PrintingRequisitior/GraphicServices

77473

1. .Please complete unshaded areas on
form as applicable.

2. Distribute copies as follows: White and
Yellow to Graphic Services. Retain Pink

Copies for your records.

3. On completion of order the Yellow copy
will -be returned with the printed

material.

4. Please direct enquiries, quoting reguisi-
tion number and account number, to
extension 3451.

TITLE OR DESCRIPTION

OS — 8 &— 44

DATE REQUISITIONED

//IJA 2 8

DATE REQUIRED

AsALF

ACCOUNT NO.

Vwééﬁ/%WVI

REQUI@{TIONER PRINT PHONE J&;I&NG AUTHORITY) /)
/ f (: 1‘" - ~
7 ALACK ywy 59 rgeles [Y. Jola
MAILING NAME CEPT. BLDG. & RO M No. 4 F V’B/DEL.IVER
INFO — (:t 5. DC él "] eick-up
Copyright: 1| hereby agree to assume all responsibility and liability for any infringement of copyrights and/or patent rights which may arise from

the processing of, and reproduction of, any of the materials herein requested. | further agree to indemnify and hold blameless the
University of Watertoo from any liability which may arise from said processing or reproducmg | also acknowledge that materials
processed as a result of this requisition are for educational use onliy.

NEGATIVES

ER.

oP LABOUR
NO.

NUMBER { e ZEMCBOE;ES DZD QUANTITY TIME CODE
e G , e e (e
%ﬁé;i;Rdn e Clomeros Wi 0Dl | | L1 le0]
Lrrn Does Do O FUM o e e b g fleopn
PAPER COLOUR INK -
VI r T I) e S p— TS TR A Gl e
PRINTING - NUMBERING
[_i]SIDE74$JGS. MSS, _PGS. FROM To lF[LIMI | S IR | j’ | II | Jl L1 1 l}C]O|1J
BINDING/FINISHING 3M Lo twl PMT 4
i{f:;/mc LySTF\P LING [7____PUCNCT DINGLJ PLASTIC RING IP[M]T‘ DL I J! U ‘ CO1I
:::Cf:fnstmc“ons - P Tl b e b] eyt
’ 2L IR I A R R N IR RN (TLOTR
Kf})(SL,,(V — ,/,(Py JLM Yo PLATES
Ly j’/ Gnaodd PPt b L by eyt
o haeh il o |
PLT s et e oyt
PLTL el by Ttegogtd
STOCK
NIRRT | A AR A NS b TN | TR RN B LT TN R
COPY CENTRE OPER. MACH,
' }NO"HBLlDGl'lLNOJ'!JIlJ‘l!lIIH!IIIJ[I“II[ILOIOIU
DESIGN & PASTE-UP opER. LAsogSDDE | 11 | [| ll [IAJ ' } Jl o J LOIOI1J
R T o R | | A A ER R R I A IR S AN A | NI R JLIRE
L1 1 | |Dpog1]| BINOERY
L HDOUIRINIG'!IlIIHIIIIJ|IHI(IHBIOI1I
| [10
"TYPESETTING QUANTITY ‘R[N!G‘ R LJL' [Jl | H L1 KI__B__I_OJ_‘]_J
|PAP|0,0,0,0,0 |] | 1JL¢JL1 LTt RINGL b e T L L] | B0,1]
|P/AP[010,00,0] || | L moiminsle0i000 Ly Tty o] [Bi0yt]

OUTSIDE SERVICES

IPAIP1010,0,00; [| 1 1y L b Hmogt]
PROOF -
1P R F ol e e e
[PIRFL 1N Pl b
[P RF] Al IR NN

