PrintingRequisition/Gra

hicServices

54232

1. Please complete unshaded areas on
form as applicable.

2. Distribute copies as follows: White and
Yellow to Graphic Services. Retain Pink

: Copies for your records.
"

3. On completion of order the Yellow copy
will be retumed with the printed

material.

extension 3451.

4. Please direct enquiries, quoting requisi-
tion number and account number, to

TITLE OR DESCRIPTION

SEPARATION ™ in d Dimensions or Strip Mining in Asteroid Flelds

Cs5-89-05

DATE REQUISITIONED DATE REQUIRED

ACCOUNT NO.

Feb. 1/89 ASAP |l1,2,616,1,7, 6141}
requisiTioNnER- PRINT PHONE SIGN‘I,%A%

D. Wood 4456 %

MAILING NAME DEPT. BLLDG. & ROOM NO. m DELIVER
LINFO - sue DeAngelis C.S. DC_ 2314 (] precur
Copyright: | hereby agree to assume all responsibility and liability for any infringement of copyrights and/or patent r|ghts which may arise from

the processing of, and reproduction of, any of the materials herein requested. | further agree to indemnify and hold blameless the
University of Waterloo from any liability which may arise from said processing or reproducing. | also acknowledge that materials
processed as a result of this requisition are for educational use only.

NUMBER 22 NUMBER 150 NEGAT'VES QUANTITY SER ' ME: Légougopg

OF PAGES OF COPIES

l:r——]YpE OFDPAPER STOCK - - O Alpa vory ILF‘LIM: e ’i Lol Hl : :][" JI |L o i, J! :CI.OI‘,'J
BOND NCR PT. COVER BRISTOL suppusu 140 F|L|M e [e |U' ’ | e C}0|1J

E\ZER S‘llizE [] 8% x1a] orvxar] 10x14 Gloascoat] ’ i - ‘ : - :

F : 10 pt L T MR 0 bl
PAPER COLOUR <~ INK - ‘ ‘ ; B . e R
[ware (% Fovac [JELME o T Tl b e g eeg
PRINTING ‘ NUMBERING . : L ' i el i e (" i
[:] 1 SIDE PGS. BZ SIDES _____PGS, FROM. T0 lF {L|Ml | (e : | l L | ’} (l’ }] ‘]J l A ‘I . i]ICIO|1J
BINDING/FINISHING - hoLs - :",pM-r ' A : w F ; ik - S
BCOLLATING D STAPLING __ _PUNCHED lPlM[T] Ul fg ll] ‘ ! ; IL IL_L__J L[e I IC[0L1J
FOLDING/ 5 —

PADDING

7x10 saddle stitc@#zcy'”G

11

J|H

[Pl oy gy

2L

'1J‘,LC|0‘| 1]

Special Instructions : ["«l l ’
LPMTl o L L lL_l__H L1604

Beaver Cover PLATES _ L l -

Both cover and inside in black ink please IPL T!u' S H L L J| L H ," . ",l lp‘l‘oljl

lPLTl [|‘|;H (et 1” il tpogt]
Pty] S B M B o
STOCK e i '

; T T T O H; Il 11910,1]
SR F%FTI“;GI | | t jl o L et ‘1" o dlba g [loget]
DESIGN & PASTE-UP , - ggggm LABOUCROD‘E’ boocliaaag H‘l el HVI | LJ 0,0,1]

S T T I O I O) ol g oo
Lo | 01011[“BINDERY Gai o |
] [“LJ e H'01 lRJNIGl D fle 1 Bioy]
TYPESETTING QUANTITY ‘|~ ' = l LR-INIG[N I,,H'l,l ! LJI I'I | P HBlOﬂl
1PAPI01010050¢ Ly L | J TR e T I € O TR |- T LCJ00
P1AP[01010040y JL 1 1 o Lo JLo L To]fim 1ysfei0101010, | B A Lol llBon]
|P/AP[0010,00; || | | 1,1'JLJ__|L1,L 11J|T|O’f1l QUTSIDE SERVICES
PROOF ' ; e ' : I
Ll O BNV N A § BT
|PRF] [| R H__l__ll R AT i $
[PyRIF] IR B L d L iAf H ' 'J, TAYFE o meewvmerar [reneral: [. GRAPHICSERV. OCT.85 4822

BEbARHVERT

DEPARTMENT
DEPARTMENT

E
E
CE

TEE SE
i

]
L

Ut
)

Qe
OMP

ATERISS &

WA
W
ITY OF WATERLOO C

iF

I

SEPARATION™
in

d Dimensions

Michel P. Devine
Derick Wood

Data Structuring Group
Research Report CS-89-05

January, 1989

SEPARATION™ in d Dimensions

or
Strip Mining in Asteroid Fields *

Michel P. Devine! Derick Wood!

Abstract

The SEPARATIONTM problem for two and higher dimensions is
to compute a separating sequence for a collection of disjoint orthogonal
d-dimensional polyhedra. We give an algorithm for the 3-dimensional
problem that requires O(N+v/Nlog® N) time and O(N VNlogN) space,
where N is the total number of vertices. The same algorithm when
suitably restricted solves the 2-dimensional problem in O(N log® N)
time using O(N log N) space. The extension to d > 4 dimensions yields
an algorithm that requires O(dN%21og® N) time and O(dN%/21og N)
space.

