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Gregory J. E. Rawlins ! Derick Wood *
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Abstract

A restricled-oriented convez setis a set of points whose intersection
with any line, in a given set of orientations, is either empty or con-
nected. This notion generalizes both orthogonal convexity and normal
convexity.

The aim of this paper is to establish a mathematical foundation for
the theory of restricted-oriented convex sets. To this end, we prove the
restricted-oriented analogs of some basic properties of convex sets and
also present a decomposition theorem for them.

Keywords: convex sets, convex hulls, restricted-orientation convexity,
computational geometry.

Introduction

. the fifteen years or so of its existence the field of computational geom-
ry has bifurcated quite markedly into the study of algorithms for either
thogonal or arbitrarily oriented objects. Possibly the main reason for
is is that the major application areas of computational geometry, namely
LSI design, computer aided design, digital picture processing, computer
sion, and computer graphics, have traditionally placed heavy emphasis on
thogonally-oriented objects. This in turn is due to technical limitations;
r example, most input/output devices and layout schemes have been or-
ogonal. Recent technical advances in VLSI design however now allow
1jects to have more than the usual two orientations and, as a result, de-
yners are now concerned with objects with horizontal, vertical and lines

*This work was supported by Natural Sciences and Engineering Research Council Grant
». A-5692 and by the Information Technology Research Centre.

tComputer Science Department, Indiana University, 101 Lindley Hall, Bloomington,
47405-4101, U.S.A.

#Data Structuring Group, Department of Computer Science, University of Waterloo,
aterloo, Ontario, N2L 3G1 Canada.



2 Rawlins and Wood

of 45° and 135° [23]. Some companies also offer the capability of any finite
number of orientations.

Another reason for the special study of orthogonal polygons is that al-
gorithms for orthogonal polygons are simpler and, often, more efficient [18].
It is natural to speculate whether we can increase the number of allowed
orientations and still have fast and simple algorithms.

Convex sets are a comparatively recent but very fruitful concept in ge-
ometry having applications in optimization, statistics, geometric number
theory, functional analysis and combinatorics [9,12] and this is one of the
reasons for the inordinate interest in convex sets in computational geome-
try. But their study is also practically motivated since the convex hull of
an object typically has much less complexity than the object itself and so
is much used in testing for intersections among objects [12,21]. The same
reason suffices to explain the great popularity of the “bounding box” of an
object in computer graphics and computer vision. Finally, the convex hull
was one of the first concepts studied in computational geometry {19] and so
deserves especial attention.

In [14] we defined and gave optimal algorithms to construct various new
versions of the convex hull of a finitely-oriented polygon (meaning a polygon
whose edge orientations belong to only a fixed finite set of orientations).
The new notion of convexity introduced in that paper was a natural gen-
eralization of the well-known concept of orthogonal convexity (see [11], for
example) and the new convex hulls we introduced generalized orthogonally-
convex hulls. As it turned out, this was an advantageous generalization since
the new notion completely encompassed the old and there was no additional
complexity. In fact, the convex hull algorithms were simplified; the reason
being that the generalization allowed the identification of inessential details
that were specific only to orthogonal polygons.

In this paper we investigate the more general concept of restricted-
orientation convezity and apply it to arbitrary sets of points, thereby gen-
eralizing our previous results and also, at the same time, verifying some
otherwise unsupported observations in the literature.

The aim of the present paper is, apart from introducing restricted-
orientation convexity, to establish the following analogs of the basic proper-
ties of convex sets [5]. In the following P is a planar convex set:

Simple Connectedness. P is simply connected.

Line Intersection. The intersection of P and any line is either empty or
a connected set.

Intersection. P is the intersection of all convex sets which contain it.

Separation. If p ¢ P, then there exists a line separating p and P.
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(alfplane Intersection. P is the intersection of all halfplanes which con-
tain it.

isibility. If p, ¢ € P, then the line segment joining p and ¢ is in P.

xcept for simple connectedness, these properties are defining characteristics
[ convex sets.

In Section 2 we define sets O of orientations, the associated O-convex
:ts, and prove some of their more elementary properties. In Section 3 we
stablish the intersection and simple connectedness properties, while in Sec-
on 4 we prove the Separation Theorem. Stairlines, the restricted-oriented
nalog of lines, are introduced in Section 5 and used to prove the stair-
alfplane intersection property. We then in Section 6, prove the visibility
roperty and, finally, in Section 7 provide a decomposition theorem. We
onclude, in Section 8, with a summary of what we have accomplished and
discussion of further work.

) Definitions

Ve assume the reader’s familiarity with such elementary topological con-
epts as (path-)connectedness, closure, simplicity, separability, support, in-
erior and boundary of planar figures. We denote subsets of ®2 by bold face
ppercase letters (for example, P and Q) and elements of such sets by lower
ase italic letters (for example, p and ¢g). We treat a subset of R? as a set of
iterior points together with its boundary (if it has one).

