Dr. rer. nat.

R. Karl-Adolf Zech

Diplom-Mathematiker

SchliemannstraBe 28

Berlin

DDR - 1058

German Democratic Republik

TECHNISCHE DENKMALE

Dr. rer. nat. SchliemannstraBe 28

R. Karl-Adolf Zech Berlin
Diplom-Mathematiker DDR - 1058 German Democratic Republic

%Co«%% '
¥
| should be very obliged to you for sending me d\copy of your paper entitled :

a,.,/yx) Corge o

Thanking you in advance Yours sincerely,

=
Gy, Sl

UNIVERSITY OF DENVER

(Colorado Seminary)
DENVER, COLORADO

ENDORSEMENT OF CHECK
CONSTITUTES A RECEIPT
IN FULL FOR ITEMS LISTED

455548

70110700070

INV, DATE INV. NO./DESCRIPTION P.O. NO. VCH. NO. GROSS AMOUNT DISC. AMOUNT NET AMOUNT
12/29/89| CS=89=07 (3 COP 0003523 6.00 600 E
& o
Y .
(
_ 6400 6400
VENDOR NO. IDATE 01/10790 CHECK NO. 19=-455548

DETACH CHECK BEFORE CASHING OR DEPOSITING

TN T T T e g

CS-89-07 - DELIVERING A BETTER INTRODUCTORY COURSE IN COMPUTER SCIENCE

\\\ AUTHORS: Arnie Dyck, Jay Black, Kelly Booth

.
~—.

S ——

- -
\'\'““‘“—»N..A_ I I, e . d
W \ ABSTRACT: e U #e. o

\U ‘ In revising the introductory computer science curriculum at the University of Waterloo, a number
of general issues arose. The first was the need to integrate many fundamental topics of computer science
into a small number of courses, to provide an overview of the field for students a variety of potential

W majors. The second was the requirement that the time spent by students (especially programming time)

&l)}\) be in proportion to the weight of the course within the overall curriculum. Finally, we wished to close the
perceived gap between "computer literacy” courses (where experience with state-of-the-art desktop appli-
cations predominates) and more traditional computer science courses (where the emphasis is on system

"7/ \ (design and implementation). The first issue is reflected in the choice of a "spiral” approach that covers

)
\

theoretical and practical topics in computer science. The elimination of "open-ended” assignments in
favour of time-limited laboratory sessions with preparatory tutorials complements the lecture presentations
both with hands-on experience using commercial application packages and with programming assignments
where students implement and test their own algorithms. In designing and implementing the new curricu-
lum it became clear that the logistics of delivering the course material were at least as important to suc-
cess as were the choice of the material itself. A support team of faculty, staff, graduate student teaching
assistants, and undergraduate tutors provides a diverse skill set that has proven to be a cost-effective
delivery system for the new curriculum.

PRICE: $2.00

CS-89-08 - DESIGNING AND MODELING VLSI SYSTEMS AT THE
REGISTER-TRANSFER LEVEL

AUTHOR: Farhad Mavaddat

ABSTRACT:

In this paper we discuss some of the properties that a design abstraction must have, and make suit-
able proposals for the RT abstraction. To this effect, we propose a small set of design primitives with
well-defined behaviours, and give rules for their composition, all within the framework of a strongly-tvped
signal environment known as the SDC Model of register-transfer design. The primitives are chosen to
permit a mathematical treatment of designs, but they are also highly design-oriented, and provide the
designer with a useful and friendly set of building blocks. We also present user-friendly graphical and
textual interfaces to the model. To prove our designs correct, we use Algorithmic State Machines (ASM)
as the frameworks for analyzing and reasoning about an SDC-based design.

PRICE: $2.00
Semd. TO ¢ Upiv E? Denverl |
Deprl ‘z? Wlﬂ?‘ﬁ/emﬂ//@ré Sc .
D€AU£(L/ Co 3}6’)2_,05)

University of Waterloo
Department of Computer Science
Waterloo, Ontario N2L 3G1
Research Reports 1989 (January to April)

CS-89-01 - RESTRICTED-ORIENTED CONVEX SETS

AUTHORS: Gregory J.E. Rawlins, Derick Wood

ABSTRACT:

A restricted-oriented convex set is a set of points whose intersection with any line, in a given set of

orientations, is either empty or connected. This notion generalizes both orthogonal convexity and normal
convexity.

The aim of this paper is to establish a mathematical foundation for the theory of restricted-oriented
convex sets. To this end, we prove the restricted-oriented analogs of some basic properties of convex sets
and also present a decomposition theorem for them.

Keywords: convex sets, convex hulls, restricted-orientation convexity, computational geometry.

PRICE: $2.00

CS-89-02 - A DECOMPOSITION THEOREM FOR CONVEXITY SPACES

AUTHORS: Gregory J.E. Rawlins, Derick Wood

ABSTRACT:

We utilize the unifying framework of families of convexity spaces for the treatment of various
notions of planar convexity and the associated convex hulls. Our major goal is to prove the refinement
and decomposition theorems for families of convexity spaces. These general theorems are the applied to
two examples: restricted-oriented convex sets and NESW-convex sets. The applications demonstrate the
usefulness of these general theorems, since they give rise to simple algorithms for the computation of the
associated convex hulls of polygons.

Keywords: convexity, convexity spaces, geometry, convex hulls, decomposition, refinement.

PRICE: $2.00

UNIVERSITY OF VICTORIA DEPARTMENT OF COMPUTER SCIENCE

P.0. BOX 1700, VICTORIA, B.C., CANADA V8W 2Y2
TELEPHONE (604) 721-7209, TELEX 049-7222, FAX (604) 721-7292

D o, ax
P/C(ZLA«G send e A& “’7’} "F CS—87-07 ”D6C(Ueruévcx 667%,.
ntrvdushrg Coun o b Sten ey Dyck, Bladk ant Porté
DA mcw?/%rw/w/
/Ll H. vonm ECon e

M. H. van Emden

Dept. of Computer Science
University of Victoria

Victoria, B.C. VBW 2Y2 Canada

F a0
P
T

csuvic@uvunix.bitnet csuvic@uvunix.uvic.ca

Telephore: (042) 27 0555
Teiex: 29022
Fax: $Q4Zd 27 0477

THE UNIVERSITY OF WOLLONGONG

NORTHFIELD AVENUE — WOLLONGONG

FLNIUERSITY OF WATERLOG

-

MAILING ADDRESS: P.O BOX 1144

AUSTRALIA, 2500

FAGE S 1

WOLLONGONG, N.SW.

ORDER No. (8465462

LEFT OF COMPUTER SCIENCE (QUOTE ON ALL DOCUMENTS)
WATERLOO ONTARIO
CANADA N2L 361 ORDER paTE 11/12/89
B _ | CURRENCY? $ US
G.SD. Cont. .
ltem Ngh QTy. UNIT DESCRIPTION RATE UNIT DISC. %
2EA | 08-89-07 LELIVERING A BETTER 2,00 EA

TERMS

C.W.0,

INTRODUCTORY COURSE IN COMPUTER

TOTAL

SCIENCE

4.00

THESE GOODS ARE FOR THE EXCLUSIVE USE OF THE UNIVERSITY OF WOLLONGONG
AND ARE NOT FOR RESALE AND ARE EXEMPT FROM SALES TAX UNDER ITEM 63A

SALES TAX (EXEMPTIONS

AND CLASSIFICATIONS) ACT.

AUTHORTSED OFFICER

FOR THE UNIV SITY%S LLONGONG
% Ctrant e 1325

ACCOUNT CODE AMOUNT

JOB No.

REQ. No.

SUPPLIER No.

DESCRIPTION

031433006323 G

31475

409324

RESEARCH REFORTS

[o) B¢ BN - VI V]

PLEASE OBSERVE THE FOLLOWING INSTRUCTIONS

. DELIVER OR ADDRESS PACKAGES AS FOLLOWS: CENTRAL STORE, ATTENTION COMPUTING SCIENCE

THE UNIVERSITY OF WOLLONGONG, NORTHFIELD AVENUE, WOLLONGONG, N.SW.,, 2500, AUSTRALIA

. QUOTE ORDER No, V8656

e
e

APPROVED BY THE SUPPLY OFFICER PRIOR TO DELIVERY.