COSsT

TAXES ~ PROVINCIAL [|

FEDERAL [|

GRAPHIC SERV. OCT.85 4822

Carleton University
@ Ottawa, Canada K1S 5B6

4 ///56

Cs-88-3 Fast Sy MFchoy
k /%mmfé;éa/ é;/@q bl s Gunsd

cs- 88-37 ﬂ/w «»ﬁ/ e
W oo - CW

- fagq %;KMMW
cs-88vy H S/wgzj/»ﬁw Mz/ﬁ%

/
o . mw% Hot & PAGYMCK

Departme thytm nd Computer Engine
C.J. Mackenzie Building [J (613) 564-3625

Date
m e m O University of Waterloo

July 14, 1989

University of Waterloo
Department of Computer Science
Waterloo, Ontario N2L 3Gl

Attn: Technical Report Secretary

Dear Sir/Madam:

| would like to place an order for report #CS-88-44, "A Study of
Distributed Debugging," by W.H. Cheung, J.P. Black, and E. Manning.
Please send the order to the following address:

Marcie Palmer

LSTC

2100 E. St. Elmo Street
B30E/9610

Austin, TX 78744

I am enclosing a check in the amount of $2.00 for the expenses.
there are any problems with my order, please don't hesitate to
contact me. | can be reached at (512)448-5759.

Thank you,
)/}/;/2/ 4/ {; - /,/})« O

Marcie Palmer

P
e

PURDUIE —-03-
REMITTANCE ADVICE UNNE.IGITY West Lafayette, Indiana tI BR LB?(}ﬁfsggi}Bg 1 O S O 9 8 O 8

AMOUNT

INVOICE NUMBER REFERENCE VOUCHER NO. GROSS DISCOUNT NET

INV.-REF
DATE

40589 | INV040589 9140412 506 59

oy

A
%
\ \6\
o
N/ﬁtf\\
TOTAL 5pé 506

REFER TO CHECK AND VOUCHER NUMBER WHEN CORRESPONDING IN REGARD TO THIS PAYMENT
DETACH THIS STUB BEFORE DEPOSITING CHECK

University of Waterloo
Department of Computer Science
Waterloo, Ontario N2L 3G1

April 5, 1989

Purdue University Libraries

Fiscal Dept. INVOICE
Stewart Center Rm. 264

West Lafayette, IN

47967

Purchase Order No. 9P08172

REPORT(S) ORDERED
CS~88-44 (2 copies)

TOTAL COST . . .
$6.00 (This price includes postage)

Would you please make your cheque or international bank draft payable to the Comp 1
ence Department, University of Waterloo and forward to my attention.

Thanking you in advance.

Yours truly,

/Jﬂ)

/cfz,.m«bﬁ/m/ /él 2 (Qm/gfi’@*‘“w

Susan DeAngelis (Mrs.)
Research Report Secretary
Computer Science Dept.

/sd
Encl.

S8 b VRV LY
e St

.'_l" M

y

S LS T

guUUNIN

1-87 NHO4
O
XYL ST ot NS LN 8062-V6b-LLE INOHd L1
20620 NI LAYV ISIM 4!
02 ‘WY HAINTD LHYMALS ‘1430 WIGH 4!
S30VHEIT ALISHIAIND In0HNd

o
LGELTY NT CsindAEjTT Gu0K 4
R - B R T MR d
sdof sUATLTETNbLOY 1
TLTREAA SaTINILYT AGTIHIeATIN, 8LyIRG u
TIIReG/RIorinds 44v1s 18aa A0 1430 1830
goTdsn ¥
Vi ER 30
SOCAUTEYD CHUR AQ CDUTEAETLQOM PEINSTISSTS 6 APDGA
NOILdINOS2A

3A01td "1683

KNG

4300 HOANAA

o
2D
[
2
=%
<

ALVQ 432QHO

TLIGGIG

‘ON HAQYHO AsVHOUNL

"ADNIANOASIWHOD B
FIDVYIDOVL 'SIDIOANI 17 NO
HYIddY LSNW HIGWNIN SIHLE

AREALGAED

HAAWNN HIQUO ISVHIENG

L06/¢ NI ‘AL1IAVAV] 1SIM

¥9¢ “WH 43.1N30
sAiYvHal A

LHYMALS "1d43d TvISHd
LISHIAINN 3NAY¥Nd

VOyNyy ‘198

GIIESU ‘00TIBIEN
J93NdRES 30 radeg
aovy To AqTErsatun

‘ol

H3AHO 3ISYHIHNd

Printing Reéquisitioﬁ/Gra:)hiCServiC‘es

2 - Distribute copies as-follows: White and
Yeliow'to Graphic Services. Retain Pmk
Copies for your records.

