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GENERALIZED SCHWARZ SPLITTINGS*
WEI PAI TANG!

Abstract. .

A classic mathematical technique, Schwarz Alternating Method (SAM), has recently attracted
much attention from the research community of parallel computations as well as theoreticians [2], [14],
[11], [12], [5], [17], [4], [10], [3]. Its potential in parallelism, wide applicability and great flexibility in
implementation make SAM a competitive choice in parallel computations. However, the computational
performance of the classical SAM and its modern extensions strongly depends on the amount of overlap
between the neighbouring subregions. Introducing a large overlap has changed the image of SAM from
an impractical theoretical technique to a rather competitive numerical approach. Meanwhile, concerns
about the duplicated work on these overlapped regions are increasing. Reducing the amount of overlap
without affecting the speed of convergence has become an important performance issue.

Schwarz Splitting (S5)[17] has been proposed as one of SAM’s modern extensions in numerical
algebra, and a generalized SS is presented in this paper. The new approach allows us to utilize the
flexibility of the splitting to further improve convergence speed and complexity. A fast convergence is
obtained by choosing a good splitting instead of increasing the overlap. The best performance from
our generalized SSis much better than that from previously recommended $5, in which a large overlap
is used. Both convergence analysis and numerical results are presented here.

Key Words. Schwarz Alternating Method(SAM); Schwarz Splitting(S5S5), generalized Schwarz
splitting, domain decomposition, parallel computation, overlap.

1. Introduction. Experience with the new generation of parallel computers has
promoted efforts to search for truly parallel algorithms rather than parallelizing the
existing sequential algorithms. For coarse grain parallelism, domain decomposition has
become an increasingly important focus of research on numerical solution of partial
differential equations.

A classic mathematical approach-Schwarz alternating method (1869)- [16] ap-
pears to offer promise for the parallel solution of the very large systems of linear or
nonlinear algebraic equations that arise when elliptic problems in elasticity, fluid dy-
namics, or other important areas are discretized by finite elements or finite differences.
With this approach, a large problem is decomposed into several coupled subproblems.
With proper ordering, these subproblems can be solved independently. Given an
initial guess, and repeating the solutions of each subregion and exchanging the new
information, this process will converge to the solution on the entire region. Flexi-
bility in mapping these subproblems into different parallel computer topologies and
the lower ratio between communication and computation make SAM a competitive
choice in parallel processing. It is also crucial for some complex fluid flow calculations
that different modelings or grids be applied to different subdomains of the flow. For
example, in many applications we need to merge Euler’s equation, the Navier-Stokes
equations, potential flow and other models in suitable subregions for a single large
problem. There are also applications where composite meshes in regions with compli-
cated boundaries are needed. SAM can provide a natural framework within which all
these requirements are met.

The recognition of SAM’s potential in numerical computations was a rather recent
event [2], [14], [11], [12], [5], [17], [4], [10], [3]. This delay may have been caused by some

* This research was supported by the Natural Sciences and Engineering Research Council of
Canada.
! Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
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disappointing experiments with earlier naive implementations of SAM [15]. During
the past several years, understanding of SAM’s computational behavior has become
clearer. If the area of the overlap regions is a constant fraction of the subregions,
several people have shown that the convergence of SAM is independent of the mesh
[12], [3]. .

Several modern ertensions have been proposed. For example, a generalization of
SAM in linear algebra— Schwarz splittings— was introduced in [14], [17], and an additive
version of SAM is being investigated [4], [3]. It is known now that the convergence of
the classical SAM and most of its modern extensions strongly depends on the amount
of overlap between subregions. Introducing a larger overlap does considerably improve
the performance of SAM [12], [8]. Combining with other acceleration techniques, such
as multilevel techniques, preconditioning or SOR accelerations, SAM has proven to
be a competitive method in large scale scientific computations. In spite of of quick
convergence, the duplicated work on the overlapped regions at each iteration is not
desired. Reducing the amount of overlap without affecting speed of convergence has
become an important performance issue.

Schwarz originally proposed a coupling between subregions which requires only
the continuity of the unknown. Kantorovich and Krylov ([9], pp. 617-626) presented
a rather general convergence result of SAM for a second order partial differential
equation of the form:

du Bu 8%u 0%u _

L(u) = F(

zaya'uw%,@awab_yz—) ’
with Dirichlet boundary condition. They also used Dirichlet boundary condition on the
artificial boundaries. It is not difficult to observe that we can replace the continuity
of the unknown on these artificial boundaries by other couplings, for example, the
continuity of the unknown’s derivative. Several attempts to use different boundary
conditions on these overlapped regions were not very successful [17], [13], leading us
to conjecture two years ago that “For different problems the best choice of the type
of boundary conditions may vary. It is a very interesting open problem for future
research.” For the model problem, it was shown that Dirichlet boundary condition
has a better convergence rate than Neumann boundary condition [17].