. TECHNICAL ENQUIRIES SHOULD BE MADE TO:—

ON YOUR DELIVERY DOCKET AND YOUR INVOICE.

. PACK THE DELIVERY DOCKET WITH THE GOODS. DO NOT PACK YOUR INVOICE WITH THE GOODS.

. SEND YOUR INVOICE AND STATEMENT OF ACCOUNT TO: THE FINANCE OFFICER, THE UNIVERSITY OF WOLLONGONG.
. FOR ROAD TRANSPORT USE “IPEC” ON FREIGHT COLLECT BASIS.

. THIS ORDER IS ISSUED TO YOU SUBJECT TO THE PRICES STATED HEREIN. VARIATION IN PRICE, QUALITY OR QUANTITY MUST BE

—7_

CS-89-13 - SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS,
OR THE INTERFACE BETWEEN SOFTWARE AND MATHEMATICS

AUTHORS: Gaston H. Gonnet, Michael B. Monagan

ABSTRACT:

This paper describes two fundamental aspects of the solution of systems of algebraic equations: the
use of substitution and the use of a complexity function to determine, at each step, which of several
methods /equations /unknowns to use. These techniques, which have received little attention in the past,
can be viewed as in the interface between mathematics and software. An implerientation of these tech-
niques in Maple 8 is described. Timing results comparing the Maple, Macsyma™* ™ and Reduce Hea ™!
symbolic algebra systems on a range of sample problems are presented. The proposed method proves to
be superior to other techniques.

PRICE: $2.00

CS-89-14 - REASONING ABOUT FUNCTIONAL DEPENDENCIES
GENERALIZED FOR SEMANTIC DATA MODELS

AUTHOR: Grant E. Weddell

ABSTRACT:

We propose a more general form of functional dependency for semantic data models that derives
from their common feature in which the separate notions of domain and relation in the relational model
are combined into a single notion of class. The feature manifests itself in a richer terminological com-
ponent for their query languages in which a single term may traverse any number of properties (including
none). We prove the richer expressiveness of this more general functional dependency, and exhibit a
sound and complete set of inference axioms. Decision procedures are developed that apply when the
dependencies included in a schema correspond to keys, or when the schema itself is acyclic. The theory
is then extended to include a generalization of select-join queries. Of particuiar significance is that the
queries become an additional source of functional dependency constraints. Finally, we outline several
applications of the theory to various problems in physical design and in query optimization. The applica-
tions derive from an ability to predict when queries can have at most one solution.

PRICE: $2.00

—8—

If you would like to order individual reports please forward your order, along with a cheque or interna-
tional bank draft payable to the Department of Computer Science, University of Waterloo, Waterloo,
Ontario, N2L 3Gl1, to the Research Report Secretary.

If you wish to receive all reports published in 1989 our Subscription Rate is $125.00 Canadian. Please
refer to the above paragraph for payment instructions.

Please indicate your current mailing address.

MAILING ADDRESS:
G D MR, JOHN FULCHER

UNIVERSITY OF WOLLONGONG
DEPARTMENT . QF COMPUTING SCIENCE
PO_BOX 1144

WOLLONGONG _NSW 2500.
AUSTRALIA.

NANO2 890 4, T lonaulii

LUND UNIVERSITY Date
Department of Computer Sciences 89-11-15

Dept. of Computer Science

University of Waterloo
Dear Sir,
Cou send me a copy of the following Research Report:

CS-89-07 - i)eﬁve/ g a better introductory course in computer science,
A. Dyck, J. Black, K. Booth

Thank you,
L !
BV V2 NG \@
Rolf Karlsson \>(
9)}/

Mailing address Office address Telephone Telex
Box 118 Ole Romers vag 3 Nat: 046 - 10 80 30 33533
S-221 00 LUND LUND Int: + 46 - 46 10 80 30 LUNIVER S

Sweden Sweden

7
JOSE CUNHA Resecrcl Reporf Qcmfarj

APARTADO 427§ -‘De/j ¢ CMVE\ Jeon e
1507 LisSBiA CobEX (,(M;ver},-a% Witk rfoo

PoRTOGAL Wo\ter/oo
Ontario N2L 361
(ahAJa
Nodvember 21,1949
Dear Scrs,

Ercloted lea;e ﬁhJ a check f\\r 4200, I'Ejarcf.‘hy

a re7ueff fm— Jem’;g e The ﬁﬂwiuj Nra-rf &Yﬂju\ﬂ'
Je’barfwam‘f ,,,,,,,, \\

Reseerd Enf«r/cs gq 07 |
DxLVevM Courée n

(owp‘fér Serence
authors : A Dycﬁ J. E/acK K. E(:oﬂ]

T hauks ﬂv o all taon,
\/(J‘Uﬂ SI'MQND/
Ja—‘ef CCMLR

2 | et Cluls
%
. Mf\ﬂi\

NOV 13 1989

UNIVERSITAT ULM

Abteilung Theoretische Informatik

Universitat Ulm, Oberer Eselsberg, D-7900 Ulm Leiter: Prof. Dr. Uwe Sché ning

University of Waterloo
Dep. of Computer Science

. Oberer Eselsberg
Waterloo, Ontario Postfach 4066
CANADA N2L 3G1 D-7900 Ulm/Donau

Telefon: 07 31/176-3872
Telefax: 07 31/176-2038

November 9, 1989

Dear ladies and gentlemen:

Please send us the following paper:

T

p@—De {vering a better Introductory Course in Computer Science by Arnie
Dyck, Jay Black, Kelly Booth
We thank you very much. \% \
0

Sincerely
A

Prof. Dr. Uwe $choéning

-8
If you would like to order individual reports please forward your order, along with a cheque or interna-

tional bank draft payable to the Department of Computer Science, University of Waterloo, Waterloo,
Ontario, N2L 3G, to the Research Report Secretary. '

If you wish to receive all reports published in 1989 our Subscription Rate is $125.00 Canadian. Please
refer to the above paragraph for payment instructions.

\

Please indicate your current mailing address.

MAILING ADDRESS:

Dept. of Computer Science Business Office
A.V. Williams Bldg. #115, Room 4172
University of Maryland

College Park, MD 20742 U.S.A.

Attn: Karen White

~ 8-

If you would like to order individual reports please forward your order, along with a cheque or interna-
tional bank draft payable to the Department of Computer Science, University of Waterloo, Waterloo,
Ontario, N2L 3Gl1, to the Research Report Secretary.

If you wish to receive all reports published in 1989 our Subscription Rate is $125.00 Canadian. Please
refer to the above paragraph for payment instructions.

3

Please indicate your current mailing address.

MAILING ADDRESS:

Dept. of Computer Science Business Office

A.V. Williams Bldg. #115, Room 4172

University of Maryland

College Park, MD 20742 U.S.A.

Attn: Karen White

CS-89-07 - DELIVERING A BETTER INTRODUCTORY COURSE IN COMPUTER SCIENCE
AUTHORS: Amie Dyck, Jay Black, Kelly Booth

ABSTRACT:

Im revising the introductory computer science curriculum at the University of Waterloo, a number
of general issues arose. The first was the need to mtegrate many fundamental topics of computer science
into a small number of courses, to provide an overview of the field for students a variety of potential
majors. The second was the requirement that the time spent by students (especially programming time)
be in proportion to the weight of the course within the overall curriculum. Finally, we wished to close the
perceived gap between "computer literacy” courses (where experience with state-of-the-art desktop appli-
cations predominates) and more traditional computer science courses (where the emphasis is on system
design and implementation). The first issue is reflected in the choice of a “"spiral” approach that covers
theoretical and practical topics in computer science. The elimination of "open-ended” assignments in
favour of time-limited laboratory sessions with preparatory tutorials complements the lecture presentations
both with hands-on experience using commercial application packages and with programming assignments
where students implement and test their own algorithms. In designing and implementing the new curricu-
lum it became clear that the logistics of delivering the course material were at least as important to suc-
cess as were the choice of the material itself. A support team of faculty, staff, graduate student teaching
assistants, and undergraduate tutors provides a diverse skill set that has proven to be a cost-effective
delivery system for the new curriculum.