Keywords: rectangles, finite orientation geometry, orthogonal parti-
tion tree, priority search tree, space sweep, asteroid mining.

1 Introduction

Chazelle, Ottmann, Soisalon-Soininen and Wood [COSSW84] introduced
the family of puzzles known collectively as SEPARATIONTM . Given a set
of disjoint simple orthogonal polygons determine a sequence of orthogonal
translations that separate all polygons, if one exists. The aim of this paper
is to present a solution to the corresponding d-dimensional problem, where
d>3.

Our intent is to develop an algorithm for one of the crucial applications
of the next century: strip mining of mineral-rich asteroids. Consider the
following scenario. We wish to use our latest planetoid-swallowing mining
machine to extract minerals and water from the asteroids orbiting the sun

*This work was supported under a Natural Sciences and Engineering Research Council
of Canada Grant No. A-5692 and under a grant from the Information Technology Research
Centre.

tData Structuring Group, Department of Computer Science, University of Waterloo,
WATERLOO, Ontario N2L 3G1, CANADA.

2 Devine and Wood

between Mars and Saturn. Unfortunately, asteroids tend to cluster into
fields (or “gaggles”)!. A small thermonuclear device is installed on each
asteroid such that the impulse from the explosion will propel the asteroid
away from the field, where it can be captured and processed.

Each asteroid is modeled by a simple three-dimensional orthogonal poly-
hedron and the explosion vectors are constrained to lie parallel to the implied
orthogonal directions. Only one asteroid is allowed to move at any given
time, and, in the interest of safety, no rotations or collisions are permitted.
A moving asteroid will continue to move until it is sufficiently far away from
the remaining ones to be processed by the mining machine (for practical
purposes, it is at infinity). Determining the location of the devices as well
as the firing sequence required to separate all asteroids in a given field is
equivalent to solving the SEPARATIONTM problem.

While the topic of asteroid mining has seldom appeared in the com-
putational geometry literature, a number of researchers have investigated
separation questions in more down-to-earth domains. The asteroid mining
problem is related to admittedly less pragmatic concerns such as motion
planning, puzzle solving, and the assembly of composite objects. As an
illustration of the use of SEPARATIONT™ in assembly, notice that a sep-
arating sequence can be inverted to yield an assembling sequence: Given a
description of the parts Pi,..., P, in their desired configuration and a sep-
arating sequence s, the composite object can be assembled by applying the
moves given by the sequence s~!, moving each P; to its destination.

1.1 Previous Work

Guibas and Yao [GY80] investigate translating rectangles in the plane and
present an optimal O(N log N) time algorithm that is applicable to sets of
convex polygons. They show that any set of convex polygons can always
separated in a single direction, while the same is not true for sets of convex
polyhedra.

Dehne and Sack [DS86] separate arbitrary simple polygons (when pos-
sible) in O(N?2log N) time. Nurmi [Nur87] separates simple polygens in
O(Nlog N) time and simple polyhedra in O(klog N) time, where N <
k < N? is the number of intersections between the objects when projected
onto a hyperplane perpendicular to the direction of travel. Chazelle et al
[COSSWB84] outline an algorithm for solving SEPARATION T™ for orthogo-
nal polygons using multiple orthogonal directions that requires O(N log® N)
time. Toussaint [Tou85] presents an excellent survey of separability results.

While it is true that the asteroid fields are actually quite sparse, our algorithm has
other applications such as removing debris in Earth orbit and exploiting Saturn’s dense
rings.

SEPARATIONTM 3

1.2 Outline of the paper

The following section covers the definitions necessary for our discussion of d-
SEPARATIONT™ | Section 3 contains a discussion of the general problem
and in section 4 we give an overview of the methodology used in the paper. In
section 5, a solution for the three dimensional variant of SEPARATIONTM
is presented and in §6 we discuss extensions to arbitrary dimensions. In
the final section, we present our conclusions and outline areas for further
research.

2 Preliminaries

In this section, we introduce the basic definitions and terminology needed in
our discussion of the SEPARATIONTM problem. An important assumption
is that a complete description of the scene is given. The objects under con-
sideration are pairwise disjoint polyhedra that are simple in the sense that no
two non-adjacent faces share a point. We do not insist that all d-polyhedra
be homeomorphic to a d-sphere, so holes are allowed. The polyhedra are
also orthogonal — all edges are parallel to one of the coordinate axes — and
movement is restricted to a single orthogonal translation for each object.
The set of allowable translation directions {£z¢,+z,...,+z4} is denoted
by A.

Now, when is a polyhedron free to move without risking any collisions?
Intuitively, if we illuminate an object, the shadow cast by the object rep-
resents the space through which it must travel during translation. If the
shadow is clear of obstacles, the object may be translated.

Definition 2.1 Given a point p and a direction §, the ray starting at p and
going to infinity in direction 6 is the §-shadow of p.

Definition 2.2 The §-shadow of a polyhedron is the union of the §-shadows
of all points in the polyhedron.

We can now state formally the condition ensuring that a polyhedron can be
separated in direction 6.

