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November 1988

Abstract

In this article we describe a parallel algorithm which applies Givens rotations to selectively
annihilate k(k+1)/2 nonzero elements from two kxn (k < n) upper trapezoidal submatrices.
The new algorithm we propose is suitable for implementation on either a pair of directly
connected local-memory processors or two clusters of tightly-coupled processors. We show
in both cases that the proposed algorithms may achieve optimal speed-up by balancing
the work load distribution and masking inter-processor or inter-cluster communication by
computation. In the context of solving large scale least squares problems, this submatrix
merging step is repetitively needed during the entire computation, and, furthermore, there
are usually many pairs of such submatrices to be merged with each submatrix stored in the
memory of a processor or a cluster of processors. The proposed algorithm can be applied
to each pair of submatrices concurrently and thus parallelizes an important step in solving
the least squares problems.

*Research supported in part by NASA Grant No. NAG-1-803, and by the University of Waterloo
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1 Introduction

In this article we study some effective ways to merge submatrices on multiprocessor architec-
tures, and propose a cure to the unbalanced load distribution problem which the algorithms
currently known to us have experienced. The particular submatrix merging operation we
consider can be understood as eliminating k(k + 1)/2 nonzeros by Givens rotations from a
pair of k X n (k < n) upper trapezoidal submatrices as depicted in Fig. 1, where k = 6,
n =12, ‘

X X X X X X x X x X x X \ X x X x X X X x X x X X
X X X X X X X X X X X X X X X X x X X X X X

X X X X X X X X X X X X X X X x X X X X

X bed X X X X x X x X x x X X X X X X

X X X X X X x X X x X X X X X X

X x X X bed X X — x X X X X X x

X X X x X X X bed x X X X X X X X X X
X x X x X x X X X x X X x x X X x

X X X x x x x x X x x x X X X X

X X X X x X x X X x X X x X X

X X X x X x x X X X X x X X

\ x X x X X X X } X x X x X x

Figure 1: Merging two upper trapezoidal submatrices.

The need to reduce multiple pairs of such submatrices arises in both dense and sparse
matrix computations. An example of the former case can be found in the recursive fine
partitioning (rfp) scheme proposed by Pothen et. al. in [2] for implementing dense QR
factorization on a hypercube. An example of the latter case occurs in the parallel block
schemes proposed by Golub et. al. in [1] for large scale least squares computations.

In our study of this submatrix merging process, we use the following definitions and
observations.

1. We refer to the computations incurred in eliminating one nonzero element as a task.

2. Each task involves applying a Givens rotation to two rows with their leading nonzeros
in the same position. Given in Fig. 2 is the sequential algorithm which implements
the task for the following transformation:

Gie Gip+1 Gierz tct Gin | [ Gie Gigq1 Gigyz ccc i
@je Qi1 Gerz Ctt Qe 0 o1 Gjerz o0 @jn
Note that in Fig. 2, a;4 and a4 (£ < ¢ < n) are overwritten by &;4 and &; 4.

3. If (n — £+ 1) is the number of nonzeros in each of the two rows, then the size of the
task is measured by 4(n — £+ 1) multiplicative operations.

—

N—



if la_,,-,g| > Ia,',g| then
t — laiel/|aj.l
s 1/v/1+4 12
¢« st

else
t — |aj,el/| il
c—1/vV1+1t2
8§+ ct

forg=£¢,£+1,-.--,ndo
UV aiq
W a5
Giq + CU -+ Sw
Qjq +— —8vV+cw

Figure 2: Implementing the task of annihilating a; ¢ by Givens rotation.

4. A single task can be equally divided between two cooperative processors if each pro-
cessor can access both rows but updates only one of them; i.e., both processors con-
currently execute all of the steps given in Fig. 2 except for executing only

Qi q «— cv+ sw

or
Qjq ¢ —8V + cw

in the for loop.

Throughout this manuscript whenever we divide a single task among two processors,
we assume an even distribution of work load as described above.

5. All tasks involving disjoint pairs of rows can potentially be performed in parallel by
different processors.

6. There are k(k + 1)/2 nonzero elements to be eliminated in merging two k X n (k <
n) upper trapezoidal submatrices. We note that these k(k + 1)/2 elements do not
necessarily come from the same submatrix as identified by ® in Fig. 3. Instead, a
Givens rotation can be applied to selectively zero out the k(k + 1)/2 “®” elements in
Fig. 4. The same reduced matrix can be obtained by permuting the appropriate rows
(as well as the corresponding right-hand-side elements) as shown in Fig. 5.



Figure 3: ®: the elements to be annihilated.

~ —~~
XXXXXXXXXXXX
XX XXXXXXXXXX
XX XXXXXXXXXX
XX XXXXXXXXXX
XX XXXXXXXXXX
XX XXXXXXXXXX
X@XOXPDX®X®X
X®X® ®@X®X®

X®X® ® X ® X

X ® X ®X®

X® ® X

X ®

~— -

®: the elements to be annihilated.

.
.

Figure 4

Figure 5: Same result may be obtained by permuting the rows after the annihilation process.



2 The Multiprocessor Environments

In [1} the target machine is the University of Illinois Cedar system consisting of clusters
of processors, where each cluster has a shared-memory system and the clusters are in turn
interconnected via a single, system-wide shared memory. The data mapping strategy em-
ployed in [1] dictates that each cluster of processors have one k X n upper trapezoidal
submatrix in their memory. To merge two such submatrices two clusters will cooperate
with the aim to exploiting parallelism and minimizing inter-cluster communication. In (2]
a parallel algorithm was proposed for merging two upper trapezoidal submatrices stored in
the local memory of two directly connected processors. This algorithm was then embedded
in the recursive fine partitioning scheme proposed in the same paper for implementing dense
QR factorization on a hypercube multiprocessor.

In this study we shall propose a new submatrix merging algorithm which can be applied
beneficially in either one of the multiprocessor environments considered above. However, in
order to be clear and precise in our presentation, we shall postpone all discussion relating
only to the Cedar system until the last section.

3 Submatrix Merging Algorithms

When merging two k x n upper trapezoidal submatrices on a single processor, the k(k+1)/2
nonzeros from one of the submatrices may be eliminated in many different orderings. For
example, they may be eliminated column by column as shown in Fig. 6, or row by row as
shown in Fig. 7 or diagonal by diagonal as shown in Fig. 8.

X X X X X X X X X X X x\
X X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X
X X X X X X X X
X X X X X X X
1 3 6 10 15 21 X X X X X X
2 5 9 14 20 X X X X X X
4 8 13 19 x X X X X X
7 12 18 X X X X X X
11 17 X X X X X X
\ 16 X X X X X X

Figure 6: Column-by-column elimination sequence.

In order to devise an elimination sequence which is most suitable for parallel implemen-
tation, it is helpful to study the data access pattern of these three elimination sequences
under the constraint that a task may not involve data from both submatrices unless it cannot
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Figure 8: Diagonal-by-diagonal elimination sequence.



proceed without doing so. For each elimination sequence we identify the tasks which must
access data from both submatrices and display such tasks and the required data in Fig. 9,
10 and 11.

X
X
X

X
X X

X X X X

X X X X X
BX XX XXX
X X X XXXX
X X X X XXX
X XXX XXX
X X X X X X X
X X XXX XX
XXX XXXX

Figure 9: Column-by-column elimination sequence: data from both submatrices are needed
for tasks 1, 3, 6, 10, 15 and 21.

xxxxxxxxxxxx‘\
X X X X X X X X X X X
X X X X X X X X X X

X X X X X X X X X
X X X X X X X X
X X X X X X X

1 X X X X X X X X X X X
7 X X X X X X X X X X
12 X X X X X X X X X

16 X X X X X X X X
19 X X X X X X X
\ 21><x><xx><j

Figure 10: Row-by-row elimination sequence: data from both submatrices are needed for
tasks 1, 7, 12, 16, 19 and 21.

We observe from Fig. 9, 10 and 11 that each row of data from the top submatrix is used
in exactly one task. Since the two submatrices are each located in a different processor
or a different cluster of processors in the multiprocessor environment considered in [2] and
[1], the tasks identified above are also those which require inter-processor or inter-cluster
communication. Since each row of data in the top submatrix must participate in at least
one task during the entire merging operation and all such tasks annihilate nonzeros in
the bottom submatrix which is stored in a different processors (or a different cluster), the
goal of minimizing inter-processor (or inter-cluster) communication can be achieved via
any one elimination sequence described here. The particular sequence chosen for parallel
implementation in [2] and [1] is the diagonal-by-diagonal elimination sequence.

However, using the approach above the tasks requiring inter-processor communication



X X X X X
X X X X

X X X

X x

X

®x X XX XX
X X X X X XX
X X X XX XX
XX X X XXX
X XXX XXX
X X X XX XX
X X X X XXX

Figure 11: Diagonal-by-diagonal elimination sequence: data from both submatrices are
needed for tasks 1, 7, 12, 16, 19 and 21.

are the only tasks which can be performed by the two processors (or clusters) concurrently.
Minimizing the number of such tasks can thus cause unbalanced work load distribution.
This problem is more serious when two local-memory processors instead of two clusters are
in question. In fact, it can be easily verified that when maintaining minimum inter-processor
communication as suggested earlier, the parallel algorithm running on two processors has
the same arithmetic complexity as the sequential algorithm.