The orientation of a directed line is the counterclockwise angle made with
he horizontal in a directed plane (in the goniometric sense). The orientation
f an undirected line is the smaller of the two possible orientations. We only
iscuss undirected lines in this paper. We use the symbol O, with or without
ubscripts, to refer to a set (possibly empty) of orientations.

A collection of lines, segments and rays is said to be O-oriented if the
st of orientations of the elements of the collection is a subset of O. Thus,
re speak of O-lines, O-segments, and O-rays to mean O-oriented lines,
sgments and rays. By extension, we call a polygon an O-polygon if its
dges are O-segments.

Because we wish to preserve symmetry of direction in this paper we as-
ume that the set O is symmetric about the horizontal, that is, if it contains
n orientation § < 180° it also contains an orientation § + 180° and similarly
or @ > 180°. Hence, we specify a set of orientations only by the set of
rientations less than 180°, it being understood that all the complementary
rientations are present. So, for example, if we say that the set of orienta-
ions 0 has two orientations we mean that it has four orientations two of
rhich are complementary to the other two.
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The notion of O-orientation has been previously defined, but only for
finite 0, in [6,14,23,24] and, in a slightly related form, in [3]. As mentioned
in the Introduction there is a vast literature concerning the special case of
0 = {0°,90°} or more exactly, 0 = {0°,90°,180°,270°}. {0°,90°}-objects
are more usually called orthogonal (also; rectilinear, isothetic, iso-oriented,
x-y or aligned) objects; see {12,25] for further references.

Throughout the paper, we assume that O is representable as a set of
disjoint closed ranges!, where some (or all) of the ranges may collapse to
single orientations. Not only is the number of orientations allowed to be
infinite, but also the number of closed ranges can be infinite too. For ex-
ample, the set {0y, [02, 03], [04,05], 06,07} (all 6; < 180°). There is a natural
ordering amongst the closed ranges in 0, so we can speak of the next range
in O (the successor of the last range is the first range). In the example,
6 < 0; <03 <084 <85 <0 < 87 and [0;,03] is the next range after the
range 0;(= [01,601]).

We say the open range (01, 02) is O-free if there are no orientations in 0
in the range (0,,8,) and it is mazimal if 0,,0; € O. If O is specified by n
ranges, then O divides [0°,360°), into at most 2n maximal O-free ranges. In
the example the maximal O-free ranges are (6, 02), (03, 04), (8s,06), (%6, 07),
(6+, 0, + 180°), together with the five complementary ranges.

The line passing through the points p and ¢ is denoted by L(p, ¢) and,
similarly, LS(p, ¢) denotes the line segment with endpoints p and ¢q. The
orientation of L is denoted by ©(L), where L is a line, segment, or ray. If L
is a line, segment, or ray and ©(L) ¢ O, then by the maximal O-free range
of L we mean the unique maximal O-free range in which ©(L) lies.

Any collection of lines, segments and rays having (one, two or) three
orientations in the plane can be mapped onto another collection having the
same incidence structure as the first but with (one, two or) three completely
different orientations [14]. For this reason we frequently, for ease of exposi-
tion, assume that (0°,90°) is L’s maximal O-free range, for a particular L
and O, where ©(L) ¢ O and O has two or more orientations.

The line intersection property of convex sets can be taken as a defining
characteristic of convex sets. In other words, a set is convez if its intersec-
tion with any line is either empty or connected. We use this approach to
define restricted-orientation convexity. The phrasing is somewhat unfortu-
nate since it implies that it is a restriction of normal convexity when, in fact,
the opposite is the case: restricted-orientation convexity includes (normal)
convexity as a special case.

Assume that we have some fixed set 0 of orientations; none of our results
depend on the particular set.

INote, however, the the one exception to this, namely, any range that ends at 180°
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Definition 2.1 We say that P is O-convex if the intersection of P and any
O-line is either empty or connected.

This is a natural generalization of orthogonal convexity and normal convex-
ity.

Figure 1 contains some example figures which are O-convex for various
O. Figure 1 (a) is not O-convex for any non-empty O, but is O-convex
if O = 0, as are all the other figures. Figures 1 (b) and (c) are convex
with respect to any horizontal line, as are (d), (e) and (f), so they are all
{0°}-convex besides being @-convex. Note that (b) and (c) are not convex
in any other direction. Figures 1 (d), (e) and (f) are convex with respect
to any vertical line as well and so they are also {0°,90°}-convex. Note that
(d) is not convex in any other direction. Figures 1 (e) and (f) are convex
with respect to any line with orientation in the range {[90°,180°)} and so
they are also {[90°,180°)}-convex. Note that (e) is not convex in any other
direction. Figure 1 (f) is O-convex for any 0.

