hicServices

54231

2. Distribute copies as follows: White and
Yellow to Graphic Services.. Retain Pink
Copies for your records.

¥ »'Please,z»completeff unshaded areas on
form as applicabge

3. On.completion-of order the Yellow copy

4. Please direct enquiries; quo'tir‘igvrequisi-
tion number and account number, to
extension 3451.

will be retumed with the printed
material.

e
TITLE OR DESCRIPTION

Updating and Downdating the Inverse Cholesky Factbr on

» CS~88-46

DATE REQUISITIONED DATE REQUIRED

Feb. 1/89 ASAP

ACCOUNT NO.

|4,1,2)4,1,0,0[6,0]

rREQUIsITiIoNER— PRINT PHONE

J.A, Beorge

@NVTHOR[TY g ;

DEPT.

C.S,

N AME

Sue DeAngelis

MAILING
INFO —

BLDG‘.’ & ROOM NO. RELIVER

DC_ 2314 fiex-up

Copyright:

I hereby agree to assume all responsibility and liability for any infringement of copyrights and/or patent rights which may arise from

the processing of, and reproduction of, any of the materials herein requested. I further agree to indemnify and hold blameless the
University of Waterioo from any liability which may arise from said processing or reproducmg | also acknowledge that materials
processed. as a result of this requnsmon are for educational use only.:

NUMBER
OF PAGES

NUMBER
OF COPRIES

29 50

TYPE OF PAPER STOCK

[&BOND D NCR

PT. | b‘:OVER DERISTOL &SUPPLlED D y

PAPER SIZE

Cirxar [:]

: : QUANTL' ‘
I L L H Iu‘,l‘

;ll

Xatxn []8:xias

i?a “~:

INK

ﬂ BLACK D

PAPER COLOUR

E WHITE [:(

NUMBERING
FROM TO

PRINTING

D 1 sipE FGS. [}2 SIDES

PGS,

BINDING/FINISHING 3 down left, gside
U

ECOLLATING . STAPLING PUNCHED PLASTIC RING

FOLDING/
PADDING

CUTTING
SIZE

Special Instructions

Math fronts and backs enclosed.

,J el

"i 1 L f lPLOI1 !

COPY CENTRE

CENOR T BLDG: ;

L H i oo i1l
I] o

DESIGN & PASTE:UP 73“/<>'pséa o

o,

P .y

LABGUR

i lo,01]

comE ,,,;»‘

i HOO}J

[il 1

:IJ {%1

IlD 0 U

et Y H
TYPESETTING S QUANTIT\’
1 G l 1 ﬂ

L HB 041]

L [Bioy1]

1J | L ’ll,

| | H L || L HB 0,1]

U"’i 1P1010|0r0 0 H L.
IP A PIO!O 0 OIOJAJL_L Lig Ji~$f\ljfff«f7:*!‘”‘

IO|0|Q 0|01 Jl 1oL ILJ ’l a H}

L [bu‘rsma senwces

L JIB 911]

,pnoo,: B

'PrRFI QL !“l l”H SR
\UDIR Fl 1 P 1“1“1

l"lJ;l," | k

|P1RF1 R |Jl ol

Ll |J -

COST

CTAMER L DEANINCLAT

: ::m.—m.‘ r"i GRAPHIC SERV. OCT.85 4822

Date
m e m O University of Waterloo

o 36
Sul ” 50 LJ”J"
ﬂ&p‘j\x CS/SQJLPG
/B il Than ks

To ,L/ From
K Date F—"(/@’ (O /g (1

m e m O University of Waterloo

Updating and Downdating the Inverse Cholesky
Factor on a Hypercube Multiprocessor

Eleanor Chu
Alan George

Department of Computer Science

Research Report CS-88-46
December 1988

Faculty

of

Mathematics

University of Waterloo
Waterloo, Ontario, Canada
N2L 3G1

Updating and Downdating the Inverse Cholesky
Factor on a Hypercube Multiprocessor

Eleanor Chu
Alan George

Department of Computer Science

Research Report CS-88-46
December 1988

Updating and Downdating the Inverse Cholesky
Factor on a Hypercube Multiprocessor. *

Eleanor Chu
Alan George

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

Research Report CS-88-46

December 1988

Abstract

This article describes a new hypercube implementation of the two sequential algorithms recently
proposed by Pan and Plemmons for updating and downdating the inverse Cholesky factor in the
context of modifying least squares solutions. The two algorithms update/downdate the inverse
Cholesky factor R~ by applying the same sequence of orthogonal/hyperbolic rotations used to
update/downdate the Cholesky factor R. Since the triangular solve required in the algorithms for
updating/downdating R is avoided in this pair of new algorithms by working with the inverse of R
instead, they have been regarded as good candidates for parallel implementation on a hypercube
multiprocessor. Furthermore, a straightforward hypercube implementation with communication
volume of O(nlog, p) is readily available by employing the data mapping strategy known for similar
computations, where n is the dimension of the factor R™! and p = 2¢ represents the number of
processors in the hypercube network.

The new hypercube implementation we propose in this paper achieves a communication volume
of O(n) while maintaining a balanced work load distribution among the processors. Since we lower
the communication volume by sending more short messages, a desired data mapping strategy will
not only balance the work load but also induce an appropriate precedence relationship on the data so
that the communication can be masked by computation. We shall describe how the dual objectives
can be achieved by taking full advantage of the hypercube connectivity and a novel recursive data
partitioning strategy.