4 A Balanced Submatrix Merging Algorithm

In order to balance the work load and minimize inter-processor communication, we propose
to implement the alternative transformation in Fig. 12, which can be viewed as consisting
of the annihilation process in Fig. 4 and the permutation process in Fig. 5.

{xxxxxxxxxxxx\ xxxxxxxxxxxx\
® ® ® ® ® X X xX X %x X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X X

® ® ® X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
® x X x X x x [ _ X X X X X X X

® ® ® ® ® ® X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X
® ® ® ® X X X X X X X X X X X X

X X X X X X X X X X X X X X X
® ® X X X X X X X X X X X X
\ X X X X X X X \ xxxxxx}

Figure 12: An alternative elimination sequence (®: the elements to be annihilated).

Assuming as before that each submatrix resides in a different processor, we employ the
following two strategies to balance the work load and minimize inter-processor communica-

tion.



1. To balance the load, the tasks corresponding to the k(k + 1)/2 nonzeros to be anni-
hilated are evenly divided among the two processors.

2. To help reduce inter-processor communication, a “®” may be zeroed by a processor
other than the one it is originally stored in.

The parallel algorithm we propose can be best explained when applying to the trans-
formation in Fig. 12. Let us denote the processor storing the top submatrix as P4 and
the processor storing the bottom submatrix as Pg. We first specify the particular order-
ing these tasks are to be performed in the left diagram in Fig. 13, where the tasks to be
performed by processors P4 and Pp are each labelled by its scheduled time step. We have
distinguished P4’s tasks from Pg’s by labelling P4’s i** task by ¢ and Pg’s by [¢]. The two
tasks scheduled for the same step can potentially be performed concurrently by two proces-
sors provided the communication can be masked by computation. This point will be clear
after we explain the inter-processor communication scheme. We next consult the diagram
to the right in Fig. 13, which identifies the tasks requiring data from both submatrices.

X X X X x X X X X %X X x\ X X X X X X X X X X X
2 3 4 5 6 X X X X X X 2 X X X X X X X X X
X X X X X X X X X X X X X X X X X X X
8 9 10 X X X X X X 8 x X X X X X X
X X X X X X X X X X X X X X X
12 X X X X X X 12 X X X X X
1 [3] [4 [8] [6) [7] x x x x x x 1 X x X X X X X X X X
X X X % X X X X X X X
7 [9] [10] [11] x x x x x X 7T x x X X X X X X
P X X X X X X X X
11 [18] x x x x x X 11 x X X X X X
\ X X X X X X X \

Figure 13: Concurrent scheduling of P4’s and Pg’s tasks.

We now explain the inter-processor communication scheme using the example in Fig.
13. Our algorithm requires processor Pp to send the top row of the bottom submatrix to
P4 so that P4 can complete tasks 1 and 2 as shown in Fig. 14, where the elements are
labelled by “A” or “B” depending on in which processor they are originally stored.

XX XXX XX

X

g




A A A A A A A A A A A A A A A A A A A A A A A4 A
A A A A A A A A A A A)— A A A A A A A A A A A
B B B B B B B B B B B B 0 B B B B B B B B B B B

A A A A A A A A A A 4aai

— 0 A A A A A A A A A A

o B B B B B B B B B B B

Figure 14: Processor P4 performs tasks 1 and 2.

The row from Pp is thus appropriately updated by P4 and is sent back to Pg immedi-
ately after task 2 is completed. P4 can then proceed to complete tasks 3, 4, 5 and 6 without
inter-processor communication as shown in Fig. 15. Pg will do the same with respect to its

A A A A A A A AAAAA A A A A A A A A ALK ii
0o A A A A A A A A iai 0 060 00 A A AdA4ia
A A A A A A A A A A _— A A 4 A A A A A A A
A A A A A A A A A A A A A A A A A A
A A A A A A A A A A A A A A A4
A A A A A A A A 444 iada

Figure 15: Processor P4 performs tasks 3, 4, 5 and 6.

tasks [3], [4], - - -, [7] after receiving back the modified top row as shown in Fig. 16.

o B BB BB B B BB B B © 00 0 o0 0o B B B B B B
B B B B B B B B B B B B B B B B B B B B B B
BB BB B BB BDBB|_, 555 5 5B B BB B
B BB BBBB B B B B B BB BB B B
B B B B B B B B B B B B B B B B
B B B B B B B B B B B B B B

Figure 16: Processor Pp performs tasks [3], [4], - - -, [7]-

We next explain how to mask communication by computation. The strategy is for each
processor to send out the row needed by the other processor as early as possible. For
example, processor Pp should send its row 3 immediately after it completes task [4] so that
it would have arrived in P4 when P4 completes task 6, and P4 should send the updated row
back to Pp as soon as it completes tasks 7 and 8, and so on. In the next section we shall
introduce a task precedence graph which is instrumental in our analysis of the performance



of the proposed algorithm and allows us to conveniently formalize the notion of masking
communication by computation.

5 Performance Analysis of the Proposed Algorithm

In order to analyze the performance of this algorithm, we make use of a task precedence
graph, where each vertex identified by a step number represents the task of annihilating the
nonzero in that position of one submatrix. As an example, we display in Fig. 17 the task
precedence graph set up according to the scheduling of P4’s and Pp’s tasks in Fig. 13. The
precedence relationship identified by — is established considering both data and processor
availability subject to the condition that communication can be completely masked by
computation. We show next how the latter condition is indeed satisfied by the particular
strategy we employ for masking communication by computation.

OO0
—O—O—O—=®

()—()—®
(1)

Figure 17: Task precedence graph of the example in Fig. 13.

In Fig. 18 we identify the data communication path by double arrows. The following
observations are helpful in studying this graph.

10



Figure 18: Task communication path graph of the example in Fig. 13.
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1. We introduce a dummy task node ([ —]) to account for the initial data communication
from processor Pg to Pj4.

2. The two tasks connected by double arrows are each executed by a different processor.

3. Data communication follows the arrow direction, namely that the processor executing
the task at the tail sends the data to the processor executing the task at the head.

4. The placement of double arrows traces the actual data flow of our communication
algorithm. For example, processor P4 sends the modified top row of the bottom
submatrix back to Pg immediately after task 2 is completed and Pg needs this row to
perform task [3]. The data transfer from P, to Pp is faithfully reflected by the double
arrow pointing from vertex (2) to vertex ([3]) in the communication path graph in
Fig. 18.

In order to show that communication can be masked by computation in our algorithm,
we need to adapt our analytical model to account for the time actually taken for communi-
cation. To motivate our proof, let us allocate one time step for communication and obtain
the modified precedence graph as well as communication path graph for the example above
in Fig. 19 and 20. We now contrast the critical paths embedded in the two precedence
graphs in Fig. 21, which are established by assuming that the tasks scheduled for step ¢ and
[1] finish at the same time. Consequently, step number 7 occurs only once in each critical
path identified in Fig. 21 and the arrows connecting vertex 1 to vertex 7, ¢ < 7, have been
omitted. Note that the critical path in the left is identified from Fig. 17 assuming that
communication takes no time at all, whereas the critical path in the right is identified from
Fig. 19 assuming that communication takes one time step. To be technically precise, the
latter assumption implies that sending one row of size (n — ¢ + 1) to another directly con-
nected processor takes no more time than 4(n — ¢ + 1) multiplicative operations. Another
technical point is that the number of operations involved in step [¢] are not exactly equal
to that of step 1. The difference is 4(n—¢+1) (1 < ¢ < k) for step [¢] versus either 4(n —gq)
for step 1 in Fig. 17 and 18 or 4(n — ¢ — 1) for step ¢ in Fig. 19 and 20. We see that in either
case the difference amounts to less than eight multiplicative operations, which is negligible
when n > k. We shall thus assume that time step [¢] is of the same length as time step ¢
throughout our analysis.

We now make the following important observation from Fig. 21, namely that the delay
caused by communication does not affect the critical path until the very last three steps
and the total delay amounts to three time steps exactly. An immediate question, of course,
is whether this result holds for any given pair of k X n upper trapezoidal submatrices. It
turns out that when k is even the delay amounts to three time steps and when k is odd
the delay becomes four time steps. Our proof makes use of a generalized precedence graph
given in Fig. 22 for k being an even number and the one given in Fig. 23 for k being an
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Figure 19: Task precedence graph (modified) of the example in Fig. 13.
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Figure 20: Task communication path graph (modified) of the example in Fig. 13.

1 1
2 34 5 6 2 34 5 6
7 7
8 9 10 8 9 10
11 [13) 13 [16]
12 14

Figure 21: The critical paths identified from the precedence graphs in Fig. 17 and 19.
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odd number. We offer some explanation of the setup of the generalized precedence graph
before we proceed.

Recall that our algorithm would zero out odd-numbered rows from the bottom triangular
matrix and even-numbered rows from the top one. It is convenient to arrange the vertices
of our task precedence graph as an upper triangle to reflect the locations of the elements
to be eliminated. Since exactly one nonzero is annihilated by performing one task, the
mapping from the task nodes to the nonzeros is one-to-one and onto. We label each task
node by an integer ¢ or [7] depending on whether the task is performed by processor P4
or Pg. The vertices in Fig. 22 and 23 should be viewed as connected by arrows in the
same manner as those of the task precedence graph in Fig. 19, although the arrows are
not explicitly shown here due to lack of space. From our description of the algorithm,
P4 would zero out the even-numbered rows from the top submatrix as well as the leading
nonzeros of the odd-numbered rows from the bottom submatrix, whereas Pg would zero
out the odd-numbered rows from the bottom submatrix except for their leading elements.
We summarize the implication of such basic understanding below.

