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Abstract

The known tridiagonalization algorithms for general matrices
suffer from serious breakdown and/or stability problems. In this
paper, we present a new algorithm for reducing a general matrix to
tridiagonal form by a sequence of similarity transformations. Sta-
bility is promoted by controlling the norms of the transformation
matrices. Results of tests indicating the stability characteristics
of the algorithm and comparison with the Lanczos algorithm are
included.

1 Research partially supported by the Natural Sciences and Engineering Research
Council of Canada and the University of Toronto/University of Waterloo Infor-
mation Technology Research Centre

AMS Subject Classification (1980): 65F30, 65F15



2 D.E.G. Hare & W.-P. Tang

1. Introduction

For the problem of determining the eigenvalues of a general matrix, the QR al-
gorithm remains the popular choice. To use the QR algorithm efficiently, the matrix
is first reduced to Hessenberg form, an O(n®) operation. The QR algorithm then
iteratively transforms the Hessenberg matrix to obtain the eigenvalues. As each
iteration requires O(n2) work, in the general case, there is much interest in the pos-
sibility of further reducing the Hessenberg matrix to a condensed form which allows
for an O(n)-work-per-step iterative method to be applied to find the eigenvalues.

The condensed form which has been attracting the most attention is the tridi-
agonal form. However, the known algorithms for tridiagonalizing a nonsymmetric
matrix suffer from serious breakdown and/or stability problems: all of the algo-
rithms require division by computed quantities, so the occurrence of a near-zero
denominator effectively halts the algorithms (breakdown), while the occurrence of
only relatively small denominators can significantly reduce the accuracy of the com-
puted tridiagonal form (stability problems).

There are two main classes of algorithms for the tridiagonalization problem. The
first is the class of Lanczos-type algorithms. These algorithms have the important
feature of producing a tridiagonal matrix similar to the original matrix without
modifying the original matrix. Thus, Lanczos algorithms are well suited to sparse
problems. The stability problem for these algorithms is severe, however, making a
practial algorithm difficult to achieve. Some pivoting techniques designed to reduce
the chance of breakdown were considered in [5, 6 and 11] and some incomplete
orthogonalization methods were tried in [10]. Variations of the Lanczos algorithm
for certain special classes of matrices were studied in [2] and [7].

The second class of tridiagonalization algorithms consists of algorithms which
use a sequence of similarity transformations to successively introduce zeros into
the matrix being transformed (somewhat in the style of Gaussian elimination). As
sparsity is quickly destroyed by such algorithms, these methods are not suited to
sparse eigenvalue problems. These methods can also suffer from breakdown, with
the appearance of a very small pivot, and from stability problems.

As the algorithm we propose in this paper belongs to the second class, we will
restrict our discussion to that class of methods for the remainder of this section.

In [9], the last named author proposed an algorithm for recovering from break-
down. With that algorithm, breakdown occurring in the first half of the reduction
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could be recovered from, while breakdown occurring in the remaining steps could
be recovered from only at the cost of leaving non-zeros in the last column (thus, the
reduced form of the matrix would be bordered tridiagonal). Numerical experiments
indicate, however, that the algorithm still suffers stability problems when applied
to large matrices. Thus, the breakdown problem has been (mathematically) solved,
but the stability problem remains.

Breakdown itself, that is, the occurrence of a pivot which is near zero in absolute
terms, is very rare. It is also not the major stumbling block in the way of a practical
implementation of a tridiagonalization algorithm. Rather, as Wilkinson showed
in [12], the main source of numerical inaccuracy is the occurrence of large multipliers,
that is, of pivots which are small in relative terms.

In this paper, we present an algorithm which guarantees a small upper bound
on the size of the multipliers (equivalently, on the norms of the transformation ma-
trices), at the cost of some heuristic adjustments. These heuristics are not perfect,
but numerical testing indicates a sufficiently high success rate to make this a prac-
tical algorithm. In addition to this bound on the larger multipliers, the steps of
the reduction are so arranged that most of the multipliers are no more than 1 in
absolute value.