@) (b) | ©)

(e) 0

Figure 1: O-convex figures.

(d)

Note that, if O is empty, then, vacuously, all sets are O-convex. It is
straightforward to prove the following lemma.

Lemma 2.1 1. All planar convez sets are O -convez.

2. A planar set is convez if and only if it is {[0°,180°)}-convez.

It is easy to construct examples to show that the second statement of the
lemma holds for no smaller set of orientations. For example if we delete just
one orientation (say ¢, ), then any set consisting of just two distinct points
on a {6;}-line is {#}-convex for all § # 6, but is, of course, not convex.
Moreover, examples like these establish that the statement “for all P, P is
connected if P is O-convex” holds if and only if 0 = {[0°,180°)}.
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Note that the following sets are convex, and hence O-convex for any O:
e empty set, ®?, and, any point, line, segment, ray or halfplane in RZ.

Intersection and Simple Connectedness

- [16] the notion of a convexity space is used as a tool to analyze vari-
1s notions of convexity that have appeared in the literature. Convexity
‘aces are not new (see [2,7,10,20], for example), but their application in
mputational geometry is. As far as this paper is concerned our interest in
em is twofold. First, O-convex sets form a convexity space and, second,
is implies that O-convex sets are closed under intersection. This result
stated as Lemma 3.1. Results already available for convexity spaces es-
blish immediately the intersection property for 0-convex sets; see Lemma
2.

Convex sets are simply connected; however, this does not hold for O-
nvex sets in general. If P is connected, its O-hull is simply connected,
it otherwise it consists of a set of connected components, as we prove in
heorems 3.3 and 3.4.

emma 3.1 Let Cp be the collection of all O-convez sets. Then, (R%,Cp)
a convezity space; that is, § and R? are O-convez and the intersection of
rery subcollection of O -convez sets is itself O-convez.

roof: See [16]. O

efinition 3.1 The intersection of all O-convex sets containing P is called
.e O-hull of P; it is denoted by O-hull(P).

bserve that, VO and VP, P C O-hull(P) even when O = B or P = 0 (or
sth). Since (R%,Cp) is a convexity space; then VP, O-hull(P) exists, is
nique and is the smallest 0-convex set which contains P.

If O = @, then O-hull(P) = P, for all P, since P is the smallest set
»ntaining P which is not required to be convex in any direction. Similarly,
P = @, then 0-hull(P) = P, for all O, since the intersection of every
-line and P is empty. When O = {#} and P is a polygon, then the O-hull
[ P has been called the “g-visibility hull” of P {18,22].

Note that in Figure 1, (f) is the O-hull of (a), for any non-empty 0, and
1) and (e) are the {90°}-hulls of (b) and (c), respectively.

Directly from known results for convexity spaces (see [8], for example),
e obtain the following properties of O-convex sets.

emma 3.2 1. VO,P; P is O-convex if and only if O-hull(P) =P.
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2. YVO,P; O-hull(0-hull(P)) = O-hull(P).
3. VO,P,Q; P C Q= 0-hull(P)C 0-hull(Q).

>art (1) of this lemma establishes the intersection property for O-convex
ets. When O is the set of all orientations, this is equivalent to the intersec-
ion property for convex sets.

Cheorem 3.3 If O is non-empty and P is connected; then, O-hull(P) is
imply connected. In other words, if O is non-empty and P is connected and
)-convez, then P is simply connected.

>roof: If P is empty we have nothing to prove, so suppose P is non-empty.

Suppose that O-hull(P) is not connected. Since P is connected it can
nly belong to one of the connected components of O-hull(P) (it must belong
o at least one otherwise O-hull(P) does not contain P). This component
nust be O-convex, otherwise the entire hull is not O-convex. Hence, we
nay discard all of the other components of O-hull(P) and have a smaller
)-convex set which contains P. But, O-hull(P) is the smallest such set.
Cherefore O-hull(P) must be connected if P is connected.

Suppose that O-hull(P)is connected but contains a hole. Since O is non-
mpty there must exist at least one O-line which cuts this hole. Hence, there
s an O-line whose intersection with O-hull(P) is neither empty nor con-
lected. But, this implies that O-hull(P) is not 0-convex; hence, O-hull(P)
nust be simply connected. 0

Cheorem 3.4 A set is O-convez if and only if it is the union of disjoint
lonnected components such that each component is O -convez and no O-line
ntersects any pair of components.

>roof: Let P be the union of disjoint connected components such that each
component is a connected O-convex set and no O-line intersects any pair
f components. Since no (-line can intersect any two of them simultane-
nusly and each component is separately O-convex, the entire collection is
J-convex.

