18587

f. Please complete unshaded areas dn 2 Distribute copnes as fONOWS Whlte and 3. On completlon af order the Ydlow cepy ; 4 Pleasedlrectenqulries; uotmg requisn-

: form as apphcable s . = - Yetlow to Graphic Serwces Retam Pink Coe U willy be retumed: - with the pnnfed : “tigh humber and accounl number, to
:) : ; Copnes for your records i L material . : mension 3451,

ﬂTLEoﬁbEscmpT“”The Carrectn&ss of Re ister-Transfer Desi n: Inductive Assertions on
€5-89-06 Algorithmic State Machine g :

DATE REQUISITIONED : . DATE REQUIRED

April 11, 1990 e
“tolieen Bermard P”°“E2192

MAILING = Na
INFO = Ccﬂeen Bernard

; per F. Muvadd&t
TBLDG. & ROOMNG. .- ST PELIVER T

DC~2314 ‘H"‘ e D PICK Up

‘Copynght | hereby agree to. assume all responsmlmy and. Ilabmty for-any . mfnngemem of copyrlghts and/or patem nghts whlch may arisef W

-1+ the processing of, and reproductioh of, any:-of the materials herein requested. | ‘turther agree 1o indemnify and hold blameless fhe
University .of Waterloo from any liability which. may arise from said processing.or repfoducmg lalso acknowledge that matenal il
-processed as & result of thls reqmsnmn e«~for educatlonal use only.:

NUMBER © E . NuUMBER SR
OF PAGES . 30 . OF GOPlES Lol '»’ 10

TYPE OF PAPER STOCK
m BOMND DNCR
'PAPER SIZE

’Eg]azxulmezxu)i xa7 D

mCO/ER L’BR]STOL ESUPPL(ED .

PAPER COLOUR , INK U R |
E\ WHITE D . . [&] “BLACK DJ;_‘_;_V_:”__~__A
PRINTING: - U UNUMBERING Tl T

M1 swel s. (K 2 sines__ - ees. F'RO’M L '-'r. T

BINDING/FINQSHING " / d

E] COlLATING E STAPLINPIEmaﬂ:ﬁ-&Ea d@ﬁl-l:’;ﬁfhhs1de
‘FOI_DING/ Co = B . CUTTING: ‘

PADDING: ‘ o . SIZE

Special Instructions -

COPY CENTRE =~

iy TR
iz A5 ey 10

PriritingRequisition /! Gra icServices 54235

1. Please complélé unshaded areas on 2. Distribute copies as follows: Wﬁite and 3. On completion of order.the Yellow. copy 4. Please direct enquiries, quoting requisi-

form as applicable. Yellow to Graphic Services. Retain Pink will be retumed with the printed tion number and account number, to
o -) Copies. for your records. material. extension 3451,
TITLE OR DESCRIPTION CS~89-06
The Correctness of Register-Transfer Design: Inductive Agsertions on Algorithmic State Machines
DATE REQUISITIONED DATE REQUIRED ACCOUNT NO.
Feb. 2/89 ASAP) la,1i2l61816, 614,11
REQuUIisiTioNER- PRINT PHONE ' NG AUTHORITY
F, Mavaddat 4430 i
MAILING NAME) DEPT. sLdc s ROOM NO. [R pELIVER
INFO ~] prek-up
Sue DeAngelis c.S. DC 2314

Copyright: 1 hereby agree to assume all responSIblluty and liability for any infringement of copyrights and/or patent rights which may arise from
the processing of, and reproduction of, any of the materials herein requested. | further agree to indemnify and hold blameless the
University of Waterioo from any liability which may arise from said processing or reproducmg I also acknowledge that materials
processed as a result of this requisition are for educational use only.

NUMBER 30 NUMBER 30 NEGATIVES -~ = QUANT!TY -ﬁ ERe o T(ME LABOU%OOE
e TP e [Pl | ¢ ; JV'H“’:’ N S 1 |le1001]
?AEOENFI: SEIENCR PT. @ COVER D BRISTOL mSUPPL|ED D iF'L'M['] L l 1)]I ; [i I . l lCIO 1 J
Cxer o LJoixne Oviev O FLM]F:‘:I;{", ‘,J‘ L l L iJ[1 ‘L l‘fl«,,i JLCIOHJ
PAPER COLOUR INK ' P e o
Kware [IR I P — lF LIMI‘M rr b e H L H 1, Lot HCIO 1]
NUMBERING S S e wre
leRIIN:-lIDNEG PGS, m 2 SIDES _____PGS. MBFEROIM TO lF]L M] l | | L [| - ’ l l I | 1 l} 1C‘011 I
B!NDING/FINISH&G 3 down left gide o c PMT
D{CDLLAHNG STAPLIN . PUNCHED IP{MI T!II f‘{;.l’ 1 l ! 4 _I ll__[I__J__I l }‘ P }J [_CI@L
FOLDING/ CUTTING e e D e S S
ke 2z L L R JLI' Ll J b J L Ly L LCrOHJ
Special Instructions T Pa s
41* P iMlTl" e L_; : 111 J | Hadady 1 J lQ_LQJ_‘L[
Math fronts and backs enclosed. PLATES:' - e g = :
leLlT{ Ly 1:r_i lL,f1;J~r:P[iﬁI4 Ll I “ﬁo 1&
P || | 1J b ~g"{,|"i;‘k | Lji ";;"";‘i‘,’[‘k': 1 wJ [P10|1|

b e

COPY CENTRE. . = oes g :MACH N , : :

A T L “DG ‘ Ly L4t Lot | l0|0|1J
T e oo
D;ESI,GN'&PASTE:UP; : Sobme No“FR TIME *LABOUCRODE' : L1 Ll L2 I

1 H"‘“’" JLDION N HOLUJTI
i _H L1 1 HDgﬁl
Lillye ol i

, |

T ‘;L;;,;;.,Y —————————ANG] | o e T | Bey]
|
|

[101

[PiA1Pl010,010,01 Al l'L‘J‘;l;"I J-l“ Lo JmopljlriNe] g gy Ll 4 ‘|14| Jl bl 8oyt
IPVA:P1O'|0 »0|0|01 L '1 Lo H H | ‘,1\:’&,1'[Tx‘o~l\1 LM HSIO|01010|0| Jll LE s"-,H ,,;":l’| 1 1 [Bogt]
[PA Pl0/0,0,0,0, “ L I_H 1 H l‘l,,ml;Jf]T\|01,1fl ,VQUTS'DE;SEHV"CES S

PROOF ! e ;

PRFL L1y TJ?i Lo Tl L H xllJl |t J R il Sl
PRFEL] |i|f1,11 H__L_J] 1 rnjlkmﬁjf SR §¢'51—
00 A M I VRO AT & AT ST |

TaxFe — meevineia T irenerar L. GRAPHICSERV. -OCT. 85 4822

To SML DCA'V%&ZW From Hr&wkd
Date A/.e/[, . 1) 8‘7

m e m O University of Waterloo
§9-0 &

EVLG[&S&J I's A “New M&tmmszm/af

7Zm/ /@Séar&&/ fe/;or?L /ra MC/740:V\ .
«/?6455 4

@ 4’/0/0@«,&//! I ({dsf/)aqe - 3_) 5’[(0-“//-
be Mo ered As /2a7€ o

@ /}?FW(h‘x I (lust /éa7e, nwwdoered

as ,M!Qe/ln) 5/\m/f be numbered

Aas /M(ga AL

©) ﬁeﬁc%_f Yo fopof nuer (n/
el boX

o~
J 0
%V @ jm;#&j/f%cffm‘es Shonl? be safpiren]

(ay

HAoee,
S e

Date \?W 3(//? 7

m e m O University of Waterloo

W/W/c/é % g7-06

\\TZE Cornee Lroed C%//{u’j ol //‘&%w
/w/u%” o ¢7-0F f@wwy

M%Waﬂﬁ?ﬂﬁww/

Speed Letter |

To CW Leseros From W Lehsid
/ Vis) ,&%&b /gz’:

i

Subject (‘7.;(
7

14

Message |
AL A ’ % “ AL Y4 *"" A/ - Kedlares “u@A bas
am. MW Aww A«‘»/L%mv i /é/&m« : é(/,u il mad
Mo, B Msgt. who olswed an inenssd on ARem
cs99-06 (B) ¢S §9-03 (R Tdanks .

Date ?/}?M /g’/f?’ Signed ‘ C(/% MM

Reply s

\QOO\
4 A
o)

Date Signed

WIBOH_IOIIeS - A-WAY'' FORM 44-902 3-PARTS RETAIN WHITE COPY, RETURN PINK COPY. TURN OVER FOR USE WITH WINDOW ENVELOPE.

NNNNNNNNNNNNNNNNNNN

SNAP-A-WAY AND RETAIN YELLOW COPY, SEND WHITE AND PINK COPIES WITH CARBON INTACT

The Correctness of Register-Transfer Design:
Inductive Assertions on
Algorithmic State Machines

Farhad Mavaddat

Dept. of Computer Science
University of Waterloo

Research Report CS-89-06
January, 1989

The Correctness of Register-Transfer Design:
Inductive Assertions on Algorithmic State Machines

Farhad Mavaddat

VLSI Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

ABSTRACT

This paper proposes a method for reasoning about algorithmic state
machines (ASMs); the method is similar to the use of inductive assertions
to reason about flow chart programs. The ASM'’s specification is derived
from a candidate design, written in a small set of register-transfer primi-
tives, using a formalism that we introduce early in the paper. The
correctness of the ASM specification, and the automatic translation of the
candidate design to circuit layout, strengthens our confidence in the
correctness of low-level design implementations.

We assign assertions, which signify the expected behaviour of correctly
designed hardware, to each state box of an ASM chart. To make proposi-
tions about a design’s interface behaviour, the candidate hardware is
extended to include its input and output strings, and the assertions are
applied to the charts corresponding to the extended hardware. This
extension lets us assign inductive assertions to the input, intermediate,
and output states, in an integrated form. We end by discussing the proof
steps needed to verify the assertions.

We argue that, given the wealth of experience and know-how developed
over many years of applying similar methods to proving the correctness of
software, the method of inductive assertions may be better suited to
hardware design than those methods which require newly developed
skills, and possibly less well-known mathematical techniques.

The Correctness of Register-Transfer Design:
Inductive Assertions on Algorithmic State Machines

Farhad Mavaddat

VLSI Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

1. INTRODUCTION

A hardware design methodology employing formal verification entails [1]:
1- writing a high-level “requirement specification”,
2- designing an implementation, and
3- proving mathematically that the design meets its specification.

To accomplish this, we need a suitable formal system to state the “requirement specifica-
tion”; a design implementation paradigm, at some suitable level of abstraction, to imple-
ment a candidate design; and a mapping from the candidate design to the formal sys-
tem, so that the designer can verify the design’s correctness through symbolic reasoning.

The choice of formal system and implementation paradigm are central to how practical,
and hence acceptable, the proof process will be, and to the degree of confidence one has
in the final design.

In the remainder of this paper we propose a method for capturing a candidate design’s
behavior and “requirement specification” with a single algorithmic state machine (ASM)
[2]. We also propose a method for proving the correctness of the derived ASMs. The
method is similar to the inductive assertions technique [3] for proving the correctness of
software. By way of example, we will follow a small, but non-trivial, design throughout
this paper, and end by proving that its proposed implementation meets its requirement
specification. Our ability to discuss a design of this size in a few pages demonstrates the
power and simplicity of our method.