“Research supported in part by NASA Grant No. NAG-1-803 and by the University of Waterloo.

Contents

1 Background

2 Parallel Implementations

3 Motivations for an Alternative Parallel Implementation

4 A New Parallel Implementation for a Hypercube Multiprocessor
4.1 Topology Embedding,
4.2 A Recursive Partitioning Algorithm
4.3 A Novel Communication Algorithm
4.4 Computing the new estimatorw'

5 Summary
Acknowledgement

References

12
13
13
20
22

23

24

24

List of Figures

= ot © 00 N3 MO N
= O

el
Ol W N

-
=)

Elements accessed and modified by applying Q;.
Initial data distribution on three processors.
Three processors may apply Q3 to their local data concurrently..
#: elements accessed and/or modified by applying Qs.
Six possible orderings exist in applying rotation Q3.
Precedence constraint imposed by Q: z; < zjifé<yj.
An example representing an ideal data mapping forn =9 andp=2.
The six “X” elements account for delay between step 1 and (7).
The “x” element accounts for delay of one more time step.
The six “X” elements account for P;’s extrawork.
The concurrent computation of a = R~Ty by two processors.
The communication network of a hypercube and the embedded linear array.
Bisecting a triangle so that the area 4; = A,.
INlustration of the condition 8; = U, when n=20.
P, proceeds without waiting until the last column if the x elements in the
top submatrix are less than the X elements in the bottom submatrix.

Bisecting a trapezoid so that the area A; = A5.

iii

1 Background

In this article we study the problem of updating and downdating the inverse Cholesky fac-
tor R~! on a distributed-memory multiprocessor in the context of modifying least squares
solutions. In particular, we are concerned with parallelizing the two sequential algorithms
recently developed in [5] for updating (and downdating) R~!. Both algorithms enjoy the
following features. First, highly serial triangular solves, which are considered the bottleneck
in updating/downdating the Cholesky factor R on parallel computers [3], can be avoided
entirely by working with R~! [5]. As pointed out by Pan and Plemmons, this feature is
particularly desirable in the application area of signal processing, where an inverse orthog-
onal factorization of the Toeplitz autocorrelation matrix T results in the initial R~! being
readily available to start the updating/downdating processes. Developing fast algorithms
for Toeplitz factorization has been the topic of recent work by Cybenko [2] and Chun et. al.
[1]. The second feature results from the following two theorems, namely that the sequence
of orthogonal (hyperbolic) rotations used to update (downdate) the Cholesky factor R can
also be used to update (downdate) its inverse, R™1.

Theorem 1 [5] Let R denote an n X n nonsingular upper triangular matriz and let y denote
an n-vector. If Q denotes the product of a sequence of plane rotations used to solve the
updating problem for R and yT, i. e. if

o()-(4).

where U 1is upper triangular, then

where u i3 given by

witha= R Ty and 6§ = V1 + aTa.

Theorem 2 [5] Let R denote an n X n nonsingular upper triangular matriz and let z denote
an n-vector. If H is pseudo-orthogonal with respect to S = diag (I, —1) and

(5)-(2)-

where D is upper triangular, then

(%)-(%);

where v i3 given by

with b= R~T2 and v = /1 — bTb.

After noting that it is advantageous to work with the inverse Cholesky factor R~! in
a multiprocessor environment, it is important to compute the rotations forming @ and H
directly from R™! instead of R. Fortunately this is indeed the case as shown in Lemma 3
and 5 in [5]. We restate Lemma 3 below and refer the readers to [5] for Lemma 5 which
gives similar result on computing H.

Lemma 3 [5] Given the initial inverse Cholesky factor R™! and the new observation equa-
tion yTw = 0. Denote
(e)
az

R_Tyz a=

Gn—1
\ o)
Let Q@ = Q- - Q2Q1 be a product of Givens rotation matrices chosen to zero out —a;, —as,
«+, —an by the following series of transformations:

(-} (O\ [o) (0)y [0]
—as —as 0 0 0
—Qn-1 —Gn-1 —Gn-1 0 0
—ap —ay —Qyp —-Qy 0

SR R c B c Lo | (o)

whe'r'eﬁ(")z\/1+af+---+a?;i. e.,

[

Combining the results from Theorem 1 and Lemma 3, one immediately obtains

-a RT 0o U T
oW)-(5%).

where U1 is the updated inverse Cholesky factor. It was also shown in [5] that a scaled form
of the by-product u” is the Kalman gain vector, which is immediately useful in computing
the modified least squares solution w' from

oo

w=w—-———-au.

)

2 Parallel Implementations

Since the inverse updating algorithm is similar to the downdating algorithm in data depen-
dency and other relevant computational aspects, it is sufficient to study one algorithm for
parallel implementation, and then apply the same strategy to the other. We have chosen to
examine the updating process. Given below is the sequential algorithm for the entire least
squares inverse updating process as summarized in [5].

Algorithm LS-IU. (Least Squares - Inverse Updating). Given the current least squares
estimator vector w, the current inverse Cholesky factor R™! and the new observation
yTw = o to be added, the algorithm computes the updated inverse Cholesky factor
U~1! as well as the updated least squares estimator w'. We assume that both R~! and
w are already in memory.

Step I. Input y and o of the new observation.
Step II. Form the matrix-vector product a = R~ Ty.