Definition 2.3 Given a direction §, a polyhedron P is §-blocked by poly-
hedron Q if the §-shadow of P intersects the interior of Q. A polyhedron P
that is not 6-blocked by any other polyhedron is 6-free.

Our definition of blocking permits polyhedra to make contact during trans-
lation, provided no interiors overlap. A separating sequence for a set P of
polyhedra is a sequence of ordered pairs (7;,8;),1 < ¢ < |P|, such that P, is
6;-free with respect to the set P — {P;: 1 < j < ¢}.

4 Devine and Wood

]

Figure 1: Separation in a set of 2-polyhedra

Definition 2.4 A set of d-polyhedra P is:

iso-separable with respect to a given direction o if there is a sepa-
rating sequence in which §; = o, for all1 < i < |P|,

one-separable if there exists a separating sequence,
all-separable if it is iso-separable with respect to all 2d directions
in A.

Consider the set of two dimensional polyhedra in figure 1. The subset
{A, B,C} is iso-separable with respect to the positive y direction, subsets
{A,C} and {A, D} are all-separable, and {D, C} is not iso-separable for di-
rections +y. The set {A, B,C, D} is one-separable; one separating sequence
is ((4; +y), (B; +9),(D; +z),(C; —z)).

We now briefly make some observations about the separability charac-
teristics of sets of polyhedra.

Lemma 2.1 Given a set of polyhedra P,

1. Any subset of P that is all-separable is necessarily one- and iso-separable
(for any direction).

2. A subset of P that is iso-separable for a given direction is one-separable.

Proof: Straighforward from the definitions. O

SEPARATIONTM 5

3 Problem Definition

The definition of the SEPARATIONTM problem for arbitrary dimension d
is as follows:

Problem: Given a set P of disjoint simple orthogonal d-polyhedra with
a total of NV vertices, determine whether the set is one-separable and
compute a separating sequence, if one exists. ’

The algorithm we present actually solves a slightly different problem: we
compute a separating sequence s for a maximal subset of P that is one-
separable. Thus, if |s| = | P|, then P is one-separable.

Remark: From now on, the qualifiers “simple” and “orthogonal” are
dropped for brevity.

3.1 A First Attempt

The “blind human” approach involves picking a polyhedron P, computing
its 6-shadows, for all § € A, and determining whether some o-shadow is
free of intersections with other polyhedra, in which case we output the pair
(P,), delete P from P and iterate. Otherwise, we simply pick a different
polyhedron and continue. The algorithm terminates when either no poly-
hedron is free to move in any of the allowable directions or no polyhedra
remain,

Due to the arbitrary nature of the objects, O(N?) choices are required in
the worst case. For each choice, building the shadow of an object (which is
related to computing its ortho-convex hull [MF82,NLLW82,0SSW84]) and
finding intersections between polyhedra are relatively expensive processes.
We now outline a strategy which yields a better algorithm.

4 Overview of the Algorithm

Recall that a polyhedron P is §-free if it is not §-blocked by any other poly-
hedra. In other words, P is é-free if all the points in its interior are visible
from infinity in direction §. Our approach is reminiscent of hidden-line elim-
ination: a projection hyperplane perpendicular to direction § is placed at
infinity and the visible contribution of each polyhedron is computed. When-
ever all the points in the interior of some polyhedron become visible, the
polyhedron is §-free.

Definition 4.1 Given a set of polyhedra P and a direction &, the set of
points visible from infinity in direction & is called the §-view of P and is
denoted by V.

Devine and Wood

All 2d different views of the set P are maintained simultaneously. If some
polyhedron P; is entirely visible in some view V,, we output (%;,0) and
delete P; from all views. The algorithm terminates when no polyhedron can
be moved or no polyhedra remain.

4.1 Building the View of a Set of Polyhedra

For each direction § € A, a hyperplane perpendicular to § is swept through
P, from —oo to +oco. The intersection of the sweeping hyperplane with P is a
collection of (d—1)-dimensional polyhedra (for example, in three dimensions
the intersection is a set of polygons). At each stopping point in the sweep,
the intersection is inserted into a data structure representing the view Vj of
P. When the insertion process is complete, the view structure must enable
us to decide quickly which polyhedra (if any) are visible. Finally, efficient
deletion of polyhedra must be supported.

Since the set of polyhedra is known in advance (no insertions or deletions

of polyhedra are permitted), we preprocess the set and use a relatively simple
semi-dynamic structure to hold the visibility information collected during
the space sweep.

5 Three-Dimensional SEPARATIONTM

In order to illustrate the general technique, we solve the SEPARATIONTM
problem for a set of 3-polyhedra. In the first subsection, an efficient represen-
tation for the visible portions of one view is investigated; the process involved
in producing the views for the five other directions is similar. Then, we dis-
cuss augmenting the structure to hold information related to the freedom
of the polyhedra. Finally, we consider the effects of deleting free polyhedra
with the resulting update of freedom for the remaining objects.

5.1 Sweeping 3-Space

The space sweep algorithm for direction +2z follows:

Ll

Sort the facets of the polyhedra in non-decreasing crder of 2z coordinates;
Build a skeletal hierarchical view structure V., for the collection of polygonal facets;
forz = —oo to+oo do

Insert the polygonal facets into V,

Step 1 set ups the event schedule required for the space sweep and the semi-
dynamic skeletal view structure V., is built in step 2. As indicated above,
the intersection of the sweep plane with the set of polyhedra is a set of
polygons. The polygons are inserted into V. during steps 3 and 4.