1[4 [8] (6] (7] (8] (k1 —2]  [k1—1] k4]
2 3 4 5 6 ky—4 ky—3 k-2
ki—1 [k1+2] [k1+3] [k +4] - .- (ks ~ 2] [ks — 1] [ks]
Ky Br+1 ki +2 e o . ks —4 ks —38 ks —2
ks—1 [ks+2 - .- [ks — 2] [ks — 1] [ks]
ks ks — 4 ks — 3 ks — 2
km =1 [km +2] [km+2—1]  [km+2]
km Emt2 =3  kmiz—2

Emtz +1  [kmiz +4]

km+2 +2

Figure 22: A generalized precedence graph (k is an even number).
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4 [5] (6] (7] (8] [k — 2] [k1 — 1] (k4]
2 3 4 5 6 ki—4 k1—3 k1 —2
ki ~1 [ki+2] [k1+3] [ky+4] [ks — 2] [ks — 1] [ks]
Ky ki4+1 ki +2 ks — 4 ks —3 ks —2
ks —1  [ks+2] [ks — 2] [ks — 1] (k5]
ks ks — 4 ks — 3 ks —2
k=1 [km +2] [kmt2—2] [kmt2—1] [km+3]
km km +1 kmtz =8  kpyz—2
Ema4s [km+a + 3] [km+s + 4]
Emt2a+1  kpta+2
km+2+ 6

Figure 23: A generalized precedence graph (k is an odd number).

1. The tasks along each even-numbered row are scheduled consecutively, as are the tasks
(except for the leading one) along each odd-numbered row. This is evident from our
examples in Fig. 17 and 19 as well as the two generalized precedence graphs in Fig.
22 and 23.

2. We note also that since the leading task of each odd-numbered row is performed by
the same processor performing the tasks along the following even-numbered row, the
sequencing of these tasks is also consecutive.

3. From the task precedence graph given in Fig. 17, it is clear that the data dependency
prevents Pp from processing the second leading task of the odd-numbered row earlier
than the completion of the leading task in the following even-numbered row. We
show in Fig. 19 that the actual time taken for data transmission causes Py to be two
time steps behind P4 on completing the last task of each row. This fact is faithfully
reflected on our generalized precedence graphs in Fig. 22 and 23, where the last task
of each odd-numbered (2¢ + 1)** row is labelled “[kz;+1)”, and the last task of the
following even-numbered row is labelled “ky;;1 — 2”. It follows that subject to the
condition that “k — (2¢+1) — 1 > 4” the leading tasks of the following two rows would
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be numbered k2;+1 — 1 and kgi; 1, from the latter we further infer that the second
leading task of the next odd-numbered row would be labelled [k2;41 + 2].

. Note that the condition “k — (2§ + 1) — 1 > 4” is violated when the row number
m=2i+1=k-3ifkisevenorm=2i+1=k—4if k is odd.

. It should now be clear that the critical path of the algorithm can be established by
tracing Processor P4’s execution sequence and taking into account the delay caused
by the violation of the condition “k — (27 + 1) — 1 > 4”. As examples, we identify the
two critical paths corresponding to the two cases for k = 12 and k = 13 in Fig. 24
and 25.

1
2 3 4 5 6 7 8 9 10 11 12
13
14 15 16 17 18 19 20 21 22
23
24 25 26 27 28 29 30
31
32 33 34 35 36
37
38 39 40
43 [46]
44

Figure 24: The critical path for k = 12.
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2 3 4 5 6 7 8 9 10 11 12 13

14
15 16 17 18 19 20 21 22 23 24
25
26 27 28 29 30 31 32 33
34
35 36 37 38 39 40
41
42 43 44 45
47
48 49

53

Figure 25: The critical path for k = 13.

We complete our analysis by proposing the following theorems.

Theorem 1 Suppose we employ two directly connected local-memory processors to merge
two k X n upper trapezoidal submatrices. Using the balanced submatriz merging algorithm
we proposed in section 4 of this article, the length (in terms of time steps) of the critical

path is
1/k(k+1) k
5(‘2—““'2‘*8)
for k even, and
1 /k(k+1) k-1
'2"< 2 + > +9)

for k odd.

Proof: We first consider the case when k is an even number. Referring to the gen-
eralized precedence graph given in Fig. 22, we recall our observation that the condition
“k— (261 +1) —1 > 4” is violated when the odd row number m+ 2 = 2¢ + 1 = k — 3, which
is the fourth row from the bottom. Using our notation the last task of the (m + 2)** row is
labelled by time step [kp+2], it follows that the third task on this row must be completed
in time step [km+2 — 1]. It is now straightforward to verify that the last three time steps
are kmi2 + 1, kmi2 + 2, followed by [kn+2 + 4]. Noting that these three steps would be
scheduled as k42 — 1, km+2 and [km+2 + 1] in the ideal situation when the communication
time is ignored entirely, henceforth the total delay is exactly three time steps.
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To compute the length of the critical path we count processor P4’s tasks and take
into account the delay of three time steps. By simple algebra we immediately obtain the
following formula.

1+%(ﬁ219+§>+3=%(1°—(’“+1)+§+8). (1)

The proof for the second case is similar except for noting that the condition “k — (2 +
1) =1 > 4” is violated when m + 2 = 2 + 1 = k — 4, which is the fifth row from the
bottom. The effect is that the last four steps are labelled kj,i2, kmiz + 1, kmygo + 2 and
lastly ks 2 +6 instead of kpyg — 1, k2, km+2+1 and ky,i2 +2. The total delay is exactly
four time steps in this case. The total number of time steps is thus given by

l(’°('°J"1)+"’_1+1)+4=1(k(’°+1)+k_1+9>. (2)

2 2 2 2 2 2
O

Theorem 2 Using the balanced submatriz merging algorithm we proposed in section 4 of
this article for merging two k x n upper trapezoidal submatrices, the total data exchanged
between the two directly connected processors are [k/2] rows in the annihilation process and
|k/2] rows in the permutation process.

Proof: The proof can be immediately obtained by noting that (i) only the odd-numbered
rows from the bottom submatrix must be sent back and forth (one exchange) between
the two processors during the annihilation process, and (ii) only the even-numbered rows
from the bottom submatrix must be exchanged with the even-numbered rows from the top
submatrix during the permutation process. O

6 Further Parallelization on Two Clusters of Processors

We described in the last section a new parallel algorithm for merging two upper trapezoidal
submatrices on two directly connected processors. We also show that the work load is evenly
divided between the two processors and that communication is well masked by computation
assuming that the time for transmitting n floating-point numbers is no longer than the time
taken for 4n multiplicative operations. In this section we shall analyze the performance of
the proposed algorithm when two clusters of processors are employed and compare our
speed-up result with that of the algorithm proposed in [1].

Our analysis models the same multiprocessor environment considered in [1], where the
target machine consists of clusters of processors. Each cluster is a shared-memory system
and the clusters are in turn interconnected via a single, system-wide shared memory. Since
the submatrices to be merged are each located in the local shared-memory of a cluster, we
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find it convenient to model the inter-cluster communication using the notion of message-
passing, which can be easily implemented by writing to and reading from the global shared-
memory.

Let us assume that each cluster has p processors. We thus have 2p processors at our
disposal by employing two clusters. Since the algorithm proposed in [1] exploits parallelism
within only one of the two clusters by overlapping the annihilation of the top row of the
bottom submatrix (which requires intercluster communication) with the annihilation of the
rest of the elements of the same submatrix (which requires only local communication),
clearly the maximum possible speed-up is p, resulting in an efficiently of p/2p < 50%.

While the algorithm we proposed in section 4 can be easily adapted for implementation
on two p-processor clusters, its performance needs to be carefully re-examined. We first
establish the shortest critical path (in terms of time steps) of the proposed algorithm in
Lemma 3. For simplicity in presentation we shall only consider the case when k is an even
number throughout the rest of the manuscript. Besides, as far as performance is concerned,
it is adequate to analyze one case of k and similar performance is expected for the case of
k + 1 for any algorithm with medium data granularity.

Lemma 3 We adapt the algorithm proposed in section § to merge two k X n upper trape-
zoidal submatrices when P4 and Pp are each a cluster of processors. We assume that the
k(k+1)/2 tasks are assigned to P4 and Pg ezactly as before. We further assume that within
each cluster the tasks along the same row are performed sequentially by the same processor,
and that there are enough free processors to start processing each row of tasks as early as
permitted by the availability of data. Subject to the assumptions above, the shortest critical
path of the parallel algorithm consists of 3k — 2 time steps.

Proof: In Fig. 26 we present the task precedence graph for the case k = 12 taking into
account the actual communication time but assuming a free processor exists when data is
available. Recall that the leading tasks of the odd-numbered rows are performed by P4 and
observe that data dependency and the time taken for communication dictates that there is
a gap of six time steps between the leading tasks of two consecutive odd-numbered rows.
As examples, the k/2 such tasks are numbered 1, 7, 13, 19, 25 and 31 in Fig. 26. It is a
straightforward exercise to generalize the numbering sequence for any given value of k and
obtain the critical path of

1+6<-2'5—1>+3=3k—2. (3)

0

Substituting k in equation (3) by the value of 12, we obtain a shortest critical path of
34 time steps for our example as verified in Fig. 26.