Step III. Compute
—-a R—-T 0 UQT T
Q(l O_T)_(6 uT)) QQ—I,

where § = V14 aTa, Q = Q.- --Q2Q;. The Givens parameters ¢; and &; for Q;
are explicitly computed by

Q-1 a;

¢ = %= ’

where a, = 1, a; = \/1 +al+---+a?,i=1,--- n Note that R™! is overwrit-
ten by U~! in the actual implementation.

Step IV. Compute
T
o—y'w
(o=sw),
where w is overwritten by w’ in the actual implementation.

w=w-

Step V. Output the updated w to the application.

For easy grasp of the strategies which may be useful in parallelizing this algorithm on a
distributed-memory multiprocessor, let us depict the data accessing pattern of Step III in
Fig. 1 for an inverse Cholesky factor R~T of dimension n = 6. The elements marked & are
accessed and/or modified by the rotation matrix @; in the ** transformation step.

x) X
X X X X ¢ o
R-T X X X X X X X X X

X X X X X X X X X X X X

= — —_

(0'1'> X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X
0 0 0 0 0 O 0 0 o0 o0 O é & 0 0 0 O
x x
X X X X
& o o X x X

| x x x x i | o ox x =(U_T)
X X X X X X X X X X uT
X X X X X X é & 6 6 o o
¢ & 4 0 0 O é & 4 6 o o

Figure 1: Elements accessed and modified by applying Q;.

From Fig. 1 it should be clear that the application of Q; modifies the s** row of R—T
and the leading ¢ elements of the bottom row. With the above picture in our mind, let
us first describe a readily available parallel implementation for Step III, which is based on
the recent work by Heath, Henkel and Plemmons [3] on parallelizing similar computations.
As pointed out in [5], their ideas are immediately applicable to implement Step III on a
distributed-memory multiprocessor without the need of communication, assuming that the
columns of R~T have been distributed to all processors using a wrap-mapping and that the
entire vector a is available in each processor. When there are three processors, we use the
example in Fig. 1 to illustrate the initial data distribution in Fig. 2.

—a1 X —a3 —a3
—a2 X —a2 X —ag
~a3 X —as X —a3 X
—a4 X X —ay4 b —aq4 X
—ag X X —ag X X —ag X
—ag X x —ae X x —ag x x

1 0 0 1 0 0 1 0 0

Figure 2: Initial data distribution on three processors.
Clearly every processor can independently (and redundantly) compute Q1, Q2, -+ +, @Qn

and apply each Q; to the locally available portion of the i*# row of R~T as well as that
of the bottom row. We illustrate how all processors can concurrently apply Qs to update
their local data in Fig. 3.

0 X 0 0
0 X 0 X 0
0 ¢ 0 ¢ 0 ¢
~Gq X X —Gq X —a4 X
—ag X X —ag X X —ap X
—ag X x ~ag X X —ag X x
) o 0 §0) ¢ 0 5 . 0

Figure 3: Three processors may apply Qs to their local data concurrently.

Since neither host-to-node nor node-to-node communication is required in Step IIT using
the implementation above, one needs to consider only the communication costs incurred in
Steps I, II, IV and V in parallelizing Algorithm LS-IU. To be specific, we restrict our
discussion on communication costs here to the well-studied hypercube network. Step I
requires the host to distribute the newly observed y and o to all node processors. Step II
computes a = R~Ty. Assuming that the columns of R~T are initially wrap-mapped to the
p processors of a hypercube network, so are the elements of y, it is well known that the
product a = R~Ty can be computed and made available in every processor using standard
O (log, p) fan-in/fanout broadcast algorithms. The communication volume of 2nlog, p is
a function of both n, the size of the problem, and p, the total number of processors. In
[4] subcube doubling technique is used to accumulate the product @ = R~Ty, which may
reduce the communication volume from 2nlog,p to nlog, p if the hypercube employed
allows simultaneous bidirectional message traffic between two adjacent nodes.

Step IV computes the new estimator w' via

=)

w=w—-————>yu.
)
In preparation for analyzing the communication cost incurred in Step IV, we make the
following observations.

1. Updating w;, the ¢** component of w, requires the availability of u;, 6, 0 and yTw.

2. The elements of uT are scattered among the p processors in a wrap fashion as dictated
by the implementation of Step III.

3. Each processor has computed § at the end of Step III.
4. o is available in each processor after executing Step I.

Thus, the processor having u; can independently update w; if yT w is provided. To this end,
Henkel and Plemmons [4] propose to accumulate y” w in Step II along with the computation
ofa=R Ty assummg that w is currently wrap-mapped around the p processors. Since the
partially computed y"w (a scalar) and a can be passed along in one message, the increase
in commu.mcatlon cost is negligible. With u;’s appropriately distributed and the scalars &,
o and yTw available in the local memory of each processor, Step IV can thus be parallehzed
without communication cost.

While the local update of w;’s in Step IV maintains the wrap-mapping which is desirable
for use in subsequent updatings, it is, however, necessary to collect all of the updated w;’s
in the host processor so that the new least squares estimates can be communicated to the
application in Step V.

3 Motivations for an Alternative Parallel Implementation

In this section we describe our motivations for a new parallel implementation of Algorithm
LS-IU, which features a smaller communication volume of “n + O (log, p)” with a significant
portion of that potentially masked by computation. Our design of a row-oriented block
mapping strategy is motivated by the following observations.