In this paper, a successful coupling between the overlap subregions is identified. -
First, let us introduce a generalized version of SAM: consider the Dirichlet problem
for a second order elliptic operator L

(1) { L(u(x)) =0, x€Q,

u(x) IFQ = ¢(X), xeTlg
where  is a bounded region in k-dimensional space, I'q is the boundary of ,
x = {&1,%2, -+, 2k} is the independent variable ( Fig. 1 shows an example of two

dimensional case). To simplify the discussion, we consider a case for two subregions,
although direct generalization may be made to more subregions. We also assume that
the solution to this problem exists and is unique. '

Split the solution domain § into two overlapping subdomains 2; and Q; (see Fig.
1), provided Q13 = Q1 N Q2 # 0. Denote I'q,, 'g,, I'g,, the boundaries of 4, Q4 and
Q15 respectively. Let

Tq, I, uTy,
I, = T,uly.
2



Fi1G. 1. Two overlapping subregions

where

Iy = I‘nﬂrnl, I‘i = I‘anI‘nu,
r, = I‘nﬂrnz, 1—'; = Tnzﬂrgu.

Denote u; and uz the solutions on subdomain ©; and 2, respectively. Then, the
following couplings

gl(uz)
92(u1)

(2) 91(w1) Ipy
(3) 92(u2) Ip;

are true on the artificial boundaries I'] and I'}, where

ou

—8—77,’ 2:1,2

(4) gi(u) = wju+ (1 — w;)

With these new couplings we can formulate two coupled subproblems

L(ui(x)) =0, x € 01,
(5) up (x) Ir, = Y(x), x €Ty,
g1(u1(x)) lr/l = g1(uz(x)), ' x eIy,
L(ua(x)) =0, x € Q,,
(6) up(x) |, = (x), x €T,
g2(u2(x)) ]I‘/2 = ga(w1(x)), x €T},

We have the following result:



THEOREM 1. If the boundary value problem

L(w(x)) =0, x € {ly,
) nlw(x) Iy, =0, x € T,
g2(w(x)) lr'z =0, x €T,

has only trivial solution and the solution uq, us of (5) and (6) exist, then
UL up(x) = ua(x), x € Qya.

2. u(x) = ui(x), x€Q and u(x)=uz(x), x€Qy,
where u, uy, up be the solution of (1) and the solution of (5) and (6), respectively.

The proof of this theorem is straightforward and a direct generalization of this
result to a finite number of overlapping subregions can be made. We define that the
problem (1) is equivalent to (5) and (6). A version of this result in linear algebra will
be shown in the next section. From Theorem 1, we can replace the problem (1) by (5)
and (6).

Since there are unknowns which are coupled in the boundary conditions of (5) and
(6), we cannot solve the two problems independently. Given an initial guess u |r$ = 1o,

we will then be able to construct a sequence {ugi), ugi)} as follows:

L(u”)  =o, x € O,
(8) o p, =, x €Ty,
9(u™) Ipy = g(o), x €T},
LWy  =o, x € Oy,
(9) e Ir, =9, x e,
hu?) Ipy = A({Y), x €T},
LWy =o, X €Q,
(10) . =, x € T4,
o) Ip = g(uf?), xeTy,
i=1,2,---

A key question is to ask under what conditions the sequence {ugi), ugi)} will con-
verge to the solutions {uy, us} of (5) and (6). If it converges, then from the solution of
(5) and (6), the solution of (1) can be constructed. An analysis for the model problem
will be given in Sec. 3.

From the description of generalized SAM, we can view this idea as a general
framework. Many flexibilities within this framework can be used to improve the per-
formance of a particular implementation. Namely, we can tailor this approach more
efficiently to different problems or to different computer environments for the same
problem. The following flexibilities are rather useful:

¢ Flexibility in the choice of the couplings ¢;(u). A perfect choice of g; can yield
substantial improvement in performance (see numerical results in Section 3).

o Flexibility in the geometrical shapes of the subdomains. This flexibility makes
it possible to choose the geometry of most of the subregions to meet the
requirements imposed by fast solvers or by grids. A fast biharmonic solver on
irregular domains using generalized SAM is studied in [1].

4



¢ Flexibility in the solution techniques for each subproblem. We are able to
use different solution techniques for different subproblems. It is also possible
to use different ways to obtain the solution of the same subproblem in the
different stages of the computation, allowing us to use an optimal approach
at any particular moment and in any particular location. Hierarchical grid
and inexact solution strategies are typical examples here [18], [7], .

o Flexibility in the numerical model for each subproblem. Special boundary
shapes or local behavior of the solution may require different models in dif-
ferent subregions. The decoupled subproblems allow us to localize the special
treatment to the place where needed. Composite grids are a good example of
this case.

Proper use of these flexibilities can yield an efficient algorithm. A particularly im-
portant application of SAM is for parallel computations. In the previous description
of generalized SAM, the parallelism is not very obvious. When the number of the
subregions is greater than or equal to the number of processors, we can divide the
subregions into the same number of groups as processors. Now each processor is as-
signed to solve one group of the subproblems, so these solution processes can be done
independently. As we can see there are many issues which need to be considered in
a real implementation such as load balancing, communication, synchronization and
ordering of the solution of the subproblems. These are very important in terms of
parallel efficiency, however, we shall not study them in depth here.