Since the serial algorithm takes k(k + 1)/2 time steps and the shortest critical path
takes 3k — 2 time steps, the speed-up is k(k + 1)/(6k — 4) > k/6. Note that when k < n,
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13 [16] [17] [18] [19] [20] [21] [22]
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19 [22] [23] [24] [25] [26]

20 21 22 23 24

25 [28] [29] [30]

26 27 28
31 [34)
32

Figure 26: Concurrent scheduling of cluster P4’s and cluster Pp’s tasks assuming that free
processors exist when data is available.

the difference between the time taken for 4n multiplicative operations and the time taken
for 4n — ¢ multiplicative operations, 1 < ¢ < k — 1, is negligible. Therefore, it is sensible
to measure the performance of the algorithm by the number of time steps. To obtain the
efficiency, we need to know how many processors are needed to achieve the shortest critical
path. We obtain the result in Lemma 4 by analyzing the task precedence graph in Fig. 26.

Lemma 4 In order to complete the merge of two k X n upper trapezoidal matrices in 3k —2
time steps when employing two clusters of processors, each cluster must have [k/6] proces-
sors.

Proof: Suppose each cluster has p processors. The p processors of cluster P4 will each
start a consecutive sequence of tasks at time step 1, 7, -+, and 1+ 6(p — 1). Clearly the
processor which processes tasks 1, 2, 3, ---, and k will finish first and is able to start the
next sequence of tasks, of which the leading task may start earliest at time step 1 + 6p.
Since no processor is free until time step k+ 1, we must have 14+6p > k+1, i.e.,, p= [k/6],
to achieve the shortest critical path.

We next show that when this condition is satisfied, the remaining p — 1 processors in
cluster P4 can all begin the following sequences of tasks at the earliest possible scheduled
time by simply observing the following.

1. The p processors in cluster P4 become free one by one after k, k+4, - - -, and k+4(p—1)
time steps respectively.
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2. The next p sequences of tasks are scheduled for time steps 1 + 6p, 1+ 6(p + 1),
1+6(p+2),---,and 1+6(2p —1).

3. The inequality 1+6p >k + 1 implies 1 +6p+6{ > k+4i+1for1 <i<p-—1.

Finally, we need to establish that under the same condition all processors in cluster Pg
will also be available to process their assigned tasks at the earliest possible time step. To
show that this is indeed the case we simply note that the last task of each odd-numbered
row is finished two time steps behind the last task of the following even-numbered row,
whereas the first task scheduled for processors in Pp in the following odd-numbered row
begins three time steps later than the leading task. Since the same condition 1+6p > k+1
implies (1+6p) + 3 > (k+ 2) + 1, we have proved that all tasks assigned to cluster Pg can
all proceed as scheduled to achieve the shortest critical path. O

From Lemma 3 and 4, a speed-up of k/6 is obtained while employing a total of k/3
processors, resulting in an efficiency of 50%. However, in contrast to the upper bound of
50% efficiency for the algorithm in [1], we shall show that the 50% efficiency is a “lower
bound” of our algorithm when p < [k/6] processors are employed in each cluster. Before
we proceed, we first use an example to explain how the proposed algorithm works when
p < [k/6] are available in each cluster. Let us refer to Fig. 27, where we present the
task precedence graph for £ = 16 when each cluster has two processors. We first note
that since p = 2 and [k/6] = 3, the condition p = [k/6] in Lemma 4 is violated and the
shortest critical path cannot be achieved. We therefore must establish the critical path for
an arbitrary choice of p < [k/6] taking into account not only the availability of data but
also the existence of free processors. The first four rows of task in the precedence graph
are scheduled taking into account only the data availability because all four processors (two
in each cluster) are free initially. However, when we reach the fifth row of the graph, the
leading task can no longer be scheduled for time step 13 because no processor in cluster
Py is free to take on the task until time step 17. When we reach the thirteenth row, we
encounter a case when there exists a free processor to start the leading task at time step
37 but the data are not available for the processor to take on this task until time step 41.
For this example, the critical path consists of 50 time steps.

Theorem 5 We consider merging two k X n upper trapezoidal submatrices on two clusters
of processors by adapting the algorithm proposed in section § as described above. If each
cluster has p processors, then the merging process can be completed in

Kk
— 4+ —-+6p—2 4
4p+2+p (4)

time steps, resulting in an asymptotic speed-up of 2p and 100% efficiency.
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Figure 27: Concurrent scheduling of tasks for two clusters with each having 2 processors.

Proof: To establish the critical path length as given in equation (4), recall again that
we have used 1 to label the time steps of the tasks assigned to processors in P4 and []
to label the time steps of those assigned to processors in Pg. We assume that all of the
[4] tasks along the odd-numbered row of the precedence graph are processed sequentially
by one processor in Pp, whereas the leading ¢ task of an odd-numbered row and all of the
+ tasks of the following even-numbered row are processed sequentially by one processor in
Py.

Our algorithm requires that each sequence of tasks are performed by the earliest available
processor. Since the data dependency dictates that the processor assigned tasks along row
2¢ + 1 or 27 + 2 finishes before the processor assigned tasks along row 2¢ + 3 or 27 + 4
respectively, the mapping strategy is, in fact, equivalent to wrap-mapping the rows of tasks
around the p processors within each cluster. To be technically precise, we group the leading
task of each odd-numbered row with the tasks along the following even-numbered row. In
other words, for any given values of k and p, assuming that k is an integral multiple of
2p, our mapping strategy assigns k/2p rows of tasks to each processor, while each block of
consecutive 2p rows of tasks are performed by 2p different processors.

We now trace the execution path of one particular processor in cluster P4. We naturally
choose the processor which begins the merging process by performing task 1. Let us denote
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this processor by P‘gl). Given below are the key observations leading to the proof of this
theorem.

The first task Plgl) performs in each of the assigned k/2p rows is the leading task of
the top odd-numbered row of each block of consecutive 2p rows. Referring to our example
in Fig. 27, Pj(tl) begins each sequence of tasks by taking on tasks 1, 17, 29 and 41, which
are the leading tasks of rows 1, 5, 9 and 13, or 1, 14+ 2p, 1 + 4p and 1 + 6p for p = 2.
Consequently, if we can schedule these tasks taking into account both data dependency and
processor availability, then we can derive the length of the critical path of the algorithm. In
order to do so, observe that if PE) has completed its sequence of tasks in the 7** block in
step ks —2, where m = 2p(5— 1)+ 1 using our notation in the generalized precedence graph,
then the time step Pf(ll) can begin with its tasks in the (5 + 1)** block is the maximum of
“km —1” and “kp, —1—2p(k/2p — j + 1) + 6p”. There is delay only when the choice must
be the latter. We next find out in which block this would occur. That is, we would like to
find out the value of “5 + 1” such that

km—1—-2p(k/2p—5+1)+6p>kp—1. (5)

Simplifying inequality (5), we obtain
k

> — —2. 6

7> 5 (6)
The minimum value of j satisfying the inequality (6) is k/2p — 1. We therefore have proved
that the delay will not occur until the (5 + 1 = k/2p)** block, which is the very last block!
The step number kp, — 1 — 2p(k/2p — j + 1) + 6p of the leading task in the (j + 1 = k/2p)t*
block can be simplified to be ky, + 2p — 1, with k,, computed from equation (7).

X _2
2p
km = 2+ > (k- 2pj)
i
Kk
= —+-—-2p+2. 7
p oWt (7)

It is now straightforward to compute the critical path length by

km+2p—1+6(p—1)+3 = k,+8p—4
Bk -2 (8)
= 5 + 2 +6p—-2.
As an example, we substitute £ = 16 and p = 2 in the formula above and obtain a critical
path of 50 time steps as verified in Fig. 27.
Since the serial algorithm requires k(k + 1)/2 time steps, with the parallel algorithm
completed in k%/4p+ O(k) time steps we obtain an asymptotic speed-up of 2p and efficiency
of 100%. m]
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7 Conclusions

The problem of merging two k x n (k < n) upper trapezoidal submatrices on multiprocessor
machines is considered in this paper. The parallel algorithms we present are designed
for implementation on either a pair of directly connected local-memory processors or two
clusters of tightly-coupled processors. Our analysis of the proposed algorithms shows that in
both environments the work load is evenly distributed, communication can be well masked
by computation, and the optimal speed-up may be achieved. In the orthogonal factorization
phase described in [1] and [2] for solving large scale dense or sparse least squares problems,
multiple pairs of processors or clusters may repetitively apply the proposed algorithm to
merge multiple pairs of submatrices concurrently throughout the computation. While the
proposed algorithm has improved an important step in solving the least squares problem
on clusters of processors, the distribution of data remain suitable for employing the parallel
schemes available in [1] for back substitution and the calculation of certain elements of
the covariance matrix. Furthermore, the unit operation of the proposed algorithm involves
applying a Givens rotation to two rows of data, which is not different from the unit operation
defined in [1] and is thus also suitable for exploiting the vector capacity of each processor
within the cluster.
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Abstract