1/ Please complete unshaded areas on
form as applicableA

" 3-0n completion of order the Yellow wpy'

will be relumed with the printed
materiat.

[
extension 3%;

TITLE . OR DESCRIPT(ON

CSe-5E -4 %

DATE. REQUIRED

ASAF

DAT{: REQUISLTIONED

ACCOUNT 10~

UMWQQ/4¢/

REQ ISIT|ONER—'PRINT

PHONE STHOALT Y
MAILING KNAME - DERT, o & ROOM NO.
INFO - S e Pellneec s . 5. R B¢

| hereby agree to assume ali responsibility-and liability for'any infringement of copyrights and/or paiem hg?

Special Instructions

[Tl gy

Copyright:
the processing of, and reproduction of, any of the materials-herein requested. | further agree to indemnify avi !
University of Waterloo from any liability which may arise from said processing or reproducing. | also acknow!eds
processed as a-result of this requisition are for educational use only.
NUMBER 0? é NUMBER 3 1 NEGAT'VES k o QUANTﬁ"y o SS‘ER Tn LAQOUQ u i
OF PAGES OF COFIES 5’ G ; file i
lEim] il e bty | S0y
E;dY;E’OFﬂAPER STOCK T,}/' - [T_’J;// [:] s — :
BOND NCR PT. TOVER BRISTOL SUPPLIED [3 RRrOR : g i
E§ﬁﬁﬁ5ﬂ€ = - LEL M| !}'J‘! JAJ[Ly {$:!~ILJ o }\C 013
8% x 1 85 x 14 11 x 17 B C0 SRR N T D
U L = L T R 1‘IwCJ0r13
PAPER COLOUR INKC B T R e : AN
A wnire [I S e L L | S I A Sl fC 011
PRINTING e NUMBERING ; A S ;
D) SIDE__. PGS, B'/ZMSIDES PGS, FROM i To lF}L|Ml i [] | [L 1]:- [| J | o J I | o] i iClOM !
BINDING/FINISHING % & curp_J. = P PMT S pe Ter
[KOLLATING [d/PrAPLxNG . PUNCHEB [j PLASTIC RING g e : - [O T IR SN
= L A T O O M S = oj eIl
FOLDING/ CUTTING R E : L y 7
- PADDING SIZE : : X o
S L e
St

IP;M Tl

}m%um%a/»w

i PLATES ;

M M@g’u

lip L T|'1Jg|;ﬂ~"

| P, LT L x |

IP L Tk]f‘r}} o L POt
‘ §TpcK~ , i . o :
, Lol e et ey e PE e e 1100047
COPY CENTRE ORER. MAcH. 1 T T Rt e
i Nl e B L R L 4ie0]
e Lodlp i L= ELrSEi fp s et
g oy VTSR | T L O R ST R R A LTI
DES-GN&{P‘ASTE-UP g'g:.ER"TIME LAB'O,UcdbE I s g : . parithe ‘;‘ ‘I :
» T o 6 1 BNV OV A OO L 0

Lol

 $_11JfD101TI

Lol

|

| TUJJQJTJ

1"I :

BINDERY —
erNhGL !1|'y5f‘|J| EREE

‘TYPES‘ETT,IkNG’, O GUANTITY v e ; j‘.ILRINIGI ! 4 § k{ IIL S | Ji ’ “ ’l‘ Lol lBZQHI
PAPI010101000 [y JLu b o]iTmoyt] LR1N1G! x'1’|‘1 0 T B R AN B A R o R [OT
IPIA!P{01010|0101 1 1 Ll 1,|’JngTr0y1' [{IM,1:5]01010010,] {'4 e Tl B0
[PaPl010,00000) [y o JLa dby o T OUTSIDE SeRvIcES