Hanna and Daeche discuss desirable properties of proof techniques [4], and argue that
the “formal systems should already exist” ... “be powerful and concise” ... and “not too
removed from the digital engineer’s intuition.” One can well appreciate that the use of
existing and powerful systems will help with the practicality of the proof process.

-2 —

It is our contention that the combination of inductive assertions and algorithmic state
machines in the proof of hardware correctness meets the most important of the criteria
for acceptability proposed by Hanna and Daeche.

2. Mathematical preliminaries

In this section we use an extension of the Lambda calculus to model digital designs.
Later we will use this formalism as a mapping mechanism between hardware designs and
the corresponding ASM charts.

A combinational circuit’s behavior is modelled by a syntactic extension of the Lambda
calculus. Sequential circuit behavior is harder to define, and we only give an intuitive
description of the formalism used. For a more formal treatment of the subject, based on
denotational semantics, the reader is referred to [S]. For a typed extension of the model
used in the formal definition of register-transfer designs see [6].

In this section we also define the formalism needed to derive the behavior of a composite
module from the behavior of its sub-modules.

2.1. Defining Combinational Modules

We define an m-input, n-output (mXn-put) combinational device D , shown in Figure
1.a, by

D = >‘(771’7]2’ T o lm)-(E LE2 - LE,), (1)
where the right side of (2) is a short form for

)‘(771’772a A ’nm) . Ei » 1S i S]l

and where n;, 1< j<m, is the j—th input port’s value, and \(ny, 75, - - -, Mm) Ex
1<k <n, defines the k —h output port’s value.

2.2. Defining Sequential Circuits

At every state, the behavior of a Mealy-type sequential machine B, shown in Figure 1.b,
has two components. The first component is its combinational behavior, B,,, , under the
influence of the current state and input ports, and the second component is its next state
behavior, B,,, , under the influence of the state and input ports at the time of transition
to the next state. Therefore, the behavior of an mXn-put, g-state sequential machine B ,
at state (sq, 55, - - -, 5,), can be defined by

(El’E2’ "'7En
F

B (FI’FZ)"'5

seq

B b
{ o }=>\(771,772, "',77q,774+1, "':nq-f-m)'{

where

I vV 'V Vv
'V Vv vV V 'V Vv n n n
m n LI n n 1 2 m
S S S 1 2 q q+1 q+2 q+m
q 2 1
F F...F, E E...E E e 3
(b) (a)

Figure 1. Graphical representation of modules with m inputs
and n outputs: a) combinational module, b) sequen-
tial module with g state variables §;, 1<i <gq.

® the g+ m inputs represent the m input-port (environment) and ¢ input-state
values.

® EE, ---,E, are the n output port (environment) values produced in response
to the corresponding input port and input state values at all times.

® Fy,Fy - ,F, are the ¢ next-state values produced in response to the
corresponding input port and input state values at every step. They are evaluated
at the time of transition to the next state.

Combining the two components of (2) into a single definition, we write
B(s1,82, " s)=M0112 0 0) - (3)
((EpEg, - - - JEy), B(F1,Fa, - ,F,))
to explain the behavior of the sequential machine B, where:

® to distinguish between the state and the port inputs, we have moved the input-state
bound variables to the left of the equality symbol, while keeping the environment
inputs on the right side of the definition.

® we write B (sq, 55, - -+, s,) to represent module B at state (s, s5, - - -, s5q), and
B(Fq, Fy ---,F,;), to define the next state (Fq,F,, ---,F,) for B, where
F;,1<j <gq is the new value for the ji» state variable.

We also write
chb (sl’SZ’ T 5) =>‘(771>772’ e ’nm) . (EI’E27 T ’En) (4)

and

—4—

Bseq (sl’s2> T, 8)=>‘(771’772’ T ’nm) . (Fl’FZ’ T ’Fq) (5)

to represent B’s combinational and sequential behaviors, respectively.

2.3. Composite Modules

An mXn-put composite module f ¢ is defined as the interconnection of s submodules
£%¢! .. £°1 and a (hypothetical) nXm-put environment module f *, where the
input and output ports of f * define the output and the input ports of £ ¢ respectively, as
shown in Figure 2.

Environment

NN\
NN

§ Modules § Modules Q}\U\IX
\ 0to \ — 0 to NN \\\
N [s-1 | N s-1] NN
NNk

Figure 2. Modeling the environment of modules 0 to S-1 as
the module S.

Furthermore, we define
5 5

® 1=-yUr,o-= UJo?, as the set of internal input and output ports, respectively,
i=0 i=0

where I', 0<i <s,and 0¢, 0<i <s, are the sets of input and output ports
of the i —2 module, and

® P ={py,py --,p } as the set of nets used in connecting the submodules, such
that h: OUTI — P is a total function assigning a single ner to every port, where
h:0 — P is one-to-one and h:1 — P is onto.

To model the net connections of a module, say f * (m’ X n' —put , g* —state), we write
(yl’st "'7yn")=fcimb(sly*5‘2’ ""sqi)(xl,xZ, 5xmi) (6)

as a short form for

-5

Yi =N M2 M Mg 1 Mgt gy s Mgty) - Ej) (7)
(51,82, """ h 8, x1,%2, 0 L, x,) 1< <nf
where
£ b = N1 M2y ooy Mgis Mgty 15 Mgty 90 =" " Mgipmi) - E1, Egy -+, Eyi),

and y; €r(0%), 0<j <n', and x; €h(I'), 0<j <m', are the values of the nets
connected to the corresponding ports. Thus, the behavior of module f ¢, composed of
the interconnection of submodules £ %, ¢ 1 ... f ¢, using the connection nets P , can
be defined as
£°(L,s2 -, 85) =\hr(0)) . (rec

(YP =f (S)X") 1<i<s-1) (8)

in (h(I%),f° (£ 4 (ST)X) 1<i<s—1))),

seq

where
Yi=(yi,vh, -yl yjEeP—n(0*), 1<j<ni,1<i <s-1,
and
X' =(xi,x}, '--,x"';i),x} €p, 1<j<m',1<i<s,
are the net values, S = (s}, s}, ---,sq'}) is the set of states of f i, g¢ is the number

of state variables in f /, 1<i<s, and rec and in are defined as in [7].

—6 —

3. The Register-Transfer Design Paradigm

In this section we first discuss the type of signals used in a register-transfer design. This
helps us with the specification of the legal compositions of the design primitives. Only
legal compositions are amenable to our design analysis and proof techniques.

Next, we present four design primitives which are the building blocks of our design
environment. The primitives have three important properties:

they are designer friendly, namely, they provide the designer with design primitives
close to his normal design experience, and are thus easy to work with [8, 9].

they are easy to implement, in regular forms, within the constraints of sound
integrated-circuit design. The details of their implementations can be found in [10].

the behaviour of the primitives and their compositions are easy to formalize and
therefore amenable to mathematical treatment.

After discussing the primitives, we present a complete design that computes the greatest
common divisor (GCD) of two positive integers. We use this design later in the report
to demonstrate our correctness proof techniques.

3.1. Signal Types

The signals in a register-transfer design belong to one of three categories:

Data signals carry values from one primitive of the data-path to another. The inputs
and outputs of a register or an ALU are examples of these. Data signals also form
the data inputs and data outputs of the design. In this paper we assume that data
signals are positive integers for multi-bit data-paths, and logical values for one bit
data-path slices; we use solid lines to illustrate the data signals.

Control signals are inputs from the control-unit to the data-path; they help to
dynamically reconfigure the data-path, thereby rerouting data values. Examples
include the ‘load’ command to a register, which reconfigures the data-path to accept
a new or an old value, and the ‘operation-code’ command to an ALU, which recon-
figures the ALU into one of its several capabilities. We use dotted lines to illustrate
control signals.

Status signals indicate the status of a data-path. Sratus outputs inform the control-
part of the prevailing conditions inside the data-path. Examples include the ‘carry’
signal out of an adder and the signal out of a comparator. The carry-in signal to an
adder is an example of a szatus input signal. We use dashed lines to illustrate status
signals.

3.2. The Selector Primitive
A selector, sel , Figure 3.a, is a 3x1—put combinational device whose behaviour is
defined by

sel =X(dy,dj,¢c).(c —d,, dy), €)

where ‘—’ denotes if _then_else . Definition (9) indicates that the only output of a selec-
tor, a data signal, is equal to one of its two data inputs, d, or d, , and the selection is
made according to the value of control input c .

Figure 3. Data-path primitives: a) selectors, b) functionals, c)
unit-delays. Data, control, and status signals are
shown as solid, dotted, and dashed lines, respec-
tively. Modules are enclosed in patterned boxes to
indicate their interface boundaries.

3.3. Functional Primitives

Functionals are a family of (m+k)X(n+k)-put combinational devices, shown in Figure 3.b,
where m >1, k,n €{0,1}, and n+k >1.

The behaviour of a functional can be defined in one of the following three ways:

Ndy,dy "+ ,dyn,s).(E,G), (10)
X(dl&dZ""’dm’s)-(G), (11)
>‘(d1’d2’ ”"dm)'(E)’ (12)

where d;, 1 <i <m, are the data inputs, s is the sratus input, E is the data output, and
G is the status output.

—8 —

We now present a few typical functionals, specified according to the ways discussed in
(10)-(12).

Ex.1- Binary ‘and’ Module:
A binary and module is defined by

and =X\(a,b).(anb). (13)

Ex.2- Binary ‘equal’ Module
A binary equal module is defined by

equal =X(a,b,s).(s AN(a b)), (14)

where @ and b are the module’s data inputs, s is the status input indicating the result of
comparisons at more-significant slices, and s A (a @ b) is the status output to the less-
significant neighbouring slice.

Ex.3- Decimal ‘add’ Module
A decimal add module is defined by

add=X(a,b,s).((a+b+num(s))mod 10, num(s) +a+b >9), (15)

where a and & are the module’s data inputs, s is the carry input from the less-significant
neighbouring slice, (a + & + num (s)) is the data output, (num (s) + a + b >9) is the
carry to the more-significant neighbouring slice, and num : B — N is a function that pro-
duces the numerical equivalent of the status input signal.

3.4. The Table Primitives

Tables are a family of p Xg —put combinational modules. Syntactically, a table T is
defined by a two-dimensional array of m columns and » rows, where
m =p +q’nS2p,p Zqu Zlyandtij E{l,O,X},lgi Sm’lg.] Sn'

T is composed of two sub-arrays: C, the condition sub-array, and A, the action sub-
array, of p and ¢ columns, respectively, and » rows. Each column of C is associated
with one of the inputs of the module and each column of A with one of the outputs of
the module.

Operationally, we define the ith row of T to be enabled if the input values match the
corresponding C entries. The x entries of the table match both the 1 and the 0 values of
the input. When the ith row of T is enabled, the corresponding elements of A appear as
the module’s outputs. An x output indicates a floating output.

Typically, we capture a table’s semantics with the functional form

—9_

T=>‘(771’772’""np)'(BlaBb"'an)’ (16)

where the B;, 1<i <gq, are the sum of the products of the bound variables and their
complements. Tables are best implemented as PLA structures.

3.5. The Unit-Delay Primitive

A unit-delay, del, is a 1xX1—pur , single-state sequential device, shown in Figure 3.c. A
unit-delay’s output lags its input by one system-wide clock pulse. The behaviour of a
unit-delay primitive can be defined by

del (n)=X(i).(n,del(i)). 17)

Unit-delay elements are implemented using a pair of inverters and a two-phase non-
overlapping clock.