Conversely, let P be O-convex, but not connected. If one of its compo-
tents is not O-convex, then P cannot be 0-convex. Similarly, if there exists
n O-line which intersects any two components, then P cannot be O-convex.
3

Observe that if O is the set of all orientations, then for each pair of
onnected components there exists at least one 0-line which intersects them.
Ience, all {[0°,180°)}-convex sets are connected.
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4 Separation

A crucial property of convex sets is separability; that is, the separation
property. We prove, in this section, a separability result for any set of
orientations and in the next section, after introducing stairlines, we prove
the separation property. We also present a separation theorem for O-convex
sets that are not connected.

Lemma 4.1 IfP is connected and p € O-hull(P); then, each O-line through
p intersects P.

Proof: If either O or P is empty, then the lemma is vacuously true since
then O-hull(P) = P. Further, if p € P we have nothing to prove. So
suppose that both O and P are non-empty and that p & P.

Suppose that there exists a § € O such that the {#}-line through p does
not intersect P. Then, by the continuity of ®2 and the fact that P is con-
nected, there exists a convex set (and hence an O-convex set) which contains
P and does not contain p, namely, any halfplane bounded by a {#}-line sep-
arating p and P. Hence p cannot be in the intersection of all 0-convex sets
which contain P and so cannot be in the hull. O

Theorem 4.2 (The Separation Theorem) Let P be connected and p ¢
P. Then, p € O-hull(P) if and only if there exists a 6 € O such that the
(0}-line through p intersects P in, at least, two points on either side of p.

Proof: If either O or P is empty, then the lemma is vacuously true since
then O-hull(P) = P. So suppose that both O and P are non-empty.

If p ¢ P and there exists an O-line which intersects P at two points
which bracket p, then p must be in the O-hull of P (else the O-hull would
not be O-convex).

Conversely, if P is connected and p € O-hull(P)\ P then all O-lines
:hrough p must intersect P (Lemma 4.1).

We shall prove the claim for the three cases in which we have either
:xactly one orientation in 0, two or more with at least one O-free range and
inally if O is all orientations (that is, there are no O-free ranges).

Case 1: 0 = {6}

The {6}-line through p must cut P. Suppose that it only cuts it on one
iide of p (say to the right of p). Then we may delete p and all other points
n {0}-hull(P) on the left f-ray from p and so obtain a smaller {#}-convex
iet which contains P. But {0}-hull(P) is the smallest such set. Hence p
:annot be in {#}-hull(P). Hence the {8}-line through p must cut P on both
ides of p.
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Case 2: 0 contains two or more orientations but not all.

Every O-line through p must cut P. Suppose that none of them cut P
both to the left and to the right of p. Since P is connected this means that
there exists at least one O-convex halfplane containing P and not p. The
simplest such halfplane is bounded by the first {8}-line through p which does
not cut P to the left of p and the first {#}-line through p which does not cut P
to the right of p (see Figure 2 for a simple example with 0 = {0°,90°,135°}).
This halfplane must be O-convex as no O-line can intersect both of the
boundary O-lines since the entire range is O-free.

Figure 2: A halfplane containing P and not p.

Hence p cannot be in O-hull(P) for it would not be contained in the
intersection of all O-convex sets which contain P. Hence at least one of the
O-lines through p must cut P to the left and to the right of p.

Case 3: 0 = {[0°,180°)}.
Here O-hull(P) is the convex hull of P. The result then follows from the
well-known separation theorem of Fenchel ([4]). O

This theorem is false if P is not connected as the following example shows.
In figure 3, P is the set of points indicated by the bullets. The point p is not
in P yet it is in O-hull(P) whenever {0°,90°} C 0. However, there does
not exist an O-line through p which cuts P on both sides of p.

The final result of this section is a separation result for O-convex sets
that are not connected.

Theorem 4.3 A set is O-convex if and only if it is the union of disjoint
O -convex sets such that for each pair of connected components there is a
point through which every Q-line separates the two components.

Proof: This is a straightforward modification of Theorem 3.5. O
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X

Figure 3: Disconnected Point Sets Do Not Support Separation

> Halfplane Intersection

n order to characterize O-convex sets in terms of halfplane intersections,
ve need a new definition of line more appropriate to O-convex sets. These
reneralized lines are called stairlines; we define and investigate them in
his section before establishing the new halfplane intersection property as
Sorollary 5.5. We then go on to characterize the boundary of 0-convex sets,
vhen they have one, in Theorem 5.7.

First we need the concept of the span of a continuous curve in the plane.

Jefinition 5.1 We say that the continuous plane curve S has span [0;,6,)],
vhere 0; < 03, if for any two distinct points p,q € S, O(L(p, q)) € [61, 0]

Of course, #; = 0, if and only if the curve is a line, segment or ray with
rientation 4, .)

