational behaviour model (4) of the extended control-unit to derive the
corresponding next state and action outputs. Due to the closed nature of the extension
process, the only environment inputs contributing to these derivations are from the data-
path parts of the designs. Only a few of the possible next states are ever reachable, due
to the special architecture of the extension hardware; so rather than enumerating all pos-
sible transitions, we can use a search strategy starting from the input state to save on the
amount of computation required.

Considering the e_contunit behaviour and definitions (4) and (5), we obtain the follow-
ing sequential and combinational behaviours:

e_contunitseq(p,r,q,f)=)\<s1,s2>. (25)
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((F AP Ast)V(T AP )a,q,(7 Ap))
e_contunitcmb(p,r,q,f)=)\<s1,s2>.[r, (r AP /\;1_/\52), (26)
(r V(F AP AsiAsy)), (r V(FAF AsiAsy)) ]
The results of the search process using (25) and (26) are illustrated in Figure 12.a.

The second phase derives the data-path’s register-transfer assignments and the status
expressions, and assigns them to the ousput and condition boxes, respectively. To do this,
the action vectors derived during the first phase are applied to the sequential and combi-
national models of the data-path; symbolic statements, which indicate the nature of the
transfers and the status, are derived and assigned to the outpur and condition boxes.
These additions complete the derivation of the ASM chart.

Figure 12.b shows the results of applying the e_contunit’s action outputs to the following
sequential and combinational behaviours of e_gcd_path:

e_ged path o, (a,b,inq,ing, uy uy ot )=\ j,k,La,Lb ].(
(La = (j —iny, (k =>(a—b ),(b—a )))a), (27)
(Lb —=(j —inz (k = (a—b ), (b—a ))), b ),
Uy, Uz, Uy, Uz A )

e_ged_path ., (a, b ,iny, ing, uq up ot Y=\ j,k,La,Lb 1.¢ (28)
(a=b),(a>b))

Step 4- Proving the ASM Specification Correct

To verify the ASM chart, and thus the corresponding candidate hardware, we start by
proposing a mapping P from the ASM chart’s state boxes to propositions whose free
variables are the unit-delay names of the candidate hardware. The propositions assigned
to the initial and final states of the computation are those known to be true at the start
of the computation and expected to be true at the end of the computation, respectively.
We refer to these as the ‘input’ and ‘output’ states.

Next, we show that for every state box i, should the control-pointer starting from the
input state reach i, if at all, then P (i ) should be true. To prove this, we have to show
that for every pair of szate boxes i and j, where i is a predecessor of j,

{P(i)}(R,2){P (Jj)} (29)

holds. In (29), R is the conjunction of zero or more Boolean expressions assigned to the
condition boxes between i and j, and Q is one or more assignment statements that the
control-pointer visits on its path from state box i to state box j. The notation in (29) is
due to Hoare [35], and can be interpreted as “If P (i ) is true and the conditions and
the actions specified by R and Q are, respectively, true and executed, then P ( j ) must
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Figure 12. The ASM charts corresponding to the GCD design
of Figure 7. (a) The flow-control-part, depicting
the behaviour of the control-unit part; strings in
each state box represent the values in unit-delays p,
g, r and f at that state, where ‘X’ stands for an
unknown state. (b) The combined behaviour of the
control-unit and the data-path.
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also be true.”

Any rigorous demonstration of this requires a formal definition of the ASM chart, and
familiarity with the theory of inductive-assertions; these matters are beyond the scope of
this paper. Nonetheless, one can argue informally that, starting from an initial condition
satisfying the input proposition, if (29) is proven correct for all adjacent pairs of state
boxes, then for all subsequent szare boxes along any path, say &, P (k ) is also true. Of
course, should the candidate hardware reach any of possibly several output state boxes, if
at all, then the corresponding output proposition must also be rrue.

The arguments needed to show that the path from the input state will eventually lead to
an output state are similar to those given for the termination of software programs. In
the case of our candidate design we can also verify, by inspection, that the hardware will
never falsely signal the availability of the output data. The output state is the only state
box in which f =1.

Figure 13 shows a version of the ASM chart given in Figure 12.b, with suitable proposi-
tions. The reader may wish to verify the propositions, keeping in mind the following
properties of the greatest common divisor of integers:

a =ged(a,a)
ged(a,b )=gcd(b,a)
ged(a,b )=gced(a+b,b ).

The search for suitable assertions to be placed at each state box, signifying the expected
relationship between the state variables if and when the control pointer visits that box,
requires some skill and ingenuity. Of course, this applies to other proof techniques as
well, and is by no means unique to the method of inductive assertions.
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Figure 13. The GCD module’s ASM chart, with the correct-
ness propositions for each state box. Each proposi-
tion can be derived from the preceding
proposition(s); the input proposition is assumed
true.
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8. Summary

In this paper we discussed the various components of an integrated register-transfer-level
digital design and verification environment under development at the University of
Waterloo.

We proposed a simple but powerful model of RT design, based on a small set of primi-
tives and a typed interconnection environment, as the central structure around which
these components are designed and implemented. The primitives are close to the
designer’s normal design experience, and are amenable to a mathematical treatment.

We also proposed a functional model for specifying the primitives and the behaviour of
their compositions. Our functional model is influenced by Gordon’s work [8]; nonethe-
less, our approach is simpler, and differs in the following ways:

1- Our model closely follows the structural aspects of RT design by separating the
design into a data-path and a control part, and by defining the data-path in terms
of a number of data-slices. This brings the formalism much closer to the reality of
design.

2- We distinguish between device port names as bound variables and net names as free
variables. This makes the interconnection definition task considerably simpler. By
distinguishing between port and net names we do not need to use the restriction
operator to hide the internal connections.

3- We have introduced three signal types, and have shown that each primitive element
interacts through a subset of these types. The signal types correspond to the signal
flows within the design, and thus capture the RT layout strategies.

We then used the functional model to derive the ASM specifications of candidate
designs.

We introduced a friendly interface to the model, in the form of a synchronous hardware
description language. The main features of the language are its support of hierarchy,
handling of design modules as abstract objects, and the explicit separation of module
definitions into data-path and control-unit components.

In order to reason about the candidate design we had to make assertions about the
behaviour of the design at its interfaces; thus we extended the design to include its input
and output strings. The ASM charts corresponding to the extended objects were proved
correct by showing the existence of suitable assertions about the states that the hardware
has to step through, including the input and the output states.

It is our contention that, given the wealth of experience and know-how developed over
many years of applying similar methods to proving the correctness of software, the
method of inductive assertions may be better suited for use by researchers and the design
community than those methods which require newly developed skills, and possibly less
well-known mathematical techniques.
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The model has been used to specify a number of small and medium-size designs. To date
by far the largest specification attempted so far has been the specification of a speech
processing chip [36]. An experimental silicon compilation system is available for con-
verting the high-level specifications to data-path slices; the high-level specification
language is an earlier version of the SDCL. Plans are under way to integrate the com-
plete SDCL, to develop a symbolic computation package to help with the reasoning pro-
cess, and to introduce a second generation of the silicon compiler.
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