PROOF = ‘ ‘ P

L TR R A IS SN o W

L O T

L L

|

IAH‘I

L]

|PyRyF b g

}

b 17

COsT

TAXES — ProviNGi AL [T repEral [1o GRAPHIC SERV. OCT 85 482

PrintingRequisition/GraphicServices 15104

1. Please complete unshaded areas on 2. Distribute copies as follows: White and 3. On completion of order the Yellow copy 4. Please direct enquiries, quoting requisi-
form as applicable. Yellow to Graphic Services. Retain Pink will be retumed with the printed . tion number amd account aumber, to
Copies for your records. material. extension 3451,

TITLE OR DESCRIPTION

a Study of Distributed Debugging C5-88-44
DATE REQUISITIONED DATE REQUIRED ACCOUNT NO.
oct. 31/88 ASAP b 2 6 l6 10 3 2 1ai1]
rEQuUIsiTIoNER- PRINT PHONE SIGNING AN;I;?:%}TX?
J. Black . 4459 i ol el -
HAILING e oo o ' BLDG. & RO No. K] oetiver
INFO - sye DeAngelis css. | DC 2314 L] mewur

Copyright: | hereby agree to assume all responsibility and liability for any infringement of copyrights and/or patent rights which may arise from
the processing of, and reproduction of, any of the materials herein requested. | further agree to indemnify and hold blameless the
University of Waterloo from any liability which may arise from said processing or reproducing. | also acknowledge that materials
processed as a result of this requisition are for educational use only.

NUMBER 26 NUMBER 50 NEGATIVES QuanTITY | SBET rme “APOURooe
OF PAGES OF COPIES ek R B
TYPE OF PAPER STOCK B l FlLrMI 1 I 'r } l ;{_ ‘ |1 : l [C|~0|1J:
BOND DNCR PT. @ cover | |BRisToL Hsuppx_lr_D) l F[LIMI L J L L | l L J [L ! IC 0 1 I
PAPER SIZE] ;, , ESpees ereeny .
[(Xetxn [Lletxrs Clnxr U a0 TN Bt O HCIO:L[
PAPER COLOUR INK L ’ } o
[Kwwre [Rono O WELM o s TE g | [c0,1]
PRINTING NUMBERING S ST - S e
D 1 SIDE____._PGS. D—ﬂ 2 SIDES _____PGS. FROM To lF[L |M1 S l J L l | 1 v l I ! J I l [oof lLC.}_O‘ 11
BINDING/FINISHING PMT , : R

COLLATING STAPLINGowEl lefggf’:ls(;HiEdU‘e [:‘ PLASTIC RING i . ‘ ; : G :
= X ey Tl oy b b H._H L_J \CIGUJ»‘
FOLDING/ CUTTING ARG g

it RS L O O N K

Special Instructions g] . T
L 5 0 0

Math fronts and backs enclosed. PLATES : S SR

R0 LT RN WO T VIRV SRR N 1 I [PLOy1 |

|
LT S A SO [T
t

|
LTl L | o l;“»l‘ 5 ! 5 |P;,(‘)’,{';1:”Ii

STOCK K P e
| v lbean I s"il:r\l'i‘i’x JWIOM

cqpiiengRE S e E.IELIDGI' MACH!'.“T il l Ll R R |J[lﬂ |1 1'101'0“1:1}'
DiESIGN,&PAST’E&-l:{R,’ T erem T.ME' W l 1 | N I 0 L xJI L L L] |10101
k L I‘IHHIHD](H RIS R AT IR A BT]L__J IH'I(IHOOH

: ’ D BINDERY' :
i lJJ: oA :[[D!lej IRIN;G[L] }L b IJ' 1 H Ll IIB‘IO]TJZ
| N el

;"T_vvpéysemne a0 Ty STt WV OO L T8
lPAPlo000000 1L Ll dmoetBRNGE vy b e Lt Bieyt)