SEPARATIONTM 7

Figure 2: A trellis of O(N) rectangles

The task of maintaining a set of polygons can be simplified by repre-
senting each polygon by a collection of elementary objects. Given a simple
orthogonal polygon (possibly with holes) having a total of n vertices, a
rectangular partition can easily be computed in O(nlogn) time and space,
yielding O(n) rectangles. It is not necessary to insist on a minimal rectan-
gular decomposition.

The guadiree [FB74] is a well-known structure that has been extended by
[VLW81] to support the insertion and deletion of rectangles. The quadtree
requires O(N?) space and O(N) time for the insertion or deletion of a rect-
angle in the worst case, because of the possibility of “trellises”: Given O(N)
rectangles, O(N?) rectangular regions are formed in the worst case (see Fig-
ure 2). Therefore, any algorithm based on quadtrees requires O(N?) time
in the worst case. Recently, Overmars and Yap [OY88] introduced a new
data structure suitable for sets of rectangles: the orthogonal partition tree,
a generalization of the k-d tree [Ben75] exploiting the regularity of trel-
lises. Their main observation is that all rectangular regions need not be
represented explicitly; each trellis can be fully described by two sets of over-
lapping rectangles (the horizontal and vertical ones) at the boundaries of
the bounding box of the trellis. As a consequence, the description of a scene
of quadratic complexity requires only linear space.

We use the two-dimensional version of the orthogonal partition tree as
a skeleton for the V., view structure. Two-dimensional space is partitioned
and represented by binary tree T where:

1. The root of T represents the whole space.

2. Each internal node v € T has a left and right son and the region
represented by v (denoted by R,) is a (possibly unbounded) rectangle

8 Devine and Wood

Figure 3: A set of rectangles

satisfying the following constraints:

(a‘) RU = Rleft(u) U R,-,'ght(,,);and
(b) Ricsi(v) N Brightv) = 0.

3. The region R, of each leaf v € T is a rectangular cell.

We shall now describe the construction of the orthogonal partition tree for a
set of rectangles (for example, see Figure 3). Let X be the set of distinct z-
coordinates of the vertical boundaries of the rectangles ({X| = O(N)). The
z axis is divided into v/N strips such that each strip contains at most 2V N
coordinates from X. Each strip is divided into O(v/N) cells by carefully
chosen horizontal segments. For a given strip s, let V' be the set of rectangles
having a vertical boundary inside s, and H the set of rectangles having only
horizontal boundaries in s (a rectangle in H traverses the strip completely).
Thus, |V| < 2v/N, and |H| = O(N). Now, we partition s into cells by
drawing horizontal line segments through both horizontal boundaries for
each rectangle in V', and through each v/N-th horizontal boundary of the
rectangles in H (refer to Figure 4). As a result, each strip is partitioned into
at most 61/ N cells.

The tree is built from the partition by merging neighbouring cells in a
strip, and then merging neighbouring strips. The upper levels of the tree
split the space according to the z-coordinates, the lower levels according to
the y-coordinates, and the leaves store the cells.

Lemma 5.1 An orthogonal partition tree T for N rectangles has the fol-
lowing properties.

1. There are O(N) nodes in T.
2. Each rectangle appears in O(\/N) leaves.

3. Each vertex appears in no cell.

SEPARATIONTM 9

- ——— —_—-— =

'———

| S S -
I
I
!

Figure 4: The partition resulting from a set of rectangles

Y-tree

X-tree

Figure 5: A cell and its associated trees

4. Each leaf or cell contains O(v/N) rectangles.
5. The height of T is O(log N).

Proof: See [0Y88] for proofs of these statements. O

Rectangles do not appear at internal partition nodes, since they are stored
in the leaves?. By property 3, any rectangle stored in a leaf traverses the
associated cell completely. The portion of rectangle r that is inside the cell
Ry of leaf v is called a fragment of r. For a rectangle r and leaf v, if rNR, # 0
three situations arise:

2The situation is quite different in the quadtree, where all levels of the tree can hold
rectangles.

10 Devine and Wood

1. r contains or covers Ry;
2. rN R, is an z-slab in v’s cell; or
3. rN Ry is a y-slab in v’s cell.

An z-slab is a fragment which has at least one vertical boundary inside cell
R,, and a y-slab is a fragment which has only horizontal boundaries inside
R,. A cell is represented by two segment trees [Ben77,PS85]; the z-slabs are
stored in an X-tree, the y-slabs in a Y-tree, and the covering fragments in
either tree (see Figure 5).

Inserting a rectangle r entails identifying the leaves v € T whose regions
intersect r. Properties 2 and 5 of the partition tree imply that O(v/N) time
is required to find the resting places of the fragments of r. By property
4, each leaf holds O(v/N) fragments and, therefore, the heights of its two
segment trees are O(log v/ N) = O(log N).

5.2 Augmenting the View Structure and Detecting Visible
Objects

The focus of this subsection is the computation of the visible portions of the
set of polyhedra P stored at the leaves of the orthogonal partition tree.