Delays are polymorphic [11] devices, and can be used to delay all three types of signals.

3.6. A Complete Register Transfer Design Example

A register-transfer design consists of a data-path and control-unit, as shown in Figure 4.
The data-path part is the processing element of the design, accepting data inputs and
producing data outputs. The control-unit part may or may not accept external inputs; in
either case it issues action signals to the data-path, instructing it on its next action. In
many applications, the control-unit has to sample the status of the data-path in order to
issue its next control signal.

In our approach, explained more fully in [6, 8, 9], the data-path is made of selector,
functional and unit-delay elements, connected only through their data ports. The uncon-
nected data ports form the design’s data ports. Any of the connected or unconnected
output ports of a data-path’s primitive elements can form the design’s output ports. The
control inputs of the selectors and the status outputs of the functionals of a data-path,
form the data-path’s action inputs and status outputs, and should be connected to the
control unit.

The control-unit of a design is made of a table, or possibly a hierarchy of tables, and
zero or more unit-delay primitives to hold the control-unit’s state information. This com-
bination of table(s) and unit-delays help to translate the data-path’s status and the
environment’s control inputs, if any, to actions applied to the data-path and module-
status, as shown in Figure 4. In the remaining part of this section, we present a circuit
design based on these principles.

Figure 5 illustrates a circuit which calculates the greatest common divisor (GCD) of two
values at its data-input ports, ‘iny’ and ‘in,’, and produces the result at its data-output
port ‘ot’.

— 10 —

Control inputsl > Module status

Control Unit

Actions
¥

\\
« Data-path status

Data inputs

Data Path | Data Qutputs

Figure 4. Schematic representation of a register-transfer
model. The design is divided into a data-path and
a control-unit.

The input values are sampled at the last assertion of the ‘r’ (reset) control input, and the
availability of the result is signaled by the first assertion of the ‘f (finish) status output.
The hardware follows the usual GCD algorithm of repeatedly subtracting the smaller
value from the larger value until the two values match. It is the purpose of this sub-
section to develop the functional model of the data-path and the control-parts indepen-

dently. In other applications, one may proceed to combine the two behaviours to derive
an overall model of the module.

Given functionals
eql =X(a,b).(a=b)
gt =\(b,b).(a >b)
sub =X\(a,b).(a —b)
and the composite register module
reg(a)=X\in ,id).(a ,reg(ld —in,a)),

and applying the composition rule (8) to the data-path, the ged_path is defined by

—-11 —

i Ny 1Ny

01x110
1xx0x0
000010
001100
1xx0x1

.//{.._

Lb

$o

N 4/4.--..-.---.
Afpasnrrassd

=

Aporrarronsansnsd
-
V)

ffyonnnn

contunit

4
i

==

Lailb

e - -

n

A

7
I/(...-.--.

75

%

P

A

Figure 5. Separate representations of a data-path (a) and a
control-unit (b) to calculate the greatest common
divisor of two positive integers at inputs in; and
in,. Input r signals the start of the computation.
Output f signals the availability of the results at
ot . The combined form, called GCD, is shown in
(c). Boxes labeled as a and b depict registers.

—12 —

ged_path (a,b) =X(inq, in,, j,k,la,Ib) . (rec(
(y1)=sel jy (y7,inq, j);
(y2) =sel jp, (y7,iny, j);
(ot) =reg pp(a)(yy,la);
(ya) =reg n (b) (2 Ib);
(s1)=ceql;pmy(0r,y4); (18)
(s2) =gtemp (01, y4);
(ys) =sel oy (¥4, 00,k);
(y6) =sel oy (0f, ¥4,k);
(y7)=sub . (y5,¥6))in(
(of,s41,52), ged_path (reg o, (a)(yq, la),
reg 5., ()(y2, Ib)))).

Note that in this example we assume that the status inputs to the data-path have been
implicitly initialized.

After expansion and simplification, the ged_path behaviour reduces to

ged_path (a,b) =X\(iny, ing, j,k,la,b).((a,a =b,a>b),
ged_path ((la — (j—iny, (k= (a—b),(b—a))), a), (19)
(b= (j—ing (k—(a-b),(b~a))), b))
This completes the definition of the data-path part.

The control-unit is made of two sub-modules: a table and a unit-delay. The table real-
izes the microprogram to be executed by the module. The unit-delay holds the state of
the control-part. We start by defining the table part, called pla, and combine it with the
unit-delay element to form the complete control-part, called contunit. The two steps are
described as follows:

Pla =X(r,sq,85,¢).(c',j,k,la,lb,f),
which is expanded to
pla =>\(r,s1,s2,c)((F/\EAYI)V(F/\C)’

o (FASTASIAT), TV(F ASIASIAT), (20)

—13 —

rV(F ASIASZAT), T Ac),
and
contunit (p) = X\(r, 54, 5,).(rec (
(¢’ j,k,la,lb, f)y=pla,,(r,sq,59,¢);
(c¢)=del sy (p)(c’))in (

(j,k,la,lb,f),contunit(delseq(p)(c’)))).

contunit can be reduced to
contunit (p) =X\(r,s1,52).(r,F As{AS,AD,
PV(FASIASIABR) T V(F ASTASZIAR)
(FAPp), contunit (FAP A s)V(FFAp)))-

(21)

(22)

— 14 —

4. Correctness of the Implementation

An algorithmic state machine (ASM) is a flow-chart representation of the state-transition
functions and output-functions of a state-machine [2, 12], and can be regarded as a vari-
ation of the state-diagram method for specifying state-machines.

Each ASM chart consists of the appropriate interconnection of three basic elements: a
state box, a condition box, and a conditional-output box. Each state of a state-machine is
represented by a unique srate box in the corresponding ASM chart. A state-machine’s
transition from one state to the next is represented by the flow of a hypothetical control-
pointer from one srate box to the next. The behaviour of a combinational circuit can be
represented by an ASM with a single state box.

Transitions from a given state in the state-machine to one of several next states are
shown in the ASM chart by cascading one or more condition boxes at the exit of the ori-
ginating state box. The combination of a state box and the condition boxes at its output,
if any, is called a state block and corresponds, roughly, to the state circles used in state
diagrams.

Each condition box contains a proposition on the inputs, and has two exit paths. The
choice of exit path, and therefore, the next state box, depends on the truth value of the
proposition at the time the control-pointer visits the condition box.

An ASM’s output is a list of signal names, where each name is a command for activat-
ing the corresponding signal. The ASM formalism distinguishes between outputs which
are activated unconditionally whenever a particular state is reached, and outputs whose
activations depend on certain input conditions. When ASM charts are used to specify
register-transfer designs, signal names may be replaced by the assignments they activate
in the data-path.

Traditionally, an ASM’s unconditional outputs are written inside the state box in which
they occur, while lists of conditional outputs are written inside one of possibly several
conditional output boxes placed at the appropriate exit of a condition box.

Later in this paper, we will write the assertions inside the state boxes. To avoid confu-
sion, we move the unconditional output lists from their state boxes to all of the condi-
tional output boxes associated with the state boxes. Thus, we will refer to the conditional
output boxes of our ASM charts simply as output boxes. In Figure 6 we show the ASM-
based behaviour of a JK-flipflop. In this and other ASM charts we illustrate the srate
boxes as solid rectangles, the condition boxes as diamonds, and the outpur boxes as rec-
tangles with rounded corners.

An ASM chart is particularly suited for specifying register-transfer-type designs, since it
explicitly separates a specification into a flow-control-part, representing a design’s
control-unit, and ousput lists, representing the data-path operations.

—15 —

Figure 6. ASM definition of a synchronous JK flip-flop. Out-
put lists ¢ and Q0 are moved to the output boxes.
Using standard ASM conventions, ¢ and Q
appear in the § and R boxes, respectively, with no
need for output boxes. The dotted line encloses the
boxes forming a state block.

Similarities between the ASM specification of hardware and the flow-chart specification
of computer programs suggests the use inductive assertions [4] for proving the correctness
of hardware. This method has several advantages over other hardware proof methods;
among these are:

® The existence of a body of experience, know-how, and techniques accumulated over
the past two decades.

® A wider user familiarity with the method, since it is the widely taught method for
proving correctness of algorithms in computer science and engineering programs.

e The potential to be a more practical tool than it is when applied to software, due to
the size of the useful hardware that can be proven correct compared to the size of
typical software undergoing a similar proof activity.

However, these advantages are somewhat eroded, for the following reason. ASM-based
specifications often go through ad-hoc steps of translation to hardware; thus, unless the
translation is fully automatic, confidence in the correctness of ASM representations can-
not be transferred to their implementation. To overcome this problem we propose a dif-
ferent approach to the use of ASMs in digital design: instead of using them as inputs to
the design activity, we derive them from the appropriately specified designs using the
derivation techniques discussed below.

—16 —

In the remaining parts of this section, we first discuss a method for extending designs to
include their input and output strings. We then convert the extended designs into their
functional form. This is followed by presenting a method for deriving a module’s ASM
specification from its functional specification. In the final step, motivated by goals simi-
lar to those applicable to the proof of correctness of software, we assign suitable asser-
tions to every state box of the derived ASM chart. We then show that the requirement
specification will hold between the state variables of the extended module if and when
the hardware reaches its output states.

Step 1- Extending Modules to Include I/O Sequences

Assertions on the behaviour of correctly designed modules are made on the sequences of
inputs and outputs of those modules. For example, in the case of the GCD hardware of
Figure 5, we would expect that: “Each activation of the control input will eventually
lead to an activation of the status output f, signaling the availability at data output ot of
the greatest common divisor of values m and n present at inputs inl and in2 at the time
of r’s activation."”

Software modules communicate with their environment in an explicit and sequential
form through the use of input and output statements. However, hardware modules com-
municate only in implicit forms, and this complicates the formalization of the above
assertion. In order to make explicit the form of the hardware communication, we extend
the hardware to include its input and output sequences.

Consider a hardware module M and an assertion A about some sequence of input-output
activities over M. The i/o_extension of M, denoted by M ’, is an extension of M by a suit-
able amount of hardware to simulate the generation of inputs and acceptance of outputs
according to A.

In Figure 7 we show an i/o_extension of the GCD module to include the sequence of
input-output activities described in the foregoing verbal assertion. In this extension, the
sequence of values input to r of contunit, Figure 5, is simulated by the design extension
part corresponding to the unit-delay elements r and g, initialized to ‘1’ and ‘0’, respec-
tively. The choice of the same identifier to refer to an unextended port and its
corresponding unit-delay extension (e.g., r in this case) was made for the sake of reada-
bility. As a result of this extension, the contunit will initially receive a ‘1’ on its r input,
followed by an infinite sequence of ‘0’s. This guarantees the proper behaviour of the
environment as expected by the input r of contunit.

A similar extension of the ged_path with unit-delay elements iny, in,, u, and u ,, initial-
ized to data values m, n, |, and | , respectively, where symbol | ’ indicates an unde-
fined value, simulates the proper input of the data values into the ged_path unit. The f
and the ged (m, n) are both single values, so unit-delay elements f and or are used to
represent them, respectively.