Backward error analysis indicates a bound similar to that of Gaussian elim-
ination with partial pivoting. However, this bound is, in our experience, overly
pessimistic, as our initial numerical testing indicates that the algorithm has good
stability behaviour, particularly in comparison with the Lanczos algorithm.

We begin the description of the algorithm in Section 2, with the case when
the multipliers remain uniformly small. In this case, the algorithm is deterministic,
and the analysis is straightforward. In Section 3 we describe how the algorithm
deals with the occurrence of a large multiplier. In Section 4, we discuss some of
the quantitative aspects of the algorithm’s heuristics and present the results of
our numerical experiments. The paper concludes with some possible alternative
strategies for multiplier control, which we will explore further in a future paper.

2. The basic algorithm

In this section we describe the reduction of a general matrix to tridiagonal form
under the assumption that no breakdown or large multiplier occurs. The description
of how the algorithm deals with multipliers deemed unacceptably large is deferred
to Section 3.

We first briefly describe the Lanczos algorithm, as the basic algorithm we are
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presenting in this section is mathematically equivalent to it. Let A be an arbitrary
n X n real matrix and let p, ¢ € R™ be arbitrary. Form the Krylov vectors {Akq} >0
and {ptA¥} k>0- These vectors span subspaces of R™ (formally, the latter is a
subspace of the dual of R"). Applying the two sided Gram-Schmidt process to these
vectors and making some useful observations, we arrive at a three term recurrence
relation, which, when k = n represents a similarity transformation of the matrix A
to tridiagonal form.

The three term recurrence relation produces a sequence of vectors which can
be viewed as forming the rows and columns, respectively, of rectangular matrices,
Py, and Qy, such that after n steps, P, and Qy, are n x n, Q, = P, ! and P,AQ,,
is tridiagonal. At each step, an orthogonalization is performed, which requires a
division by the inner product of (multiples of) the vectors produced at the previous
step. Breakdown thus occurs if any of these inner products is 0 (see [10]). Numeri-
cally, the algorithm yields highly suspect results if any of the inner products is small
relative to the corresponding numerators.

It is known [4] that vectors p and ¢ exist so that the Lanczos algorithm applied
with these as starting vectors does not encounter breakdown. However, determining
these vectors requires knowledge of the minimal polynomial of A, which essentially
puts the cart before the horse. Further, there are no theoretical results showing that
p and ¢ can be chosen so as to avoid small inner products. Thus, no algorithm for
successfully choosing p and ¢ at the start of the computation yet exists.

The algorithm we propose here differs considerably from the Lanczos algorithm
described above. However, as shown by Strachey and Francis [8], in the case when
breakdown does not occur, our basic algorithm and the Lanczos algorithm, with
P = q = ey, the first standard basis vector of R", produce the same tridiagonal ma-
trix, if computed with infinite precision. We will make use of this fact throughout
the paper. (Under certain circumstances (see Section 3), our algorithm makes ad-
Jjustments which can be viewed as changing the starting vectors.)

In this algorithm, the reduction of A to tridiagonal form is accomplished by
a sequence of similarity transformations. Two types of transformation matrices
are employed: orthogonal transformations, denoted by H (for ‘Householder’), and
elementary Gaussian transformations, denoted by G. A key feature of the algorithm
is that the orthogonal and Gaussian transformations are applied alternately. This
allows for a partial pivoting scheme to be incorporated, which, in turn, implies
that, in the case being considered in this section, at most n — 2 of the (n — 1)(n —
2)/2 multipliers required for the reduction are larger than 1 in absolute value. A
further benefit of the alternation of orthogonal and Gaussian steps is the empirically
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\)}**; *} 0;* * *}
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2(n-2)= |00 % =« :
000 ...... "

Figure 1. Representation of the basic algorithm

observed tendency of orthogonal transformations to “smooth out” the elements of
the matrix, thus reducing the potential for exponential growth of elements due to
transformation by elementary Gaussian matrices (see also [9]).