PRICE: $2.00

CS-89-08 - DESIGNING AND MODELING VLSI SYSTEMS AT THE
REGISTER-TRANSFER LEVEL
AUTHOR: Farhad Mavaddat

ABSTRACT:

In this paper we discuss some of the properties that a design abstraction must have, and make suit-
able proposals for the RT abstraction. - To this effect, we propose a small set of design primitives with
well-defined behaviours, and give rules for their composition, all within the framework of a strongly-typed
signal environment known as the SDC Model of register-transfer design. The primitives are chosen to
permit a mathematical treatment of designs, but they are also highly design-oriented, and provide the
designer with a useful and friendly set of building blocks. We also present user-friendly graphical and
textual interfaces to the model. To prove our designs correct, we use Algorithmic State Machines (ASM)
as the frameworks for analyzing and reasoning about an SDC-based design.

* PRICE: $2.00

rnvnAoC vNnwnn

COLLEGE PARK, MARYLAND 2747 9?2)

20742-5115 S-
REFERENCE BID NO., OR CONTRACT NO. AMOUNT REQ. NO, FAS NO. FISCAL YR,
73 G1~1-12620-431¢ B8/8%

r Bl
Dept, of Computer Scilence
TO niversity of Waterloo
Waterioo, Ontario. (amnada, HZL 3&1
Attd: Hesearch Report Becretary

University of Maryland PO#35274292P
Dept. of Computer Science

Business Office

BLDG. NO. 115 ROOM NO. 4172
College Park, Maryland 20742

1~ ATTN: Karen White

O~- TV—IW

Subject to purchase terms & conditions, furnish goods
and/or services shown below.

DELIVER ON OR BEFORE TERMS: F.O.B.
8/17/89 10/5/89 Net Destination
TOTAL TOTAL
UNIT OF UNIT
o DESCRIPTION OF ARTICLES OR SERVICES aumTmy | AT | esTMATeD T ACTURL SUBCODE
. . o ~
i. (5~E8-07 «~ Delivering a Better Introductory 1 Q)*aa,, M
Courze io Couputer Sclence ‘\C Canadian

Arnie Dyck, Jay Black, Xelly Booth| oF

$0

Dollars

-
TN |13
c,§/ D 4/,4
AN =
CHECK NO. ATTACKED. &7

& O

ROUTING INSTRUCTIONS
VENDOR SHIP VIA

QUESTIONS CONCERNING THIS ORDERPERRY/at
SHOULD BE REFERRED TO THE BUYER: 743

. A separate invoice in TRIPLICATE for this purchase order or for each shipment thereon shall be rendered immediately foliowing shipment. All éo
invoices must be forwarded directly to the Accounts Payable Department, South Administration Bu'lding, University of Maryland, College Park, Md. 20742.
. The vendor's/contractor's Federal identification number or social security number must be inciuded on the invoice.

This purchase order number must be shown on all related invoices, delivery memoranda, bills of Iadmg, packages, and/or correspondence
FAILURE TO COMPLY WITH THESE TERMS WILL RESULT IN THE INVOICE BEING A
NOTE: THE UNIVERSITY OF MARYLAND IS EXEMPT FROM THE FOLLOWING TAXES: ‘l \b
1. State of Maryland Sales Tax by Certificate No. 30002563 AUTHERIZED SIGNAT RE

2. District of Columbia Sales Tax by Exemption No. 2199 79411 01
3. Manufacturer's Federal Excise Tax Registration No. 52 730123K.

UNIVERSITA_T KARLSRUHE
FAKULTAT FUR INFORMATIK
Institut fur Algorithmen und Kognitive Systeme

Prof. Dr. J. Calmet

Technologie-Fabrik Karlsruhe
Haid-und-Neu-StraBe 7
D-7500 Karlsruh&bs

Tel. 07 21/608-
02.08.198

Department of Computer Science
University of Waterloo

Waterloo, Ontario N2L 3G1
Canada

Ladies and Gentlemen,
| would like to order the following reports:

CS-89-07 "Delivering a better Introduction Course in Computer Science"
Arnie Dyck, Jay Black, Kelly Booth

CS-89-13 "Solving Systems of Algebraic Equations, or the Interface
between Software and Mathematics"
Gaston H. Gonnet, Michael B. Monagan

For administrative reasons we are not able to include a check in this order.
Please send us a bill, then our University will send the money as soon as
possible.

Please send the reports to

Prof.Dr. Jacques Calmet
Universitat Karlsruhe
Institut fir Algorithmen

und Kognitive Systeme ' 47
Haid-und-Neu-Str.7 '}/
D-7500 Karlsruhe, FRG JA/ ;
-]
. .
Thank you in advance. @)v %
(U. Beelitz, secretary)
Prof. Dr. Th. Beth (-4213) CSNet: beth@ ira.uka.de Teletex: 7 21 170 iHKutb
Prof. Dr. J. Calmet (-4208) CSNet: calmet @ira.uka.de Fax: 07 21/17 4263

Prof. Dr. H.-H. Nagel (6091-210) Fraunhofer-institut

FIRST FOLD HERE

-

- TO OPEN SLIT HERE FIRST: +

AEROGRAMME

BY AIR MAIL . PAR AVION Current

Aearogramme

Postage
Stamp

ey e

..The Sacretary

Department of Computer Science

University of Waterloo

WATERLOO

ONTARIO N2L 3Gl SUTET D

CANADA

(COUNTRY OF DESTINATION)

Approved by the Australia Post for
acceptance as Aerogramme No. 58

SENDERS NAME AND ADDRESS

SECOND FOLD HERE =-'1

D C Edwards (Mrs}_ .
Dept of Electrlcal Englneerlng
& Computer Scienée
University of Newcastle ,
" New South Wales o
AUSTRALIA 2308

POSTCODE

f

SECOND FOLD HERE

FIRST FOLD HERE

-

THE UNIVERSITY OF NEWCASTLE
wew sourw wnes, 2100 FRMURMLE SR ADEE SEHLA

AUSTRALIA. VOIvA $IAS . CiaM AIA v

DEPARTMENT OF ELECTRICAL ENGINEERING

and
'COMPUTER . SCIENCE

The Secretary

Department of Computer Science
University of Waterloo
AWETeRIolO YHTHUOD

ONTARIO N2L 3Gl

Dear Sir/Madam,

RESEARCH REPORTS 1989 (January to April)

Would you kindly let mé2dfaf@Aofiicliadt MWL lowing report please:
CS-89-07 Delivering.a Better Introductory Course
~in Computer Science
Authors: Arnie Dyck, Jay.Black, Kelly Booth.

Thanks.

Yours sincerely#iouTaaon \ES
Mﬂ

Diana C. EQW&r&%ﬁTﬂkéﬁ

Secretary
Computer Science

DEPARTMENT OF COMPUTING Queernrs University
AND INFORMATION SCIENCE
Phone # (613) 545-6050
Fax #(613) 545-6513

Kingston, Canada
K7L 3N6

July 27, 1989

Department of Computer Science
University of Waterloo
Waterloo, Ontario

N2L 3Gl

Attn: Research Report Secretary

Dear Secretary: TN

a Better Introductory Course in Computer Sci Tfnie Dyck,
Jay Black, Kelly Booth. I understand the cost for this report
is $2.00. If you could invoice me for this amount I will

send a cheque to you. Thank you.