During the space sweep, each polygonal facet is partitioned into rect-
angles and inserted into the view structure yielding a number of fragments
(if the facet has O(n) vertices, it is decomposed into O(ny/N) fragments).
When a fragment is inserted into a cell, it is further partitioned into sev-
eral non-overlapping intervals represented by nodes in the appropriate seg-
ment tree; each such interval is called a sliver of the fragment. For each
leaf v in the partition tree, the number of visible slivers of each polyhe-
dron P;,1 < 1 < |P|, is maintained in the set VISIBLE(v); the member of
VISIBLE(v) corresponding to polyhedron #; is called the representative of
P;. Naturally, even though there is a representative for polyhedron F; in
the VISIBLE set, it is possible that some part of P; is obscured by other
polyhedra. The value count (1),1 < ¢ < |P|, is the total number of slivers in-
serted for each polyhedron. When the number of visible slivers for P; equals
count (1), the entire polyhedron is +2-free.

Note that the segment trees of a cell do not represent disjoint space, so
care must be exercised in determining visibility: a single y-slab at height 2
is sufficient to block any number of z-slabs at heights < z, and vice-versa.
To solve this problem, a fragment in inserted into both trees: each slab
completely covers the cell in one direction and, therefore, is stored at the
root of one of the segment trees. If a fragment covers the entire cell region,
it is represented by two covering intervals.

SEPARATIONTM 11

Figure 6: A comb in z-z cross section.

For the remainder of this discussion, we focus our attention on the X-
tree, the Y-tree being analogous.

5.2.1 Inserting fragments into the X-tree

With each fragment f we associate the value f.z of the z coordinate of
its facet, the name of the originating polyhedron f.poly, and the interval
[f.z1, f.x2]. Two fragments f and g are siblingsif f.poly = g.poly. Each node
u in the X-tree has a left and right son (denoted by left(u) and right(u))
and represents the z interval [u.z;, u.z;]; the z-interval of the root of the
X-tree is the z-extent (or “width”) of the cell.

During insertion, if fragment f covers node u, a sliver of f is added to the
COVER set of u (the insertion routine is given below). The COVER set is
implemented as a doubly-linked list and the element with maximum z value
is found using TOP(COVER(u)). The data structure used to implement
the slivers has the following fields:

poly the identity of the originating polyhedron,
Zymin, Zmaz [Zmin s Zmaz) 18 the z-interval covered by the sliver,
wetght the number of sibling slivers that are +z-free in [zmin, Zmaz)-

To see why our data structure is reasonable for slivers, consider the “comb”
drawn in z-z cross-section in Figure 6. The teeth of the comb give rise
to a sequence of consecutive sibling slivers stored at the same node. The
situation is simplified by replacing consecutive sibling slivers by a single one
representing the interval [2zmin, Zmaz), Where zmin and zyq, are the minimum

12 Devine and Wood

and maximum z coordinates of the slivers. The weight field is adjusted
accordingly. A single sliver of some fragment f corresponds to the interval
[f.z, f-2], and has weight = 1. The insertion routine used to insert fragments
into cell trees is given below.

procedurelnsert (f,u);
/* Insert slivers corresponding to fragment f into the tree rooted at node u. */
beginInsert
iff covers u then
ifCOVER(u) = @ orelsef.poly # TOP(COVER(u)).poly then
COVER(u) := { [f.poly, f.z, f.z,1], COVER(u))
else
/* Combine sibling slivers */

letCandidate = TOP(COVER(u));

Candidate.zpqz := f.2;

Candidate.weight := Candidate.weight + 1;
fi

else /* Insert into the subtrees, if necessary */

iff.:r:l < |_(u.a:1 + u.:cg)/2j then
Insert (f,left(u))
fi;

/* Similarly for the right son of u. */
endlInsert;

5.2.2 Determination of +z-freedom

Since the space is swept from z = —oo to 400, a sliver appearing at the
head of a COVER list has locally maximal z-value and is a candidate for
freedom. Sliver s blocks sliver ¢ if the following conditions hold:

1. the intersection of the interiors of s and t is non-empty;
2. s and t are not siblings; and
3. sis above t.

By condition 1, any sliver that blocks a candidate s stored at some node u
must overlap the interval defined by u. A larger blocking sliver is necessarily
in the COVER set of a proper ancestor of u, while any smaller blocking sliver
must appear in the subtrees rooted at u.

SEPARATIONTM 13

The key idea is to propagate candidates up until either they reach the
root, or they are blocked. When a candidate reaches the root and it is not
blocked by any slivers in COVER(root), then it is truly +z-free and we
update the visibility information at the corresponding leaf of the partition
tree.

Actually, rather than moving the slivers bodily up the tree, whenever a
sliver s from node u would migrate to its parent v, we send a copy of s to the
parent of u in the guise of representative r, and add r to the set VISIBLE(v).
Slivers are distinguished from representatives in that a sliver is inserted at
a particular node in a segment tree while a representative is a mobile agent
working on the behalf of a polyhedron. Further differences are elucidated
below. The migration continues until either r is blocked by some sliver or it
reaches VISIBLE(X-tree). Thus, each X-tree node u is augmented with the
set VISIBLE(u) of representatives corresponding to the candidate slivers
stored in the subtrees rooted at u that are blocked by some member of
COVER(u). If node u is a leaf of the X-tree, VISIBLE(u) = 0.