—17 —

q
~~~~~~~~~ 1y
\\,1
r f
\ ~
g\yz :y3
contunit
R
[P : H L] N
{j ik Lailb ¢
A v
bbb < !
fevy  S5S
y y
> u, |1 in, —=
y8
gcd_path ——»1 Ot
y
> u, Fisin, L »

Figure 7. Extending the ged design of Figure S.c to include
its inputs, output, control, and status signal strings.

The completed extension, called e_ged, lets us reformulate the assertion about the
expected behaviour of a correctly operating GCD module, as follows:

“Given the initial relationship
(r =1)A(g =0)A(ing=m )A(ing=n)

between the states of an extended ged module, and a sufficient number of state
transitions, the circuit will eventually reach a new state in which the relationship

(ot =gcd(m,n )IAN(f =1)

holds between the new states of extended ged.

Later in this paper, we will show that the output assertion indeed follows the input asser-
tion after a finite number of state transitions. We do so by assigning the two assertions
to the input and the output states of the ASM chart corresponding to the total extended

ged module.



—18 —

Step 2- Functional Model of The Extended Module

We now write separate functional models for the extended forms of the control-unit and
the data-path of a design. In the following formulations, e_contunit and e_gcd_path
refer to the extended forms of the control-unit and data-path of respectively. We have

e_contunit (p,r,q,f )=XN(sq,5,) . (rec(
(Jj,k,La,Lb,ys)=contunit ,, (p )(yz 51,53)
(y1)=del 4, (g )¥1)
(y2) =del ;pp, (7 )(yq))in (
(j,k,La,Lb ) e_contunit (contunit ;,, (p ) y2, 51,52)

delseq(q )(yl)’delseq(r )(yl)’delseq(f )(y3)))) .

We expand and simplify e_contunit’s behavioural equations to the following form:

e_contunit (p,r,q, f)=Ns1,52).((r, (FADP As1Asy),
(r V(FAP AstAs)), (r V(FAF AsiAs2))),  (23)
e_contunit (¥ Ap As{)V(F Ap ),q,q9, ¥ Ap)).
Similarly,
e_gcd_path(a,b,inl,inz,ul’uz,ot )=X(j,k,La,Lb ). (rec(
(y4)=del p (u1)(y4);
(ys)=del ;pp (u3)(ys);
(y6) =del oy (ing )(y4);
(y7) =del (iny )(ys);
(y8 51, 52) =ged_path (a,b )y y7, j,k,La,Lb ))in (
(s1,52), e_ged_path (ged_path ., (a,b )y y7, j,k,La,Lb ),
del o, (iny)(yq), del o (iny)(ys), del op (uq)(yyq),
del .,y (u2)(ys5), del, (or )(yg)))) .

This simplifies to

e_gcd_path(a,b,inl,inz,ul’uz,ot )=XJj,k,La,Lb ). (



—19 —

((a =b),(a >b)), e_ged_path (
(La_’(j_’inl’(k_'(a_b )’(b‘a)))aa)’ (24)
(Lb _*(j—’inZ’(k_’(a_b )’(b'—a)))’b),

ul,uz,ul,uz,a )) .

Step 3- Translating Functional Models into ASM Charts

An extended functional model is translated into a corresponding ASM chart in two
phases. The first phase derives the ASM chart’s flow-control part, i.e., the interconnec-
tion of the state and condition boxes. The second phase derives the output lists, and
completes the chart by adding the output boxes.

Given the current state and the environment inputs, we use the sequential (5) and com-
binational (4) behaviour models of the extended control-unit to derive the corresponding
next state and action outputs. Due to the closed nature of the extension process, the
environment inputs contributing to these derivations are from the data-path parts of the
designs. Only a few of the possible next states are ever reachable, due to the special
architecture of the extension hardware; so rather than enumerating all possible transi-
tions, we can use a search strategy starting from the input state to save on the amount of
computation required.

Considering the e_contunit and definitions (4) and (5), we obtain the following sequen-
tial and combinational behaviours:

e_contunitseq(p,r,q,f)=>\(s1,s2). (25)
(FAP As1)V(F AP )qg,q9,(F Ap))
e_contunit .., (P, 7,9, f)=X(s1,52).(r, (F AP /\s_l/\sz), (26)

(r V(FAPASIAS)), (r V(FAF As1AS2))).

The results of the search process using (25) and (26) are listed in Appendix I. The same
results are illustrated in Figure 8.a.

The second phase derives the data-path’s register-transfer assignments and the status
expressions, and assigns them to the ouspur and condition boxes, respectively. To do this,
the action vectors derived during the first phase are applied to the sequential and combi-
national models of the data-path; symbolic statements, which indicate the nature of the
transfers and the status, are derived and assigned to output and condition boxes. These
additions complete the derivation of the ASM chart.

Appendix II gives the results of applying the e_contunit’s action outputs to the following
sequential and combinational behaviours of e_ged_path:



—20 —

Figure 8.

o
ul = ul ul = ul
u2 = u2 u2 = u2
inl= ul inl= ul
in2= u2 in2= u2
a = a a = inl
b = Db b = in2
ot = a ot = a
v v
[]oooo |e
( a
ul = l
u2 = F
inl= T
in2=
a ==
b : ul = ul ul = ul
— uz = u2 u2 = u2
inl= ul inl= ul
in2= u2 in2= u2
a = a-b a = a
b =0b b = b-a
ot = a ot = a
v v

The ASM charts corresponding to the GCD design
of Figure 7. (a) The flow-control-part, depicting
the behaviour of the control-unit; strings in each
state box represent the values in unit-delays p, ¢, r
and f at that state, where ‘X’ stands for an unk-
nown state. (b) The combined behaviour of the
control-unit and the data-path.




—21 —

e_ged_path ,, (a, b, iny, ing,uq uy ot )=Nj,k,La,Lb ). (
(La = (j —iny, (k > (a—b ),(b—a ))),a), (27)
(Lb —(j —iny, (k =>(a—b ),(b—a))),b),
Wi, Uz, Uy, U a )
e ged path (a,b,inq,ing, uy uy ot Y=X7(j,k,La,Lb ). ( (28)
(a=b),(a >b))
The ASM chart corresponding to the e-ged module is shown in Figure 8.b.

Step 4- Proving the ASM Specification Correct

To verify the ASM chart, and thus the corresponding candidate hardware, we start by
proposing a mapping P from the ASM chart’s state boxes to propositions whose free vari-
ables are the unit-delay names of the candidate hardware. The propositions assigned to
the initial and final states of the computation are those known and expected to be true at
the start and end of the computation, respectively. We refer to these as the ‘input’ and
‘output’ states.

Next, we show that for every state box i, should the control-pointer starting from the
input state reach i, if at all, then P (i ) should be true. To prove this, we have to show
that for every pair of state boxes i and j, where i is a predecessor of j,

P (i){R,Q}P (j) (28)

holds. In (28), R is the conjunction of zero or more Boolean expressions assigned to the
condition boxes between i and j, and Q is one or more assignment statements that the
control-pointer visits on its path from state box i to state box j. The notation in (28) is
due to Hoare [13], and can be interpreted as “If P (i ) is true and the conditions and
the actions specified by R and Q are, respectively, true and executed, then P ( j ) must
also be true.”

Any rigorous demonstration of this requires a formal definition of the ASM chart, and
familiarity with the theory of inductive-assertions; these matters are beyond the scope of
this paper. Nonetheless, one can argue informally that, starting from an initial condition
satisfying the input proposition, if (28) is proven correct for all adjacent pairs of state
boxes, then for all subsequent szate boxes along any path, say k, P (k ) is also true.
Obviously, should the candidate hardware reach any of possibly several output state
boxes, if at all, then the corresponding output proposition must also be true.

The arguments needed to show that the path from the input state will eventually lead to
an output state are similar to those given for the termination of software programs. In
the case of our candidate design we can also verify, by inspection, that the hardware will
never falsely signal the availability of the output data. The output state is the only state
box in which f =1.



—22 —

Figure 9 shows a version of the ASM chart given in Figure 8.b, with suitable proposi-
tions. The reader may wish to verify the propositions, keeping in mind the following
properties of the greatest common divisor of integers:

a =ged(a,a)
ged(a,b )=ged(b,a)
ged(a,b )=gced(a+b,b ).

The search for suitable assertions to be placed at each state box, signifying the expected
relationship between the state variables if and when the control pointer visits that box,
requires some skill and ingenuity. Of course, this applies to other proof techniques as
well, and is by no means unique to the method of inductive assertions.



Input State

X 01X
(in1=m>0)&(in2=>0)

1000
(ot = ged(a,b) =
ged(m,n))&(a=b)

0000 I
ged(a,b) = ged(m,n)

v

>

T

[ I T I O |

Output State

1001 N
ol (ot = gcd(a,b) = 0l = ul | ol = ul
gcd(m,n))&(a=b) u2 = u2 u2 = u2
inl= ul inl= ul
‘ in2= u2 in2= u2
a = a-b a = a
b =D b = b-a
ot = a ot = a

Figure 9. The GCD module’s ASM chart, with the correct-
ness propositions for each state boxes. Each propo-
sition can be derived from the preceding
proposition(s); the input proposition is assumed
true.



—24 _
5. SUMMARY

In this paper we integrated established techniques with several novel methods to form the
main components of a hardware verification methodology; these consist of the “require-
ment specification”, “design definition”, and “reasoning” phases of a register-transfer
design paradigm.

For the design definition, we proposed a friendly register-transfer design environment
based on a small set of primitives, and a signal-typing scheme that controls the composi-
tion of legal designs. As well as being close to the designer’s normal design experience,
the primitives are amenable to a mathematical treatment. We proposed a complete
functional model for specifying the primitives and the behaviour of their compositions.
Later, we used the formalism to derive ASM specifications of candidate designs.

We then introduced automatic translations between the design and the implementation,
and the design and the proof environment, and argued that performing the design at a
level lower than that of the proof environment leads to improved confidence in the final
implementation.

We showed that in order to make assertions about the behaviour of a candidate design at
the interfaces, we had to extend the design to include its input and output strings.
Finally, the ASM charts were derived from the extended designs, and proved correct by
showing the existence of suitable assertions about the states that the hardware has to step
through, including the input and the output states.

It is our contention that, given the wealth of experience and know-how developed over
many years of applying similar methods to proving the correctness of software, the
method of inductive assertions is better suited for use by researchers and the design com-
munity than those methods which require newly developed skills, and possibly less well-
known mathematical techniques.

ACKNOWLEDGEMENT

We gratefully acknowledge the University of Waterloo funding and computing facilities
used to carry out the work reported here.

6. References

1. Gordon, Mike, Hardware Verification by Formal Proof, Technical Report No. 74,
Computer Laboratory, University of Cambridge, Cambridge, England (August
1985).

2. Clare, C., Designing Logic Systems using State Machines, McGraw Hill, Maidenhead
(1972).

3. Floyd, R. W., Assigning Meaning to Programs, pp. 19-32 in Proc. Symposium
Applied Math, American Mathematical Society, Providence, R. 1. (1967).

4. Hanna, F. K. and Daeche, N., Specification and Verification using Higher Order
Logic: A Case Study, Electronics Laboratory, University of Kent, Canterbury, Eng-
land (November 1985).



10.

11.

12.

13.

—25 —

Gordon M., A Model of Register Transfer Systems with Application to Microcode
and VLSI Correctness, CSR-82-81, University of Edinburgh, Dept. of Computer