Sincerely

kS

)]
Henk Meijer o "
Associate Professor 77

N L/[’
HM/hb LJVL é

Department of
. Computer Science
Detroit, Michigan 48202
' (313)577-2476

(313)577-2477
iyne State University
Hlege of Liberal Arts

August 7, 1989

Department of Computer Science
University of Waterloo
Waterloo, Ontario

N2L 3G1, Canada

Dear Friends:
Enclosedés M.@ copies of the following technical reports:

1. CS-89-07 Delivering a Better Introductory Course in Computer Science

2. CS-89-14 Reasoning about Functional Dependencies Generalized for Semantic Data
Models

P)\/ | v Sincerely, N
{ Vel Dt

> [}* /{YM William I. Grosky
)\9/[/ Jb&’/ \’\ Professor
SO Ofy\

7

CS-89-13 - SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS,
OR THE INTERFACE BETWEEN SOFTWARE AND MATHEMATICS

AUTHORS: Gaston H. Gonnet, Michael B. Monagan

ABSTRACT:

This paper describes two fundamental aspects of the solution of systems of algebraic equations: the
use of substitution and the use of a complexity function to determine, at each step, which of several
methods /equations /unknowns to use. These techniques, which have received little attention in the past,
can be viewed as in the interface between mathematics and software. An implementation of these tech-
niques in Maple “*® is described. Timing results comparing the Maple, Macsyma ™™ and ReduceHee ™
symbolic algebra systems on a range of sample problems are presented. The proposed method proves to
be superior to other techniques.

PRICE: $2.00

CS-89-14 - REASONING ABOUT FUNCTIONAL DEPENDENCIES
GENERALIZED FOR SEMANTIC DATA MODELS

AUTHOR: Grant E. Weddell

ABSTRACT:

We propose a more general form of functional dependency for semantic data models that derives
from their common feature in which the separate notions of domain and relation in the relational model
are combined into a single notion of class. The feature manifests itself in a richer terminological com-
ponent for their query languages in which a single term may traverse any number of properties (including
none). We prove the richer expressiveness of this more general functional dependency, and exhibit a
sound and complete set of inference axioms. Decision procedures are developed that apply when the
dependencies included in a schema correspond to keys, or when the schema itself is acyclic. The theory
is then extended to include a generalization of select-join queries. Of particular significance is that the
queries become an additional source of functional dependency constraints. Finally, we outline several
applications of the theory to various problems in physical design and in query optimization. The applica-
tions derive from an ability to predict when queries can have at most one solution.

PRICE: $2.00

-

If you would like to order individual reports please forward your order, along with a cheque or interna-
tional bank draft payable to the Department of Computer Science, University of Waterloo, Waterloo,
Ontario, N2L 3Gl, to the Research Report Secretary.

If you wish to receive all reports published in 1989 our Subscription Rate is $125.00 Canadian. Please
refer to the above paragraph for payment instructions.

Please indicate your current mailing address.

MAILIN RESS: ™
G ADDRESS: {P/‘oC‘ [ouies (Seocco\r
2423 (entn | Roal
Clowviews I bops(
W-S.A.

IDENTIFICATION:

CHEQUE NUMBER:

UNIVERSITY OF WATERLOO 234022
RE® pescripTionINY AMOUNT DESCRIPTION AMOUNT
550190 2.00 Gther Payment (S$8907

Att'n M WILSON COMP SCII538 HP

CARLETON UNIVERSITY OTTAWA, CANADA KI1S 5B6

5 Carleton University
Ottawa, Canada K15 5B6

27 July 1989

}/‘“

e

Research Report Secretary | uﬁ
Department of Computer Science iiﬁ/@{y (1
University of Waterloo N A |
Waterloo, Ontario /Ly ¥ e
N2L 361 A M

/

Enclosed please find a cheque in the order of $2.00 to cover

the cost of the following report:

CS-89-07 Delivering a better introductory course in Computer Science

Authors: Arnie Dyck, Jay Black, Kelly Booth

¢ V,
‘] . I U-gll

Director
School of Computer Science

School of Computer Science O Herzberg Building O (613) 788-4333 FAX: (613) 788-4334
E-mail SCS@Carleton.CA

O * L] .
@7 Universityof Regina
Regina, Saskatchewan (306) 585-4633

Department of Computer Science o A OA2

August 1, 1989

I

Rv"'\’,
\A(
. (‘)/(3

Department of Computer Science X

University of Waterloo
Waterloo, Ontario jv
N2L 3G1 Oy/‘\

Dear Sir:

I would like to order technical repoq CS 89 07)
Delivering a B txoductory Course in Computer S
find enclosed($2.00 cash\ in payment for the report.

Thank you.
Sincerely,
%, 6) /7 ?a_?/q ,ug;/ / FH A _
R. B. Maguire

Head, Computer Science
RBM/mc

Southern Alberta
Institute of Technology MATHEMATICS, PHYSICS AND COMPUTING DEPARTMENT

1301 - 16 Avenue N.W. Phone: 284-8543 (403)
Calgary, AB. Canada T2M OL4

August 3, 1989

Department of Computer Science
The University of Waterloo
WATERLOO, Ontario

N2L 3Gl

‘
-

Attentign4 xResearch Report Secretary

N

RE{. CS-89—07:) DELIVERING A BETTER INTRODUCTORY COURSE
S, e IN COMPUTER SCIENCE

Please forward the above referenced document by Authors
Arnie Dyck, Jay Bloack, and Kelly Booth.

You.u&&i§£}nd enclosed a Postal Money Order in the amount

(/dfﬁgz.?g;iﬁ payment for same. WK $ﬂ3/

“THank you.

e
Yours truly, , [/gdﬂk

. ,/\9/ AN \()\
/KL il _ Wi

H. K. Myhre-

Department Head

Mathematics, Physics, and Compunting
HKM/meh

Enclosure

Offering courses, seminars and other consuitative services in mathematics, physics, computer sciences, pre-technology upgrading,

geophysics, engineering science technology, computer managed learning, and general studies.

PrintingRequisition/GraphicServices 54242

1. Please complete unshaded areas on 2. Distribute copies as follows: White and 3.7 On completion of order the Yellow copy 4. Please direct enquiries, quoting requisi-
form as applicable. Yellow to Graphic Services. Retain Pink will be returmmed with the printed tion number and account number, to
Copies for your records. material. extension 3451.

TITLE OR DESCRIPTION

Delivering A Better Introductory Course In Computer Science CS-89-0§
DATE REQUISITIONED DATE REQUIRED ACCOUNT NO.
March 3/89 ASAP ' i 26l 4 41311 ln 17
reEquUIsITIONER— PRINT PHONE SIGNING AUTHORITY
A. Dyck | 3475 Wpginln, Thotres
MAILING NAME DEPT. BLDG. & ROOM NO. [‘_)g DELIVER
INFO — Sue DeAngelis c.s. , DC 2314 [] pickeup

Copyright: | hereby agree to assume all responsibility and liability for any infringement of copyrights and/or patent rights which may arise from
the processing of, and reproduction of, any of the materials herein requested. | further agree to indemnify and hold biameless the
University of Waterloo from any liability which may arise from said processing or reproducing. | also acknowiedge that materials
processed as a result of this requisition are for educational use only.

m—

NUMBER 14 NUMBER NEGATIVES QUANTITY ZER

) : 100 |
OF PAGES OF copies ‘F(L,w e g b | [1 e
e e sTon D BRISTOL Dsuppuznlﬁc Ivory | ‘ 01
[sono [Cnen e [W—1FILIM[lII;IJHI[IIJLL_H L idle0]
PAPER SIZE 10x14 Glosscoat ’

Ooetx Oets O Ohope polzanamme|FbM 11 1] 1-1"”1J| I e

PAPER COLOUR INK

i LABOUR:
TAME : COpE

[Jwere X ovren O FME L | Lo o]leo1)
. PRINTING) NUMBERING ; . : v i ‘ o

I:l 1 SIDE_____PGS. EF 2 smss_‘_‘_pss. FROM To 1F lL‘M| oy l 1) J L | ' ,l ; l I j l !‘] J_l IC|0|1 l

BINDING/FINISHING oLe PMT " _ T ———

COLLATING [:I STAPLING D PUNCHED D PLASTIC RING
FOLDING/ 7410 gaddde stitchEy 'NC