From our description, we can also observe that generalized SAM not only provides
parallelism in the algorithm, it also has the advantages of a higher ratio between
computation and communications, the local communication pattern, and the hiding
of global information exchange. All these features make generalized SAM an attractive
candidate as a parallel algorithm.

In the next section, a generalized Schwarz Splitting (generalized SS) and an equiv-
alence theorem are presented. This generalization is an analogy of the generalization
from SAM to Schwarz splitting. Then, an application of this generalized SS to the
solution of elliptic equations is shown in Section 3. The convergence analysis of the
strip case and our numerical results indicate that the performance of a proposed
generalized SS depends mostly on a coupling parameter a. A fast convergence rate
based on a proper choice of & can be obtained with very little overlap, thus the concern
: about too much duplicated computation in the traditional SAM can be alleviated.

2. Generalized Schwarz Splittings. In this section we present an extension
of the generalized SAM to numerical linear algebra. For a matrix equation 4z = f,
we first introduce a Schwarz enhanced equation Az = f The corresponding matrix
A is called a Schwarz enhanced matrix. A necessary and sufficient condition for
the equivalence of the original equation and Schwarz enhanced equation is shown.
The analogy of applying generalized SAM to the matrix equation is equivalent to
applying a particular block Gauss-Seidel scheme to the Schwarz enhanced matrix. The
-corresponding splitting of the Schwarz enhanced matrix is called generalized Schwarz
splitting (generalized SS). With this extension, many classical results in numerical
linear algebra can be applied to this problem.

2.1. Definitions. Here the generalized SAM is discussed in terms of matrix the-
ory. This approach provides many new opportunities for generalizing and improving
the original SAM.



Consider a matrix problem:
(11) 4z = f,

where A is an N X N nonsingular matrix, f and @ are N vectors. A partitioned form
of the equation (11) will be used in the rest of this paper. A partition is defined by
the integers ny, ng, - - -, nogs1 such that

(12) ny 4 ng oo ngeg = N
(13) Mo >0, Mppy >0, i=1,---.k

Given a set {n;}?*I which satisfies (12) and (13) the (2k + 1) x (2k + 1) partitioned
form of the matrix A is then given by

Aia Az o Araksr
Asq Ass oo Asgki
(14) a=| 7 . . :
Aopir11 Aokpr2 - A2kg12k41

where A; ; is an n; X n; submatrix. We always assume that the unknown vector z and
the known vector f in the matrix equation Az = f are partitioned in a form consistent
with A. Thus, if A is given by (14), then  is assumed to be partitioned as

T
(15) ¢ = [z, 22,0, Takta]”
where z; is an n; X 1 matrix (column vector). An augmented vector of

~ T
(16) T = [21,22,22,23,24,24,T5," -, Lok, L2k, L2k+1)

is defined such that: all even subvectors #9;, 2 = 1, - -, k are duplicated once in their
places, and all odd subvectors remain the same.

To make the formula more readable, we will present the cases for N = 3 and 5
here. The generalization to a large IV is direct. A dense 3 X 3 partitioned matrix can
be written as:

A A Aig
A=1 A1 Az2 Azs
Azq Azz Asgs

If the operator L({u) in equation (1) is a linear second order elliptic operator, then
the discretized problem can be written as a matrix equation:

A1 Aip | Azs (51 f1
(17) Az = A21 A22 A23 To = f2 = f
Aszr | Azz  Ass z3 I3

The order of the unknowns is arranged so that [z, 23] corresponds to the unknowns in
4, [22, 23] corresponds to the unknowns in 22 and [25] corresponds to the unknowns

6



in Q19, which is the overlapped part of the two. The numerical generalized SAM for
the above problem solves the following subproblems alternately:

Ay Aqg a:?) ] _ [ h ] n [ o Az 11 azg’:‘l)
An B :cg’+1/2) | 2 Cy Az 2070 |7
(18)
Bé A23 (Bgt) ] _ [ f1 ] + [ Cé A13'- | (Bgz)
Aszz  Ass z:(;) fa | 0 Ay || :cg“q/z) :
where

The splittings in (19) correspond to the couplings in (2), (3). In the next section
we will show that a good choice of the splitting of As; can significantly affect the
convergence of SAM. It is therefore a very interesting research problem for further
improvement of SAM.