Science, Edinburgh, Scotland (March 1981- revised May 1982).

Mavaddat, F., A Functional Model of Register-Transfer Design, CS-88-16, Dept.
of Computer Science, University of Waterloo, Waterloo, Ontario (April 1988).

Landin, P. J., The Mechanical Evaluation of Expressions, Computer Journal
6(4) pp. 308-320 (Jan. 1984).

Mavaddat, F., A Model for Register-Transfer Level Design Specification: The SDC
Notation, CS-84-34, Department of Computer Science, submitted for publication
and under revision, University of Waterloo, Waterloo, Ontario (October 1984).

Mavaddat, F., Designing and Modeling VLSI Systems at Register Transfer Level,
to appear in International Journal of Computer Aided VLSI Design 1(2) pp. 41-1 (June
1989).

Carver Mead and Lynn Conway, Introduction to VLSI Systems, Addison Wesley,
Reading, Mass. (1980).

Cardelli, Luca and Wegner, Peter, On Understanding Types, Data Abstraction,
and Polymorphism, Computing Surveys 17(4) pp. 471-522 (December 1985).

Green, D., Modern Logic Design, Addison-Wesley Publishing Company, Working-
ham, England (1986).

Hoare, C. A. R., An Axiomatic Basis for Computer Programming, Communications
of the ACM 12(10) pp. 576-583 (October 1969).



- 26 -

APPENDIX I

State-Table for the Flow-Control Part of the GCD chart

Present-State Status-inputs Next-State Action-outputs
p q r© f]sl s2 p q r f|j k La LIb
x 0 1 x| 0 0 0 0 0 0|1 0 1 1
x 0 1 x| 0O 1 0O 0 0 o011 0 1 1
x 0 1 x| 1 0 0 0 0 0j]1 0 1 1
x 0 1 x]1 1 0 0 0 0j1 0 1 1
0 0 0 ofoO 0 0 0 0 0|0 O O 1
0 0 0 0] O 1 0 0 0 0|0 1 1 0
0 0 0 01 0 1 0 0 0|0 O O 0
0 0 0 01 1 1 0 0 0jJ]O0 O O 0
1 0 0 0] O0 0 1 0 0 10 O O 0
1 0 0 00 1 1 0 0 110 O O 0
1 0 0 01 0 1 0 0 110 0 O 0
1 0 0 011 1 1 6 0 110 0 O 0
1 0 0 110 0 1 0 0 110 O O 0
1 0 0 110 1 1 0 0 110 O O 0
1 0 0 1)1 0 1 0 0 10 0 O 0
1 0 0 1(1 1 1 0 0 110 O O 0

Next-state and action-outputs are obtained by substituting the corresponding present-state
and status-input values in the behaviour expressions of e_contunit, i.e. (25) and (26),
respectively. Only states reachable from the initial state of ‘x 0 1 x’ are listed. An ‘X’
entry indicates an unknown unit-delay state. With reference to the e_ged_path,
(s1=1)A(s2=1) is not possible.



- 27 -

APPENDIX IT
Data-Path Assignments Table

0000 0100 1000 1100
ul = ul ul = ul ul = ul ul = ul
u2 = u2 u2 = u2 u2 = u2 u2 = u2
inl =ul inl =ul inl =ul inl =ul
in2 = u2 in2 =u2 in2 =u2 in2 =u2
a = a a = a a =a a =a
b =Db b =b b =Db b =b
ot =a ot =a ot =g ot =a

0001 0101 1001 1101
ul = ul ul = ul ul = ul ul = ul
u2 = u2 u2 = u2 u2 = u2 u2 = u2
inl =ul inl =ul inl =ul inl =ul
n2 =u2 in2 =u2 n2 =u2 in2 =u2
a = a a =a a =a a =a
b =b-a b =a-b b = in2 b = in2
ot = a ot =a ot =a ot = a

0010 0110 1010 1110
ul = ul ul = ul ul = ul ul = ul
u?2 = u2 u2 = u2 u2 = u2 u2 = u2
inl = ul inl =ul inl =ul inl = ul
in2 =u2 in2 =u2 in2 =u2 in2 =u2
a =b-a a =a-b a = inl a = inl
b =b b =b b =Db b =b
ot = a ot =a ot = a ot = a

0011 0111 1011 1111
ul = ul ul = ul ul = ul ul = ul
u2 = u2 u2 = u2 u2 = u2 u2 = u2
inl =ul inl =ul inl =ul int = ul
n2 =u2 in2 =u2 in2 =u2 in2 =u2
a =b-a a =a-b a = inl a = inl
b =b-a b =a-b b = in2 b = in2
ot = a ot =a ot =a ot = a

Each block of entries represents a unique action-input and the corresponding set of register-
transfer assignments. The first entry of each block represents, from left to right, the action-input
values corresponding to the j, k, La, and Lb ports of the data-path respectively.



The Correctness of Register-Transfer Design:
Inductive Assertions on Algorithmic State Machines

Farhad Mavaddat

VLSI Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

ABSTRACT

This paper proposes a method for reasoning about algorithmic state
machines (ASMs); the method is similar to the use of inductive assertions
to reason about flow chart programs. The ASM’s specification is derived
from a candidate design, written in a small set of register-transfer primi-
tives, using a formalism that we introduce early in the paper. The
correctness of the ASM specification, and the automatic translation of the
candidate design to circuit layout, strengthens our confidence in the
correctness of low-level design implementations.

We assign assertions, which signify the expected behaviour of correctly
designed hardware, to each state box of an ASM chart. To make proposi-
tions about a design’s interface behaviour, the candidate hardware is
extended to include its input and output strings, and the assertions are
applied to the charts corresponding to the extended hardware. This
extension lets us assign inductive assertions to the input, intermediate,
and output states, in an integrated form. We end by discussing the proof
steps needed to verify the assertions.

We argue that, given the wealth of experience and know-how developed
over many years of applying similar methods to proving the correctness of
software, the method of inductive assertions may be better suited to
hardware design than those methods which require newly developed
skills, and possibly less well-known mathematical techniques.



The Correctness of Register-Transfer Design:
Inductive Assertions on Algorithmic State Machines

Farhad Mavaddat

VLSI Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

1. INTRODUCTION

A hardware design methodology employing formal verification entails [1]:
1-  writing a high-level “requirement specification”,
2- designing an implementation, and
3- proving mathematically that the design meets its specification.

To accomplish this, we need a suitable formal system to state the “requirement specifica-
tion”; a design implementation paradigm, at some suitable level of abstraction, to imple-
ment a candidate design; and a mapping from the candidate design to the formal sys-
tem, so that the designer can verify the design’s correctness through symbolic reasoning.

The choice of formal system and implementation paradigm are central to how practical,
and hence acceptable, the proof process will be, and to the degree of confidence one has
in the final design.

In the remainder of this paper we propose a method for capturing a candidate design’s
behavior and “requirement specification” with a single algorithmic state machine (A SM)
[2]. We also propose a method for proving the correctness of the derived ASMs. The
method is similar to the inductive assertions technique [3] for proving the correctness of
software. By way of example, we will follow a small, but non-trivial, design throughout
this paper, and end by proving that its proposed implementation meets its requirement
specification. Our ability to discuss a design of this size in a few pages demonstrates the
power and simplicity of our method.

Hanna and Daeche discuss desirable properties of proof techniques [4], and argue that
the “formal systems should already exist” ... “be powerful and concise” ... and “not too
removed from the digital engineer’s intuition.” One can well appreciate that the use of
existing and powerful systems will help with the practicality of the proof process.



-2 -

It is our contention that the combination of inductive assertions and algorithmic state
machines in the proof of hardware correctness meets the most important of the criteria
for acceptability proposed by Hanna and Daeche.

2. Mathematical preliminaries

In this section we use an extension of the Lambda calculus to model digital designs.
Later we will use this formalism as a mapping mechanism between hardware designs and
the corresponding ASM charts.

A combinational circuit’s behavior is modelled by a syntactic extension of the Lambda
calculus. Sequential circuit behavior is harder to define, and we only give an intuitive
description of the formalism used. For a more formal treatment of the subject, based on
denotational semantics, the reader is referred to [5]. For a typed extension of the model
used in the formal definition of register-transfer designs see [6].

In this section we also define the formalism needed to derive the behavior of a composite
module from the behavior of its sub-modules.

2.1. Defining Combinational Modules

We define an m-input, n-output ( mXn-put ) combinational device D , shown in Figure
1.a, by

D = )‘(771’772’ Y/ )'(EDEZ’ “r LB, ), (1)
where the right side of (2) is a short form for
A2, ) - Ey, 1<i<n
and where n;, 1< j<m, is the j —h input port’s value, and X1, n2, 0 s Mm). Ex,

1<k <n, defines the k —» output port’s value.

2.2. Defining Sequential Circuits

At every state, the behavior of a Mealy-type sequential machine B, shown in Figure 1.b,
has two components. The first component is its combinational behavior, B,,, , under the
influence of the current state and input ports, and the second component is its next state
behavior, B,,, , under the influence of the state and input ports at the time of transition
to the next state. Therefore, the behavior of an mXn-put, g-state sequential machine B,
at state (sq, s, - - -, sq ), can be defined by

B mp } (E,Ey -+ ,E )
= )‘( M M2 " 5 Ny n +1 ", M ) . ’ ’ o (2)
{Buq q°'q q+m (FuFy - F.)

where



I v V - \'
Vv V \"4 \4 \"4 A\ n n n
non n on oq n .2 m
S S S 1 2 q q+1 q+2 q+m
i —T F F...F, E E...E
1 2 ° " q 1 n -
Y Y T vV VY E, E - E,

(b) (a)

Figure 1. Graphical representation of modules with m inputs
and n outputs: a) combinational module, b) sequen-
tial module with ¢ state variables s;, 1<i <gq.

® the g+ m inputs represent the m input-port (environment) and ¢ input-state
values.

® E, E, ---,E, are the n output port (environment) values produced in response
to the corresponding input port and input state values at all times.

® F,,Fy ---,F, are the ¢ next-state values produced in response to the
corresponding input port and input state values at every step. They are evaluated
at the time of transition to the next state.

Combining the two components of (2) into a single definition, we write
B(sy,82, " 580 )=NMN0p02 " slm) - (3)
((EvE2 - " Ey), B(F,F 3, - -+ JFy))
to explain the behavior of the sequential machine B, where:

® to distinguish between the state and the port inputs, we have moved the input-state
bound variables to the left of the equality symbol, while keeping the environment
inputs on the right side of the definition.

® we write B (sy, 55, - -, s,) to represent module B at state (sq, s5, - - -, s, ), and
B(Fy,Fy ---,F,), to define the next state (Fq, F,, - - -, F,) for B, where
F;,1<j <gq is the new value for the jt» state variable.

We also write
Bomp (51,82, * - » §q )=X"102 " ) - (EEg -+ " E,) (4)

and



—4 —

Bseq (s1’s2: BRI )=)\(771,772,"‘,77m)- (FI’F2;"'qu) (5)

to represent B’s combinational and sequential behaviors, respectively.

2.3. Composite Modules

An mXn-put composite module f ¢ is defined as the interconnection of s submodules
£9¢Y ... £*-1 anda (hypothetical) nXm-put environment module f *, where the
input and output ports of f * define the output and the input ports of f ¢ respectively, as
shown in Figure 2.

Environment

\\\\\\\\\\\\
N -
\ § ' SO
§ Mgc:ules % Mgc:ules \Moduh
§ N T \\
\ § N

Figure 2. Modeling the environment of modules 0 to S-1 as
the module S. ‘

Furthermore, we define

§ 5
® 1=UrI',0=Uo0", as the set of internal input and output ports, respectively,
i=0 i=0
where I, 0<i <s,and 0!, 0<i <s, are the sets of input and output ports
of the i —» module, and
® P ={py,p2 *,p} as the set of nets used in connecting the submodules, such
that n:OUI — P is a total function assigning a single net to every port, where