1. As pointed out earlier, the rotation matrix Q; modifies the 1** row of R~T and the
leading ¢ elements of the bottom row. For easy reference, we show again in Fig. 4 the

data accessed/modified by the application of Qs when R~T is of dimension 6.

7,1 ma
Y2, V2,2 2,1 M3
Y51 Y32 Y33 ® & ¢
(R-T) =1 M1 V2 43 Ve e | 41 42 a3 Ve
o7 M1 Y52 Y53 Tse Vs M1 Y83 V8,3 VB4 V8.6
Y1 Vo2 V6,3 Ve a Vo5 Ve Y1 Y83 Ve,3 Vo4 Ves Vs,
1]] 1] 1] 1] 0 & ¢ & (1] 0 0
1,1
m1 M2
M1 N33 M3 r
ey | M nez s ne - UT)
a1 M2 M3 Ma NS u
Ne,1 MNe,2 Ne,3 MNea MNes 76,6
U1 Uz u3 Uy ug ug
Figure 4: #: elements accessed and/or modified by applying Q3.
2. Recall that
1
1
c3 —83
Qs =
1
83 C3
where c3 = az/a3, 83 = —a3/as, and a;, a3 are computed from ag = 1 and o; =

\/1 + a? + .- + aZ. Observe that

a3=\/1+a§+a§+a§=\/a§+a§.

In general, we can express o; by

a =1, 0 =1/a? +a},i=2,3,---,n. (1)

Note that by making use of equation (1) the processor which computes Q; needs to
access only o;_; and a;.

3. An observation which is important in exploiting the parallelism inherent in Algorithm
LS-IU is that the computation of Q; is independent of the elements being modified
presuming that o;_; and a; are available. The parallel implication is that the ¢ pairs
of elements to be modified by Q; may be processed in any order. For our example in
Fig. 4, there are six possible sequences one may use to apply Q3 to the three pairs of
elements as shown in Fig. 5. We have labelled each pair of elements to indicate the
intended ordering. In general, there are s! alternative sequences for applying Q; to
the ¢ pairs of elements.

X X x

X x \ (%X« \ (X« \
W @ @ M @ @ @ @ @

X X X X X x X X X x x X

X X X X x X X X x X X X X X X

X X x X x X x X x X X x X x X X x X
\w) @ @ o000/ \@ @ @ o o o J \2 @ @ o o o)/

(% \ (% Y (X~)

2 (3 @) ® 10 @ ® 2 O
X X X X X x X

x X X X x
X X X X X X X x x X X X X X X
X X x %X x X X X X X X X X X X X X X
\ 2) 3 (1) o o o J \ 3 @@ (@ o o o } \ 3 (2 (1) o o o }

Figure 5: Six possible orderings exist in applying rotation Q3.

4. Since the work involved in modifying a single pair of elements is the same regardless
of the element locations, the number of steps may be used to measure the work load.

5. It is equally important to identify the precedence constraint which must be satisfied
to ensure the correctness of the algorithm. For Algorithm LS-TU, the constraint is
that Q1, Q2, -+ - @, must be applied in strict order, because Q; modifies the #*» row
of R~T using the updated (by rotation Q;_;) bottom row. The implication is that the
elements along the same column must be processed from top down as illustrated

in Fig. 6, where we have labelled each element by its step number. The precedence
constraint requires that z; < z; if f < j, where z € {1, 5, ¢, x, u,v}.

[n \
t2 N

13 72 &

4 3 b K

ts J4 €3 K3

16 5 L1 K3 p2 n

\xxxxxx}

Figure 6: Precedence constraint imposed by Q: z; < z; if ¢ < j.

6. An example representing a close-to-ideal data mapping is given in Fig. 7, where the
data are partitioned into two blocks (as shown on the left) with each one assigned
to a different processor. Each processor modifies its local data column by column
from right to left. On the right, the ordering for each processor are indicated by
step numbers, namely ¢ for P; which has the top submatrix, and (¢) for P, which has
the bottom submatrix. Apparently the work load is close-to-equal (21 pairs versus
24 pairs of elements to be modified) and the precedence constraint is also observed.
Suppose that the two processors are each equipped with local-memory only. In this
case, for processor P, to continue with step (7), which applies Q7 to the pair consisting
of v7 6 and the corresponding element in the bottom row, the updated (by Qe) element
of the bottom row must be made available to P,. Our numbering of the steps in Fig. 7
clearly indicates that if P, sends out this element to the neighboring P, immediately
after it is updated by Qg in step 1, the communication cost can be completely masked
by computation because P, does not need this element until step (7). Using a similar
argument, there is absolutely no waiting before P, can execute steps (10), (13), (16),
(19) unless the communication is unreasonably slower than computation.

< 16

Lo o \ [17 11 \
C O O 18 12 7

O O O & 19 13 8 4

Lo IR R e IR ¢ 20 14 9 5 2

LR - IR ¢ * R R ¢ 21 15 10 6 3 1

P S S S S S (22) (19) (16) (13) (10) (7) (4)

R EEEEX (23) (200 (17) (19) (11) (8) (5) (2)

s 688008 8as8) 0y 9 (5) 8 6 G @)/

Figure 7: An example representing an ideal data mapping for n = 9 and p = 2.
It is important to recognize that the ideal mapping above is not a coincidence for this
particular example. A simple analysis shows the following.