We hasten to point out that as the tridiagonal form is uniquely determined by
the starting vectors p and ¢, the alternation of orthogonal and Gaussian transforma-
tions and the inclusion of the partial pivoting scheme have no effect, mathematically,
on the final matrix. However, in finite digit arithmetic, the final matrix does de-
pend on the ordering of the transformations and on the norms of the transformation
matrices (which the pivoting scheme is designed to minimize). The accuracy of the
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computed eigenvalues of A therefore significantly depends on the algorithm’s ability
to preserve accuracy at all steps of the reduction. Our basic algorithm is designed
to maximize the accuracy of the tridiagonal form with a given pair of starting vec-
tors. In Section 3 we will consider modifying the starting vectors in order to obtain
further improved results.

Graphically, the basic algorithm is shown in Figure 1 (the symbol “x” indicates
the elements to be reduced to O by the next transformation).

In detail, let Ag = A and define the following sequence of matrices Ay, similar
to A.

If k = 2(5 — 1) is even, determine an orthogonal matrix H; so that the entries
in positions (m, 5), m =7+ 2,...,n of the matrix

Apyr = H AL Hj

are 0, and the zero profiles of the first § — 1 columns of A; are unaltered (e.g.,
let H; be a Householder transformation or a product of Givens rotations). Note
Hj = I; ® Uj, where I; is the j x j identity matrix and U; € R(n=9)x(n—j) ig
orthogonal.

Now suppose k£ = 2j — 1 is odd. Observe that if Py, ; is a permutation matrix
(i.e., the identity matrix with columns m and [ interchanged), then the matrix
P 1Ak Py, will have the same leading row and column zero profile as does Ay, as
long as m, { > 5+ 1. We thus perform a partial pivoting step before using Gaussian
transformations to eliminate the zeroes beyond the super-diagonal in row j. Namely,
choose [ so that

|ajz|=j+zr,féan{f9|ajm|,

(lower case a’s denote the entries of A) and set

1
Ai =P, i+2,1 Ak Pj+2,0 -
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Next, let
m 3
Fj =1—¢€j49 Z ameﬁn
m=j+3
(o )
1 -—oj43 —0j44 ... —ap| < Rowj+2
= 1
\ 1/
where ay, = a( ) / ag ,1) 2 is a multiplier formed form the entries in row j of A( ) and

{em}] is the standard basis of R™. Observe that transforming Ay by P; 9 1mphes
that |am | < 1forallm=735+3,...,n. Thus ||1"J( )“1 <2

The matrix 1"(1) ig an elementary Gaussian transformation matrix, with inverse
J b
(1) s
Pj =I+ejy2 Z amefn .
m=54+3

Transforming Ag) by 1"](1) subtracts oy, times column j + 2 from column m, and
adds oy, times row m to row 5+ 2, for m = 5+ 3, ..., n. Thus the matrix

Ascz) _ P](I)_IASCI)F}I)

o ©
o

«— Row j

|
o
*
*
*
*
*
*

t

Column j

has, in addition to the zeroes introduced in Aj by previous steps, zeroes in posi-
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tions (7, m),form=j5+3,...,n.

To complete this Gaussian step, we must eliminate the entry in position (j, 7+2)
(as indicated by the “x” in the matrix above). Thus let

(2) _ ot
IV =I-ajiseji1€,9

(1 \

1 —ajqg «— Rowj+1

\ 1/
where
_ (2 (2) _ (1) 1) _ .
@42 = 8 alaf 1 = )l = et/ a4
Then
2)~1 (2) (2
Ay = I 4D

( )

0o o ... «— Row j

[« =]

Column j

has zeroes in positions (j, m),for m=j+2,...,n.

Set G; = Py I\ I, so that
Apy1 = G]TIAij.