It is not difficult to observe that this procedure is equivalent to a 2 x 2 block
- Gauss—Seidel iteration for the following matrix equation:

A11 A12 0 A13 51 fl
- As; By | Cy  Ass zy fa 7
20 Az = - = = 7.
(20) An  Cy | By Ajs 4 fa !
Azr 0 | Az Ass z3 fs

Under certain conditions we know that the procedure (18) will converge [14], [17],
the solution of equation (20) satisfies Z, = 74, and [Z1, %4, Z3]7 is a solution of equation
(17). This is to say that the augmented vector of the solution of (17) is the solution
of (20) and vice versa. Later we will prove that this conclusion can be true only
when (B, — C3)~! exists. For most approximations of an elliptic partial differential
equation this restriction is not very difficult to satisfy. We shall call the equation (20)
the generalized Schwarz enhanced equation of (17) and the corresponding matrix A
in (20) the generalized Schwarz enhanced matrix of the matrix A.

Notice that: the second equation in (17) becomes a pair of dual equations in (20):

Ay + Bazy + Cazh + Aszzs = fo
Anzy + Chzy + Bhzy + Agzzz = fo

They are almost identical, except the term Ajazy in (17) is split in two different ways:

Agpzy = Bazy+ Cazy,
Agozy — Céwg + B;(l!lz

Here is another example of a 5 x 5 block matrix equation and its generalized
Schwarz enhanced equation:

Ann A | Az Ay Agg Ty h
Ay | Aza | Aas Aag | Axs zy fa
Az = Azy | A3 Aszz Az | Ass 3 | = I3 = f.
Ag1 | Age Ags | Asg | Ags Tyq fa
As1 Asy Ass | Ay Ass x5 Is




Ain Ain | 0 Az Ay 00 Ay [z ] [ £ ]
Asy By | Oy Az Ay 0 Ay T2 fo
0
0

N Ay C) s Az Ay Ass 2!, fa N
Az = | A3; 0 | A3y Azz Az Ass g3 | =) fa|=F
Apg 0 | Ay Az By | Oy Ags 7 fa
Apn 0 Ay Az Cy | By  Ags ‘A fa
| As1 0 Agz Asz 0 | Ass Ass || |25 | [ f5 |

where

Ay =By +Cy, =By+Cy
A =B4+Cy =B,+Cy

For a general partitioned matrix (14), the splittings of the submatrices Ay; 5; are:
Agi2i = Ba; + Co; = By; + Cy;

From these examples, we can summarize the following rules of constructing the Schwarz
enhanced equation: The odd number equations in Az = f is changed to:

i1 2k+1
ZA22 12j-182j-1 + D Asic1p5zh; + D Asic1jz; = faica,
= i=1 =2

i o= 1,--,k+1,

while the even number of equations becomes a pair of dual equations in the generalized
Schwarz enhanced equation:

7 2k+1
E 2i,2j—1%2;-1 + E Ag; 215623 + Byizo; + Coizh, + Y, Agijzj = fu
5=1 _7 1 7=2i+1
(21) 7 2k+1
Z Azizj-1%25-1 + E Azi2;@y; + Cozai + Byy, + 3 Asijz; = fu
= =241
Z — 1, cee k

Only two terms are different in the two dual equations. We will not describe the
details of how to form the generalized Schwarz enhanced matrix in general cases, as
it is similar to the Schwarz enhanced matrix described in [17]. From the construction
of the generalized Schwarz enhanced equation, it is easy to see the following result:

LEMMA 1. If the vector = (21,22, -+, 2ak41)" is the solution of equation (11),
then its augmented vector T s the solution of generalized Schwarz enhanced equation
A7 = f, where f is the augmented vector of f.

The matrices Ay;0;, 2 = 1,---, k are also called overlapped blocks. Let two ma-
trices B and C be the Schwartz enhanced matrices of the same matrix A and their
overlapped blocks are By;2; and Cy; 9,7 = 1,-- -, k, respectively. If By;o; and Ca; o
have a relationship such that each By;,; is a submatrix of the corresponding Cs; »;, we
then say C has more overlap than B. This overlap is closely related to the overlap area
of the solution regions for the subregions mentioned in the introduction. As we have
shown in [17], for the continuous model problem, if the amount of overlap increases
then the convergence rate will increase if a traditional SAM is applied. For the matrix
model we have a similar result [12].



2.2. Equivalence Theorem. A necessary and sufficient condition for the equiv-
alence of equation (11) and its Schwarz enhanced equation (20) is given in this section.
Let A be the same partitioned matrix in (14) and A4 be its Schwarz enhanced matrix.

THEOREM 2. Let A(A), MA) and A(By; — C3;) , i = 1,---,k be the sets of
eigenvalues of A, A and (By; — C.), 1 =1,---,k, respectively. Then )\(Z) C A(4)u

(0 A(Bai - 03)

Proof. Let A be an eigenvalue of A and
z = (517527§I27 te ':52k+1)

be the corresponding eigenvector. Substituting # into the equation 2¢ and its dual
equation, we have:

2k4-1

'L
Z Agi2j-1225-1 + E Agi9jy; + Boiai + CuZy; + 3 A2i@; = Ay,
= j=2i+1

- 2k41
E Azi2j-1T25-1 + ZlAzi,ijzj + €32 + By @y + %: . A2ijT; = ATy,
p) = =it

As we mentioned in the last section, only two terms are different in the left hand sides
of the two equations. Subtracting the first equation from the second, we have:

(Bai — C3;)(Z2i — To;) = MZa: — &;), i=1,---,k.

k
If Z3; — 25, # 0 for some i, then we have A € |J A(Ba; — C3;). fA ¢ U A(B2; — C3,),

1=1
then Z,; has to be equal to z4; for ¢ = 1,-- -, k. Therefore, Z is a augmented vector of
z = (T1,%2,%3,  *,Tak41)7 , which will satisfy equation
Az = Az,

Thus A € A(A), which concludes the proof.