As an illustration: if S is a continuous curve with span [0°,90°] and
T1,Y1), (2, y2) are any two distinct points on S, then either (z; < 2, and
h < yz) or (21 > z2 and y; > y2).

definition 5.2 We say that a continuous curve in the plane with span

91,02] is an O-stairline if (8, 0;) s O-free.

Note that if 8, = 0, then (8,,0;) is vacuously O-free since there are no
rientations in the range and so any line, segment, or ray is an O-stairline.)

We have chosen the name “stairline” as a combination of (orthogonal)
taircase [25] and (straight) line. By analogy with lines, segments, and
ays we also use the terms O-stairsegment and O -stairray with the obvious
neanings. Note that a line, segment, or ray of any orientation is an O-
tairline, O-stairsegment, or O-stairray, for any 0.

temark: To avoid excessive terminology, we shall assume for the rest of this
ection that O is understood and we shall just refer to stairlines (stairseg-
aents, and stairrays). Also, if a result is stated for stairlines we do not
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.dd the cumbersome qualifications that it also holds for stairsegments and
tairrays.

We begin our study of stairlines by proving that they are O-convex, just
is lines are convex.

emma 5.1 If S is a stairline, then S is O-convez.

>roof: Suppose S is a stairline with span [0,,0;]. If §; = 8,, then S is a
traight line and, hence, is O-convex. Suppose, then that §; # 6, and there
xists an O-line L which cuts S at two distinct points p and ¢. Since S has
pan [8y,0;], (L) = ©(L(p,q)) € [81,0,) and since (8;,0;) is O-free, O(L)
:an only be 6; or §,.

Suppose ©(L) = 6, and 6, € 0. Without loss of generality assume that
61,82) = [0°,90°] and that p is to the left of ¢ (that is, p and ¢ lie on a
worizontal line). Consider any point r on S between p and ¢. r must be on
»r above the horizontal line segment LS(p, ¢), otherwise ©(L(p,r)) & [01, 02).
similarly, r must be on or below the horizontal line segment LS(p, q), other-
vise O(L(q,r)) & [01,02]. Hence, r € LS(p, q), for all r in S between p and
1. That is, between p and ¢, S is a line segment. Hence, even if 8, (or 4,)
s an orientation in 0, S is O-convex. O

If S divides the plane into two halfspaces, we call them both stair-
ialfplanes for obvious reasons. Beware! It is easy to fall into the habit

f thinking of stair-halfplanes as just halfplanes with wavy line boundaries.
Chis is only true if O # 0.

Sorollary 5.2 All stair-halfplanes are O-convez.
Ne can now prove the separation property for O-convex sets.

Sorollary 5.3 Let P be connected. If p & O-hull(P) then there ezists an
)-stairline separating p and P.

>roof: If p ¢ O-hull(P), then from Theorem 4.2 there is no § € O such that
.[8, p] intersects P on both sides of p. Thus we may construct an O-stairline
eparating p and P as in the proof of Theorem 4.2. O

Nhen O = [0°,180°) all O-stairlines are lines and this corollary becomes
he separation property for convex sets.
We state without proof a converse of this result.

Jorollary 5.4 If P is connected and there exists a stair-halfplane which
‘ontains P and not the point p, then p ¢ O-hull(P).

\s a final corollary we have the stair-halfplane intersection property for
D-convex sets.



12 Rawlins and Wood

Corollary 5.5 If P is connected, then P is O-convez if P is the intersec-
tion of all stair-halfplanes that contain it.

The boundaries of closed convex sets are characterized in terms of line
segments. We now provide a similar characterization theorem for closed
O-convex sets in terms of stairsegments. To this end we begin with the
following definition.

Definition 5.3 A stairline composed of a sequence of connected line seg-
ments is a polygonal stairline.

It is easy to show that if a connected sequence of segments l4,1,, .. .,l,, forms
a stairline, stairsegment, or stairray with span [0y, 6,], then

1. Vi<i<m; O()€[6,0,]
2.V2<i<m-—1; [; meets!;_; and l;;; only at its endpoints.

Polygonal stairlines have been previously defined for the special case of or-
thogonal objects; see [25] for references. In this case they are known as stair-
cases. See Figure 4 for examples of a stairsegment, a polygonal stairsegment,
and an O-oriented polygonal stairsegment for O any subset of {[90°,180°)}.

7 T

Figure 4: A variety of stairsegments.

Definition 5.4 The set of all stairsegments joining p and q is called the
O-region of p and q and it is written as O-region(p, q).

Note that if ©(LS(p, ¢)) € O, then O-region(p,q) = LS(p,q). Of course, if
O consists of all orientations, then, for all p and ¢, O-region(p, ¢) = LS(p, q).
On the other hand, if O is empty, then every range is O-free and so any
continuous curve connecting p and ¢, for any p and ¢, is a stairsegment;
hence, B-region(p, ¢) = R2.