PADDING

:L_'_LMxTL 1 | Ll [VVVQH u,; ’ | 1 |J Liv 1_J I_LOH l‘
Ll SIS S !liH o 1] o011},
lP(Mlek‘r'I e | S L HQ|_0_1_1_[
~k—Pplease photo reduce for Beaver Cover format. |PLATES j—-
\Pyby Tl R J| L1 11 :| Hla L | [P1og1]
!P LT R T I SN 1] ,i‘H Lo rogt]
lP L;Ti L | JLia kaJ [l;H Lo)Pt
{ STOCK T : :

— , S | B S B ll H R [LTee TR
cQPV~jguTRE R | | !3"51}“']-'!330'6'_’TAC'}-{T"[Jk! B ‘; 0 - 1JI‘|IN{ : IJI ; 0L ,k-,-’l]0|o~[1j~
DESIGN & PASTEUP 58?‘*-%. ;Lxsdﬁm O 5 N G A8 B (LT

e L [U ‘11@;@11_{/1‘| 1[L1 ”; 1 1 | J L 10,0,1]
LSl g [Dyoga]f BNOERY ’

L Jl ,,i, i HD|0|1 IR'N’G|~ ‘ "l l:"* “ -lyl, i dba H L |J|B.40,1]

Special Instructions

Both cover and inside in black ink please,

e

TYPESETTING ~’,QUANT|TY |RXNI~GI Ll L 0 1 O ATRNA A A - TP
[P1AP1001010,0¢ J[11 1]y g HTxO'HJ L .G I O NN O B LT
l}‘PuA|P101010|0|01"J| Lo b ey moat]fiminslogoi0i0500 L o JL oSl o] B10,1]
[P1AP010,0,050 || | 1 | q Lo Lo o g |{Tj0]| OUTSIPE SERVICES

PROOF : v

[?islFl RGN EON AT T T H u ‘1 kl IJI ‘| ~'vJ,‘ - o
L I ¢ RO AR O ST GBS | (0 ol $

"PIRIFIIIJIIJl!!IIHIHIlkWHIkI} 3]

TiYEe L smavinciar T Crererar 1 GRAPHICSERV. OCT.85 482-2

TMENT
EPARTMENT
EPARTMENT

EbAR

ER SEIENGE B
FF SCRNGE

07
Ut
UT

Delivering A Better Introductory
Course In Computer Science

§

3

V.A. Dyck
J.P. Black
K.S. Booth

3

Research Report
CS-89-07

Y
Ty

I

SITY OF WATERLO

§

February, 1989

V
INVER
UNIVER

DELIVERING A BETTER INTRODUCTORY
COURSE IN COMPUTER SCIENCE

V.A. Dyck, J.P. Black, and K.S.Booth
Department of Computer Science
University of Waterloo

Abstract

In the process of revising the first and second year computer science
curriculum at the University of Waterloo, a number of issues arose that
should be of general concern. The first was the need to integrate many of
the fundamental topic areas of computer science into a small number of
introductory courses, to provide an overview of the field both to students
who intend to major in computer science and to those for whom the
introductory courses will be the only formal training in computer science.
The second was the requirement that the time spent by students (especially
the time spent programming) be in proportion to the weight of the course
within the overall curriculum. Finally, we wished to close the perceived gap
between “computer literacy” courses (where experience with state-of-the-
art desktop applications predominates) and more traditional computer
science courses (where the emphasis is on system design and
implementation). The first issue is reflected in the choice of a “spiral”
approach that covers theoretical and practical topics in computer science
during the first two years (four term courses). The elimination of “open-
ended” assignments in favour of time-limited laboratory sessions with
preparatory tutorials complements the lecture presentations both with
hands-on experience using commercial application packages and with
programming assignments where students implement and test their own
algorithms. In designing and implementing the new curriculum it became
clear that the logistics of delivering the course material were at least as
important to success as were the choice of the material itself. A support
team of faculty, staff, graduate student teaching assistants, and
undergraduate tutors provides a diverse skill set that has proven to be a
cost-effective delivery system for the new curriculum.

Page 1

Delivering a Betier Introductory Course in Computer Science Dyck, Black, Booth

1. Introduction

The Faculty of Mathematics and the Department of Computer Science
at the University of Waterloo recently completed a major three-year
redesign of our first and second year courses in Computer Science. Rarely
does such an opportunity arise to completely rethink the course curriculum
and delivery for such an extensive set of courses.

The Faculty of Mathematics at the University of Waterloo has one of
the largest classes of mathematics students in the world. Each year it admits
approximately 950 students to a common first-year program. Students
choose an area of specialization in second year. Typically, students divide
equally among majors in computer science, majors in mathematics with
accounting or business, and majors in traditional areas of mathematics (for
example, applied, pure, statistics, combinatorics or optimization). All three
groups are expected to have varying levels of computer literacy upon
graduation. Some complete only the two first-year courses, some only the
four courses in the first two years, and some go on to major or minor in
computer science.

We deliberately adopted a “spiral” approach in each of the two years:
each year was in some sense to include a complete view of all important
areas of computer science, so that students who only completed one year
before continuing in a non-CS program would have been exposed to most of
the theoretical and practical foundations we considered to be important. A
secondary consideration was that many students are in our co-operative
education program, and so must be prepared for a four-month work term in
industry after only one four-month term on campus.

For reasons explained later in this paper, we felt that a significant
reorganization of the curriculum was essential. A major consideration in the
development of the new courses was the effective delivery of the material,
both in its theoretical aspects and its practical applications. Considerable
thought was given to the subject material, organization and effectiveness of
the delivery of the new courses. We believe we have designed courses which
are more academically satisfying, more modern in content and approach,
and which combine effective delivery of material to students with efficient
use of limited human and physical resources.

Thus we had the following goals in revising the first two courses:

. to modernize the curriculum to include an overview of the major
theoretical and practical aspects of computer science,

. to expose the students to modern microprocessor hardware and
software, and

. to control the amount of time spent by the students on these courses.

This paper discusses the redesign of the course sequence and the
implementation of the first two courses in it. In Section 2, we describe our
goals for the new curriculum, and some of the environmental pressures and
constraints which influenced the final form of the courses. We also include
details on the particular goals of the first two courses. Section 3 discusses

Page 2

Delivering a Better Introductory Course in Computer Science Dyck, Black, Booth

various aspects of the course implementation, including the relationships
between lectures, tutorials, and laboratories, problems of scale and
resources, and the hardware and software environment. Section 4 presents a
summary and some conclusions we have drawn from our experience to date.

2, Goals of the New Computer Science Curriculum

Historically, the first two courses in computing emphasized the
development of problem-solving and programming skills. A major goal was
to have the students programming the computer as quickly as possible. A
mainframe environment was used as the course delivery system. After an
hour or two of instruction on the system, students were largely left to their
own resources to solve the two to three programming questions each week.
Students typically spent ten to fifteen hours per week on completing their
assignments, often debugging their programs by “friction.” (Students
seemed to think that if the lines of code were shuffled often enough a
correct solution magically might be found by “wearing down” the bugs.)
More importantly, students had relatively poor debugging tools, and no
training in their use. Instructors in other courses resented the excessive
time students spent on computer science, and the computer science
instructors resented the students’ preoccupation with programming.

In addition to these deficiencies, students rarely gained a perspective
on the hardware and software they used, nor were they introduced to the
wide variety of modern application software. Not surprisingly, they tended to
see the computer primarily as a device for programming. Even though
increasing numbers of freshmen had been introduced to computer concepts
in high school, very rarely did their background include instruction in use of
this new applications software.