Define the Schwarz enhanced equation (20) as equivalent to (11) if A~ exists and
the solution vector Z is a augmented vector of the solution z of (11). Similarly, we
say that the Schwarz enhanced matrix A is equivalent to matrix A 1f A~1 exists. With
this definition and the result from Theorem 2 we have _

THEOREM 3. If a matriz A is a Schwarz enhanced matriz of the nonsingular
matriz A, then the following conditions are equivalent: '

1. Matriz A is equivalent to matriz A.

k
2. 0¢ U MBai— Cy;).
i=1
k -~
Proof. If 0 ¢ |J A(Bai— C%;), then from Theorem 2 we know A~? exists. Applying
=1

the same strategy used in the previous proof, we can show that the solution z of Az = f
is a augmented vector of the solution z of Az = f.

Now we show that 0 ¢ U A(B2; — C4;) is also a necessary condition. Suppose

there is a j such that 0 € /\(ng C3;). We know that (By; — Cj;) is singular, hence
9



so is (By; — Cyj), since (By; — C;) = (Bj; — Caj). Now, if we subtract row 2j from

25’ in matrix 4, we will have
(22) 0,""0,(.32_7'—Céj),—(B;j—Czj),O,"',O

This means that A4 is singular. The proof is complete.
~ If a matrix is a positive definite matrix or an M-matrix!, any principal minor of

this matrix is also a positive definite matrix or an M-matrix respectively. Thus, if we
choose Cy; = 0 and C%; = 0%, we immediately have

COROLLARY 1. Any Schwarz enhanced matriz of a positive definite matriz A is
equivalent to A if Co; =0 and Cy; = 0,2 =1,---, k.

COROLLARY 2. Any Schwarz enhanced matriz of an M-mairiz A 1s equivalent to
AifCy=0and Cy=0,1=1,---,k.

3. A Parameterized Generalized Schwarz Splitting. The general frame-
work of a generalized SS is given in the last section. Here, the convergence be-
havior of a particular generalized SS for the elliptic equation, namely parameterized
generalized S5, is studied. In a traditional approach of SS, we choose Cy; = 0. In this
case, it is well understood that the amount of overlap is a key factor which affects
the convergence rate. Even though a larger overlap means more duplicated work on
these overlapping regions, the overall complexity is still better than a smaller over-
lap. However, a natural question is raised: is a larger overlap the ultimate choice?
The generalized Schwarz splitting discussed in the previous section provides a way to
explore possibilities of further improving the performance of SAM. In particular, we
will examine the importance of splitting

Ag;9; = By + Cy; = By, + Cy,.

First, an application of generalized 5SS to a two—point boundary value problem is
investigated. A similar approach can also be applied to two dimensional problems.
Consider a two—point boundary value problem

U'(z)+ qU(z) = f(x), =€ (0,1),

U(0) = ao; U(1) = aq,

where ¢ < 0. After discretization using a centered finite difference, the resulting linear
system is

(23) Tu(B)z = b,
where
T@(B) = Tridiagonal{-1, S, —1},”(,‘L
and 8 > 2. If there is no ambigujty, it will be abbreviated as T,,. Denote
| To(z1, 22, 23)
"' Any n x n matrix A = (ai;) with ai; < 0 for all i # j is an M-matrix if 4 is nonsingular, and

ATt > 0.
2 In the traditional approach of SAM, we always choose Co; = 0 and C5; = 0.

10
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as the same n X n tridiagonal matrix T, (22) except the first diagonal element is z;
and the last is z3.

The generalized SAM for solving this problem divides the region into k overlapping
subregions Q; ¢ = 1,---,k as shown in Figure 2 (To simplify the analysis we assume
the overlap pattern is uniform.). Let h be the grid size, £ the length of the overlap and
7 the length of every subregion. Then let n 41 = %, l = % and m + 1 = 7. Here we
assume ! < m/2, which means no three subregions have common overlap part. The
open circle points in Figure 2 are the boundaries of the subregions.