In this article we describe a parallel algorithm which applies Givens rotations to selectively
annihilate k(k+1)/2 nonzero elements from two kxn (k < n) upper trapezoidal submatrices.
The new algorithm we propose is suitable for implementation on either a pair of directly
connected local-memory processors or two clusters of tightly-coupled processors. We show
in both cases that the proposed algorithms may achieve optimal speed-up by balancing
the work load distribution and masking inter-processor or inter-cluster communication by
computation. In the context of solving large scale least squares problems, this submatrix
merging step is repetitively needed during the entire computation, and, furthermore, there
are usually many pairs of such submatrices to be merged with each submatrix stored in the
memory of a processor or a cluster of processors. The proposed algorithm can be applied
to each pair of submatrices concurrently and thus parallelizes an important step in solving
the least squares problems.
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1 Introduction

In this article we study some effective ways to merge submatrices on multiprocessor architec-
tures, and propose a cure to the unbalanced load distribution problem which the algorithms
currently known to us have experienced. The particular submatrix merging operation we
consider can be understood as eliminating k(k + 1)/2 nonzeros by Givens rotations from a
pair of k X n (k < n) upper trapezoidal submatrices as depicted in Fig. 1, where k = 6,
n =12, ‘

X X X X X X x X x X x X \ X x X x X X X x X x X X
X X X X X X X X X X X X X X X X x X X X X X

X X X X X X X X X X X X X X X x X X X X

X bed X X X X x X x X x x X X X X X X

X X X X X X x X X x X X X X X X

X x X X bed X X — x X X X X X x

X X X x X X X bed x X X X X X X X X X
X x X x X x X X X x X X x x X X x

X X X x x x x x X x x x X X X X

X X X X x X x X X x X X x X X

X X X x X x x X X X X x X X

\ x X x X X X X } X x X x X x

Figure 1: Merging two upper trapezoidal submatrices.

The need to reduce multiple pairs of such submatrices arises in both dense and sparse
matrix computations. An example of the former case can be found in the recursive fine
partitioning (rfp) scheme proposed by Pothen et. al. in [2] for implementing dense QR
factorization on a hypercube. An example of the latter case occurs in the parallel block
schemes proposed by Golub et. al. in [1] for large scale least squares computations.

In our study of this submatrix merging process, we use the following definitions and
observations.

1. We refer to the computations incurred in eliminating one nonzero element as a task.

2. Each task involves applying a Givens rotation to two rows with their leading nonzeros
in the same position. Given in Fig. 2 is the sequential algorithm which implements
the task for the following transformation:

Gie Gip+1 Gierz tct Gin | [ Gie Gigq1 Gigyz ccc i
@je Qi1 Gerz Ctt Qe 0 o1 Gjerz o0 @jn
Note that in Fig. 2, a;4 and a4 (£ < ¢ < n) are overwritten by &;4 and &; 4.

3. If (n — £+ 1) is the number of nonzeros in each of the two rows, then the size of the
task is measured by 4(n — £+ 1) multiplicative operations.

—
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if la_,,-,g| > Ia,',g| then
t — laiel/|aj.l
s 1/v/1+4 12
¢« st

else
t — |aj,el/| il
c—1/vV1+1t2
8§+ ct

forg=£¢,£+1,-.--,ndo
UV aiq
W a5
Giq + CU -+ Sw
Qjq +— —8vV+cw

Figure 2: Implementing the task of annihilating a; ¢ by Givens rotation.

4. A single task can be equally divided between two cooperative processors if each pro-
cessor can access both rows but updates only one of them; i.e., both processors con-
currently execute all of the steps given in Fig. 2 except for executing only

Qi q «— cv+ sw

or
Qjq ¢ —8V + cw

in the for loop.

Throughout this manuscript whenever we divide a single task among two processors,
we assume an even distribution of work load as described above.

5. All tasks involving disjoint pairs of rows can potentially be performed in parallel by
different processors.

6. There are k(k + 1)/2 nonzero elements to be eliminated in merging two k X n (k <
n) upper trapezoidal submatrices. We note that these k(k + 1)/2 elements do not
necessarily come from the same submatrix as identified by ® in Fig. 3. Instead, a
Givens rotation can be applied to selectively zero out the k(k + 1)/2 “®” elements in
Fig. 4. The same reduced matrix can be obtained by permuting the appropriate rows
(as well as the corresponding right-hand-side elements) as shown in Fig. 5.



Figure 3: ®: the elements to be annihilated.
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®: the elements to be annihilated.

.
.

Figure 4

Figure 5: Same result may be obtained by permuting the rows after the annihilation process.



2 The Multiprocessor Environments

In [1} the target machine is the University of Illinois Cedar system consisting of clusters
of processors, where each cluster has a shared-memory system and the clusters are in turn
interconnected via a single, system-wide shared memory. The data mapping strategy em-
ployed in [1] dictates that each cluster of processors have one k X n upper trapezoidal
submatrix in their memory. To merge two such submatrices two clusters will cooperate
with the aim to exploiting parallelism and minimizing inter-cluster communication. In (2]
a parallel algorithm was proposed for merging two upper trapezoidal submatrices stored in
the local memory of two directly connected processors. This algorithm was then embedded
in the recursive fine partitioning scheme proposed in the same paper for implementing dense
QR factorization on a hypercube multiprocessor.

In this study we shall propose a new submatrix merging algorithm which can be applied
beneficially in either one of the multiprocessor environments considered above. However, in
order to be clear and precise in our presentation, we shall postpone all discussion relating
only to the Cedar system until the last section.

3 Submatrix Merging Algorithms

When merging two k x n upper trapezoidal submatrices on a single processor, the k(k+1)/2
nonzeros from one of the submatrices may be eliminated in many different orderings. For
example, they may be eliminated column by column as shown in Fig. 6, or row by row as
shown in Fig. 7 or diagonal by diagonal as shown in Fig. 8.

X X X X X X X X X X X x\
X X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X
X X X X X X X X
X X X X X X X
1 3 6 10 15 21 X X X X X X
2 5 9 14 20 X X X X X X
4 8 13 19 x X X X X X
7 12 18 X X X X X X
11 17 X X X X X X
\ 16 X X X X X X

Figure 6: Column-by-column elimination sequence.

In order to devise an elimination sequence which is most suitable for parallel implemen-
tation, it is helpful to study the data access pattern of these three elimination sequences
under the constraint that a task may not involve data from both submatrices unless it cannot
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proceed without doing so. For each elimination sequence we identify the tasks which must
access data from both submatrices and display such tasks and the required data in Fig. 9,
10 and 11.

X
X
X

X
X X

X X X X

X X X X X
BX XX XXX
X X X XXXX
X X X X XXX
X XXX XXX
X X X X X X X
X X XXX XX
XXX XXXX

Figure 9: Column-by-column elimination sequence: data from both submatrices are needed
for tasks 1, 3, 6, 10, 15 and 21.

xxxxxxxxxxxx‘\
X X X X X X X X X X X
X X X X X X X X X X

X X X X X X X X X
X X X X X X X X
X X X X X X X

1 X X X X X X X X X X X
7 X X X X X X X X X X
12 X X X X X X X X X

16 X X X X X X X X
19 X X X X X X X
\ 21><x><xx><j

Figure 10: Row-by-row elimination sequence: data from both submatrices are needed for
tasks 1, 7, 12, 16, 19 and 21.

We observe from Fig. 9, 10 and 11 that each row of data from the top submatrix is used
in exactly one task. Since the two submatrices are each located in a different processor
or a different cluster of processors in the multiprocessor environment considered in [2] and
[1], the tasks identified above are also those which require inter-processor or inter-cluster
communication. Since each row of data in the top submatrix must participate in at least
one task during the entire merging operation and all such tasks annihilate nonzeros in
the bottom submatrix which is stored in a different processors (or a different cluster), the
goal of minimizing inter-processor (or inter-cluster) communication can be achieved via
any one elimination sequence described here. The particular sequence chosen for parallel
implementation in [2] and [1] is the diagonal-by-diagonal elimination sequence.

However, using the approach above the tasks requiring inter-processor communication



X X X X X
X X X X

X X X

X x

X

®x X XX XX
X X X X X XX
X X X XX XX
XX X X XXX
X XXX XXX
X X X XX XX
X X X X XXX

Figure 11: Diagonal-by-diagonal elimination sequence: data from both submatrices are
needed for tasks 1, 7, 12, 16, 19 and 21.

are the only tasks which can be performed by the two processors (or clusters) concurrently.
Minimizing the number of such tasks can thus cause unbalanced work load distribution.
This problem is more serious when two local-memory processors instead of two clusters are
in question. In fact, it can be easily verified that when maintaining minimum inter-processor
communication as suggested earlier, the parallel algorithm running on two processors has
the same arithmetic complexity as the sequential algorithm.

4 A Balanced Submatrix Merging Algorithm

In order to balance the work load and minimize inter-processor communication, we propose
to implement the alternative transformation in Fig. 12, which can be viewed as consisting
of the annihilation process in Fig. 4 and the permutation process in Fig. 5.

{xxxxxxxxxxxx\ xxxxxxxxxxxx\
® ® ® ® ® X X xX X %x X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X X

® ® ® X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
® x X x X x x [ _ X X X X X X X

® ® ® ® ® ® X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X
® ® ® ® X X X X X X X X X X X X

X X X X X X X X X X X X X X X
® ® X X X X X X X X X X X X
\ X X X X X X X \ xxxxxx}

Figure 12: An alternative elimination sequence (®: the elements to be annihilated).

Assuming as before that each submatrix resides in a different processor, we employ the
following two strategies to balance the work load and minimize inter-processor communica-

tion.