While we did not explicitly adopt the ACM curriculum for CS 1 °84 [1]
and CS 2’84 [2], a comparison is useful. These two model courses cover the
fundamentals of programming in a high-level language, especially procedural
abstraction in CS 1 '84, and data abstraction and abstract data types in
CS 2 '84. Our courses follow this same general approach, but we wanted to
meet some other specific needs: we wanted our students to have some early
exposure to numerical computing, especially for those continuing in
mathematics but not CS; we wanted to include a fairly broad range of
theoretical topics at an introductory level; and we wanted to give students
some exposure to modern microprocessor programming and application
environments, such as they were likely to encounter on their first work
terms. Thus, while there are some very strong similarities between our
courses and the ACM model courses, our curriculum gives students a much
broader introduction to both the theoretical and practical sides of computer
science.

Our revised first course begins with an overview of hardware and how
the components function together. This is followed by an overview of
software, from the operating or system level through various levels of
languages to application software. A major portion of the first course

Page 3

Delivering a Better Introductory Course in Computer Science Dyck, Black, Booth

continues to be devoted to the development of algorithmic solutions to
problems and a study of high-level, block-structured language features to
solve these problems (currently, we teach a dialect of Pascal). Students are
taught problem solving and programming with emphasis on proper design,
correctness and efficiency of programs. Both the theoretical underpinnings
and the practical implementation are addressed in the course delivery. In
the final third of the course, we also touch on topics such as sorting and
searching, program verification, algorithmic complexity, relational data
bases, and the data-directed design approach to file processing applications.
The more theoretical lectures are complemented by laboratory experience,
including, in particular, the personal productivity software mentioned above.

In the second course, we take a more detailed look at programming
systems including machine language and translation (compilers and
interpreters), as well as data structures and storage allocation. The students
are also taught a second programming language (FORTRAN 77), which is
used for an introduction to numerical computation, including zero-finding,
area-finding, linear equations, and simulation. The course concludes with an
introduction to undecidability to instill an appreciation of the role of
mathematical theory in computer science. The conscious decision to include
these advanced topics (algorithmic complexity, program verification, error
analysis, undecidability) was taken to emphasize the close relationship
between theory and practice.

3. Implementation of the Courses

In addition to the concern for curriculum issues, considerable thought
has been given to the delivery of these courses, especially the first, since
this is the introduction to computers for many students. There are three
hours of lectures per week, devoted to presenting the principles and
theoretical background of the material. These are complemented by a one-
hour tutorial in small groups which bridges between the lectures and the
weekly three-hour lab. For example, when learning a new programming
language, the principles of a language are addressed in lectures, the syntax
details are described in tutorials, and reinforcement and practice are
provided in the lab.

To address the implementation difficulties of previous courses, the
decision was made to emphasize quality rather than quantity of hands-on
experience. Adopting the model used in the more traditional sciences such
as biology, chemistry and physics, students are expected to attend a
scheduled and structured weekly laboratory session. In these sessions they
are exposed to the complementary, practical side of the course. They learn
how to use a variety of application software as well as the editing and
debugging tools necessary to program effectively.

Each week students are given a 10-12 page document describing the
current lab. The tutorial provides some necessary background material to
prepare for the lab. Students are expected to read the lab material carefully
in advance, and to come to the lab prepared to proceed through the

Page 4

Delivering a Better Introductory Course in Computer Science Dyck, Black, Booth

specified instructions and exercises. During the labs, trained graduate
teaching assistants and full-time undergraduate tutors provide the necessary
guidance. At the end of the three-hour lab, students submit their materials
for consideration and evaluation by the tutors.

This structure allowed the course development team to address a
number of the difficulties with earlier courses. Through a structured lab
environment, students are encouraged to make efficient use of their time on
the computer. Preparation must be completed in advance or it becomes
impossible to complete lab exercises in the prescribed amount of time. By
providing trained support staff, students are encouraged to explore and use
various software tools effectively as they solve a variety of lab exercises.

During the first few weeks when the lecture schedule provides
hardware and software material on which future programming labs will be
based, students are introduced to the practical use of a computer and to
software such as word processors and spreadsheets. Thus, immediate
hands-on experience is given in the labs prior to students knowing much
about how computers really work. Once a foundation has been laid in
lectures, labs dealing with programming are introduced. By this time
students have already used the computer system for several weeks and can
concentrate on the programming environment. Later in the course, students
are taught to manipulate quantities of data in both a high-level language and
using a modern database management system as lectures, tutorials and lab
sessions proceed more in parallel.

From a more general point of view, material is first introduced in
lectures, and students have an opportunity to practice what has been taught
the following week. Tutorials are typically held two working days before the
labs, giving some time for lecture material to be digested before the tutorial,
and for the tutorial material to be used by the students to prepare for the
labs.

Corresponding to these three types of student contact are three types
of teaching staff: faculty members for the lectures, graduate student tutorial
assistants (TAs) for the tutorials, and full-time undergraduate tutors for
hands-on assistance during the labs. However, TAs are also present during
labs, and we have found that the combination of their more mature approach
and the less experienced approach of the tutors has worked exceptionally
well in practice.

By the end of the first course, students have been introduced to a
variety of application software, they have a working knowledge of a high-
level programming language, and they have a firm theoretical foundation
underlying the practical experience.

From the beginning, it was necessary to face the realities of delivering
a course to 950 students at one time. Consequently, it was decided to select
a group of 60 volunteers to participate in an initial, prototype offering of the
courses. Since we were unable to find a textbook which completely fulfilled
our needs, instructors prepared a set of lecture notes to supplement an
introductory textbook on Pascal programming.

Page 5

Delivering a Better Introductory Course in Computer Science Dyck, Black, Booth

For the full-scale offering of the course, students were divided into 4
lecture sections. For the tutorials and the labs, students were grouped into
16 sections of 60 students each. The organization for the tutorials and labs
was handled by a faculty member serving as lab instructor. A staff of 8 TAs
(working 10-12 hours per week) and 4 undergraduate co-op student tutors
(working 35 hours/week) were assembled to provide support. In addition, a
full-time head tutor was hired to coordinate the computer hardware and
software support and to act as a lab trouble-shooter.

Each week, the lab instructor presented a “model” tutorial to one lab
section, attended by all of the TAs. They were provided with a set of tutorial
notes and each presented tutorials to two sections of students based on the
model given by the lab instructor. The TA was paired with two
undergraduate tutors to provide support during the corresponding lab
sessions for the same two sections of students. Materials submitted at the
end of lab were marked by the tutors and returned to students at the next
tutorial.

To co-ordinate the weekly activities, two regular meetings were
scheduled. The lecturers and lab instructor met to discuss the curriculum
issues and the design of weekly materials for lectures, tutorials and labs. The
second meeting (immediately afterwards) involved all staff and provided the
necessary coordination of the various course activities. Both TAs and tutors
were given sufficient opportunity to comment on the previous week’s
activities, including an evaluation of the tutorial and lab sessions. The
meetings were highly successful in developing a sense of team spirit on the
part of all participants and in determining the areas of the course
presentation that required refinement for future weeks and offerings.

Because of the number of students and lab sections, we had to face
problems of scale in scheduling lab resources and people, and in collecting
and grading assignments and examinations. We were able to collect
assignments automatically from the student’s computer accounts, which
greatly simplified the problem of collecting and collating several thousand
pieces of paper per week (more than 900 students times multiple questions
per lab). We spent considerable time designing the midterm and final
examinations so they could be marked in a reasonable amount of time and be
marked consistently by a team of more than fifteen people.

However, it is important to emphasize that not all of what we did is
applicable only to large classes. Our lecture/tutorial/lab delivery based on
tutorial and lab sections of about 60 students was intended to address
explicitly the problem of providing lower student/staff ratios for at least part
of the course. We found it a significant advantage that the teaching assistant
who conducted a tutorial for a particular group of students was also present
during the lab for that group.

The prototype and first full-scale versions of the course were offered
on a mainframe environment. The types of software that could be taught
effectively were severely limited by such a system. Furthermore, it was
painful to watch students struggle to cope with the vagaries of the system.

Page 6

Delivering a Better Introductory Course in Computer Science Dyck, Black, Booth

For example, the command structure in each part of the system varied and
required the student to repeat the learning process over and over again. It
was clear that a microcomputer environment with consistent, user-friendly
software was essential to allow students to focus on the content of the
course rather than on the system used to present the material. During
1988, the lab materials were converted and enhanced based on a lab of
modern microcomputers.