IP,AP]07070100 |1 1 o Lol o [mogt]fiminsloni00i0) L1y o] | T Jk‘lB'IOJ"’J

[PiaPl0)0105050; |y o PL JL o fToy]] OVTSIPE SERVICES
PROOF

“’DIR!F[IIklIJ_HI‘I!!"LIHIIIJl[IJ ,
PRFEL e T $
'pl‘erFllllllngllIHIJ‘IIJ_J!I'IJ ‘

COST

TAXES -~ PROVINGIAL [} FEDERAL ||~ GRAPHICSERV. OCT.85- 4822

N

%,
<

7

A Study of Distributed Debugging

W.H. Cheung
J.P. Black
C.S. Dept., University of Waterloo

Eric Manning
Fac. of Eng., University of Victoria

Research Report CS-88-44
October, 1988

Faculty

of

Mathematics

University of Waterloo
Waterloo, Ontario, Canada
N2L 3G1

A Study of Distributed Debugging

W.H. Cheung
J.P. Black
C.S. Dept., University of Waterloo

Eric Manning
Fac. of Eng., University of Victoria

Research Report CS-88-44
October, 1988

A Study of Distributed Debugging

W.H. Cheung J.P. Black

Department of Computer Science
University of Waterloo

Eric Manning

Faculty of Engineering
University of Victoria

Abstract

The study of distributed debugging attempts to develop helpful techniques, methodologies
and approaches for tackling the debugging process in a distributed environment. This paper
provides a general view of current research in distributed debugging. We first look at the issues in
distributed debugging. Then, a simple framework for studying distributed debugging systems is
presented. Based on this model, we classify research problems into three areas—the distributed
debugging model, domain specification and system support. We focus our discussion on the
distributed debugging model. This leads us to present and discuss some research results on
debugging techniques, methodologies and approaches. Finally, we draw conclusions and suggest

some research directions.

Contents

1 Introduction

2 Issues in Distributed Debugging

3 A Framework for Studying Distributed Debugging Systems
3.1 A Model of Distributed Debugging Systems

3.2 A Decomposition of the Problem of Developinga DDS

4 Basic Debugging Techniques

4.1 Output Debugging
4.2 Tracing,
4.3 Breakpoints
4.4 Assertion Execution,
4.5 Controlled Execution
46 Replay
4.7 Monitoring

5 Debugging Methodologies

5.1 Debugging Reasoning
5.2 Top-Down versus Bottom-Up Debugging
5.3 Two-Phase Debugging

6 Three General Approaches for Distributed Debugging

6.1 The Database Approach
6.2 The Behavioural Approach
6.3 The Al Approach

7 Concluding Remarks

10
11
12
12

13

14
14
15

16

16

17

18

19

20

1 Introduction

Debugging is an essential step in developing a software system, since every non-trivial software
system contains bugs. However, no precise or elegant method has been developed for the debugging
process; debugging is generally referred to as an art rather than a science. The introduction of a
distributed environment makes the situation even worse, since this both complicates the debugging
process and gives rise to new types of bugs. In recent years, researchers have developed some helpful
debugging techniques for distributed environments. However, most papers on the debugging of dis-
tributed software discuss a specific debugger or a particular technique. Few published papers look
at the issues and solutions in a general sense, considering, for example, how debugging techniques
apply to a general environment and how these techniques can be combined to form a useful debug-
ging system. In this paper, we try to provide a general picture of current research in distributed
debugging. It is not intended to be an exhaustive survey of the area; rather, we give our view of

the issues and solutions based on a proposed framework for distributed debugging systems.

In our discussion, we concentrate on run-time debugging, and always refer to it simply as
debugging. Nevertheless, we emphasize that static debugging and run-time debugging complement
each other, and neither of them should be overlooked. (See “Terminology” box.) Furthermore,
formal specification and development techniques for distributed software are becoming more well-
understood, and can be well suited to the behavioural approach described in Section 6. However,
since little existing literature makes explicit links between specification techniques and debugging,

we consider it outside our scope.