To summarize, starting with the matrix Ag = A, we perform the similarity
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transformations
Ag — Ay = HE Ao Hy
— Ay =G7141G, = G H{ AgH:1Gy
— A3 = HiAs H,
— ...
= Ag(n—2)
Each orthogonal transformation H; introduces zeroes below the sub-diagonal in
column j. Each elementary Gaussian transformation G; introduces zeroes across
row j beyond the super-diagonal. Neither type of transformation affects the zero
profile of any of the earlier rows or columns.

Assuming breakdown does not occur (i.e., no super-diagonal element is 0), the
matrix Ay(,_g) is tridiagonal.

3. Toward stability
The Gaussian transformations, G, described in Section 2 are formed as prod-
ucts of three matrices: G; = Pj+2,11’}1)1’}2). As mentioned in that section, the

column interchange induced by the matrix P4 ; yields || I‘}l) [[1 € 2. Since we also
have || Pj;21|l1 = 1, the critical term with respect to the norm of the transformation

(2 (2)

G; is the matrix I'](z), hence the multiplier ;5 = a; )+2/aj i1

To observe the effect of the transformation I’J(z), we focus on three rows and
two columns of A, namely rows 5, 7+ 1 and 7 + 2 and columns 5+ 1 and 5 + 2:

( )

0 * * * 0 O 0
0 * = b 0 0 ... «— Row j
0 = c d = * *
0 e f * * *
0 * * * * *
\ 0 * % * * * )

Column j + 1

For simplicity, we have denoted a; ;1 by a, a; ;12 by b, and so on. The multiplier
at this stage is o = b/a, and the element most affected by this multiplier (other
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than b, which is eliminated by the transformation) is the element d:
d—d—ac+o(f —ae)=d+a(f —c) — a’e.

As observed by Wilkinson [12], it is the term a?e which, when a >> 1, can
wreak havoc with the numerical accuracy of the tridiagonalization algorithm. Thus
the prime focus of any attempt to attain a stabilized tridiagonalization method must
be control of these critical multipliers.

There are two possible causes of a large multiplier in the j*! Gaussian transfor-
mation matrix, G (specifically, in FJ(Z)):

(1) The ordering of the elimination steps, and

(2) The starting vectors for the reduction.

For the first case, observe that if the permutations, Pj.3, are omitted, then
the sequence of orthogonal and Gaussian transformations can be reorganized in any
manner so long as the ordering of the orthogonal steps is preserved, the ordering of
the Gaussian steps is preserved and the j*® Gaussian transformation occurs after the
71 orthogonal transformation. As an extreme case, we could apply all the orthogo-
nal transformations first, reducing A to upper Hessenberg form, and then apply all
the Gaussian transformations, reducing the Hessenberg matrix to tridiagonal form
(of course, the entries in the transformation matrices depend on the particular se-
quence). It is quite conceivable that some alternate arrangement of orthogonal and
Gaussian steps would avoid an otherwise unacceptably large multiplier. Note that
in infinite precision arithmetic, all these rearrangements would produce the same
tridiagonal matrix, but in finite precision arithmetic this is not the case.

However, the organization of the elimination steps as given in Section 2, with
the inclusion of the permutation transformations, has an important consequence,
namely, that of the (n — 1)(n — 2)/2 element eliminations which must be accom-
plished by the Gaussian transformations, at most n — 2 will involve multipliers larger
than 1 in absolute value. As multipliers less than 1 in absolute value will not am-
plify round-off error, an arrangement of the elimination steps which maximizes the
number of such multipliers is very desirable.