Because of favorable experiences with the Apple Macintosh in
supporting other courses at the University of Waterloo, the course
development team was enthusiastic about a potential Macintosh solution.
The Macintosh II was chosen as the workstation for delivering this course. It
provided a number of advantages: the uniform, easy-to-use interface, a
variety of application software, a suitable programming environment and
greater potential for future expandability. Application software selected for
the course includes: word processing, spreadsheets, graphics, and database
management. Students are also introduced to a highly interactive Pascal
programming environment including a symbolic and a hexadecimal
debugger.

Managing the physical and human resources for such a large lab
presents some unique challenges. For example, the need to provide
software, data files, and peripherals for 950 students makes the provision of
some sort of distributed system a necessity. These requirements are easily
accommodated on a mainframe system, but in moving to a microcomputer
environment, we needed some other way to meet these needs.

The University of Waterloo has developed a number of educational
networks, including MacJANET for the Apple Macintosh. In this lab, 60
Macintosh II workstations are linked to three interconnected Macintosh II
network servers. The servers store and control the use of course software
and data files, as well as all the student files. As a result, problems of
managing program and data disks are minimized, and software copyright
restrictions can be enforced.

We still hope to acquire one more suite of software for electronic mail.
A lab environment isolated from the rest of the campus internet is no longer
a convenient alternative. We feel that our students should be exposed to and
have regular access to this increasingly important communication medium,
beginning with registration in first year and continuing throughout their
undergraduate career. As of this writing, a prototype mail system for
MacJANET is being installed. Modifications to fully support automatic
collection of assignments are being considered.

5. Summary and Conclusions

We have completed two full-scale offerings of each of the first two
courses in our sequence. Our curriculum effort is now directed more
towards the second-year pair of courses. The first of these has had one full-
scale offering. The second has had only a prototype offering. We will shortly
be facing less drastic revisions to our third-year curriculum, mostly due to

Page 7

Delivering a Better Introductory Course in Computer Science Dyck, Black, Booth

the changes to the first two years. As for fourth year, where individual
instructors teach a larger number of specialized courses to much smaller
classes, we currently expect there will be little effect beyond the normal
modifications due to the evolution of the state of the art.

We do not yet have enough experience with the entire four-course
package to evaluate this significant upheaval in our curriculum. This will
come over the next year or so as we get more experience in the second-year
courses, and are able to observe the effects on third- and fourth-year
students of our non-standard initiation to computer science. In the interim,
we are able to draw some specific conclusions about the two first-year
courses.

First, curriculum development on this scale is tremendously expensive
from all points of view: faculty time to develop new course materials
(lectures, lecture notes, tutorials, lab exercises and assignments), faculty
time to hire and manage between ten and twenty course personnel per
term, salary costs for tutorial assistants, co-op tutors, and the full-time head
tutor, and of course, hardware and software costs for the lab itself. The
fixed-time lab period, in particular, has enabled us to schedule our hardware
resources and the course personnel very effectively. Similarly, the relatively
expensive use of graduate student teaching assistants has been balanced by
the use of more cost-effective full-time undergraduate co-op students for
marking and lab supervision.

The overall costs are justified by what we feel have been our successes.

We are quite pleased at the new orientation of our freshman class: they
certainly have had exposure to a much larger number of topics and ideas
than was the case in our earlier offerings. Informal feedback from their
employers during the first co-op work term has been very positive, although
some employers needed to rethink job responsibilities to make good use of a
different skill set that, in particular, included fewer programming skills
than before. However, this was more than balanced by skills in such areas as
word processing, spreadsheets, data management, and debugging, and by a
somewhat higher degree of theoretical understanding.

We feel that the lecture/tutorial/lab format and scheduling has worked
extremely well for both staff and students, although we seem currently to be
having a problem with lecture attendance. This is perhaps not uncommon in
such large lecture sections. The use of three staff in each lab period has
gone a long way towards making the lab environment a pleasant and
productive one for the students.

An extensive student questionnaire has confirmed that student
workload is now in line with other courses, and that the computer science
courses are perceived to be no more difficult than the algebra and calculus
courses required of all our freshmen. No new major problem areas were
revealed by questionnaire results.

Page 8

Delivering a Better Introductory Course in Computer Science Dyck, Black, Booth

6. Acknowledgements

The prototype course was developed by K.S. Booth and V.A. Dyck.
Subsequent offerings of the course were enhanced by the efforts of J.P.
Black. The course team greatly appreciates the efforts of J.W. Wong and J.W,
Graham, S.L. Fenton, and C.M. Durance in acquiring and installing the lab
hardware and software. The authors wish to acknowledge the generous
support of Apple Canada Incorporated and the Computer Systems Group at
the University of Waterloo.

References

[1] E. B. Koffman, P. L. Miller, and C. E. Wardle, “Recommended
Curriculum for CS1, 1984,” Comm. of the ACM, 27(10), pp. 998~
1001, Oct. 1984.

[2] E. B. Koffman, D. Stemple and C. E. Wardle, “Recommended
Curriculum for CS2, 1984,” Comm. of the ACM, 28(8), pp. 815-818,
Aug. 1985.

V.A. Dyck is an associate professor of Computer Science and currently holds the
position of associate dean for undergraduate studies in the Faculty of Mathematics at the
University of Waterloo. J.P. Black is an associate professor of Computer Science and director
of the Shoshin Lab. K.S. Booth is a professor of Computer Science and is director of the
Institute for Computer Research.

Page 9

Delivering a Better Introductory Course in Computer Science

CS 131
Principles of Computer Science |

Objectives
To introduce students to the use of computers
in problem solving.

Intended Audience

CS 131 is a required course for all programs
in the Faculty of Mathematics. Math students
normally complete CS 131 in their 1A term.

Prerequisites/Corequisites/Possible
Successors

Prerequisites: Grade 13 Mathematics
Successors: CS 132

References
There is no current course textbook.

Schedule
2 hours of lecture, 1 hour of tutorial and a
compulsory 3 hour laboratory per week.

Terms Available
Fall and Winter

Notes
1. Latest revision: August, 1986

Outline

This is the first in a series of four courses
designed to provide an introduction to the
principles of computer science. This course
concentrates on the fundamental notions of
algorithmic solutions to problems and issues
related to the implementation of algorithms
as programs in high-level languages.
Overview of Computer Science (4 hours)
Computers in historical perspective.
Components of a computer. Using a
computer. Introduction to general computer
problem solving. Programming languages
from low-level to high-level. The software
development process. The role of theoretical
tools in computer science. Examples of
application and system software in practice.
Introduction to Algorithms (3 hours)
Formally specifying procedures. Constants,
variables and scalar data types, input/output.
Control structures: conditional, iteration,
and selection. Examples of algorithms to
solve problems of interest.

Structured Programming (2 hours)
Top-down design, step-wise refinement.
Documentation. Modularity, procedures and

Page 10

Dyck, Black, Booth

functions, and parameter passing. Arrays as
structured data types.

Building Correct Algorithms (3 hours)
Systematic testing, debugging, run-time
profiling. Introduction to formal program
verification techniques. Method of invariant
assertions, partial correctness, termination.
Examples based on searching and sorting
problems.

Building Efficient Algorithms (3 hours)
Measures of algorithmic complexity. Upper
and lower bounds on complexity. Asymptotic
analysis of algorithms, "Oh" notation. More
searching and sorting examples.

Recursion (1 hour)

Notion of a recursive procedure or function.
Proving correctness and efficiency of
recursive algorithms. Quicksort.

Record and File Management (2 hours)
Records and fields as structured data types.
Basics of record management. Files of
records. End-of-file handling. Data-directed
design of programs.

Introduction to Data Base Management

{2 hours)

Logical and physical representation of data.
Using secondary storage techniques. Data
base management systems.

File Processing Utilities (1 hour)

Auxiliary storage devices (tapes and disks).
Concept of a utility program. Examples
including media conversion routines and
sort utilities.