1. To balance the load, the tasks corresponding to the k(k + 1)/2 nonzeros to be anni-
hilated are evenly divided among the two processors.

2. To help reduce inter-processor communication, a “®” may be zeroed by a processor
other than the one it is originally stored in.

The parallel algorithm we propose can be best explained when applying to the trans-
formation in Fig. 12. Let us denote the processor storing the top submatrix as P4 and
the processor storing the bottom submatrix as Pg. We first specify the particular order-
ing these tasks are to be performed in the left diagram in Fig. 13, where the tasks to be
performed by processors P4 and Pp are each labelled by its scheduled time step. We have
distinguished P4’s tasks from Pg’s by labelling P4’s i** task by ¢ and Pg’s by [¢]. The two
tasks scheduled for the same step can potentially be performed concurrently by two proces-
sors provided the communication can be masked by computation. This point will be clear
after we explain the inter-processor communication scheme. We next consult the diagram
to the right in Fig. 13, which identifies the tasks requiring data from both submatrices.

X X X X x X X X X %X X x\ X X X X X X X X X X X
2 3 4 5 6 X X X X X X 2 X X X X X X X X X
X X X X X X X X X X X X X X X X X X X
8 9 10 X X X X X X 8 x X X X X X X
X X X X X X X X X X X X X X X
12 X X X X X X 12 X X X X X
1 [3] [4 [8] [6) [7] x x x x x x 1 X x X X X X X X X X
X X X % X X X X X X X
7 [9] [10] [11] x x x x x X 7T x x X X X X X X
P X X X X X X X X
11 [18] x x x x x X 11 x X X X X X
\ X X X X X X X \

Figure 13: Concurrent scheduling of P4’s and Pg’s tasks.

We now explain the inter-processor communication scheme using the example in Fig.
13. Our algorithm requires processor Pp to send the top row of the bottom submatrix to
P4 so that P4 can complete tasks 1 and 2 as shown in Fig. 14, where the elements are
labelled by “A” or “B” depending on in which processor they are originally stored.

XX XXX XX

X

g




A A A A A A A A A A A A A A A A A A A A A A A4 A
A A A A A A A A A A A)— A A A A A A A A A A A
B B B B B B B B B B B B 0 B B B B B B B B B B B

A A A A A A A A A A 4aai

— 0 A A A A A A A A A A

o B B B B B B B B B B B

Figure 14: Processor P4 performs tasks 1 and 2.

The row from Pp is thus appropriately updated by P4 and is sent back to Pg immedi-
ately after task 2 is completed. P4 can then proceed to complete tasks 3, 4, 5 and 6 without
inter-processor communication as shown in Fig. 15. Pg will do the same with respect to its

A A A A A A A AAAAA A A A A A A A A ALK ii
0o A A A A A A A A iai 0 060 00 A A AdA4ia
A A A A A A A A A A _— A A 4 A A A A A A A
A A A A A A A A A A A A A A A A A A
A A A A A A A A A A A A A A A4
A A A A A A A A 444 iada

Figure 15: Processor P4 performs tasks 3, 4, 5 and 6.

tasks [3], [4], - - -, [7] after receiving back the modified top row as shown in Fig. 16.

o B BB BB B B BB B B © 00 0 o0 0o B B B B B B
B B B B B B B B B B B B B B B B B B B B B B
BB BB B BB BDBB|_, 555 5 5B B BB B
B BB BBBB B B B B B BB BB B B
B B B B B B B B B B B B B B B B
B B B B B B B B B B B B B B

Figure 16: Processor Pp performs tasks [3], [4], - - -, [7]-

We next explain how to mask communication by computation. The strategy is for each
processor to send out the row needed by the other processor as early as possible. For
example, processor Pp should send its row 3 immediately after it completes task [4] so that
it would have arrived in P4 when P4 completes task 6, and P4 should send the updated row
back to Pp as soon as it completes tasks 7 and 8, and so on. In the next section we shall
introduce a task precedence graph which is instrumental in our analysis of the performance



of the proposed algorithm and allows us to conveniently formalize the notion of masking
communication by computation.

5 Performance Analysis of the Proposed Algorithm

In order to analyze the performance of this algorithm, we make use of a task precedence
graph, where each vertex identified by a step number represents the task of annihilating the
nonzero in that position of one submatrix. As an example, we display in Fig. 17 the task
precedence graph set up according to the scheduling of P4’s and Pp’s tasks in Fig. 13. The
precedence relationship identified by — is established considering both data and processor
availability subject to the condition that communication can be completely masked by
computation. We show next how the latter condition is indeed satisfied by the particular
strategy we employ for masking communication by computation.

OO0
—O—O—O—=®

()—()—®
(1)

Figure 17: Task precedence graph of the example in Fig. 13.

In Fig. 18 we identify the data communication path by double arrows. The following
observations are helpful in studying this graph.

10



Figure 18: Task communication path graph of the example in Fig. 13.

11



1. We introduce a dummy task node ([ —]) to account for the initial data communication
from processor Pg to Pj4.

2. The two tasks connected by double arrows are each executed by a different processor.

3. Data communication follows the arrow direction, namely that the processor executing
the task at the tail sends the data to the processor executing the task at the head.

4. The placement of double arrows traces the actual data flow of our communication
algorithm. For example, processor P4 sends the modified top row of the bottom
submatrix back to Pg immediately after task 2 is completed and Pg needs this row to
perform task [3]. The data transfer from P, to Pp is faithfully reflected by the double
arrow pointing from vertex (2) to vertex ([3]) in the communication path graph in
Fig. 18.

In order to show that communication can be masked by computation in our algorithm,
we need to adapt our analytical model to account for the time actually taken for communi-
cation. To motivate our proof, let us allocate one time step for communication and obtain
the modified precedence graph as well as communication path graph for the example above
in Fig. 19 and 20. We now contrast the critical paths embedded in the two precedence
graphs in Fig. 21, which are established by assuming that the tasks scheduled for step ¢ and
[1] finish at the same time. Consequently, step number 7 occurs only once in each critical
path identified in Fig. 21 and the arrows connecting vertex 1 to vertex 7, ¢ < 7, have been
omitted. Note that the critical path in the left is identified from Fig. 17 assuming that
communication takes no time at all, whereas the critical path in the right is identified from
Fig. 19 assuming that communication takes one time step. To be technically precise, the
latter assumption implies that sending one row of size (n — ¢ + 1) to another directly con-
nected processor takes no more time than 4(n — ¢ + 1) multiplicative operations. Another
technical point is that the number of operations involved in step [¢] are not exactly equal
to that of step 1. The difference is 4(n—¢+1) (1 < ¢ < k) for step [¢] versus either 4(n —gq)
for step 1 in Fig. 17 and 18 or 4(n — ¢ — 1) for step ¢ in Fig. 19 and 20. We see that in either
case the difference amounts to less than eight multiplicative operations, which is negligible
when n > k. We shall thus assume that time step [¢] is of the same length as time step ¢
throughout our analysis.

We now make the following important observation from Fig. 21, namely that the delay
caused by communication does not affect the critical path until the very last three steps
and the total delay amounts to three time steps exactly. An immediate question, of course,
is whether this result holds for any given pair of k X n upper trapezoidal submatrices. It
turns out that when k is even the delay amounts to three time steps and when k is odd
the delay becomes four time steps. Our proof makes use of a generalized precedence graph
given in Fig. 22 for k being an even number and the one given in Fig. 23 for k being an
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Figure 19: Task precedence graph (modified) of the example in Fig. 13.
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Figure 20: Task communication path graph (modified) of the example in Fig. 13.

1 1
2 34 5 6 2 34 5 6
7 7
8 9 10 8 9 10
11 [13) 13 [16]
12 14

Figure 21: The critical paths identified from the precedence graphs in Fig. 17 and 19.
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odd number. We offer some explanation of the setup of the generalized precedence graph
before we proceed.

Recall that our algorithm would zero out odd-numbered rows from the bottom triangular
matrix and even-numbered rows from the top one. It is convenient to arrange the vertices
of our task precedence graph as an upper triangle to reflect the locations of the elements
to be eliminated. Since exactly one nonzero is annihilated by performing one task, the
mapping from the task nodes to the nonzeros is one-to-one and onto. We label each task
node by an integer ¢ or [7] depending on whether the task is performed by processor P4
or Pg. The vertices in Fig. 22 and 23 should be viewed as connected by arrows in the
same manner as those of the task precedence graph in Fig. 19, although the arrows are
not explicitly shown here due to lack of space. From our description of the algorithm,
P4 would zero out the even-numbered rows from the top submatrix as well as the leading
nonzeros of the odd-numbered rows from the bottom submatrix, whereas Pg would zero
out the odd-numbered rows from the bottom submatrix except for their leading elements.
We summarize the implication of such basic understanding below.