Nonetheless, there is one reorganization of the elimination steps which is sim-
ple to include in the basic algorithm, as described in Section 2. It involves little
extra work, introduces at most one extra multiplier larger than 1 and is frequently
successful in removing a problem multiplier from the reduction. It is simply to in-
terchange G; and H,.; (again, this is formal: the entries in these matrices depend
on the order in which they are applied).
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The transformation sequence thus becomes (again, the symbol “Xx” indicates an
element to be eliminated by the next transformation):

* * 0 0
* * * *
Ci—_} Aor o = 0 * * * * *
22— 0 X * * * *
X % % % %
\ X * * * * ]

=
O O % %
e O O % ¥ ¥
¥ % ¥ ¥ O
LI S )
* ¥ ¥ ¥

e X X ¥ ¥ ¥ O

*
e %
*

* * 0 0
*x % % X X X
HJi}Azjz 0 * * *x * %
0 * * * *
P00 0 % % %
0 * * *
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*
*
X

J

Q
-0 O % %

T * * 0 o ...
. % * * 0 o ...
G, H:
J+1 0 * * 0 0 J+2
T A= 0 ; * * * * B
0 0 * * *
P00 x % % ..

For definiteness, let M > 0 be chosen so that multipliers up to size M will
be deemed acceptable, and suppose that in the 7! Gaussian step a multiplier

_ (2)
&= 842

tiplier in I"j2 , but computationally we can check whether | a| > M before we apply

/ a‘g.z} 41 is encountered, with || > M (mathematically, e is the mul-

Pj5) and I‘J(l), since, also, a = a;; / a;jj+1 ). Then compute the orthogonal trans-
formation Hj, which zeroes out the elements in Aj; below the sub-diagonal in
column 5 + 1 (recall k = 25 — 1). Observe that in the similarity transformation

Apyr = H. ApHjy

the entries of the ;' row of Ay, are affected only by the second of the two matrix
multiplications (since Hjy = Ij 11 ® Uj1), so that it is a simple (and inexpensive)
matter to determine the j*! row of Ag+1 and check it to see if the consequent
multipliers are acceptable.

One ramification of this extra orthogonal step is that the partial pivoting scheme
can move the largest element in row j only as far left as column 5+3 (any further will
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destroy the zero profile of column j + 1, since a; 1 j12 # 0). Thus, we determine !
so that

lajll“_‘]. max |ajm|

and then set

1
AS; ) = j+3,0Ak+1Pj43,1 -
The elementary Gaussian transformations I’J(l) and FJ@) then have the form

n
1
I‘]( ) = I—eji3 Z amein
m=j-+4

(v \

1 -oj44 —0j45 ... —an| < Rowj+3

\ )
I I qiiveriiel o — oiinersqel

J J+2C5+1%+2 j+3€5+1€5+2

([t \

1 -—ajp2 —aj43 «— Rowj+1

\ )

where
— g /a(l)

am =a;fa;is,  M=jt4,..,n

RN ¢) N ¢ ) R y
Qs = 05510/ 51 = G542/ %5,541

(

_ 1) O
@j+3 = aj,j+3/aj,j+1 = a1/ 45,541
Thus, we have that for the subsequent Gaussian elimination step, all but two of the
multipliers, namely, ;13 and a; 3, will be at most 1 in absolute value.
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For exactly the same reasons as outlined above, we must still require | ajya| <
M. However, since the entry in position (5+ 1, 5+ 3) of Agy1 (the position directly
below the element e of the first diagram of this section) is set to 0 by the transfor-
mation H,,, there is no term involving a? 43 When the Gaussian transformation is
applied, and hence we can afford a much larger multiplier in this position and still
maintain a bound on the size of the terms which appear in the computations. For
this multiplier, we need only require | o3| < M2.

Note that only O(n — 5) work is required to determine H j+1, apply it to row j
of Aj and check the sizes of the resulting multipliers. Further, if the step is successful
and the full transformation

Apya =Gy Hf A Hjp Gy

is computed, no special consideration need be given to the next Gaussian step, G j+1»
as the matrix has the same leading zero profile as it would have had had these
orthogonal and Gaussian steps not been interchanged.

Thus this borrowing of an orthogonal transformation from one step ahead in
the reduction sequence is easily accomplished, entails little extra work (which is
‘extra’ only in the event that it is unsuccessful) and, according to our numerical
experiments, is very frequently successful in avoiding a large multiplier in a problem
row (see Section 4 for the results of our numerical testing).