File Maintenance and Report Generation

(1 hour)

Generalized file naming. Additions,
deletions, and changes to a file. Generating
single and multiple reports.
Communications and Networks (2 hours)
Hardware and software communication
protocols. Electronic mail in a network
environment. Privacy and security
considerations.

Delivering a Better Introductory Course in Computer Science

CS 132
Principles of Computer Science Il

Objectives

To broaden students’ understanding of
fundamental issues related to problem
solving by computer.

Intended Audience

CS 132 is a required course for all programs
in the Faculty of Mathematics. Math students
normally complete CS 132 in their 1B term.

Prerequisites/Corequisites/Possible
Successors

Prerequisites: CS 131

Successors: CS 241

References
There is no current course textbook.

Schedule
2 hours of lecture, 1 hour of tutorial and a
compulsory 3 hour laboratory per week.

Terms Avallable
Fall, Winter and Spring

Notes
1. Latest revision: August, 1986

Outline

This is the second in a series of four courses
designed to provide an introduction to the
principles of computer science. This course
describes the basic architecture of a computer
and introduces the notion of machine
language programming. The theory of
undecidability and the representation of
numerical problems are discussed in terms of
their fundamental limitations on our ability
to solve problems by computer. Techniques
for solving numerical problems and the use
of data structures and their implementation
are introduced.

Overview of Programming Systems (2 hours)
Syntax description using BNF. Pattern
matching and regular expressions. Compilers
and interpreters. Block diagram of a
compiler. Linkers and loaders.

Introduction to Machine Language (2 hours)
The concept of a stored program. Instructions
sets and data representation; binary, octal,
and hexadecimal number systems.

Linked List Data Structures (3 hours)

Dyck, Black, Booth

Records with pointer fields. Singly- and
doubly-linked linear lists, circular lists.
Stacks, queues, and deques. Binary search
trees.

Hashing Techniques (2 hours)

Open hashing schemes. Handling collisions;
probe sequences, overflow buckets

Dynamic Storage Allocation (1 hour)
First-fit and best-fit heuristics. Automatic
garbage collection versus explicity
deallocation.

Zero-Finding Techniques (2 hours)

Iterative search, bisection, regula falsi,
secant method, Newton’s method. Conditions
for convergence.

Pitfalls of Numerical Computation (1 hour)
Computer representation of numbers; fixed
and floating-point systems. Truncation and
rounding, roundoff error, cancellation.
Area-Fiding Techniques (2 hours)
Quadrature rules for numerical integration of
functions, Riemann sums. Rectangle Rule,
Trapezoid Rule, Simpson’'s Rule. Error
estimates.

Solving Linear Equations (3 hours)
Gaussian elimination. Error analysis.
Pivoting. Linked list data structures for
sparse matrices.

Simulation Techniques (3 hours)
Deterministic simulation. Random number
generators, uniform and Gaussian
distributions. Probabilistic (Monte Carlo)
simulation

Introduction to Decidability (3 hours)

The notion of decidability. The Halting
Problem. Undecidable problems related to
computer programs.

Page 11

Delivering a Better Introductory Course in Computer Science

CS 241
Principles of Computer Science 1l

Objectives

To describe the relationship between high-
level programming languages and the
computer architecture that underlies their
implementation.

Intended Audience

CS 241 is a required course for some
programs in the Faculty of Mathematics and
for all programs in the Department of
Computer Science. Math students normally
complete CS 241 in their 2A term.

Prerequisites/Corequisites/Possible
Successors

Prerequisites: CS 132.

Successors: CS 242.

References
There is no current course textbook.

Schedule
2 hours of lecture, 1 hour of tutorial and a
compulsory 3 hour laboratory per week.

Terms Avaliable
Fall, Winter and Spring.

Notes
1. Latest revision: August, 1986.

Outline

This is the third in a series of four courses
designed to provide an introduction to the
principles of computer science. This course
covers computer architecture as it relates to
the design and implementation of
translators for programming languages. A
survey of features present in high-level
languages and techniques for implementing
compilers for such languages is provided.
Basic Machine Architecture (4 hours)
Functional components of a computer;
memory, control unit, arithmetic/logic unit,
input/output unit. Data representation
(review). Machine language; operation codes,
addressing modes, indexing, base registers,
register designation.

Assemblers (2 hours)

Mnemonic op-codes, pseudo-ops, symbolic
constants and addresses, literals.
Programming Language Specification
(4 hours)

Page 12

Dyck, Black, Booth

Syntax vs. semantics. Backus Naur Form,
extended BNF, syntax diagrams; equivalent
representations of syntax. Syntax-directed
translation; parsing, parse trees, expression
trees.

The Translation Process (4 hours)

Phases of translation. Interpreters vs.
compilers. Lexical analysis and symbol
tables. Code generation; Automatic parser
generation; shift-reduce parsing, semantic
actions. Peephole optimization.

Linkers and Loaders (2 hours)

Resolving external references. Libraries.
Linking between different languages.
Block-Structured Languages (2 hours)
Algol-60 inherited scope rule. The run-time
stack. Handling recursion. Static vs.
dynamic binding.

Parameter Passing Mechanisms (2 hours)
Call by value, call by value-result, call by
reference, and call by name. Parameter
passing using the run-time stack. Hardware
and software features to support parameter
passing.

Comparing Programming Languages
(4 hours)

Control structures, data structures, and
naming structure. Procedural vs. applicative
languages.

Delivering a Better Introductory Course in Computer Science

CS 242
Principles of Computer Science IV

Objectives

To describe the function of modem operating
systems and their relationship

to the computer architecture that underlies
their implementation.

Intended Audience

CS 242 is a required course for some
programs in the

Faculty of Mathematics and all programs in
the Department of Computer

Science.

Math students normally complete CS 242 in
their 2B term.

Prerequisites/Corequisites/Possible
Successors

Prerequisites: CS 241.

Successors: CS 340, CS 350, CS 354, CS 360,
CS 369, CS 375.

References
There is no current course textbook.

Schedule

2 hours of lecture, 1 hour of tutorial and a
compulsory 3 hour laboratory

per week.

Terms Available
Fall, Winter and Spring.

Notes
1. Latest revision: August, 1986.

Outline

This is the fourth in a series of four courses
designed to provide an introduction to the
principles of computer science. This course
discusses the principles underlying the
design and implementation of operating
systems, I/0 and interrupt handling, and
issues related to the use of large distributed
systems. Techniques for achieving
parallelism, both in hardware and software,
are described. Computer techniques are best
understood when they are motivated by the
need to solve a real problem.

Components of an Operating System
(3 hours)

Block diagram of an O/S (review).
Peripherals: disks, tapes, terminals, local-
area networks.

Dyck, Black, Booth

File Systems (2 hours)

Hierarchical tree-structured file system.
Protection mechanisms; access lists and
capability lists. Backup and restore
procedures.

I/0 and Interrupt Handling (2 hours)

Device drivers. DMA and programmed 1/0.
Priority interrupts: interrupt Ilevels,
enabling/disabling interrupts.

CPU Scheduling and Swapping (2 hours)
Multiprogramming vs. multitasking. Context
switching.

Memory Management (3 hours)

Memory protection. Virtual memory; paging
and segmentation hardware and software.
The working set, least-recently-used
replacement strategies. The memory cache.
Parallel Processing (4 hours)
Multiprocessors: MIMD and SIMD models of
computation. Structuring a program as a
collection of parallel tasks. Task
synchronization primitives: semaphores,
monitors, message passing.

Networking (2 hours)

The RS-232 standard. Telecommunications
protocols. Local area networks.

Performance Monitoring (2 hours)
Instrumenting a large software system. Tools
for analyzing large software systems.
Modeling and Simulation (2 hours)

Queuing models representing an O/S.

Social Aspects of Computing (2 hours)
Ensuring security and privacy. Health
hazards and ethical issues. Copyright and
patent law relating to computer hardware
and software.

Page 13

	