Definition 5.5 If O has at least two orientations, then we say that the
parallelogram induced by p and ¢, ||pq, is LS(p,q) if ©(LS(p,q)) € O.
Otherwise, it is the parallelogram with diagonal endpoints p and q and with
sides of orientations 01 and 03, where (01,02) is LS(p,q)’s mazimal O-free
range.
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g r———-—--- g
p p---q pr------ -
Figure 5: Orthogonal induced parallelograms.

Note that if O = {[0°,180°)}, then, for all distinct p and ¢, ||pg = LS(p, q)-
See Figure 5 for examples of ||pg for 0 = {0°,90°}.

If ©(LS(p,q)) & O, we call the two sets of segments connecting p and ¢
the arms of ||pq.

Lemma 5.6 If p and ¢ are two points in the plane and O is a set of at least
two orientations, then any stairsegment joining p and q must lie wholly in
|lpg. Furthermore, all points in ||pq lie on some stairsegment joining p and

q.

Proof: If ®(LS(p,q)) € O, then the lemma is true, so suppose otherwise.
Without loss of generality, let (0°,90°) be LS(p, ¢)’s maximal O-free range.

If any continuous path from p to ¢ leaves the parallelogram ||pq, it can
only be monotone in either the horizontal or vertical direction and, so, can-
not be a stairsegment. Hence, when O contains two or more orientations,
then all stairsegments must lie in ||pq.

If r € ||pq, we can easily construct a stairsegment joining p and q passing
through r; see Figure 6 for a simple example stairsegment for O = {0°,90°}.
0

Figure 6: A stairsegment from p to g through r.

Hence, when O has two or more orientations, O-region(p, ¢) = ||pq.

With respect to (-convex sets, stairlines are the most natural analogs of
straight lines with respect to convex sets, in that: there exists a stairsegment
which realises the shortest distance between any two points; an O-line meets
a stairline in at most one point (unless collinear with some part of the
stairline); and two stairlines with disjoint spans can only intersect in at most
one point. However, the intersection of two stairlines with non-disjoint spans
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empty, connected, or not connected — unlike the simpler case of straight
1es. Furthermore, stairlines can be non-intersecting without being parallel
n the conventional sense), and two points may define exactly one O-line
- infinitely many stairlines (that is, all stairlines passing through their O-
gion). Perhaps a closer analogy would be to say that two stairlines with
m-disjoint spans are parallel and that they are collinear if they intersect
iywhere. If two stairlines have disjoint spans, then they behave just like
raight lines (that is, intersect exactly once, etc.).

With stairlines replacing lines we can generalize convexity in other ways
\an the one we investigate in this paper. For example, a set P is strongly
-convez if, for every pair of points p and ¢ in P, all stairsegments with
1dpoints p and q lie in P. It can be proved that this definition of convexity
ways produces convez (in the normal sense) O -oriented sets. Indeed, when

= {0°,90°}, the strong O-convex hull of P is just the bounding boz of P.
’e have investigated strong O-convexity in a previous paper [15] and we
ave shown in [16] that both O-convexity and strong O-convexity along with
any other natural definitions of convexity are essentially the same.

We now characterize the boundary of a closed connected O-convex set
. terms of stairsegments.

iefinition 5.6 A point p is an O-extremal point of P if p is a point of
ipport of P with respect to an O-line.

)efinition 5.7 A portion of a continuous curve in the plane is a maximal
airsegment in the curve if it is a stairsegment and it is not a proper subset
f any other stairsegment in the curve.

‘heorem 5.7 (The Boundary Characterization Theorem)

simply-connected closed set is O-convex if and only if the portions of
s boundary between every two consecutive O-extremal points are mazimal
tatrsegments.

'roof: If P is closed and simply connected and its boundary is made up
aly of stairsegments meeting at O-extremal points in P, then the only way
1 which P could fail to be O-convex is if some O-line intersects one of the
;airsegments more than once, since no O-line can intersect such a set more
ran twice. But this is impossible, since any O-line can only intersect a
.airline at most once (unless it is collinear with some part of the stairline).
lence, such a set must be O-convex.

Suppose now that P is a connected closed O-convex set. Consider any
air of distinct consecutive O-extremal points p and g of P. If LS(p, q) C P,
hen ©(LS(p,q)) € O and, hence, LS(p,q) is a stairsegment joining p and
. So, let S(p, q) be the portion of P’s boundary connecting p and ¢, where
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S(p, ¢) is not a line segment. Since p and ¢ are distinct consecutive extremal
points of P, ©(LS(p,q)) ¢ O. Without loss of generality, assume that
LS(p, ¢)’s maximal O-free range is (0°,90°) and that p is below and to the
left of ¢ (see Figure 7).