The second source of a large multiplier & = a; ;,9/a; ;41 is more fundamental.
If the starting vectors for the Lanczos algorithm are chosen in such a way as break-
down, or near breakdown, will occur, then no rearrangement of the orthogonal and
Gaussian steps during the reduction will prevent the appearance of large multipli-
ers. (This is because the occurrence of a zero pivot is determined by the entries of
the moment matrix, [ptA("'H' —Z)q], where p and g are the starting vectors; see [10]).
Thus, somehow, the starting vectors must be modified and the reduction process
recommenced, ideally without involving much work.

As mentioned before, no progress has been made on the problem of successfully
choosing the starting vectors before the reduction starts. The approach taken by
our algorithm when a large multiplier is encountered is to make a small adjustment
to one of the starting vectors, changing only the first few components. Computa-
tionally, this results in only a small amount of extra work. Mathematically, the
underlying assumption is that a small change in one of the starting vectors will not
significantly reduce the size of any of the already computed pivots (which might
cause a large multiplier to appear during this adjustment phase), and yet might
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sufficiently reduce the problem multiplier which triggered this adjustment initially.

Specifically, if, in the matrix A, where k = 25 — 1, an unacceptably large and
unavoidable multiplier occurs, a Gaussian transformation of the form

G = I+ fae16b + Baer el

where 82 and f3 are small, is applied to Ag. This has the effect of adding multiples
of column 1 to columns 2 and 3, and subtracting those multiples of rows 2 and 3 from
row 1, effectively changing one of the starting vectors from e; to e; + v9e2 + vy3es,
for some 2 and ~s:

[* * X X 0 \

* % * 0

G lac =

* * * ... |+ Rowyjy

\ : )

Thus, non-zero entries are introduced into positions (1, 3) and (1, 4), which
must be eliminated. The elementary Gaussian transformation used for this elimi-
nation in turn introduces non-zeros in positions (2, 4) and (2, 5), etc. Eventually,
assuming no large multipliers are encountered during this adjustment phase, we
arrive back at (a modified) row j, which can again be checked for the size of its
multipliers. If these multipliers are acceptable, the adjustment has been successful
and we continue. If not, or if a large multiplier occurred during the re-elimination
phase, new values of 83 and B3 are generated and we try again.

If, after a few (e.g., 2) adjustment attempts of this type, the algorithm has not
succeeded in avoiding a large multiplier in the problem row, it increases the scope of
the adjustment to include the fourth component of the starting vector, namely, by
trying a starting vector of the form e; + vy2e2 + v3€3 + 74€4, and so on. Also, the
other starting vector (also originally e;) can be modified. In effect, this amounts to
transposing the matrix A before beginning the adjustment.

Observe that if a large multiplier is encountered on row j, then each attempt at
adjusting the starting vectors involves only O(n) work, so the effect on the overall
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Table 1
Stability characteristics of the algorithm
as a function of the multiplier bound

Relative Error in

Dimensions Bound on Number C ted Ei I
of Matrices  Multipliers  of Successes®»? A omputed Sigenva ues
verage Mazimum
25 25. 98 .58e-12 .17e-10
50. 100 .12e-11 .49e-10
100. 100 .16e-11 .75e-10
250. 100 27e-11 .39e-10
1000. 100 .36e-10 .31e-08
50 25. 99 .15e-11 .58e-10
50. 100 27e-11 .63e~10
100. 100 45e-11 .49e-10
250. 100 .25e~10 .65e-09
1000. 100 .38e-10 .11le-08
75 25. 98 47e-11 .13e-09
50. 99 .89e-11 .26e—09
100. 100 .13e—-09 .81e-08
250. 100 .55e-10 .25e—08
1000. 100 .19e-08 .16e-06
100 25. 91 .37e-10 .15e-08
50. 99 .T5e-10 .31e-08
100. 100 .49e-10 .35e-08
250. 100 .81e-10 .35e¢-08
1000. 100 .36e—09 .20e-07

! For each dimension, 100 matrices were reduced, each matrix against each value of M.