1[4 [8] (6] (7] (8] (k1 —2]  [k1—1] k4]
2 3 4 5 6 ky—4 ky—3 k-2
ki—1 [k1+2] [k1+3] [k +4] - .- (ks ~ 2] [ks — 1] [ks]
Ky Br+1 ki +2 e o . ks —4 ks —38 ks —2
ks—1 [ks+2 - .- [ks — 2] [ks — 1] [ks]
ks ks — 4 ks — 3 ks — 2
km =1 [km +2] [km+2—1]  [km+2]
km Emt2 =3  kmiz—2

Emtz +1  [kmiz +4]

km+2 +2

Figure 22: A generalized precedence graph (k is an even number).
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4 [5] (6] (7] (8] [k — 2] [k1 — 1] (k4]
2 3 4 5 6 ki—4 k1—3 k1 —2
ki ~1 [ki+2] [k1+3] [ky+4] [ks — 2] [ks — 1] [ks]
Ky ki4+1 ki +2 ks — 4 ks —3 ks —2
ks —1  [ks+2] [ks — 2] [ks — 1] (k5]
ks ks — 4 ks — 3 ks —2
k=1 [km +2] [kmt2—2] [kmt2—1] [km+3]
km km +1 kmtz =8  kpyz—2
Ema4s [km+a + 3] [km+s + 4]
Emt2a+1  kpta+2
km+2+ 6

Figure 23: A generalized precedence graph (k is an odd number).

1. The tasks along each even-numbered row are scheduled consecutively, as are the tasks
(except for the leading one) along each odd-numbered row. This is evident from our
examples in Fig. 17 and 19 as well as the two generalized precedence graphs in Fig.
22 and 23.

2. We note also that since the leading task of each odd-numbered row is performed by
the same processor performing the tasks along the following even-numbered row, the
sequencing of these tasks is also consecutive.

3. From the task precedence graph given in Fig. 17, it is clear that the data dependency
prevents Pp from processing the second leading task of the odd-numbered row earlier
than the completion of the leading task in the following even-numbered row. We
show in Fig. 19 that the actual time taken for data transmission causes Py to be two
time steps behind P4 on completing the last task of each row. This fact is faithfully
reflected on our generalized precedence graphs in Fig. 22 and 23, where the last task
of each odd-numbered (2¢ + 1)** row is labelled “[kz;+1)”, and the last task of the
following even-numbered row is labelled “ky;;1 — 2”. It follows that subject to the
condition that “k — (2¢+1) — 1 > 4” the leading tasks of the following two rows would
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be numbered k2;+1 — 1 and kgi; 1, from the latter we further infer that the second
leading task of the next odd-numbered row would be labelled [k2;41 + 2].

. Note that the condition “k — (2§ + 1) — 1 > 4” is violated when the row number
m=2i+1=k-3ifkisevenorm=2i+1=k—4if k is odd.

. It should now be clear that the critical path of the algorithm can be established by
tracing Processor P4’s execution sequence and taking into account the delay caused
by the violation of the condition “k — (27 + 1) — 1 > 4”. As examples, we identify the
two critical paths corresponding to the two cases for k = 12 and k = 13 in Fig. 24
and 25.

1
2 3 4 5 6 7 8 9 10 11 12
13
14 15 16 17 18 19 20 21 22
23
24 25 26 27 28 29 30
31
32 33 34 35 36
37
38 39 40
43 [46]
44

Figure 24: The critical path for k = 12.
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2 3 4 5 6 7 8 9 10 11 12 13

14
15 16 17 18 19 20 21 22 23 24
25
26 27 28 29 30 31 32 33
34
35 36 37 38 39 40
41
42 43 44 45
47
48 49

53

Figure 25: The critical path for k = 13.

We complete our analysis by proposing the following theorems.

Theorem 1 Suppose we employ two directly connected local-memory processors to merge
two k X n upper trapezoidal submatrices. Using the balanced submatriz merging algorithm
we proposed in section 4 of this article, the length (in terms of time steps) of the critical

path is
1/k(k+1) k
5(‘2—““'2‘*8)
for k even, and
1 /k(k+1) k-1
'2"< 2 + > +9)

for k odd.

Proof: We first consider the case when k is an even number. Referring to the gen-
eralized precedence graph given in Fig. 22, we recall our observation that the condition
“k— (261 +1) —1 > 4” is violated when the odd row number m+ 2 = 2¢ + 1 = k — 3, which
is the fourth row from the bottom. Using our notation the last task of the (m + 2)** row is
labelled by time step [kp+2], it follows that the third task on this row must be completed
in time step [km+2 — 1]. It is now straightforward to verify that the last three time steps
are kmi2 + 1, kmi2 + 2, followed by [kn+2 + 4]. Noting that these three steps would be
scheduled as k42 — 1, km+2 and [km+2 + 1] in the ideal situation when the communication
time is ignored entirely, henceforth the total delay is exactly three time steps.
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To compute the length of the critical path we count processor P4’s tasks and take
into account the delay of three time steps. By simple algebra we immediately obtain the
following formula.

1+%(ﬁ219+§>+3=%(1°—(’“+1)+§+8). (1)

The proof for the second case is similar except for noting that the condition “k — (2 +
1) =1 > 4” is violated when m + 2 = 2 + 1 = k — 4, which is the fifth row from the
bottom. The effect is that the last four steps are labelled kj,i2, kmiz + 1, kmygo + 2 and
lastly ks 2 +6 instead of kpyg — 1, k2, km+2+1 and ky,i2 +2. The total delay is exactly
four time steps in this case. The total number of time steps is thus given by

l(’°('°J"1)+"’_1+1)+4=1(k(’°+1)+k_1+9>. (2)

2 2 2 2 2 2
O

Theorem 2 Using the balanced submatriz merging algorithm we proposed in section 4 of
this article for merging two k x n upper trapezoidal submatrices, the total data exchanged
between the two directly connected processors are [k/2] rows in the annihilation process and
|k/2] rows in the permutation process.

Proof: The proof can be immediately obtained by noting that (i) only the odd-numbered
rows from the bottom submatrix must be sent back and forth (one exchange) between
the two processors during the annihilation process, and (ii) only the even-numbered rows
from the bottom submatrix must be exchanged with the even-numbered rows from the top
submatrix during the permutation process. O

6 Further Parallelization on Two Clusters of Processors

We described in the last section a new parallel algorithm for merging two upper trapezoidal
submatrices on two directly connected processors. We also show that the work load is evenly
divided between the two processors and that communication is well masked by computation
assuming that the time for transmitting n floating-point numbers is no longer than the time
taken for 4n multiplicative operations. In this section we shall analyze the performance of
the proposed algorithm when two clusters of processors are employed and compare our
speed-up result with that of the algorithm proposed in [1].

Our analysis models the same multiprocessor environment considered in [1], where the
target machine consists of clusters of processors. Each cluster is a shared-memory system
and the clusters are in turn interconnected via a single, system-wide shared memory. Since
the submatrices to be merged are each located in the local shared-memory of a cluster, we
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find it convenient to model the inter-cluster communication using the notion of message-
passing, which can be easily implemented by writing to and reading from the global shared-
memory.

Let us assume that each cluster has p processors. We thus have 2p processors at our
disposal by employing two clusters. Since the algorithm proposed in [1] exploits parallelism
within only one of the two clusters by overlapping the annihilation of the top row of the
bottom submatrix (which requires intercluster communication) with the annihilation of the
rest of the elements of the same submatrix (which requires only local communication),
clearly the maximum possible speed-up is p, resulting in an efficiently of p/2p < 50%.

While the algorithm we proposed in section 4 can be easily adapted for implementation
on two p-processor clusters, its performance needs to be carefully re-examined. We first
establish the shortest critical path (in terms of time steps) of the proposed algorithm in
Lemma 3. For simplicity in presentation we shall only consider the case when k is an even
number throughout the rest of the manuscript. Besides, as far as performance is concerned,
it is adequate to analyze one case of k and similar performance is expected for the case of
k + 1 for any algorithm with medium data granularity.

Lemma 3 We adapt the algorithm proposed in section § to merge two k X n upper trape-
zoidal submatrices when P4 and Pp are each a cluster of processors. We assume that the
k(k+1)/2 tasks are assigned to P4 and Pg ezactly as before. We further assume that within
each cluster the tasks along the same row are performed sequentially by the same processor,
and that there are enough free processors to start processing each row of tasks as early as
permitted by the availability of data. Subject to the assumptions above, the shortest critical
path of the parallel algorithm consists of 3k — 2 time steps.

Proof: In Fig. 26 we present the task precedence graph for the case k = 12 taking into
account the actual communication time but assuming a free processor exists when data is
available. Recall that the leading tasks of the odd-numbered rows are performed by P4 and
observe that data dependency and the time taken for communication dictates that there is
a gap of six time steps between the leading tasks of two consecutive odd-numbered rows.
As examples, the k/2 such tasks are numbered 1, 7, 13, 19, 25 and 31 in Fig. 26. It is a
straightforward exercise to generalize the numbering sequence for any given value of k and
obtain the critical path of

1+6<-2'5—1>+3=3k—2. (3)

0

Substituting k in equation (3) by the value of 12, we obtain a shortest critical path of
34 time steps for our example as verified in Fig. 26.

Since the serial algorithm takes k(k + 1)/2 time steps and the shortest critical path
takes 3k — 2 time steps, the speed-up is k(k + 1)/(6k — 4) > k/6. Note that when k < n,
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1 [4] [5] [6] (7] [8 [o] [10] [11] ([12] [13] [14]
2 3 4 5 6 7 8 9 10 11 12

7 [10] [11] [12] [13] [14] [15] [16] [17] [18]

8 9 10 11 12 13 14 15 16

13 [16] [17] [18] [19] [20] [21] [22]

14 15 16 17 18 19 20

19 [22] [23] [24] [25] [26]

20 21 22 23 24

25 [28] [29] [30]

26 27 28
31 [34)
32

Figure 26: Concurrent scheduling of cluster P4’s and cluster Pp’s tasks assuming that free
processors exist when data is available.

the difference between the time taken for 4n multiplicative operations and the time taken
for 4n — ¢ multiplicative operations, 1 < ¢ < k — 1, is negligible. Therefore, it is sensible
to measure the performance of the algorithm by the number of time steps. To obtain the
efficiency, we need to know how many processors are needed to achieve the shortest critical
path. We obtain the result in Lemma 4 by analyzing the task precedence graph in Fig. 26.