h:0 — P is one-to-one and h:1 — P is onto.

To model the net connections of a module, say £ ¢ (m‘ X n' —put , q* —state ), we write
(yl7y2’ ""yn")=fcimb(sl,s2’ ) q’ )(X1,X2, ,Xmi) (6)

as a short form for



-5 =

Yj =()‘(']1’ n2, "‘,ﬂq-', nqi.,.p nq'.'.z’ "',nqi+mi)'Ej) (7)
(51, 59 TS X1, X, t LX) 1< <n' ,
where
fclmb =>‘(’71’ N2s «eves ﬂqi, 77,,1_,.1, ’7qi+2, "'nqi+mi).(E1,E2, "',E"i),

and y; €r(0'), 0<j <n', and x; €n(I'), 0<j <m', are the values of the nets
connected to the corresponding ports. Thus, the behavior of module f ¢, composed of

the interconnection of submodules £ %, f !, --. ¢, using the connection nets P , can
be defined as
£°(SL,82 -, 8 Y =Nh(0*)). (rec

(Y =1 4 (S')XT) 1<i<s-1) (8)

in (B(I°),f°(f (S )X") 1<i<s-1))),

where
Yi=(yl,yh, -yl ),y €EP—R(0%), 1<) <ni,1<i <51,
and
X' =(x{,xh, - xli)xfer, 1< <m',1<i <s,
are the net values, ' = (st , s}, '--,sqi; ) is the set of states of f /, g/ is the number

of state variables in f {, 1<i<s, and rec and in are defined as in [7].



-6 —

3. The Register-Transfer Design Paradigm

In this section we first discuss the type of signals used in a register-transfer design. This
helps us with the specification of the legal compositions of the design primitives. Only
legal compositions are amenable to our design analysis and proof techniques.

Next, we present four design primitives which are the building blocks of our design
environment. The primitives have three important properties:

they are designer friendly, namely, they provide the designer with design primitives
close to his normal design experience, and are thus easy to work with [8, 9].

they are easy to implement, in regular forms, within the constraints of sound
integrated-circuit design. The details of their implementations can be found in [10].

the behaviour of the primitives and their compositions are easy to formalize and
therefore amenable to mathematical treatment.

After discussing the primitives, we present a complete design that computes the greatest
common divisor (GCD) of two positive integers. We use this design later in the report
to demonstrate our correctness proof techniques.

3.1. Signal Types

The signals in a register-transfer design belong to one of three categories:

Data signals carry values from one primitive of the data-path to another. The inputs
and outputs of a register or an ALU are examples of these. Data signals also form
the data inputs and data outputs of the design. In this paper we assume that data
signals are positive integers for multi-bit data-paths, and logical values for one bit
data-path slices; we use solid lines to illustrate the data signals.

Control signals are inputs from the control-unit to the data-path; they help to
dynamically reconfigure the data-path, thereby rerouting data values. Examples
include the ‘load’ command to a register, which reconfigures the data-path to accept
a new or an old value, and the ‘operation-code’ command to an ALU, which recon-
figures the ALU into one of its several capabilities. We use dotted lines to illustrate
control signals.

Status signals indicate the status of a data-path. Status outputs inform the control-
part of the prevailing conditions inside the data-path. Examples include the ‘carry’
signal out of an adder and the signal out of a comparator. The carry-in signal to an
adder is an example of a szatus input signal. We use dashed lines to illustrate status
signals.



3.2. The Selector Primitive
A selector, sel , Figure 3.a, is a 3X1—pur combinational device whose behaviour is
defined by

sel =>‘(dl»d2’c)-(c —"d2,d1)’ (9)

where ‘—’ denotes if _then_else . Definition (9) indicates that the only output of a selec-
tor, a data signal, is equal to one of its two data inputs, d or d,, and the selection is
made according to the value of control input ¢ .

Figure 3. Data-path primitives: a) selectors, b) functionals, c)
unit-delays. Data, control, and status signals are
shown as solid, dotted, and dashed lines, respec-
tively. Modules are enclosed in patterned boxes to
indicate their interface boundaries.

3.3. Functional Primitives

Functionals are a family of (m+k)X(n+k)-put combinational devices, shown in Figure 3.b,
wherem >1, k,n €{0,1}, and n+k >1.

The behaviour of a functional can be defined in one of the following three ways:

Mdy,dy -y dy,s).(E,G), (10)
Ndy,dy - ,dy,s).(G), (11)
>\(d1)d2, ' "’dm)'(E)’ (12)

where d;, 1 <i <m, are the data inputs, s is the status input, E is the data output, and
G is the status output.



-8 —

We now present a few typical functionals, specified according to the ways discussed in
(10)-(12).

Ex.1- Binary ‘and’ Module:
A binary and module is defined by
and =X(a,b).(aAb). (13)

Ex.2- Binary ‘equal’ Module
A binary equal module is defined by

equal =X(a,b,s).(s A(a b)), (14)

where @ and b are the module’s data inputs, s is the status input indicating the result of
comparisons at more-significant slices, and s A (a @ b ) is the status output to the less-
significant neighbouring slice.

Ex.3- Decimal ‘add’ Module
A decimal add module is defined by

add=Xa,b,s).((a+b+num(s))mod 10, num(s) +a+b >9), (15)

where a and b are the module’s data inputs, s is the carry input from the less-significant
neighbouring slice, (a+ b+ num (s)) is the data output, (num (s) +a + b >9) is the
carry to the more-significant neighbouring slice, and num : B — N is a function that pro-
duces the numerical equivalent of the status input signal.

3.4. The Table Primitives

Tables are a family of p Xq —put combinational modules. Syntactically, a table T is
defined by a two-dimensional array of m columns and » rows, where
m =p +q,"SZP,P _>_0’q 219andtij G{l,o,x},lﬁi Sm,lﬁj Sn-

T is composed of two sub-arrays: C, the condition sub-array, and A, the action sub-
array, of p and ¢ columns, respectively, and n rows. Each column of C is associated
with one of the inputs of the module and each column of A with one of the outputs of
the module.

Operationally, we define the ith row of T to be enabled if the input values match the
corresponding C entries. The x entries of the table match both the 1 and the 0 values of
the input. When the itn row of T is enabled, the corresponding elements of A appear as
the module’s outputs. An x output indicates a floating output.

Typically, we capture a table’s semantics with the functional form



-9 —

T=>\('71,’72, ""np)'(BI,BZ’ ""Bq), (16)

where the B;, 1<i <gq, are the sum of the products of the bound variables and their
complements. Tables are best implemented as PLA structures.

3.5. The Unit-Delay Primitive

A unit-delay, del, is a 1X1—pur , single-state sequential device, shown in Figure 3.c. A
unit-delay’s output lags its input by one system-wide clock pulse. The behaviour of a
unit-delay primitive can be defined by

del (n )=Xi).(n,del(i)). an

Unit-delay elements are implemented using a pair of inverters and a two-phase non-
overlapping clock.

Delays are polymorphic [11] devices, and can be used to delay all three types of signals.

3.6. A Complete Register Transfer Design Example

A register-transfer design consists of a data-path and control-unit, as shown in Figure 4.
The data-path part is the processing element of the design, accepting data inputs and
producing data outputs. The control-unit part may or may not accept external inputs; in
either case it issues action signals to the data-path, instructing it on its next action. In
many applications, the control-unit has to sample the status of the data-path in order to
issue its next control signal.

In our approach, explained more fully in [6, 8, 9], the data-path is made of selector,
functional and unit-delay elements, connected only through their data ports. The uncon-
nected data ports form the design’s data ports. Any of the connected or unconnected
output ports of a data-path’s primitive elements can form the design’s output ports. The
control inputs of the selectors and the status outputs of the functionals of a data-path,
form the data-path’s action inputs and status outputs, and should be connected to the
control unit.

The control-unit of a design is made of a table, or possibly a hierarchy of tables, and
zero or more unit-delay primitives to hold the control-unit’s state information. This com-
bination of table(s) and unit-delays help to translate the data-path’s status and the
environment’s control inputs, if any, to actions applied to the data-path and module-
status, as shown in Figure 4. In the remaining part of this section, we present a circuit
design based on these principles.

Figure 5 illustrates a circuit which calculates the greatest common divisor (GCD) of two
values at its data-input ports, ‘in,’ and ‘in,’, and produces the result at its data-output
port ‘ot’.



—10 —

Control inputsl N Module status

Control Unit

.‘\
'
[

Actions ! Data-path status

Data inputs 9
inp Data Path Data OQutputs

Figure 4. Schematic representation of a register-transfer
model. The design is divided into a data-path and
a control-unit.

The input values are sampled at the last assertion of the ‘7’ (reset) control input, and the
availability of the result is signaled by the first assertion of the ‘f (finish) status output.
The hardware follows the usual GCD algorithm of repeatedly subtracting the smaller
value from the larger value until the two values match. It is the purpose of this sub-
section to develop the functional model of the data-path and the control-parts indepen-

dently. In other applications, one may proceed to combine the two behaviours to derive
an overall model of the module.

Given functionals
eql =X (a,b ).(a =b)
gt =X(b,b).(a >b)
sub =X(a,b ).(a —b)
and the composite register module
reg(a )=X(in ,ld ).( a ,reg(ld —in,a)),

and applying the composition rule (8) to the data-path, the ged_path is defined by



—11 —

Figure 5. Separate representations of a data-path (a) and a
control-unit (b) to calculate the greatest common
divisor of two positive integers at inputs in, and
iny. Input r signals the start of the computation.
Output f signals the availability of the results at
ot . The combined form, called GCD, is shown in
(c). Boxes labeled as a and b depict registers.

AND OR
Plane Plane
ir
R i
1 xXxX 0O1x110
01x0 1xx0x0
0000 000010
0010 001100
Oxxt 1xx0x1
Ve c'| i
Pl bk P
s1::s2 : T o
i Ma
( b))
L) Q
ir o
\\‘ ]
contunit
s NI
jikiailb
\\i\‘\» o 581:32
in ot
1> ged_path ->
in,
(c)—- GCD



—12 —

gcd_path(a,b)=>\(in1,in2,j,k,la,lb).(rec(
(y1) =sel oy (y7,inq, j);
(y2) =sel oy (y7q,ing j);
(ot )=reg my(a)(yy,la);
(ya) =reg oy (b) (y3, 1b);
(s1)=eqly (0r,y4); (18)
(s2) =8tcms(0t,y4);
(ys5) =sel pp(yg, 0t, k );
(y6) =sel oy (01, y4,k );
(y7) =sub o (¥5,¥6)) in (
(ot,sq,s,), ged_path (reg ., (a)(yq, la),
reg . (£ )(y2, 1b)))).

Note that in this example we assume that the status inputs to the data-path have been
implicitly initialized.

After expansion and simplification, the ged_path behaviour reduces to

ged path (a,b )=A(inq,iny, j, k,la,lb).((a,a =b,a>b),
ged_path ((la — (j—iny, (k—(a—b),(b—a))), a), (19)
(b= (j—ing (k—(a—b),(b—a))), b))
This completes the definition of the data-path part.

The control-unit is made of two sub-modules: a table and a unit-delay. The table real-
izes the microprogram to be executed by the module. The unit-delay holds the state of
the control-part. We start by defining the table part, called pla, and combine it with the
unit-delay element to form the complete control-part, called contunit. The two steps are
described as follows:

pla =X(r,sq,85,¢).(c’,j,k,la,lb,f),