In a distributed system, we deal with an environment that lacks precise global states because
of multiple processors, lacks a common time reference, and suffers from variable, unpredictable
communication delays. This imposes an inherent constraint on the development and debugging of
distributed programs. Moreover, concurrent interactions among communicating processes constitute
a significant part of the complexity of distributed programs. Bugs due to these interactions can
be subtle, even transient, making their location very difficult. Unfortunately, the development
of distributed software is still a new discipline and this brings additional problems to the study of
distributed debugging, related to communications, system transparency and concurrency modelling.

In general, it is much more difficult to debug a distributed program than a sequential program.

A distributed program is basically a set of sequential programs. Therefore, bugs which occur
in sequential programs still occur in distributed programs. In addition, new kinds of bugs are
introduced due to the characteristics of distribution, such as concurrency, synchronization, and co-
operative communication. These bugs include message omission, unanticipated messages, arrival

of messages in an unexpected order, deadlock among processes, untimely process death, faulty

1

Terminology

Program failure is defined as a deviation of execution
behaviour from that dictated by the program specifi-

cation. An error is an erroneous state which leads to
a failure. The cause of this error is referred to as a
fault. A bug is a fault in the program.

Debugging is the process of locating and correcting
detected bugs. The user may try to detect bugs by an-
alyzing the program, by performing systematic tests,
or by monitoring program execution. After a bug is
detected, the user determines its exact nature and lo-
cation, and finally corrects it.

A distributed program is a collection of related, co-
operating program modules which will be instantiated
as processes at run-time on multiple processors in a
distributed system.

A cluster is a set of processes of interest, typically
an instantiation of a distributed program. A cluster
runs on top of a distributed operating system which
provides at least the functions of process manipulation
and interprocess communication.

Distributed debugging is the process of debugging
distributed programs on a distributed system; it does
not refer to distributed implementation of a sequential
debugger.

Debugging Probes are the instructions (e.g., a code
segment, a command) which are placed within a pro-
gram for controlling the debugging process or capturing
debugging information.

Run-time Debugging is debugging based on execu-
tion information of the program. Typical run-time de-
bugging tools for sequential programs are interactive

symbolic debuggers, memory dumps and trace pack-
ages.

Static debugging involves techniques applied to a
program hefore it is actually executed. Design reviews,
coding reviews, and formal proofs of program correct-
ness are well-known examples. While these techniques
are very useful for reducing the number of bugs in the
program, bugs may still appear during execution, due
to the incompleteness of these techniques and unantic-

ipated changes in the execution environment.

synchronization, misuse of interprocess communication (IPC) primitives, partition due to commu-
nication problems, communication overload, and protocol faults. Notice that these bugs are not
unrelated. For example, a message omission may lead to a deadlock if the receiver must receive
the lost message before continuing to execute, and communication overload may lead to message

omission.

This paper is organized as follows. Issues in distributed debugging are discussed in Section 2.
In Section 3, we introduce a simple model of distributed debugging systems. The model defines
the role of a distributed debugging system and its relationship with the debugging environment.
Based on this model, we decompose the problems of developing a distributed debugging system
into three areas: the distributed debugging model, domain specification and system support. While
we consider the problems in all three areas, our main theme of discussion is the distributed de-
bugging model which is divided into three major subareas: basic techniques, methodologies and
approaches. In Sections 4, 5 and 6, we present and discuss some research results in these three
subareas respectively. Finally, in Section 7, we conclude our discussion and discuss some future

research directions.

2 Issues in Distributed Debugging

It is generally admitted that debugging is a difficult job. It is a mentally taxing activity, typically
performed under pressure. Unfortunately, even intense effort does not guarantee immediate return.
Psychologically, programmers find it emotionally disturbing to admit that their programs are im-
perfect and require debugging. Furthermore, a programmer often settles on a particular view of a
debugging problem. Such a view hinders him from viewing the problem in a different way, or from
looking at other reasonable assumptions. Moreover, the semantics of a program may change when
a programmer locates and corrects bugs, as fixes introduce changes to the program. Debugging
probes can also alter program states in a way that makes bugs hard or impossible to identify. These

make debugging a very annoying job.