Lemma 4 In order to complete the merge of two k X n upper trapezoidal matrices in 3k —2
time steps when employing two clusters of processors, each cluster must have [k/6] proces-
sors.

Proof: Suppose each cluster has p processors. The p processors of cluster P4 will each
start a consecutive sequence of tasks at time step 1, 7, -+, and 1+ 6(p — 1). Clearly the
processor which processes tasks 1, 2, 3, ---, and k will finish first and is able to start the
next sequence of tasks, of which the leading task may start earliest at time step 1 + 6p.
Since no processor is free until time step k+ 1, we must have 14+6p > k+1, i.e.,, p= [k/6],
to achieve the shortest critical path.

We next show that when this condition is satisfied, the remaining p — 1 processors in
cluster P4 can all begin the following sequences of tasks at the earliest possible scheduled
time by simply observing the following.

1. The p processors in cluster P4 become free one by one after k, k+4, - - -, and k+4(p—1)
time steps respectively.
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2. The next p sequences of tasks are scheduled for time steps 1 + 6p, 1+ 6(p + 1),
1+6(p+2),---,and 1+6(2p —1).

3. The inequality 1+6p >k + 1 implies 1 +6p+6{ > k+4i+1for1 <i<p-—1.

Finally, we need to establish that under the same condition all processors in cluster Pg
will also be available to process their assigned tasks at the earliest possible time step. To
show that this is indeed the case we simply note that the last task of each odd-numbered
row is finished two time steps behind the last task of the following even-numbered row,
whereas the first task scheduled for processors in Pp in the following odd-numbered row
begins three time steps later than the leading task. Since the same condition 1+6p > k+1
implies (1+6p) + 3 > (k+ 2) + 1, we have proved that all tasks assigned to cluster Pg can
all proceed as scheduled to achieve the shortest critical path. O

From Lemma 3 and 4, a speed-up of k/6 is obtained while employing a total of k/3
processors, resulting in an efficiency of 50%. However, in contrast to the upper bound of
50% efficiency for the algorithm in [1], we shall show that the 50% efficiency is a “lower
bound” of our algorithm when p < [k/6] processors are employed in each cluster. Before
we proceed, we first use an example to explain how the proposed algorithm works when
p < [k/6] are available in each cluster. Let us refer to Fig. 27, where we present the
task precedence graph for £ = 16 when each cluster has two processors. We first note
that since p = 2 and [k/6] = 3, the condition p = [k/6] in Lemma 4 is violated and the
shortest critical path cannot be achieved. We therefore must establish the critical path for
an arbitrary choice of p < [k/6] taking into account not only the availability of data but
also the existence of free processors. The first four rows of task in the precedence graph
are scheduled taking into account only the data availability because all four processors (two
in each cluster) are free initially. However, when we reach the fifth row of the graph, the
leading task can no longer be scheduled for time step 13 because no processor in cluster
Py is free to take on the task until time step 17. When we reach the thirteenth row, we
encounter a case when there exists a free processor to start the leading task at time step
37 but the data are not available for the processor to take on this task until time step 41.
For this example, the critical path consists of 50 time steps.

Theorem 5 We consider merging two k X n upper trapezoidal submatrices on two clusters
of processors by adapting the algorithm proposed in section § as described above. If each
cluster has p processors, then the merging process can be completed in

Kk
— 4+ —-+6p—2 4
4p+2+p (4)

time steps, resulting in an asymptotic speed-up of 2p and 100% efficiency.
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1 [4] [5] [6] [7] [8 [9] [10] [11] [12] [13] [14] [15] [16] [17] [18]
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
7 [10] [11] [12] [13] [14] [15] (16] [17) [18] [19] [20] [21] [22]

8 9 10 11 12 13 14 15 16 17 18 19 20

17 [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30]

18 19 20 21 22 23 24 25 26 27 28

23 [26] [27] [28] [29] [30] [31] [32] [33] [34]

24 25 26 27 28 29 30 31 32

29 [32] [33] [34] [35] [36] [37] [38]

30 31 32 33 34 35 36

35 [38] [39] [40] [41] [42]

36 37 38 39 40

41 [44] [45] [46)

42 43 44
47 [50]
48

Figure 27: Concurrent scheduling of tasks for two clusters with each having 2 processors.

Proof: To establish the critical path length as given in equation (4), recall again that
we have used 1 to label the time steps of the tasks assigned to processors in P4 and []
to label the time steps of those assigned to processors in Pg. We assume that all of the
[4] tasks along the odd-numbered row of the precedence graph are processed sequentially
by one processor in Pp, whereas the leading ¢ task of an odd-numbered row and all of the
+ tasks of the following even-numbered row are processed sequentially by one processor in
Py.

Our algorithm requires that each sequence of tasks are performed by the earliest available
processor. Since the data dependency dictates that the processor assigned tasks along row
2¢ + 1 or 27 + 2 finishes before the processor assigned tasks along row 2¢ + 3 or 27 + 4
respectively, the mapping strategy is, in fact, equivalent to wrap-mapping the rows of tasks
around the p processors within each cluster. To be technically precise, we group the leading
task of each odd-numbered row with the tasks along the following even-numbered row. In
other words, for any given values of k and p, assuming that k is an integral multiple of
2p, our mapping strategy assigns k/2p rows of tasks to each processor, while each block of
consecutive 2p rows of tasks are performed by 2p different processors.

We now trace the execution path of one particular processor in cluster P4. We naturally
choose the processor which begins the merging process by performing task 1. Let us denote

23



this processor by P‘gl). Given below are the key observations leading to the proof of this
theorem.

The first task Plgl) performs in each of the assigned k/2p rows is the leading task of
the top odd-numbered row of each block of consecutive 2p rows. Referring to our example
in Fig. 27, Pj(tl) begins each sequence of tasks by taking on tasks 1, 17, 29 and 41, which
are the leading tasks of rows 1, 5, 9 and 13, or 1, 14+ 2p, 1 + 4p and 1 + 6p for p = 2.
Consequently, if we can schedule these tasks taking into account both data dependency and
processor availability, then we can derive the length of the critical path of the algorithm. In
order to do so, observe that if PE) has completed its sequence of tasks in the 7** block in
step ks —2, where m = 2p(5— 1)+ 1 using our notation in the generalized precedence graph,
then the time step Pf(ll) can begin with its tasks in the (5 + 1)** block is the maximum of
“km —1” and “kp, —1—2p(k/2p — j + 1) + 6p”. There is delay only when the choice must
be the latter. We next find out in which block this would occur. That is, we would like to
find out the value of “5 + 1” such that

km—1—-2p(k/2p—5+1)+6p>kp—1. (5)

Simplifying inequality (5), we obtain
k

> — —2. 6

7> 5 (6)
The minimum value of j satisfying the inequality (6) is k/2p — 1. We therefore have proved
that the delay will not occur until the (5 + 1 = k/2p)** block, which is the very last block!
The step number kp, — 1 — 2p(k/2p — j + 1) + 6p of the leading task in the (j + 1 = k/2p)t*
block can be simplified to be ky, + 2p — 1, with k,, computed from equation (7).

X _2
2p
km = 2+ > (k- 2pj)
i
Kk
= —+-—-2p+2. 7
p oWt (7)

It is now straightforward to compute the critical path length by

km+2p—1+6(p—1)+3 = k,+8p—4
Bk -2 (8)
= 5 + 2 +6p—-2.
As an example, we substitute £ = 16 and p = 2 in the formula above and obtain a critical
path of 50 time steps as verified in Fig. 27.
Since the serial algorithm requires k(k + 1)/2 time steps, with the parallel algorithm
completed in k%/4p+ O(k) time steps we obtain an asymptotic speed-up of 2p and efficiency
of 100%. m]
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7 Conclusions

The problem of merging two k x n (k < n) upper trapezoidal submatrices on multiprocessor
machines is considered in this paper. The parallel algorithms we present are designed
for implementation on either a pair of directly connected local-memory processors or two
clusters of tightly-coupled processors. Our analysis of the proposed algorithms shows that in
both environments the work load is evenly distributed, communication can be well masked
by computation, and the optimal speed-up may be achieved. In the orthogonal factorization
phase described in [1] and [2] for solving large scale dense or sparse least squares problems,
multiple pairs of processors or clusters may repetitively apply the proposed algorithm to
merge multiple pairs of submatrices concurrently throughout the computation. While the
proposed algorithm has improved an important step in solving the least squares problem
on clusters of processors, the distribution of data remain suitable for employing the parallel
schemes available in [1] for back substitution and the calculation of certain elements of
the covariance matrix. Furthermore, the unit operation of the proposed algorithm involves
applying a Givens rotation to two rows of data, which is not different from the unit operation
defined in [1] and is thus also suitable for exploiting the vector capacity of each processor
within the cluster.
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