The initial construction of the VISIBLE set for each segment tree node
is done during a post-order traversal; routine BuildVisible (given below)
computes the contribution of a node to the VISIBLF set of its parent. When
the process is complete, the set VISIBLE(root) consists of all representatives
which are blocked, at worst, by slivers in COVER(root). Then, the visible
fraction of each polyhedron is found by applying the routine BuildVisible
a final time to the root of both segment trees. The weight fields of the
representatives in the VISIBLE set of the partition leaf reflect the visible
portions of the different polyhedra.

5.2.3 Implementing the VISIBLE set

The VISIBLFE set V associated with a node must support several different
operations:

Insert (r, V) adds the representative r to V;

FindMax (V') returns a reference to the representative
with maximal z,,4, value;

DeleteMax (V) returns the representative with maximal
Zmaz and deletes it from V;

MaxNonSibling (r, V') returns the representative with maximal
Zmaz value of all non-siblings of r, if there
are any in V; and

FoundSibling (r, s, V) returns true if there is a sibling of r in V'
(s is the sibling) and falseotherwise.

14 Devine and Wood

Each VISIBLE set is implemented by a priority search tree [McC85], a struc-
ture combining searching and priority queue operations in O(logn) time and
O(n) space, where n is the size of the set. The primary key is the polyhedron
name and the priority key is the z,,, field of the representatives. Since the
number of fragments is a linear function of N, all operations on VISIBLE
sets can be performed in O(log N) time. The routine AddVisible(Rep, Vis-
ible) adds the representatives r € Rep to the set Visible.

procedureAddVisible (Rep, Visible);
beginAddVisible
ifVisible = @ then
Visible := Rep;
else
forr € Rep do
ifFoundSibling (r, s, Visible) then
/* Combine siblings */

weight(r) := weight(r) + weight(s);
zmaz("') = max (zmaz(r),zmaz(s));
th'n(") = min (zmin(r))zmin(s));
fi;
Insert (r, Visible)
od
endAddVisible;

If VISIBLE(u) has a representative r for some polyhedron, then r absorbs
all subsequent sibling representatives by updating the z-interval and the
weight. The result is that if all slivers of a polyhedron are free below u, then
no representatives of that polyhedron remai:. in the subtrees rooted at u.

Routine BuildVisible (child,parent) computes the contribution of the
child node to the VISIBLE set of the parent. The process of determining
which slivers should be propagated deserves explanation. Let sliver s be the
candidate for freedom at node u. Two cases must be considered:

s is free, all non-siblings r € VISIBLE(u) are blocked, so dis-
patch a representative for s to the parent.

s is not free, some non-sibling representative blocks s, propagate
all free r € VISIBLE(u).

What happens to t € VISIBLE(u), a sibling of s? It may or may not be
blocked by some other member of COVER(u). Since all adjacent sibling
slivers are coalesced, the freedom of ¢t can be ascertained by considering the

SEPARATIONTM 15

second member of COVER(u) (if any). The detailed algorithm for Build-
Visible appears below.

procedureBuildVisible (child, parent);

beginBuildVisible
1. ifCOVER(child)= § then
2. AddVisible (VISIBLE(child), VISIBLE(parent))
3. elsif VISIBLE(child) = 0 then
4. AddVisible (TOP(COVER(child)), VISIBLE(parent))
5. elsif
6. letCand = TOP(COVER(child));
7. letReps = VISIBLE(child);

/* Check the sibling of Cand for freedom */
8. SiblingIsNotFree := false;
9. ifFoundSibling (Cand, Sibling, Reps) then
10. if TOP(COVER(parent) — Cand) = 0 orelse
11. Zmin (Sibling) > Zmaz (TOP(COVER(parent) — Cand)) ther
12. AddVisible ({ Sibling }, parent)
13. else
14. SiblingIsNotFree := true
15. f
16. fi;

/* Is the candidate Cand free to move? */
17. ifweight (Cand) > 0 andthen
18. Zmin (Cand) > zpe; (MaxNonSibling (Cand, Reps)) then
19. AddVisible ({ Cand }, VISIBLE(parent));
20. weight (Cand) := 0
21. else

/* Cand is blocked, look for free representatives */

22. Free := 0;
23. whileReps # 0 andzp,, (Cand) < zpmin (FindMax (Reps)) do
24. Free := Free U DeleteMax (Reps)
25. od;
26. AddVisible (Free, VISIBLE(parent));

/* Sibling may have to be re-inserted into VISIBLE(child) */

16 Devine and Wood

27. ifSiblingIsNotFree then

28. Insert (Sibling, VISIBLE(child))
29. fi

30. fi

31. fi

endBuildFree;

Steps 1 through 4 handle the boundary conditions for the COVER and
VISIBLE sets. Steps 8 through 14 concern the sibling of TOP(COVER(child)),
the current candidate for freedom. If there is a sibling representative, it is
removed from the VISIBLE set in O(log N) time and processed separately.
Then, the freedom of the candidate and the remaining representatives is
decided according to the rules outlined above. Finally, if the sibling repre-
sentative is not free (the second member of COVER(child) blocks it), then
we re-insert it into VISIBLE(child).