The concurrency and complexity of distributed programs make the situation even worse. In gen-
eral, people find it harder to handle concurrent events than sequential events. Also, the temporary
memory of our brains is very limited; excessive debugging information is simply ignored. These
inherent limitations make it difficult for the programmer to master and thus to debug a distributed

program.

Technically, difficulties arise from the simultaneous use of multiple processors, each having its
own physical time reference. Thus, control of time and management of state space are two major
considerations, as are problems arising from interprocess communication. Here are some typical

difficulties.

1. Maintenance of Precise Global States. Global clock synchronization is a classical research
problem in distributed systems [1], and it is nontrivial to have an accurate global clock. In
a general sense, even with accurately synchronized clocks, it is impossible to obtain global
information about a cluster at a precise instant in time: unpredictable communication delays,
various speeds and different states on multiple machines will cause the operations of collecting
global information to proceed at different rates. For the same reasons, an immediate change
of control for all parts of a computation on different machines at the same time is impossible,
unless all machines know the time beforehand. Thus, we can only expect an approximate
global state, such as local states on each machine plus states of communication channels
within a certain time period. Alternatively, we could confine ourselves to global states with

stable properties, that is, those which remain true once they become true.

2. Large State Space. The execution state of a cluster includes machine state on each processor
and a record of interactions among processors. Generally, the state space is very large, which

raises the problem of manipulating large quantities of state data for debugging purposes at

Y]

execution time. For example, how do we select useful data for later analysis, given limited
disk storage and main memory? How do we integrate data from individual processors? How
do we display useful information extracted from the data? Moreover, distributed systems can
grow incrementally and tend to have large numbers of processes and processors. The larger
a system is, the more information must be manipulated during debugging. Furthermore,
the complexity of interactions increases as the number of cooperating processes or processors

Increases.

3. Interaction Among Multiple Asynchronous Processes. Bugs occurring among processes in a
cluster are often complex or sporadic, caused by improper synchronization among the processes
or by race conditions. In many cases, these bugs are hard to reproduce, since they depend not
only on input data, but also on the relative timing of interactions among processes. Worse
still, some clusters are dynamic enough (7.e., numerous process creations and terminations)

that even identifying the set of processes currently belonging to a cluster can be difficult.

4. Communication Limitations. Significant, variable and unpredictable communication delays,
and limited communication bandwidth may make some typical debugging techniques imprac-

tical, such as central manipulation of cluster state information.

5. Error Latency. Usually, there is a time lag between the occurrence of an error and its dis-
covery. This time lag exists in sequential programs, but is worse in distributed ones. Due
to significant communication delays and antonomous operations, the time lag may be quite
large in a distributed system. During this time period, the error may propagate widely. Via
communications, the erroneous process affects the processes on another processor which pass
the effect to other processors and so on. This domino effect may generate a burst of additional

failures, often making the original bug very difficult to locate.

In spite of the difficulties programmers face in developing distributed programs, few effective
tools are available to help them in distributed software development, especially in the debugging

phase. The need for an elegant distributed debugging system is obvious and urgent.

3 A Framework for Studying Distributed Debugging Systems

3.1 A Model of Distributed Debugging Systems

As the problems in distributed debugging are complex and involve a number of issues, it is essential

to consider them in a systematic way. One way to do so is to decompose the debugging environment

into particular domains, and study the specific issues in each domain. This motivates the model
depicted in Figure 1, which defines the role of a typical distributed debugging system (DDS) in the
debugging environment. A DDS is a collection of software modules that facilitate the debugging
process. These modules may be in the form of a process cluster, a code segment in each process,
supporting routines in the kernel, or some combination of them. The debugging environment (or

simply, the environment) is a collection of domains which interact with the DDS.