To make the formula more readable, we will display the case of & = 3. The general

case can be easily extended from this case. The partitioned form of (23) is now :

Tm—l —F1 0 0 0 T bl
—Ez Tl —F2 0 0 T2 b2
an = 0 —Eg Tm_2[ ——F3 0 T3 = b3 =b.
0 0 —E4 Tl —-F4 Ta b4
0 0 0 —E5 Tm—l Ty | b5 §
Its corresponding Scwarz enhanced equation is:
Tm—l —-Fl 0 0 0 0 0 T T i b]_ ]
-—Ez . Bz Cz —-Fg 0 0 0 P bg
- ——Ez Cé Bé —Fg 0 0 0 :D,z bg _
nE = 0 0 . —E3 Tm_zz —F3 0 0 T3 = b3 = b.
0 0 0 —E4 B4 C4 -—F4 L4 b4
0 0 0 —E4 C‘II B4 -—F4 :13:1 b4
| 0 0 0 0 0 —E5 Tm—l Ty i b5 A

The quantities above are defined as:

e Fi: an (m — I) x | matrix with zero elements everywhere except for a 1 in

position (m — [, 1).

o Fy: an I X (m — 2l) matrix with zero elements everywhere except for a 1 in

position (m — 21,1).

e F3: an (m — 2I) x | matrix with zero elements everywhere except for a 1 in

position (m — 2[,1).

11




o Fy: an I x (m — l) matrix with zero elements everywhere except for a 1 in
position (m —I,1). -
o Ey: an [ x (m — ) matrix with zero elements everywhere except for a 1 in
position (1, m — ).
e E3: an (m — 2I) x [ matrix with zero elements everywhere except for a 1 in
position (1,1). »
e E4: an I x (m — 2I) matrix with zero elements everywhere except for a 1 in
position (1, m — 21).
e E5: an (m — l) X [ matrix with zero elements everywhere except for a 1 in
position (1,1).
There are many ways to split the matrix 7;. We will introduce a parametrized
generalized SS for this problem as follows: let

e F: an I X I matrix with zero elements everywhere except for a 1 in position
(1,1) and

0202:C4IQF, B:BQZB4:T1—C.

o. F: an I X | matrix with zero elements everywhere except for a 1 in position
(1,1) and

C'=Ch=C=akE, B'=B,=B,=T,—C.
where 0 < a < 1. It is not difficult to show that
det(B — C') = det(Ty(8 — o, 8,8 — a)) # 0,

provided 8 > 2. The resulting Schwarz enhanced equation is equivalent to (23). Then
the parametrized generalized SS of (23) is defined as:

T, =M(a)- N(a)

T, O 0 0 U; 0
=10 Ty, 0 — | Ly 0 U,
0 0 T3 0 Ly 0
where
Tl = m(ﬂ’ﬂ’ﬂ—a)7 T2:Tm(ﬂ_a7ﬂ)ﬂ_a)a T3:Tm(13—a118’/8)7
[ Ez aF
Ly = 0 0 ) Lz = [ 0E4 SE :| y
i 0 0
r 0 0
0 0
U1 - } 3 Ug = 0 6
. i alF Fz aF F4

A simple calculation can show that the relationship between a and w in (4) is
l1-«a
W= ——
1—a+ ha

When a = 0, we have w = 1. Thus, this parametrized generalized S5 reduced to
the traditional S5, namely a Dirichlet boundary condition, is used on these artificial

12



‘boundaries. If 8 > 2 and a = 1, we have w = 0. It is equivalent to use a Neumann
- condition on the artificial boundaries (If 8 = 2 we can only use Neumann condition
on one of the boundaries for interior subregions. Otherwise, the resulting Schwarz
enhanced matrix is singular. For two dimensional problems, if a strip decomposition
is employed, then a Neumann boundary condition can be used for both artificial
boundaries). For 0 < a < 1, this generalized SS corresponds to

91(u) = g2(u) =wu+ (1 - w)g—;‘—i
The convergence analysis of this parameterized generalized 5SS is therefore reduced to
calculating the spectral radius of the block Jacobi matrix J = M~!N. Notice that
the matrix N(a) only has 8 nonzero elements. So the matrix J = M !N has only 8
nonzero columns, provided [ < m/2. They are only related to the elements in the last
or first columns of the matrices Ty!, 75! and T3 '. Let t;; be the elements of the
matrix T, }(8) and D;(B) = det T;(8). We have the following results (see [6]):

sinh(n 4 1)8/sinh#, B> 2, 2coshf = g,
n+1, B =2,
sin(n + 1)0/sinh8, B< 2,

Dj—l(/@)Dn——i(ﬁ)/Dn(:B)r 12> j;
D;1(8)Dn—(8)/ Dn(B),

Dr(B) =

ti; = {

Based on this result, the elements of 77} and 75 can be ‘easily derived from the
Sherman-Morrison formula. We will not elaborate on the detailed derivation here.
Denote the last columns of the matrices 7] ! and Ty ! by (1) and ¢(2) respectively:

O O A )