Figure 7: S(p, q) is a maximal stairsegment.

Now sweep a horizontal line from ¢ down to p. If at any time during
the sweep this line intersects S(p, ¢) more than once, then P cannot be O-
convex, and similarly for a vertical line sweeping from p to ¢. Hence S(p, q)
is a stairsegment connecting p and ¢. Trivially, it is maximal since it’s end-
points are O-extremal in P, O

Observe that in the normal convex hull (that is, O = {[0°,180°)}) all points
are O-extremal and so the maximal stairsegments in the boundary shrink
to points.

Corollary 5.8 A polygon is O-convez if and only if its boundary consists
of a sequence of polygonal stairsegments meeting at convex interior angles.

Corollary 5.9 An O-polygon is O-convez if and only if its boundary con-
sists of a sequence of O-oriented polygonal stairsegments meeting at convez
interior angles.

For the special case of finite 0, Corollary 5.8 has been stated without proof
in [24] and it was proved in a different, more direct, way in [14]. Note that
the characterization of the boundary of 0-convex polygons as a sequence of
polygonal stairsegments is a direct generalization of the case for orthogonal
polygons [25].

6 Visibility

In the theory of convex sets two points are said to be visible to each other in
a set if the line segment joining them lies wholly in the set. Taking stairlines
as the analogs of straight lines we are led to define O-visibility as: two points
in a set are O-visible to each other if there exists at least one O -stairsegment
joining them that lies wholly in the set. This leads to a characterization of
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connected O-convex sets in terms of O-visibility — the final property of
convex sets we consider.

Theorem 6.1 (The Visibility Theorem) If P is connected, then P is
O-convez if and only if, for all p and q in P, p and q are O-visible to each
other.

Proof: Suppose that P is connected and, for all p, ¢ € P, there is a stairseg-
ment joining them that lies in P. Consider any O-line that intersects P in
at least two points. Let p and ¢ be two distinct points in P that lie on the
O-line. Then, ©(LS(p, q)) € O. This implies that the only one stairsegment
joining p and ¢ is LS(p,q); therefore, by assumption, LS(p,q) C P. But
this implies that the intersection of P with each O-line is either empty or
connected; that is, P is O-convex.

Conversely, suppose that P is connected and O-convex. If p,q € P
and ©(LS(p,q)) € O, then there is a stairsegment that lies in P joining p
and ¢ — namely, LS(p, ¢) (otherwise P is not O-convex). Suppose, then
that ©(LS(p,q)) € O. Consider ||pg. If an arm of ||pg lies in P, there
exists a stairsegment lying in P joining p and ¢ since each arm of ||pg is a
stairsegment.

Assume then, that neither arm lies wholly in P. Since the lower arm
(say) consists of two O-segments and it does not lie wholly in P, then it must
intersect the boundary of P exactly twice (otherwise P is not O-convex).
Both of these intersection points belong to one maximal stairsegment. For,
if they belong to separate maximal stairsegments, there must be at least
one O-extremal point on P’s boundary between the two intersection points.
But, this implies that there is at least one O-orientation in LS(p, ¢)’s O-free
range which is impossible.

We are now able to construct a stairsegment that lies in P and connects
p and q as follows: starting at p, follow the lower arm until P’s boundary
is encountered; follow the boundary until the arm is met once more; and,
finally, follow the arm to q. O

Note that in normal convexity this theorem collapses to the visibility
property since all (normal) convex sets are connected.

7 Decomposition

Intuitively, we think of the action of forming the O-hull of a set P as sweep-
ing a line of each orientation in O across P and adding suitable line segments
to the hull formed so far so that it is convex in each direction in 0. (Note
that if O is empty, then we do not add anythiug to P.) Thinking of it
this way it does not seem sensible that the hull we eventually produce is
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changed if we decide to change the order of orientations in which we sweep.
As we state in Theorem 7.2 this is, in fact, the case but only for connected
sets. For sets that are not connected Lemma 7.1 is the strongest possible
result. Observe that if O; C O,, then O;-hull(P) C 0;-hull(P), for all P,
since Oz-hull(P) contains P and is O;-convex. In some sense as a set of ori-
entations O “grows” to include all possible orientations, the set O-hull(P)
“grows” to the (normal) convex hull of P.

Lemma 7.1 V01, 02,P ’ Ol-hull(P)U Oz-hu”(P) - Ol-hulI(Oz-huIl(P))
C (01 U 03)-hull(P).

Proof: See [16]. O

This result also holds if we replace O;-hull( Oy-hull(P)) by O,-hull( O1-hull(
P)).

Simple counter-examples show that these results are best possible, in
that, there exist sets for which the respective converses are false. However,
we can strengthen Lemma 7.1 considerably by restricting P to be connected.