(a) The difference of six between step 1 and step (7) is accounted for by the six
elements marked X in Fig. 8.

o
(S o)
o & o
O 6 & o
S 6 O O o
¢ 6 6 ¢ o 1
& 4 8 6 8 () x
& 8 8 88 & x x
\ & & & & & & x x x)J

Figure 8: The six “X” elements account for delay between step 1 and (7).

(b) The difference is increased to seven between step 6 and step (13) due to the
further delay by element X in the bottom submatrix as shown in Fig. 9.

10

o
s o o

6 6 & o

S 6 6 & o

¢ 6 6 6 o 1

& & & (13) x () &

s 4646 4 & 8 40
L& 4 8 & & & & 6 &)

Figure 9: The “X” element accounts for delay of one more time step.

(c) The lead of seven steps by processor P; has been cut by six when P, reaches step
(22) due to P;’s extra work involved in modifying the six elements marked “x”

in Fig. 10.

X

(%)
X X X
O 0 0O 0
¢ 0O O 0
21 & ¢ 6 ¢ 1
(22) & & (13) & (7) &
& & & & & 4 4
& & & & & 4 & 4 b J

Figure 10: The six “X” elements account for P;’s extra work.

We shall show later how the observation above can be used to find such a partitioning
for a given inverse factor of any dimension using p = 2¢ processors.

. Using the example in Fig. 7, it is easy to see that the two processors can each compute
a segment of a = R~Ty concurrently if the n-vector y is available in each processor.
The data distribution of R~T dictates the partitioning of vector a as shown in Fig.
11. At the end of this step, processor P; would have computed {a, az, as, as, a5, ag}
locally, whereas P, would have {a7, as, aps} computed.

However, in order to proceed with Step III as suggested above in item 6, P, and P,
must each be able to compute Q;’s for their respective needs in order to execute Step
III concurrently. Recall that the Givens parameters ¢; and s; are computed from

_ o a;
Ci= —,8i=——,

o oy

11

<& Y1 <
3 0 Yoy (8

Lo o Y3 &
S 6 o o v4 >

RTy=1 ¢ ¢ ¢ ¢ ¢ v 1=| ¢ | =4

S 60 O O O ” &
s 48 48 4 0 yr PS
s 48 84 04 80 vs QJ
s & 6 6664688/ w/ \a

Figure 11: The concurrent computation of a = R~ Ty by two processors.

where ap = 1 and o = \/1 +a? + -+++a?. Clearly, P, can compute Q;, Q3, -+ -,
Qe from {a;,as,- -, ae}, but P, will need {ag, ar, ag, ag} in order to compute a7, as
and ap before the corresponding Q;’s can be constructed. Since ag = /1 + ¢, a?,
the only communication cost incurred is for transmitting one floating point number
representing the value of 3°%_, a? from P; to the neighbouring P;.

We have designed a novel communication algorithm which generalizes the above strat-
egy to a hypercube network of p = 29 processors. We postpone the presentation of the
general form of the algorithm until the next section. The advantage of our scheme is,
in short, that comparing with the “O (nlog, p)” communication volume for making
the entire n-vector a available to all p processors as suggested by the column-oriented
algorithm (3], we can reduce the communication volume to “O (log, p)” by log, p ex-
changes of a single floating-point number between directly-connected processors.

4 A New Parallel Implementation for a Hypercube Multi-
processor

In the previous section we used an example to show that it is potentially advantageous to

employ a row-oriented block mapping strategy. Since we only consider the case p = 2 in

the example, the generalization to a hypercube network consisting of p = 2¢ processors

certainly needs further explanation. Let us consider its implementation from three aspects,
namely

1. how to choose and embed a suitable topology in the hypercube network.
2. how to partition the data among the p processors.
3. how to reduce the communication volume.

We address these three issues in the next three sections.

12

4.1 Topology Embedding

The choice of a particular network topology cannot be made without considering the data
mapping strategy and the communication algorithm at the same time. So are the choices
for the other two. Since we cannot describe all three in parallel, we present the chosen
topology first and offer some justification after we describe the data mapping strategy and
the communication algorithm. We have chosen to embed a linear array in the hypercube
in order to facilitate the near-neighbour communication algorithm to be employed in Step
II. The embedding consists of a unique mapping from the d-bit reflected binary Gray code
[6] to the 24 processor {d’s of the given hypercube network. Given in Fig. 12 is an example
for a hypercube of dimension 3. Note that the embedding is recursive — a hypercube of
dimension d can be viewed as a linear array of two subcubes of dimension (d —1). We shall
see later how this feature is useful in our design of an efficient communication algorithm for
Step II.

B P P P, Pe Py Py Py
000 001 011 010 [+ 110 111 101 100
000 001 e 011 010 110 111 = 101 100
000 &> 001 P 011 [« 010 110 pe—1 111 ¢ 101 100

Figure 12: The communication network of a hypercube and the embedded linear array.

4.2 A Recursive Partitioning Algorithm

We first recall that in section 3 we observe that since the work involved in modifying a
single pair of elements is the same regardless of the element location, the number of steps
may be used to measure the work load. Let us further note that the total number of steps

13

to be performed by a particular processor is equal to the number of elements of R~T the
processor is allocated. Ideally, a data partitioning strategy should achieve the following
objectives.

1. Every processor is assigned equal work.
2. All processors can work concurrently throughout the entire computation.

By treating the lower triangular matrix R~T as a geometric object as in Fig. 13, the above
objectives can be restated as below. As an example, we consider the simple case when there

£ A,

Y 45°
n .