O O O CON
Note that elements tz(-j ) are functions of a. Since matrix Ty ! is a permuted matrix of
T7!, the first column of the inverse Ts ! can be derived from the last column of Tt
by a simple permutation. Let PT is a permutation matrix permute columns m — I,
m-Il+1l,m+i,m+i+L2m-0L2m—-I+1;2m+,2m+1+1to3m—k+1,

k=38,7,---,1, respectively. J can be similarly transformed to J:
= 0 K
J=pripPT =
0 G|’
where
0 0 _at(nlz)—z t(nll)_; 0 0 0 0
1 1
0 0 _at‘(m)—l-}-l t,('n)_l+1 0 0 0 0
tﬁ)_m “ati)_zﬂ 0 0 0 0 _atgi)l tgi)l
oo |t —etl), 0 0 0 0 —al®
= £ —atl® 0 0 0 0 at®
) 0 0 0 0 —at®,
1 1
0 0 0 0 0 —atl) 0 0
0 0 0 0 t(nlx)—t —atS:L)_l 0 0

13




Note that matrix G has only 4 independent columns. After a simple reduction,
we know the following matrix includes 4 non-zero eigenvalues of G:

[ 0 ) —atl) 0 0
2 2 2 2
o = tsn)—l—atsn)—lﬂ 0 0 tg )_atg—)1
t§2)—at§3)1 0 ) 0 ) tg:)—l"atg)—l-n
0 0 : tm_‘l~atm_l+1
0 ¢4 O O
_ 192 0 0 g
gs 0 0 g
| 0 0 g1 0
Let
10 -1 0
101 0 -1
.H_ﬁ 01 0 1
10 1 O
We have

0 g O 0
g2+g3 0 O 0

0 0 0 g2-—gs

HG'H =

Thus, the 4 eigenvalues of G' are:

A2 = £/ 0192 + g3)
)\3,4 = i\/.‘h(gz - 93)

We present two figures to show the relationship between the spectral radius and
the parameter a in Fig 3. For both cases, the size of each subproblem is m = 10 and
B = 2. When 8 > 2, generalized 55 has a faster convergence rate. Figure 6—7 will
show the results for the latter case. The z-axis is the parameter a while y-axis is the -
spectral radius of the Jacobi matrix for generalized SS. The top figure shows the case
of one overlapping node while the lower one demonstrates the case of overlapping half
the subregion. In Fig. 3, we can see that the traditional SS (when a = 0) has a very"
poor convergence rate since the overlap is so small. The error reduction is 90% for each
iteration. To reduce the residual by a factor of 108 requires more than 60 iterations.
When the parameter a approaches 1, an amazing improvement of the convergence rate
appears. For a = 0.9, the convergence factor is less than 10~%. That is to say only very
few iterations are needed for any particular computation. From the second picture,
we can observe when a = 0.85 the convergence rate of the generalized S5 approaches
the optimum. But the optimal convergence rate in this case is even worse than having
minimum overlap, and the only positive here is the sensitivity of the convergence rate
with the parameter a.

A numerical test has verified this analysis. The problem we are testing is

y"'(z) = 2¢” cos z, z € (0,1),

y(0) =0, y(1) = esin(1).
14



which has a solution y(z) = €® sin(z). The solution region is covered by three overlap
subregions with m unknowns each. Two neighboring subregions have one overlapping
grid node. A random initial guess is used when the iteration starts. For a = 0.948, m =
20, and | = 2, the residual is reduced by a factor of 1014 after 3 iterations. The results
are the same for different mesh sizes. For a = 0.9, m = 10, and [ = 2. the residual is
reduced by a factor of 10'° after 3 iterations. By comparison, the traditional SS with
the same overlap will take 60 iterations to reduce the residual by only a factor of 105.

We apply the traditional S5 to the same problem with an overlap of half of the
subregion. Numerical testing shows that 11 iterations are needed to achieve a reduction
of the initial residual by a factor of 10°. If an optimal a is used, 4 iterations are needed.
This again verifies the analysis shown in Figure 3. The above results are summarized
in the following table:

minimum overlap half overlap
Convergence | Number of | Convergence | Number of
factor iterations factor iterations
Classical SAM 0.91 60 0.68 11
generalized SAM 10~* 3 0.06 4

Similar to the traditional SS, the convergence rate will deteriorate when the num-
ber of subregions increases. For four overlapping subregions of size m, the non-zero
eigenvalues for the Jacobi matrix of generalized SS are included in those of the follow-

ing matrix:

Dy L 0

G4 = U _D2 L

0 U Dj3

where
0 ¢ 0 g2 0 g
D, = , Dy = , Ds = ,
and
_ 0 O _ 0 g3 |

Using a similar reduction as in the case of & = 3, we can express the eigenvalues
of matrix G4 as the roots of the following two cubic equations: :

A= A%gy + 91922 4 g% — G192 = O,
A%~ A%gy — g1g2) — g2 4 g1g2 = O.