5.3 Deleting a free polyhedron

When a free polyhedron is found, its slivers must be removed from all par-
tition trees. To accomplish this the view structure is modified one last time
by threading the slivers of each polyhedron into the singly-linked list sliv-
ers (1),1 < ¢ < |P|, as they are inserted into the partition tree. To delete a
polyhedron, the list of its slivers is traversed and each one is deleted from
its COVER set in constant time. Note that the deleted slivers are not nec-
essarily the maximal ones, since the polyhedron may be free in some other
view.

As noted above, a nice side-effect of the construction of the VISIBLE
set is that if a polyhedron is free, none of its representatives will appear in
any VISIBLE sets in the segment trees, thereby avoiding having to find and
delete them. When a sliver is deleted from the COVER set of a node u, we
must compute the freedom of the new candidate at « and potentially all of
its ancestors on the path from the root to u. To find the newly freed slivers,
the contribution of u to its parent is re-computed by invoking BuildVisible
(u, parent (u)) and rebuilding the VISIBLE sets until either the leaf of the
partition tree is reached or no new representatives are generated.

Each sliver must not be counted more than once otherwise spurious
representatives will be generated. Fortunately, the weight field of a free
sliver is set to 0 in BuildVisible (step 20), so it is never reconsidered for
freedom.

SEPARATIONTM 17

6 Analysis of 3D Separation

Theorem 6.1 The three dimensional Separation problem can be solved in
O(N+/N log® N) time and O(N+/N log N) space.

Proof: In three dimensions, there are 2d = 6 allowable directions and the
dimensionality d is independent of the complexity of the scene N.

The preparation of the event schedule for the space sweep requires O(N log N)
time to sort the 2 coordinates of the facets. The decomposition of the polyg-
onal facets yields O(N) rectangles, and each rectangle is broken up into
O(V/N) fragments. Inserting a fragment involves updating O(log N') nodes
in each of two segment trees in constant time for each node. Thus, inserting
all polyhedra takes O(N+/N log N) time.

Each representative contributes to at most O(log N) VISIBLE sets (since
this is the height of the segment trees). The time required to generate a rep-
resentative and to migrate from a child node to its parent is O(log N') (each
VISIBLE set holds O(N) representatives). Therefore, for each represen-
tative O(log? N) steps suffice to reach the VISIBLE set of the partition
leaf. The number of representatives is bounded from above by the num-
ber of slivers so the total time to detect the freedom of all polyhedra is
O(N+/Nlog® N).

Once the VISIBLE sets for the partition leaves are constructed, a simple
O(N) time scan of all leaves is required to detect whether any polyhedron
is free to move. If a polyhedron is free, deleting its slivers takes constant
time for each sliver, thus a total of O(N+/Nlog N) time. When a sliver is
deleted from node u, BuildVisible is re-applied to (at worst) every node on
the path from the root to u. Again, O(log N) time is spent at each node
and the length of the path is O(log N). In summary, we expend O(log? N)
time during the deletion of each sliver, for a total of O(N/N log® N).

Thus, the three dimensional algorithm requires O(N VNlog® N) time.

The space required by the algorithm is easy to compute: O(N+/N log N)
slivers and representatives are constructed, each of which requires a constant
amount of space. O

7 SEPARATIONT™™ in d-dimensions

As outlined in [OY88] the orthogonal partition tree can be generalized to d
dimensions (d > 2) relatively easily, and it is possible to extend our algo-
rithm to higher dimensions.

Lemma 7.1 A d-dimensional orthogonal partition tree for N d-dimensional
intervals has the following properties:

18 Devine and Wood

the tree has O(N%?) nodes;

each d-interval is stored in O(N(4=1)/2) leaves;

o o M

no cell of a leaf contains any vertices; and

4. each leaf holds no more than O(v/N) d-intervals.
Proof: See [0Y88]. O

We build a (d — 1) dimensional partition tree whose leaves represent (d —1)-
dimensional cells by splitting first on the z; coordinate, then the z,, and
so on. Each cell is described by (d — 1) augmented segment trees identical
to those used in the three-dimensional variant and the same algorithm will
work correctly.

Theorem 7.2 SEPARATIONTM in d dimensions for polyhedra with a total
of N vertices can be solved in O(dN%2log® N) time and O(dN?%2log N)
space.

8 Conclusions and Open Questions

We have presented a general solution to SEPARATIONTM in arbitrary
dimensions. In this section, we explore possible extensions and mention
some open problems.

8.1 Two-Dimensional SEPARATION™

In the original paper on SEPARATIONTM | [COSSW84] give an outline of
an algorithm for the two dimensional version of the problem with a run time
of O(N log? N). The original algorithm is unfortunately incorrect, because
the edges of the polygons are not labeled with the polygon identity. The
algorithm concludes that a single polygon is unable to move since the leading
facets block the trailing ones.

The process involved in determining the visible slivers in a cell is identical
to solving the two dimensional variant of SEPARATION TM We can state:

Theorem 8.1 Solving two-dimensional SEPARATIONTM for a set of dis-
joint simple orthogonal polygons having a total of N vertices can be done in

O(N log® N) time and O(N log N) space.