which is expanded to
Pla =)\(r,s1,s2,c )'((FAEASI)V(FAC)’

r o (FASIASIAET), rV(F ASIASIAT), (20)



—13 —

rV(F AS{AS2AE), T Ac),
and
contunit (p) =X (r, sq, 53).(rec (
(c'sj k,la,b,f)=plau(r,sq, 52 ¢ );

(c¢)=delp(p)(c’))in (

(Jj,k,la,ib, f), contunit (del .., (p)(c')))).

contunit can be reduced to
contunit (p) =\(r,s1,5;).(r,F ASLASIAP,
r V(F ASIASaAD), r V(F AS{ASIAF)

(FAPp ), contunit (FAPA s )V(FAP))).

(21)

(22)



—14 —

4. Correctness of the Implementation

An algorithmic state machine (ASM) is a flow-chart representation of the state-transition
functions and output-functions of a state-machine [2, 12], and can be regarded as a vari-
ation of the state-diagram method for specifying state-machines.

Each ASM chart consists of the appropriate interconnection of three basic elements: a
state box, a condition box, and a conditional-output box. Each state of a state-machine is
represented by a unique state box in the corresponding ASM chart. A state-machine’s
transition from one state to the next is represented by the flow of a hypothetical control-
pointer from one szate box to the next. The behaviour of a combinational circuit can be
represented by an ASM with a single stare box.

Transitions from a given state in the state-machine to one of several next states are
shown in the ASM chart by cascading one or more condition boxes at the exit of the ori-
ginating state box. The combination of a state box and the condition boxes at its output,
if any, is called a state block and corresponds, roughly, to the state circles used in state
diagrams.

Each condition box contains a proposition on the inputs, and has two exit paths. The
choice of exit path, and therefore, the next state box, depends on the truth value of the
proposition at the time the control-pointer visits the condition box.

An ASM’s output is a list of signal names, where each name is a command for activat-
ing the corresponding signal. The ASM formalism distinguishes between outputs which
are activated unconditionally whenever a particular state is reached, and outputs whose
activations depend on certain input conditions. When ASM charts are used to specify
register-transfer designs, signal names may be replaced by the assignments they activate
in the data-path.

Traditionally, an ASM’s unconditional outputs are written inside the state box in which
they occur, while lists of conditional outputs are written inside one of possibly several
conditional output boxes placed at the appropriate exit of a condition box.

Later in this paper, we will write the assertions inside the state boxes. To avoid confu-
sion, we move the unconditional output lists from their state boxes to all of the condi-
tional output boxes associated with the state boxes. Thus, we will refer to the conditional
output boxes of our ASM charts simply as output boxes. In Figure 6 we show the ASM-
based behaviour of a JK-flipflop. In this and other ASM charts we illustrate the state
boxes as solid rectangles, the condition boxes as diamonds, and the output boxes as rec-
tangles with rounded corners.

An ASM chart is particularly suited for specifying register-transfer-type designs, since it
explicitly separates a specification into a flow-control-part, representing a design’s
control-unit, and output lists, representing the data-path operations.



—15 —

Figure 6. ASM definition of a synchronous JX flip-flop. Out-
put lists 0 and Q are moved to the output boxes.
Using standard ASM conventions, ¢ and Q
appear in the § and R boxes, respectively, with no
need for output boxes. The dotted line encloses the
boxes forming a state block.

Similarities between the ASM specification of hardware and the flow-chart specification
of computer programs suggests the use inductive assertions [4] for proving the correctness
of hardware. This method has several advantages over other hardware proof methods;
among these are:

®  The existence of a body of experience, know-how, and techniques accumulated over
the past two decades.

® A wider user familiarity with the method, since it is the widely taught method for
proving correctness of algorithms in computer science and engineering programs.

® The potential to be a more practical tool than it is when applied to software, due to
the size of the useful hardware that can be proven correct compared to the size of
typical software undergoing a similar proof activity.

However, these advantages are somewhat eroded, for the following reason. ASM-based
specifications often go through ad-hoc steps of translation to hardware; thus, unless the
translation is fully automatic, confidence in the correctness of ASM representations can-
not be transferred to their implementation. To overcome this problem we propose a dif-
ferent approach to the use of ASMs in digital design: instead of using them as inputs to
the design activity, we derive them from the appropriately specified designs using the
derivation techniques discussed below.



—16 —

In the remaining parts of this section, we first discuss a method for extending designs to
include their input and output strings. We then convert the extended designs into their
functional form. This is followed by presenting a method for deriving a module’s ASM
specification from its functional specification. In the final step, motivated by goals simi-
lar to those applicable to the proof of correctness of software, we assign suitable asser-
tions to every state box of the derived ASM chart. We then show that the requirement
specification will hold between the state variables of the extended module if and when
the hardware reaches its output states.

Step 1- Extending Modules to Include I/O Sequences

Assertions on the behaviour of correctly designed modules are made on the sequences of
inputs and outputs of those modules. For example, in the case of the GCD hardware of
Figure 5, we would expect that: “Each activation of the control input r will eventually
lead to an activation of the status output f, signaling the availability at data output ot of
the greatest common divisor of values m and n present at inputs inl and in2 at the time
of r’'s activation."”

Software modules communicate with their environment in an explicit and sequential
form through the use of input and output statements. However, hardware modules com-
municate only in implicit forms, and this complicates the formalization of the above
assertion. In order to make explicit the form of the hardware communication, we extend
the hardware to include its input and output sequences.

Consider a hardware module M and an assertion A about some sequence of input-output
activities over M. The i/o_extension of M, denoted by M ', is an extension of M by a suit-
able amount of hardware to simulate the generation of inputs and acceptance of outputs
according to A.

In Figure 7 we show an i/o_extension of the GCD module to include the sequence of
input-output activities described in the foregoing verbal assertion. In this extension, the
sequence of values input to r of contunit, Figure 5, is simulated by the design extension
part corresponding to the unit-delay elements r and ¢, initialized to ‘1’ and ‘0’, respec-
tively. The choice of the same identifier to refer to an unextended port and its
corresponding unit-delay extension (e.g., r in this case) was made for the sake of reada-
bility. As a result of this extension, the contunit will initially receive a ‘1’ on its r input,
followed by an infinite sequence of ‘0’s. This guarantees the proper behaviour of the
environment as expected by the input r of contunit.

A similar extension of the ged_path with unit-delay elements in , in,, u,, and u ,, initial-
ized to data values m, n, |, and |, respectively, where symbol ¢ | ’ indicates an unde-
fined value, simulates the proper input of the data values into the ged_path unit. The f
and the gcd (m , n ) are both single values, so unit-delay elements f and ot are used to
represent them, respectively.



q
y
\v1
r f
v A
Ya
contunit
TR NI
i {k Lailb
1 N = H ]
Py Side
y y
u, 1 in, &
I _ Y,
gcd_path ot
y
I—» u, sl in, |—»

Figure 7. Extending the ged design of Figure 5.c to include
its inputs, output, control, and status signal strings.

The completed extension, called e_ged, lets us reformulate the assertion about the
expected behaviour of a correctly operating GCD module, as follows:

“Given the initial relationship
(r=1)A(g =0)A(iny=m )A(iny=n)

between the states of an extended ged module, and a sufficient number of state
transitions, the circuit will eventually reach a new state in which the relationship

(ot =gcd(m,n ))AN(f =1)
holds between the new states of extended ged.

Later in this paper, we will show that the output assertion indeed follows the input asser-
tion after a finite number of state transitions. We do so by assigning the two assertions
to the input and the output states of the ASM chart corresponding to the total extended
gcd module.



—18 —

Step 2- Functional Model of The Extended Module

We now write separate functional models for the extended forms of the control-unit and
the data-path of a design. In the following formulations, e_contunit and e_gcd_path
refer to the extended forms of the control-unit and data-path of respectively. We have

e_contunit (p,7,q, f ) =N(sq,5;,) . (rec(
(Jj,k,La,Lb,y3) = contunit o, (p )(y3 541, 57)
(y1)=del 4y, (g Y1)
(y2)=del iy, (r )(y1))in (
(j,k,La,Lb ) ,e_contunit ( contunit seqg(P N ya281,52),
del .,y (g )(y1).del ., (r ) yy)del,,(f )y3))).

We expand and simplify e_contunit’s behavioural equations to the following form:

econtunit (p,r,q,f)=\s1,5,).((r, (FAP As1As,),
(r VIFAF AsiAs3)), (r V(FAB AS{ASZ))),  (23)
econtunit (7 Ap As1)V(F Ap ),q,q, 7 Ap)).

Similarly,

e_gcd_path(a,b,inl,inz,ulyuz’ot)=)\(j,k,La,Lb ) . (rec(

(ya) =del gy (11 )(y4);

(ys)=del ;ny (uz)(ys);

(y6) =del gy (iny)(y4);

(J’7)=delcmb(i"2)_(}’s);

(8 51,52) =ged_path (a,b N y6 y7, j,k,La,Lb ))in (
(s1,52), eged _path (ged_path ., (a,b ) ye y7 j, k,La,Lb ),
del .., (iny )(y4), del o, (ing)(ys), del,, (uqg)(ysq),
del o, (u3)(ys), del,, (o )(yg)))).

This simplifies to

e_gcd_path(a,b,inl,inz,ul’uz,ot )=Xj,k,La,Lb ). (



—-19 —

((a =b),(a >b)), e_ged_path (
(La = (j —iny, (k =(a—b ),(b—a))),a), (24)
(Lb —(j —ing, (k = (a—b),(b—a))),b),

Wi, g, Uy, U, a )) .

Step 3- Translating Functional Models into ASM Charts

An extended functional model is translated into a corresponding ASM chart in two
phases. The first phase derives the ASM chart’s flow-control part, i.e., the interconnec-
tion of the state and condition boxes. The second phase derives the output lists, and
completes the chart by adding the output boxes.

Given the current state and the environment inputs, we use the sequential (5) and com-
binational (4) behaviour models of the extended control-unit to derive the corresponding
next state and action outputs. Due to the closed nature of the extension process, the
environment inputs contributing to these derivations are from the data-path parts of the
designs. Only a few of the possible next states are ever reachable, due to the special
architecture of the extension hardware; so rather than enumerating all possible transi-
tions, we can use a search strategy starting from the input state to save on the amount of
computation required.

Considering the e_contunit and definitions (4) and (5), we obtain the following sequen-
tial and combinational behaviours:

e_contunituq(p,r,q,f)=)\(s1,s2). (25)