2 A reduction was deemed to have failed if more than 100 adjustments were attempted.

complexity of the algorithm, which is O(n3), clearly depends on how often such
adjustment is necessary, and how many attempts at adjusting the starting vectors
are made before one is successful. Empirical evidence suggests that this adjustment
is done only a few times during the reduction, and that only a few attempts are
required before an adjustment is successful.

The results of our testing are summarized in the next section.

4. Numerical Results

The algorithm was tested against a large number of matrices of dimensions
between 20 and 400. Three types of tests were performed, one focussing on the sta-
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Table 2
Performance of adjusting algorithm

Extra Orthogonal

Dimensions Number Number Adjustment Attempts® T .
. . 1 . ansformations

of Matrices of Matrices of Successes’ Average Maxzimum .

Average Mazimum

25 500000 499765 .15 50 17 3
50 50000 50000 .28 18 .56 3
100 5000 5000 .61 21 1.18 5
200 1000 997 1.77 71 3.31 10
400 100 99 4.73 37 8.94 17

1 A reduction was deemed to have failed if more than 100 adjustments were attempted.
2 For all tests, M = 100.

bility characteristics, one focussing on the heuristic adjustment part of the algorithm
and one comparing the algorithm with the Lanczos algorithm. Test matrices in all
cases were generated randomly with entries uniformly distributed in [—1, 1]. The
algorithm was programmed in FORTRAN 77 using double precision for all compu-
tations. The program was run on a SEQUENT Symmetry (the authors would like to
thank Professors P. Larson and A. George for providing access to the SEQUENT).

For the stability test, given a matrix A, its eigenvalues were determined by
the QR algorithm, as progra.mmed in the EISPACK library. Then A was reduced
to a tridiagonal matrix A using our algorithm. Finally, the eigenvalues of A were
computed, again using the EISPACK QR algorithm, and the eigenvalues of A and A
compared. The results are summarized in Table 1. The correlation between M, the
upper bound on the size of the multipliers, and the relative error in the eigenvalues
of Aand A is clearly shown.

For the second test, only the tridiagonalization algorithm was applied to each
matrix generated. The algorithm was considered to have failed if the number of
adjustment attempts exceeded a preset threshold. By not including the eigenvalue
computation, it was possible to test the algorithm against a large number of matri-
ces. For these tests, the value of M was set at 100. The results are summarized in
Table 2, and indicate that it might be better to have the value of M be a (slowly)
increasing function of the dimension.

As mentioned in Section 3, any adjustment to the starting vectors should be
fairly small. Our preliminary testing showed in addition that an adjustment was
more likely to be successful if the ordering | 82| > | B3| > ... was maintained. For all
of the tests reported here, 8; was generated randomly from a uniform distribution
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Table 3
Distribution of eigenvalues by number of correct digits (250 matrices)

Number of Correct Digits
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O

n = 20
Our alg: 1937 1840 976 221 26 ~— - - - - - - - - - -
Lancgos: 1736 1322 1236 785 374 277 161 71 26 5

n =40
Our alg: 1834 4293 3008 782 79 4 - - - - - - = = = -
Lanczos: 380 1382 2049 1843 1252 902 593 484 289 254 159 152 91 78 57 35

n = 60
Our alg: 1541 5775 5778 1691 200 15 - - - - - - -
Lanczos: 265 1112 2157 2167 1625 1075 755 762 722 649 581 627 599 604 944 356

n = 80
Our alg: 1074 6743 8852 29048 324 58 3 - - - - - - -
Lancsos: 90 829 2276 2703 2284 1576 1192 884 825 800 810 801 827 921 2636 546

N
|
|
1
|
I

All matrices were successfully reduced by both algorithms in these tests.

in the interval [—.1/2¢, .1/2%],fori=2,3, ....