Proof: We use a single augmented segment tree. The O(N) line segments
(for a given direction) defining the polygons are broken up into O(N log N)
slivers by the cell tree. From this observation, the arguments used in the
analysis of 3D SEPARATIONTM carry through. O

SEPARATIONTM 19

8.2 [Efficiency Considerations

For a given orthogonal direction 6, a polyhedron P is said to be §-ortho-
convez if the intersection of P with each §-oriented line is empty or con-
nected. The §-ortho-convez hull of a polyhedron P is the smallest §-ortho-
convex polyhedron containing it. In order to improve the practical effi-
ciency of our algorithm, we can initially replace each polyhedron by its
§-ortho-convex hull to ensure that each polyhedron’s projection is covered
by exactly two faces of the hull — the leading and trailing faces — thus
potentially reducing the number of appearances of each polyhedron in the
structure, without incurring significant time cost since the ortho-convex hull
of a polyhedron can be computed in O(N log N) time [KS86].

8.3 Further Research

Several avenues for further research remain open. An obvious question con-
cerns the optimality of our solutions. The only lower bound we have is
O(Nlog N) and it seems difficult to improve it. Is there an algorithm solv-
ing SEPARATIONTM™ (even in two dimensions) in O(Nlog N') time? If
so, all of our upper bounds can be tightened. Concerning the space cost,
Overmars and Yap [OY88] mention the use of streaming to reduce the stor-
age required for the orthogonal partition tree to O(N log N). Is streaming
applicable in our case?

Allowing more than one move per polyhedron would give different prob-
lems of the form: can we separate a polyhedron in two consecutive moves?
in 3 moves? in k? Note that whether we insist that all moves affecting a
polyhedron be consecutive or we allow the moves to be interleaved with the
moves of other polyhedra is significant.

What if we replace each asteroid warhead by a small engine with limited
fuel capacity and ask: compute a sequence separating the asteroids (in the
sense that each asteroid escapes from the convex hull of the initial collection)
and minimizes fuel consumption?

References

[Ben75] J.L. Bentley. Multidimensional Binary Search Trees Used for
Associative Searching. Communications of the ACM, 18:509-
517, 1975.

[Ben77] J.L. Bentley. Algorithms for Klee’s Rectangle Problems.
Technical report, Department of Computer Science, Carnegie-
Mellon University, 1977. Unpublished notes.

20

Devine and Wood

[COSSW84| B. Chazelle, T. Ottmann, E. Soisalon-Soininen, and D. Wood.

[DS86]

[FB74]

[GY80]

[KS86]

[McC85]

[MF82]

[NLLW82]

[Nur87]

[0SSW84]

[0Y88]

[PS85]

The Complexity and Decidability of SEPARATION™ | In
J. Paradaens, editor, ICALP’8}, pages 119-127. Springer-
Verlag Lecture Notes in Computer Science 172, 1984.

F.Dehne and J.R. Sack. Separability of Sets of Polygons. Tech-
nical Report SCS-TR-82, School of Computer Science, Car-
leton University, 1986.

R.A. Finkel and J. L. Bentley. Quad Trees: A Data Struc-
ture for Retrieval on Composite Keys. Acta Informatica, 4:1-9,
1974.

L.J. Guibas and F. F. Yao. On Translating a Set of Rectangles.
In SIGACT Symposium on Theory of Computing, pages 154—
160, 1980.

D. G. Kirkpatrick and R. Seidel. The Ultimate Planar Convex
Hull Algorithm. SIAM Journal on Computing, 15(1):287-299,
1986.

E. M. McCreight. Priority Search Trees. SIAM Journal on
Computing, 14:257-276, 1985,

D.Y. Montuno and A. Fournier. Finding the £ —y Convex Hull
of a Set of z — y Polygons. Technical Report 182, University
of Toronto, CSRG, 1982.

T.M Nicholl, D.T. Lee, Y.Z. Liao, and C.K. Wong. Construct-
ing the X-Y Convex Hull of a Set of X-Y Polygons. Technical
report, IBM Research Center, 1982.

O. Nurmi. Algorithms for Computational Geometry. PhD the-
sis, Karlsruhe, 1987.

T. Ottmann, E. Soisalon-Soininen, and D. Wood. On the defi-
nition and computation of rectilinear convex hulls. Information
Sciences, 33:157-171, 1984.

M. H. Overmars and C.K. Yap. New upper bounds in Klee's
measure problem (extended abstract). In Proceedings of the
29th Annual Symposium on Foundations of Computer Science,
pages 550-556, 1988.

F. P. Preparata and M. I. Shamos. Computational Geometry:
An Introduction. Springer-Verlag, 1985.

SEPARATIONTM 21

[Tou85] G. T. Toussaint. Movable Separability of Sets. In G.T. Tous-
saint, editor, Computational Geometry, pages 335-375. Elsevier
Science Publishers, North-Holland, 1985.

[vLW81] J. van Leeuwen and D. Wood. The Measure Problem for Rect-

angular Regions in d-Space. Journal of Algorithms, 2:282-300,
1981.

	