((FAP Asy)V(F AP )g,9,(F Ap))
e_contunit ..., (p, 7,9, f)=X(s1,52).(r, (FAP /\S—;/\Sz), (26)

(r V(FABP As1AS2)),(rV(FAP AsiAS2))).

The results of the search process using (25) and (26) are listed in Appendix I. The same
results are illustrated in Figure 8.a.

The second phase derives the data-path’s register-transfer assignments and the status
expressions, and assigns them to the ouspur and condition boxes, respectively. To do this,
the action vectors derived during the first phase are applied to the sequential and combi-
national models of the data-path; symbolic statements, which indicate the nature of the
transfers and the status, are derived and assigned to output and condition boxes. These
additions complete the derivation of the ASM chart. |

Appendix II gives the results of applying the e_contunit’s action outputs to the following
sequential and combinational behaviours of e_gcd_path:



—20 —

Figure 8.

ul = ul
u2 = u2
inl= ul
in2= u2
a = inl
b = in2
ot = a
[oooo |e
( a
F,
F
T
ul = ul ul = ul
u2 = u2 u2 = u2
inl= ul inl= ul
in2= u2 in2= u2
a = a-b a = a
b =b b = b-a
ot = a ot = a

The ASM charts corresponding to the GCD design
of Figure 7. (a) The flow-control-part, depicting
the behaviour of the control-unit; strings in each
state box represent the values in unit-delays p, g, r
and f at that state, where ‘X’ stands for an unk-
nown state. (b) The combined behaviour of the
control-unit and the data-path.




—21 —

e_gcd_pathm(a,b,inl,inz,ul,uz’ot )=X(j,k,La,Lb ). (
(La = (j —iny, (k =(a~b ), (b—a))),a), (27)
(Lb = (j —iny (k = (a—b ), (b—a))),b),
Wi, U2, Uy, U, G )
e ged path (a,b,iny,ing uq uy ot )=X(j,k,La,Lb ) .( (28)
(a =b),(a>b))
The ASM chart corresponding to the e-ged module is shown in Figure 8.b.

Step 4- Proving the ASM Specification Correct

To verify the ASM chart, and thus the corresponding candidate hardware, we start by
proposing a mapping P from the ASM chart’s state boxes to propositions whose free vari-
ables are the unit-delay names of the candidate hardware. The propositions assigned to
the initial and final states of the computation are those known and expected to be true at
the start and end of the computation, respectively. We refer to these as the ‘input’ and
‘output’ states.

Next, we show that for every state box i, should the control-pointer starting from the
input state reach i, if at all, then P (i ) should be true. To prove this, we have to show
that for every pair of szate boxes i and j, where i is a predecessor of j,

P(i){R,Q}P (j) (28)

holds. In (28), R is the conjunction of zero or more Boolean expressions assigned to the
condition boxes between i and j, and Q is one or more assignment statements that the
control-pointer visits on its path from state box i to state box j. The notation in (28) is
due to Hoare [13], and can be interpreted as “If P (i ) is true and the conditions and
the actions specified by R and Q are, respectively, true and executed, then P ( j ) must
also be true.”

Any rigorous demonstration of this requires a formal definition of the ASM chart, and
familiarity with the theory of inductive-assertions; these matters are beyond the scope of
this paper. Nonetheless, one can argue informally that, starting from an initial condition
satisfying the input proposition, if (28) is proven correct for all adjacent pairs of state
boxes, then for all subsequent szate boxes along any path, say k, P (k ) is also true.
Obviously, should the candidate hardware reach any of possibly several output stare
boxes, if at all, then the corresponding output proposition must also be rrue.

The arguments needed to show that the path from the input state will eventually lead to
an output state are similar to those given for the termination of software programs. In
the case of our candidate design we can also verify, by inspection, that the hardware will
never falsely signal the availability of the output data. The output state is the only state
box in which f =1.



—22 —

Figure 9 shows a version of the ASM chart given in Figure 8.b, with suitable proposi-
tions. The reader may wish to verify the propositions, keeping in mind the following
properties of the greatest common divisor of integers:

a =gcd(a,a)
ged(a,b )=gcd(b,a)
ged(a,b )=gced(a+b,b ).

The search for suitable assertions to be placed at each state box, signifying the expected
relationship between the state variables if and when the control pointer visits that box,
requires some skill and ingenuity. Of course, this applies to other proof techniques as
well, and is by no means unique to the method of inductive assertions.



—23 —

Input State

- ul X01x
wo (in1=m>0)&(in2=>0)

uz2 = u2

inl= ul

in2= u2
a
b
ot

1000
(ot = ged(a,b) =
ged(m,n))&(a=b)

0000 |

gcd(a,b) = ged(m,n)

ul = ul
uz2 = u2
inl= ul
in2= u2
a = a
ot = a

T
Output State
1001
— (ot = ged(a,b) = ul = ul ul = ul
cd(m,n))&(a=b u2 = u2 u2 = u2
ged(m,n))&(a=b) w2 = uz | w2 - w2
‘ in2= u2 in2= u2
a = a-b a = a
b =Db b = b-a
u; = u; ot = a ot = a
u = u
inl= ul i, *

in2= u2

a =a
b =b
ot = a

Figure 9. The GCD module’s ASM chart, with the correct-
ness propositions for each state boxes. Each propo-
sition can be derived from the preceding
proposition(s); the input proposition is assumed
true.



24 _
5. SUMMARY

In this paper we integrated established techniques with several novel methods to form the
main components of a hardware verification methodology; these consist of the “require-
ment specification”, “design definition”, and “reasoning” phases of a register-transfer
design paradigm.

For the design definition, we proposed a friendly register-transfer design environment
based on a small set of primitives, and a signal-typing scheme that controls the composi-
tion of legal designs. As well as being close to the designer’s normal design experience,
the primitives are amenable to a mathematical treatment. We proposed a complete
functional model for specifying the primitives and the behaviour of their compositions.
Later, we used the formalism to derive ASM specifications of candidate designs.

We then introduced automatic translations between the design and the implementation,
and the design and the proof environment, and argued that performing the design at a
level lower than that of the proof environment leads to improved confidence in the final
implementation.

We showed that in order to make assertions about the behaviour of a candidate design at
the interfaces, we had to extend the design to include its input and output strings.
Finally, the ASM charts were derived from the extended designs, and proved correct by
showing the existence of suitable assertions about the states that the hardware has to step
through, including the input and the output states.

It is our contention that, given the wealth of experience and know-how developed over
many years of applying similar methods to proving the correctness of software, the
method of inductive assertions is better suited for use by researchers and the design com-
munity than those methods which require newly developed skills, and possibly less well-
known mathematical techniques.

ACKNOWLEDGEMENT

We gratefully acknowledge the University of Waterloo funding and computing facilities
used to carry out the work reported here.

6. References

1. Gordon, Mike, Hardware Verification by Formal Proof, Technical Report No. 74,
Computer Laboratory, University of Cambridge, Cambridge, England (August
1985).

2. Clare, C., Designing Logic Systems using State Machines, McGraw Hill, Maidenhead
(1972).

3. Floyd, R. W., Assigning Meaning to Programs, pp. 19-32 in Proc. Symposium
Applied Math, American Mathematical Society, Providence, R. I. (1967).

4. Hanna, F. K. and Daeche, N., Specification and Verification using Higher Order
Logic: A Case Study, Electronics Laboratory, University of Kent, Canterbury, Eng-
land (November 1985).



10.

11.

12.

13.

—25 —

Gordon M., A Model of Register Transfer Systems with Application to Microcode
and VLSI Correctness, CSR-82-81, University of Edinburgh, Dept. of Computer
Science, Edinburgh, Scotland (March 1981- revised May 1982).

Mavaddat, F., A Functional Model of Register-Transfer Design, CS-88-16, Dept.
of Computer Science, University of Waterloo, Waterloo, Ontario (April 1988).

Landin, P. J., The Mechanical Evaluation of Expressions, Computer Journal
6(4) pp. 308-320 (Jan. 1984).

Mavaddat, F., A Model for Register-Transfer Level Design Specification: The SDC
Notation, CS-84-34, Department of Computer Science, submitted for publication
and under revision, University of Waterloo, Waterloo, Ontario (October 1984).

Mavaddat, F., Designing and Modeling VLSI Systems at Register Transfer Level,
to appear in International Journal of Computer Aided VLSI Design 1(2) pp. 41-1 (June
1989).

Carver Mead and Lynn Conway, Introduction to VLSI Systems, Addison Wesley,
Reading, Mass. (1980).

Cardelli, Luca and Wegner, Peter, On Understanding Types, Data Abstraction,
and Polymorphism, Computing Surveys 17(4) pp. 471-522 (December 1985).

Green, D., Modern Logic Design, Addison-Wesley Publishing Company, Working-
ham, England (1986).

Hoare, C. A. R., An Axiomatic Basis for Computer Programming, Communications
of the ACM 12(10) pp. 576-583 (October 1969).



- 26 -

APPENDIX 1

State-Table for the Flow-Control Part of the GCD chart

Present-State | Status-inputs Next-State Action-outputs
p q r f|sl s2 p q r f|]j k La Lb
x 0 1 x| O 0 0 0 0 01 0 1 1
x 0 1 x| O 1 0 0 0 0j1 0 1 1
x 0 1 x| 1 0 0 0 0 0j1 0 1 1
x 0 1 x|1 1 0 0 0 O0}j1 0 1 1
0 0 0 00 0 0O 0 0 0|0 O O 1
0 0 0 O0]0 1 0 0 0 0oj0 1 1 0
0 0 0 0] 1 0 1 0 0 0(0 0 O 0
0 0 0 0] 1 1 1. 0 0 0]J]O0 O O 0
1 0 0 0O 0 1 0 0 1{0 0 O 0
1 0 0 00 1 1 0 0 110 0 O 0
1 0 0 01 0 1 0 0 1({0 0 O 0
1 0 0 011 1 1 0 0 110 0 O 0
1 0 0 110 0 1 0 0 110 0 O 0
1 0 0 110 1 1 0 0 110 0 O 0
1 0 0 1]1 0 1 0 0 1]0 0 O 0
1 0 0 111 1 1 0 0 110 0 O 0

Next-state and action-outputs are obtained by substituting the corresponding present-state
and status-input values in the behaviour expressions of e_contunit, i.e. (25) and (26),
respectively. Only states reachable from the initial state of ‘x 0 1 x* are listed. An ‘%’
entry indicates an unknown unit-delay state. With reference to the e_ged_path,
(s1=1)A(s2=1) is not possible.



- 27 -

APPENDIX I
Data-Path Assignments Table

0000 0100 1000 1100
ul = ul ul = ul ul = ul ul = ul
u2 = u2 u2 = u2 u2 = u2 u2 = u2
inl = ul inl =ul inl =ul inl =ul
in2 = u2 in2 =u2 in2 =u2 n2 =u
a = a a =3 a = a a = a
b =b b = b b =b b =Db
ot =a ot =a ot =a ot = a

0001 0101 1001 1101
ul = ul ul = ul ul = ul ul = ul
u2 = u2 u2 = u2 u2 = u2 u2 = u2
inl =ul inl =ul inl =ul inl =ul
in2 =u2 in2 =u2 in2 =u2 in2 =u2
a = a a = a a = a a = a
b =b-a b =a-b b = in2 b = in2
ot =2a ot = a ot =2 ot = a

0010 0110 1010 1110
ul = ul ul = ul ul = ul ul = ul
u2 = u2 u2 = u2 u2 = u2 u?2 = u2
inl = ul inl = ul inl =ul int =ul
n2 =u2 n2 =u2 in2 =u2 in2 =u2
a =b-a a =a-b a = inl a = inl
b =b b =) b =b b =b
ot =a ot =a ot =a ot =a

0011 0111 1011 1111
ul = ul ul = ul ul = ul ul = ul
u2 = u2 u2 = u2 u2 = u2 w2 = u2
inl =ul inl =ul inl =ul inl =ul
in2 =u2 in2 =u in2 = u2 in2 = u2
a =b-a a =a-b a = inl a = inl
b =b-a b =a-b b = in2 b = in2
ot = a ot =23 ot = a ot = a

Each block of entries represents a unique action-input and the corresponding set of register-
transfer assignments. The first entry of each block represents, from left to right, the action-input
values corresponding to the j, k, La, and Lb ports of the data-path respectively.



	