The third test involved comparing our algorithm and the Lanczos algorithm,
with eigenvalue errors being used as the measure of performance. Matrices of dimen-
sions 20, 30, 40 and 50 were generated, with 250 matrices tested for each dimension.
For each matrix, the eigenvalues were computed using the QR algorithm, then the
matrix was reduced to tridiagonal form by each algorithm and the eigenvalues recom-
puted with the QR algorithm. Using the first set of eigenvalues as a benchmark, the
relative errors in the before-and-after eigenvalues were then pigeon-holed, indexed
by their exponents base 10, which corresponds to the number of correct digits. The
results are shown in Table 3.

As is clear from the table, our algorithm was much more successful at preserving
the accuracy of the eigenvalues through the reduction to tridiagonal form. (One of
the characteric difficulties of the Lanczos algorithm is the introduction of spurious
eigenvalues [3], resulting in relative eigenvalue errors on the order of unity or greater.
As the table indicates, the prevalence of this problem increases with dimension.)

The tests just summarized show the high rate of success and the strong stability
characteristics of our algorithm. The first test also clearly demonstrates Wilkinson’s
result [12] that the stability of a reduction algorithm depends critically on control-
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ling the norms of the transformation matrices, as the results show that the larger
the value of M, the poorer the results.

5. Conclusions and Future Directions

In this paper we have presented a new algorithm for reducing a general matrix
to tridiagonal form. The priciple features of the algorithm are:

e Orthogonal and elementary Gaussian transformations are alternated, per-
mitting a partial pivoting strategy, which, in turn, implies that most of the
multipliers involved in the Gaussian transformations are no more than 1
in absolute value. The interleaving of the orthogonal transformations also
appears to have a smoothing effect on the elements of the transformed ma-
trices, providing evidence for a suggestion to this effect made in [9].

e A bound, M, is enforced on the size of the remaining multipliers. If the
bound is violated, the algorithm first performs an extra orthogonal transfor-
mation (which is extra only in the event that it does not solve the problem),
under the assumption that the large multiplier is a consequence of the or-
ganization of the reduction steps. One useful feature of this extra step is
that it allows for much larger multipliers without inducing larger terms in
the computations. Our preliminary testing showed that this extra step is
very often successful.

e If the extra orthogonal transformation is not successful at reducing the
problem multiplier, the algorithm assumes that the source of the problem is
more fundamental, namely due to the choice of starting vectors. A heuristic
algorithm is then used to adjust the starting vectors for the reduction. To
enhance numerical stability, M should not be too large. To keep the total
work done by the algorithm small, and to ensure a reasonable chance of the
success of any necessary adjusting steps, M should not be too small. We
have obtained good results with M = 100.

e The heuristic adjustment algorithm just mentioned requires very little extra
work per application. Our numerical testing shows that adjustment to the
starting vectors is required only a few times on average, hence, on average,
the contribution of the adjustment algorithm to the total work done by the
reduction algorithm is negligible.

One observation we have made is that when the heuristic adjustment algorithm
fails, it is often in the very late stages of the reduction to tridiagonal form. It seems,
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at such a point, that it might be more worthwhile to use the pivot adjustment strat-
egy suggested in [9]. If that were done, the final form of the reduced matrix would
not be strictly tridiagonal, but rather bordered tridiagonal, in that the last column
of the reduced matrix would have some non-zero entries. However, as discussed by
Wilkinson [11], it is actually the bordered tridiagonal form which is invariant with
respect to eigenvalue deflation, and not the tridiagonal form itself. Thus, there is
no loss in having non-zero entries in the last column of the reduced matrix.

In the case where the heuristic adjustment algorithm does not appear to be
working, there is also the possibility of not strictly enforcing the bound, M, on the
size of the multipliers, particularly if the problem multiplier is only slightly larger
than M.

We will report on the results of including these and other variations on our
tridiagonalization algorithm in a future paper.
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