4

Figure 13: Bisecting a triangle so that the area A; = A,.

are only two processors. The equal work requirement demands bisecting the triangle so
that the “area” of the triangle and the trapezoid assigned to each processor is of the same
size, i. e. A; = A in Fig. 13. Using our notations in Fig. 13, we have £, + £, = n; letting
z = £; — {3, the condition A; = A, immediately yields
22 (n—z)? 0
7T (2)
Solving equation (2), we obtain

xr = (\/f—l)n. (3)

14

Substituting z by (v/2 — 1)n, we have

b= ";”zo.m (4)
and
ez_";zmo.an. (5)

The following lemma summarizes the results immediately obtained from equations (4) and
(5).

Lemma 4 We consider bisecting a given triangular matriz of dimension n as shown in Fag.
13. We denote the elements in Ay and A, by U, and U, respectively. If £; = |0.7n] = 0.7n,
then we have

(i) U, — U, = 0.01n% — 0.2n.

(ii) Uy = U, if and only if n = 20.
(iif) U; < U, if and only if n > 20.
(iv) Uy > U, if and only if n < 20.

Proof: By noting that

4
Uy =) i =0.245n% + 0.35n (6)
i=1
and
0.3n(0.7
o, = 2370 ';+ 141) _ 0.25502 + 0.1, (1)
we obtain the results in (i), (ii), (iii) and (iv) immediately. =]

The parallel implication of the bisecting method is stated below as Theorem 5.

Theorem 5 We consider bisecting a given lower triangular matriz of dimension n into two
submatrices as indicated in Fig. 13. If Uy, the number of elements in A,, is equal to or less
than U, the number of elements in A,, it can be shown that processor Py will not spend
any time waiting until it processes the last column of data.

Proof: We sketch the proof by illustrating the requirement of U, = U, in Fig. 14 for
n = 20, where we show that for U; = U,, the number of elements marked “x” in the top

15

— —
<

L X J

L X J

L L XX

L X X X J

L X XX X J

O X X XX XX

SO X XX XXX

COO X X X X XX
COOCO XX XXX X
COOOO XX XX XX
COOOOCO XX XX XX

PR RV R R R X X X X X J

PP R R R R R X X X X X J

XX XOCOOOCOOs gt @
XXX XOOOOOCOS St
XXXXXOOOOOO SN S
XXXXX XSOOSO GGG S
XXXXXXXOOOOOOS GGG S

XXXXXXXXOOOCOOOSdddd S
N— —

U, when n = 20.

Figure 14: Hlustration of the condition U,

N
X
X X
X X

X X X X
X XX X X

XX X X X X
1@00006
COXXXXS@
COOCXXXPRS

COOO XX GG
COOCOC O X9 e

OCOOOR vt 0 e

XOOOOOC e @
XXOOOOOO 9 a e
XXXOOOOOO gt a g
XXX XOOCOOOO e Gdqga s
XXXXXOO00O0OOCOssa09 9

XXXXXXOOOOOCR GBS RG

~~
XXXXXXXO0COOGT I et e
N’

0000000000005 80avee

(100)

N —

Figure 15: P, proceeds without waiting until the last column if the x elements in the top

submatrix are less than the x elements in the bottom submatrix.

16

submatrix must be equal to the number of elements marked “x” in the bottom submatrix;
ie.,

z(z + 1) _ (n — z)? .
2 4

(8)

For n = 20, z = 8 is indeed the solution to equation (8).

We then compare with the requirement imposed by allowing P, to proceed without
waiting until the last column. As we demonstrate in Fig. 15, the latter condition can
be transformed into the requirement that the number of elements marked “x” in the top
submatrix must be less than the elements marked “x” in the bottom submatrix, i.e.,

x(z2—1)<(n—4$)2_("‘2""’)+1_ (9)

To show that the inequality (9) holds, we observe that equation (8) implies

(n—2)

z> " (10)
We thus have
z(z—-1) =z(z+1) _ g2
2 - 2
2
— (n—z) _ g2
4
(=2 _(n-2)
< 1 3 +1. (11)
0O

We state the implication of Theorem 5 in Corollary 6.

Corollary 6 If a given n X n (n > 20) lower triangular matriz is bisected according to
£, = |0.7n| and €y = n — £;, then the number of elements in A, is less than or equal to the
elements in Ay and Py will not spend any time waiting until it processes the last column of
data. Furthermore, the number of elements in Ay plus the number of elements in the last
column of A; represent the upper bound of the total number of steps of the parallel algorithm.

Clearly the bisecting method can be applied again to A; and each resulting top sub-
matrix recursively. It is also clear that if we can bisect the bottom trapezoid in a similar
fashion, then it can also be applied recursively to each resulting trapezoidal submatrix. At
this point, let us also recall that we are interested in implementing this algorithm on a
hypercube network of p = 2¢ processors. Note that a complete data partitioning algorithm
consisting of d bisecting steps would generate 2¢ submatrices, which are exactly what we

17

¥

b T x

Ak Ay
£

y+4

I A,

v l 45°
- y+¢ -

Figure 16: Bisecting a trapezoid so that the area A; = A,.

need for the p = 29 processors consisting of the linear array. We shall next describe how to
bisect a trapezoidal submatrix to meet our objectives. Let us treat the trapezoidal subma-
trix as a geometric object and fix our notations in Fig. 16. Referring to Fig. 16, given £ and
y we need to find £, (£, = £ — £;) so that area 4; = A, for exactly the same reason as we
bisect a triangle. We state our solution as Lemma 7.