Theorem 7.2 (The Decomposition Theorem) If P is connected, then
Vola 02:

(01 U 02)-huII(P) = O1-hu“(02-hu”(P))
= Oz-hull(01-hull(P))
01 -hull(P) U Oz-hull(P)

Proof: See [16]. O

Corollary 7.3 If P is connected and 0 = |JO;, then (U O;)-hull(P) =
U(0:-hull(P)).

This corollary verifies Toussaint and Sack’s observation [22] that the (nor-
mal) convex hull is the union of the “visibility hulls” over all directions of
visibility. The Decomposition Theorem bears a strong resemblance to the
double integration rule where if f(z,y) is continuous, then [ [ f(z,y)dzdy =
I [ f(z,y)dydz.

Sack [18] showed, in the orthogonal case, that the horizontal hull of the
vertical hull of an orthogonal polygon (or alternately the vertical hull of the
horizontal hull) is equivalent to the union of both hulls. It was taken as
self-evident that the union is the smallest horizontally and vertically con-
vex polygon enclosing the orthogonal polygon. Corollary 7.3 validates that
assumption.
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This decomposition result immediately yields an algorithm to find the
hull of any connected set given that we can find the hull in one direction.
However, connected O-convex sets have considerably more structure than
this which we can exploit to construct optimal algorithms to find the hull
of any connected set (see [14] for the special case of finite O, see [13] for the
general case).

8 Conclusions

We have shown that O-convex sets contain both convex sets and orthog-
onally convex sets as sub-classes and that the properties of both can be
explained as special cases of the properties of O-convex sets. The main
characteristic of convex sets that we have lost in the generalization to O-
convex sets is connectivity: a convex set is always connected.

Connected O-convex sets enjoy the properties of convex sets, if we replace
line by stairline and recognize that a stairsegment joining two points is not
necessarily unique. In the following we assume that P is a connected O-
convex set.

Simple Connectedness. If 0 is non-empty, then P is simply connected
(Lemma 3.3). Indeed, the connected components of any O-convex set
are simply connected once O is non-empty (Theorem 3.4 together with
Lemma 3.3).

Line Intersection. The intersection of P and any O-line is either empty
or a connected set, by definition. This holds even if P is not con-
nected. One aspect of this property for convex sets is that lines are
themselves convex. We can obtain the needed analogy by saying that
the intersection of any two O-convex sets is again O-convex (Lemma
3.1) (although observe that the intersection of two connected O-convex
sets may not be connected).

Intersection. P is the intersection of all O-convex sets which contain it
(Lemma 3.2). This holds even if P is not connected.

Separation. If p ¢ P, then there exists a stairline separating p and P
(Theorem 4.2 and Corollary 5.3).

Halfplane Intersection. P is the intersection of all stair-halfplanes which
contain it (Corollary 5.5).

Visibility. If p,q € P, then there exists a stairsegment in P connecting p
and ¢ (Theorem 6.1).
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Restricted-orientation convexity is a generalization of orthogonal convex-
ity which has itself been separately defined in computational geometry, digi-
tal picture processing, VLSI design and combinatorics [1,17,25]. Restricted-
orientation convexity serves as a useful vantage point to survey and unify
many scattered results and observations in the literature of computational
geometry. We have shown that restricted-orientation convexity is a rea-
sonable generalization of convexity since properties analogous to those of
normal convex sets hold for these more general “convex” sets.

It may be argued that since computational geometry concerns itself with
figures in ™ that it is not necessary to develop the theory of O-convex sets
in as general a setting as is possible. There are two telling rejoinders to
this point of view, the first being a purely practical one. To take but one
pertinent example, the history of algorithms for finding the convex hull of
a simple polygon illustrates that unaided geometric intuition is not suffi-
ciently powerful to avoid egregious errors. There have been several algo-
rithms proposed over time (and accepted as correct) which were later shown
to be incorrect. Any theoretical machinery that may aid insight is desirable.
Secondly, there is a well-demonstrated synergism between theoretical inves-
tigations and practical problems, in that practice suggests new areas for
theory and in turn a developing theory suggests a broadening and sharpen-
ing of practique. Finally, if any further justification were needed, we submit
that the study of restricted-orientation convexity is of sufficient interest and
importance in its own right.

Besides the above justifications we believe that this material will be
beneficial in at least two practical areas (restricted-orientation VLSI design
and restricted-orientation robotic path problems) and that it is of contin-
uing theoretical interest as evidenced by further work in “starshapedness”,
“visibility”, the computation of nearness of “convex” polygons, etc. [13].

It is our opinion that, while the practical concerns from which computa-
tional geometry grew will continue to change and expand, the broad outlines
of computational geometry that serve to delineate it from classical geom-
etry and combinatorial geometry are now sufficiently well defined that it
can now, in its turn, give impetus to the development of new directions of
geometry.
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