The roots can be expressed as some complicated functions of g;,7 = 1,2,3 which we
will not list here.
In general, for k overlapping subregions, the non-zero eigenvalues of the Jacobi
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matrix are included in those of the following (k — 1) x (k — 1) block matrix:

Dy L 0 - - - 0 0
v D, L 0 - - 0 0
Gy =
o 0 - - - U Dy L
0o o0 - . 0 U Ds|

There will not be a closed form for the eigenvalues of Gy when k£ > 4. In Figure 4 we
present a numerical result for the spectral radius of J where 5 overlapping subregions
exist. The first picture is for the minimum overlap case while the second is for the
overlapping half of the subregions. Again, a significant improvement can be obtained
by choosing a good parameter a.

For two dimensional problem

AU(z,y) -~ qU(z,y) = f(z,9), (z,3) € (0,1) x (0,1),
U(zay) |F = g(may)
where ¢ < 0, a matrix equation
Ar =b

can be derived using centered finite difference. Given grid size h = 1/(n + 1), A can
be written as

A=Th(B)® I, + I, ® Ta(2),

where 8 > 2. Decompose the solution region into 3 overlapping subregions (in strip).
The overlap pattern in z—direction is exactly the same as in one-dimensional case.
The corresponding Schwarz enhanced matrix is

[ a4 =R o0
A= - B Ay, ~-F
0 ~-Fy A3
where
Al = T‘l ® In - Im ® Tn(z)a
Ay = ToQ®In+1n® Tn(2)7
A3 = T3 ® In + Im ® Tn(2)7
El = E,® In
o= Fnel,
and

e FE,.: an mXm matrix with zero elements everywhere except for a 1 in position
(1,m — 1) and « in position (1, m — 1+ 1).
e F: an m X m matrix with zero elements everywhere except for an a in’
position (m,m —I) and 1 in position (m,! —1).
16



The Jacobi iterative matrix for the generalized Schwarz splitting is

ATV 0 0 0 F O
J = 0 4;' o E, 0 R
0 0 A7 0 E, O
= M™'N
Let
I, ® Xn 0 0
U= 0 I.® X, 0
0 0 I, ® X,

where X, is an orthogonal matrix. Each column in X, corresponds to an eigenvector
of matrix T,(2) and X,,7.(2)X,, = D, = diag{d;}, d; = 2+ 2cos e i=1,-,n
Note U is orthogonal and UNU = N. So

J = vjuTt
= (UMUT)'N

—

= MN

where

=)
I

&
o

0 0 A,
A = (In ® Xp)Ai(Im ® X)T

Let P be the permutation matrix which permutes row (k — 1)n+4 to (i~ 1)3m + k
k=1,---,3m,i=1,---,n. Then

J(d1)
py'pPT = 7(d2)
J(dn)

Where each J(d;) is the Jacobi iterative matrix of the generalized SAM for matrix
T,(d;) in one-dimensional case. Similar to the traditional SAM, we found that the
convergence of the lower frequency components are slower than that of higher frequen-
cies. We present two pictures in Fig (5) to show how p J(4;) changes when d; changes.
The first represents three subregions with minimum overlap while the second shows
the same number of subregions with half overlap. Another two sets of figures present
the relations between the spectral radius pj(q;) and the parameter a. The first set is
for J(2.01) and the other is for J(5.99), which represent the lowest and the highest
frequencies of the eigenmodes respectively. Both sets have one figure for minimum
overlapping (one grid line) and another for overlapping half of the subregion. We
can see that the sensitivity of the convergence rate with the parameter « is better in

17



a two—dimensional problem. It is also noticeable that the convergence of the higher
frequency mode is very fast for all a.
Numerical testing results for the model problem

AU({C, y) = —23:(1 - a:) - Zy(l - y)a (CB, y) € (07 1) x (0’ 1))
U(z,y) Ir 0

are given in Fig. (8). We present the relations between the number of iterations and
the parameter « in these figures. Testing is carried out for three and five subregion
cases, and for each decomposition, both minimum overlap and half overlap are tested.
Initial guess is randomly generated. To make the programming easier, the grid size is
slightly different for each case. h is between 1/40 to 1/50. The results plainly verify
our analysis. The z-axis is the parameter o while y-axis is the number of iterations
needed for reducing the initial error by a factor of 10°.

4. Conclusion. From the above analysis, a generalization of the traditional SAM
is presented and the improvement of its performance is significant. The results of this
study suggest that there may be other interesting splittings or couplings with good
or even better performance characteristics. So far, our analysis has been restricted
to a simple case, namely the strip decomposition. In particular, the close form of
the spectral radius did not provide us with an insight of how the convergence is
related to the decomposition and the parameter a. We do not have the same intuitive
understanding we had for the classical SAM. More interesting problems remain to be
studied; a mixed coupling approach or multi-parameter generalized SS would be worth
exploring. For variable coeflicient problems, a local coupling approach should be an
interesting topic, and how the geometry of the domain affects the optimal value of the
parameter should be investigated. The effects of different couplings on the convergence
of SAM have also been observed in a study for the fourth order equation[1].

We should also indicate that there is a severe sensitivity between the parameter a
and the convergence rate of generalized SS. A better understanding of this sensitivity
is needed to make this generalized SS a practical technique.
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Five subregions with minimum overlap
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