Lemma 7 The trapezoid in Fig. 16 can be bisected into two trapezoids of equal area if we

choose £, = (£+ z)/2, where z = \/(2y + £)F + €2 — (2y + £).

Proof: Letting z = ¢; — £, we have

0 = £+z ’ (12)
2
6n=222 (13)
Since the areas A; and A, are each computed by
A = w“;e—l—)el (14)
and
Ay = (y+€1)2+(y+l)£2, (15)
the condition Ay = A, is satisfied if
y+(s;+€1)e1=(y+£1)2+(y+£)£2_ (16)

18

Substituting ¢; = (£4 z)/2 and £; = (£ — z)/2 into equation (16), we obtain the following
quadratic equation.

2?4+ (dy+20)z -2 =0. (17)

Solving equation (17), we obtain

r— —(4y + 2¢) £ /(4y + 2£)? +- 422

- (18)

Since z > 0, our solution to equation (17) is

r=-2y+) ++/(2y+£)2+£2. (19)

O
We can now apply Lemma 7 to a trapezoidal matrix and prove the following theorem.

Theorem 8 We consider bisecting a given lower trapezoidal matriz into two submatrices as

indicated in Fig. 16. If we choose £ = |(£+ |z])/2], where z = \/(2y + £)2 + £Z — (2y + ¢),
then the following results hold.

. Suppose that the number of elements in A, is denoted by U; and the number of elements in
Az s denoted by U,, then Uy < U,.

. If the top submatriz is processed by P, and the lower submatriz is processed by P, column by
column from right to left, then processor P, will not spend any time waiting until it processes
the last k columns, where k > 0 can be determined after z is chosen for a given problem.

Proof: Since

0= l£+2|_a:JJ < Z-{z-z , (20)

and when ¢4 = (€+ z)/2, we have from Lemma 7 that

A1 = A2) (21)

U, =4, (22)
and

Uy > A,y (23)

The inequality U; < U, is thus an immediate result from Lemma 7.

19

To prove the second result, we observe that the lead by P, is
B—t+1=(L—4) -(L-8)+1, (24)

and that we need to find the smallest k such that

2(z-1)

5 kz< B —ly+1, 2=0,—£,. (25)

2y +
Since y is given, £; and £, are both known after z is determined, k can be easily computed.
O

4.3 A Novel Communication Algorithm

Suppose that we have applied the recursive partitioning algorithm described in the previous
section to divide R~T, the transpose of a given n X n inverse Cholesky factor, into p = 24
submatrices, where d is the dimension of the hypercube network. Let us denote R"- Ty = a
and assume that every processor has access to the new observation vector y. Referring
to Fig. 11, every processor can compute a subset of {a;|0 < k < n} independently and
simultaneously. The size of the subset is the same as the number of rows of R~T each
processor is assigned. Let us use {, and 1, to denote the first and the last row number of
the block assigned to processor P;. Clearly every processor can also compute the partial
sum of af, namely

Sy = E": al, (26)

k=i,

where v (1 < v < p) represents the location of P; in the linear array. Recall that we explain
in detail earlier that for each processor to construct the Givens rotation matrices Q;, to
Qi, concurrently, processor P; needs o;,—; in order to compute {a;,, o, 41, *,04,}. Our
goal in designing the communication algorithm is to have the data needed for computing
a;,—1 available to each F;, 0 < { < p — 1, after d = log, p communication steps. The key
observation underlying our communication algorithm is that

¥—-1
o, -1 = \|1+ Zsm-
m=1

Our proposed algorithm employs the subcube doubling technique. Readers are referred
to Fig. 12 for an example of the communication pattern when the processors are config-
ured as a linear array. Using the subcube doubling technique, each processor is able to
communicate with its d directly-connected neighbours after d communication steps without
encountering traffic congestion. Let us denote the d—bit processor id by bgby - - -b4_1, the

20

complete algorithm executed by processor P; can be described as follows. Initially each
processor F; composes its own message to represent the index value 4 and the partial sum
Sy computed by equation (26). Note again that 4 here represents the location of P, in the
linear array. This point is made clear in Table 1 when we demonstrate how the algorithm
works on a hypercube network consisting of 8 processors.

S=0
L—d
while £> 0 do
send (my message) to processor with id different
from my id in bit b,_;.
receive a message representing updated S,, and index m
if m < 4 then
S—S+8,
L—2£-1
if £> 0 then
update the index component of my message to be the maximum
of v and m.
update the partial sum component of my message to be the sum
of current S, and the received Sy,.

At the end of the algorithm each processor P; computes o;,_; from
1= VITE (27)

To demonstrate how the algorithm works, we trace the proposed algorithm in Table 1
using the network in Fig. 12. From Table 1 it is straightforward to verify that the value of
S available in the 4*® processor in the linear array is given by

7-1
5= 859,
m=1

where we use S,(,?) to indicate the initial value of Sy,’s as computed in column 4 of Table 1.

21

[#id T P T o [Initially [t=2 [t=1 [£=0
000 | P, | 1 | compute S | SV =81 4+ 509 [s =50 {5
set S=0
001 | P | 2 | compute S{% | S{ =81 4+ 819 [s =W gV
set S=0 .S'=S+Sl(o)
011 | P5 | 3 | compute 55 | §{V =5 4+ 5V | s =5 151
set § =0 $=8+8"
010 | P; | 4 | compute S{% | sV =8I + 59 [s = s + sV
set S =0 §=5+58" §=8+5M
110 | Ps | 5 | compute S;° | S{ =S + 80 [57 =57V + 59
set S =0 §=85+82
111 [Pr | 6 | compute 5% | ${ =8I + {7 | T = 5[V 1+ s
set S =0 §=5+5" §=8+83
101 | P, | 7 | compute ${° | S{Y =5 + 8O | s = sV 1 s
set § =0 §=5+8M $=8+83
100 [P, | 8 | compute S{* | ${*) = IV 4§00 | s = 50V 1 sT9
set § =0 $=8+58" S =5+8Y §=5+87

Table 1: Demonstration of the proposed communication algorithm on a hypercube of di-

mension 3.

4.4 Computing the new estimator w'

Recall that in section 2 we describe Step IV of Algorithm LS-IU as computing the new
estimator w' via

oy L7V
w =w-— —6———1[. (28)

We shall now proceed to describe how the data distribution dictated by the parallel im-
plementation we propose for Step II and ITI supports the computation of w' by the last

processor in the linear array.
We first recall that in our implementation of Step III we assume that the n-vector y

representing the new observation is available in each processor. Referring to Table 1, it is
clear that processor Py, which is the last one in the 8-processor linear array (y = 8) and is
allocated the bottom submatrix, would have computed

7
s=> 859
m=1
at the end of Step II and is ready to compute

Vi+8+89

22

6§ =

= V1i+aTla. (29)

At the end of Step III, processor Py would have computed the entire u vector,too. Therefore,
to update the estimator w via equation (28), processor P; only needs w and the right
hand side of the new observation, o. The latter is a scalar and can be distributed by
the host processor together with vector y in Step I and incurs virtually no communication
cost. Assuming that P; has w, we conclude that P, can compute the entire w' without
communication cost and that the updated w remains in Py for use in future updating.

In Step V, Py would be the only node processor communicating the updated estimator
vector w to the host. Finally observe that since only one node processor is involved in
computing and reporting w, the distribution of newly available observation y and o can
overlap Steps IV and V.

5 Summary

In Section 2, we have presented Algorithm LS-IU in a manner which can be repeated
when new observation becomes available. Since the inverse Cholesky factor R~! and the
estimator vector w are both updated in-place either in the column-oriented algorithm or
in the proposed row-oriented algorithm, the distribution of R~! and w is done only once
before the Algorithm LS-IU is executed the first time. Therefore, the cost of the initial
data mapping has little impact on the performance of the parallel algorithm over time.
Comparing the column-oriented parallel implementation with the row-oriented one through
Steps I to V of Algorithm LS-IU, we summarize our conclusions below.

1. In Step I, both implementations require the host to distribute the new observation
represented by vector y and a scalar . In the column-oriented case, y is to be wrapped
around the node processors while ¢ is needed by all of them; in the row-oriented case,
y is needed by all nodes while o is needed by a single processor. We do not expect
significant difference in the communication cost of this step.

2. In Step I, the column-oriented implementation incurs a communication volume of
O (nlog, p), while the row-oriented algorithm reduces the communication volume to

O (log, p).

3. In Step III, the column-oriented implementation incurs no communication cost. While
the row-oriented implementation causes O (n) communication among the nodes, we
show how the communication can be masked by computation by inducing an appro-
priate precedence relationship on the data. The work load distribution is balanced in
both cases.

4. In Step IV, the least square estimator w can be updated in either implementation
without communication cost.

23

5. In Step V, while the host must collect the updated w;’s from all node processors in the
column-oriented algorithm, only one node is responsible to communicate the updated
vector w to the host in the row-oriented algorithm.

6. Since only one processor is involved in Steps IV and V in the row-oriented algorithm
it is possible to overlap Step I with Steps IV and V.

)

In a subsequent paper, we plan to implement our algorithm on a hypercube multipro-
cessor and compare our timing results with that of the column-oriented implementation
recently reported in [4].

Acknowledgement

The authors thank Professor Robert J. Plemmons for suggesting the problem and providing
us with references [4] and [5].

References

[1] J. Chun, T. Kailath, and H. Lev-Ari. Fast parallel algorithms for QR and triangular
factorization. STAM J. Sci. Stat. Comput., 8:399-413, 1987.

[2] G. Cybenko. Fast toeplitz orthogonalization using inner products. SIAM J. Sci. Stat.
Comput., 8:734-740, 1987.

[3] C.S. Henkel, M. T. Heath, and R. J. Plemmons. Cholesky downdating on a hypercube.
In ACM Proc. Hypercube 3 Conf., pages 1592-1598, California Institute of Technology,
1988.

[4] C. S. Henkel and R. J. Plemmons. Recursive Least Squares on a Hypercube Multipro-
cessor Using the Covariance Factorization. Technical Report, Department of Nuclear
Engineering and Department of Computer Science and Mathematics, October 1988.
(submitted to SIAM J. Sci. Stat. Comput.).

[6] C. T. Pan and R. J. Plemmons. Parallel least squares modifications using inverse fac-
torizations. Computational and Applied Mathematics, 1989. (to appear).

[6] E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms: Theory and
Practice. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1977.

24

	