Debugging Environment

Program Domain

A
Program Interface

Y

Distributed
Domain | Interface

Execution Interface

Fxecution Domain

| |
| !
| 1
| |
| |
1 |
| !
| |
! |
| Human { Human_ | Debugging |
[System |
| |
| |
] }
| !
| |
| |
| |
| |

Figure 1: A Model of Distributed Debugging System

In the model, the environment is partitioned into three domains and corresponding interfaces.
The program domain includes static descriptions of the distributed program being debugged, such
as its source code and specification of expected behaviour. The human domain includes the at-
tributes of the programmer who uses the DDS to debug clusters. The ezecution domain includes
the characteristics of the underlying distributed operating system and the run-time behaviour of

the cluster.

The DDS is viewed as an agent which manages the interactions among these three domains. It
collects behavioural data from the execution domain, and may impose appropriate control on the
execution domain. In addition, it consults the program domain to interpret behavioural data and to
forward meaningful information to the human domain. The DDS should interact with the human

domain effectively, in order to allow the programmer to control the DDS easily. Furthermore, the

DDS itself may analyze information from the domains and draw some conclusions about a bug.

The ezecution interface involves the kernel-process interface, exception handling, remote opera-
tions and coordination with various parts of the DDS on different machines. More importantly, it
provides a precise view of the computational model supported by the distributed operating system.
Based on this interface, the DDS observes and possibly controls the behaviour of a cluster in the
execution domain. As well, the DDS itself is a distributed program, and its implementation is based

on this interface.

The program interface conveys necessary information about the program to the DDS and allows
the flow of debugging information from the DDS to the program domain (e.g., a modification of the
program due to a bug, the recording of a bug for documentation). The communication not only
involves the program itself, but may also involve representation of the “expected” behaviour of the
program and perhaps even specification of anticipated errors. The interface involves the language-

debugger interface and the mechanism for detecting errors with respect to the specification.

The human interface defines the allocation of debugging activities—some to the DDS, some to
the programmer, and some to both. Human factors in debugging activities and mastery of parallel
events are the main concerns, since they have a profound effect on the usefulness of the DDS. For
example, good use of graphical displays and pointing devices can have dramatic results on the
usability of a DDS. Of course, a programmer can bypass the DDS and interact directly with the
program and execution domains for debugging. However, such interactions indicate that the DDS
is not effective. Given a good DDS, human users will want to debug through the human interface

alone.

3.2 A Decomposition of the Problem of Developing a DDS

Now, we look at the problems of developing a DS and defining its interactions with the environ-
ment. For the sake of our study, we divide the problem into three main areas and then further

decompose them into smaller components, illustrated in Figure 2.

A distributed debugging model (DD Model) is a conceptual framework for developing a DDS. We
divide the framework into three major subareas, each focusing on a particular set of instruments.
The first is a set of basic techniques to capture run-time information and control the execution
environment. The second is a set of guidelines or methodologies to organize overall debugging
activities. The third is general approaches which provide high-level abstract models for tackling the
debugging process. In each subarea, there are various alternatives. A designer may first select an

approach and a set of methodologies, and then develop suitable basic techniques. During debugging,

DDS

Distributed Domain System
Debugging Specification Support
Model prert
. Model-
, R \ . Basic :
Techniques [|[Methodologies|| Approaches Representation]| Interactions Specific

't
Suppor Support

Figure 2: A Decomposition of the Problem Space for DDS Development

a programmer uses the techniques to obtain information, follows the approach to tackle a bug, and

adopts one or several methodologies to structure the debugging activities.

The area of domain specification considers the interactions between the DDS and each domain
in the model. There are two major factors to be considered: representation, or description of the
domains, and interactions between the DDS and the domains. More precisely, it involves representa-
tions of objects (e.g., errors, monitoring information) or activities (e.g., program behaviour, human
interaction) in the domains. Only when the objects and activities of the domains are described

precisely can we define the interactions between the domains and the DDS.

System support involves implementation issues, and can be further divided into basic support and
model-specific support. A good example of basic support is a global clock synchronization facility
to order events. An example of model-specific support might be that a particular methodology
requires a driver process to interact with the process being debugged. This separation between
these two types of support allows us to first provide a basic framework and then develop various

models based on it, either for purpose of model evaluation or for different debugging requirements.

We use this decomposition to study the development of a distributed debugging system. Notice
that these three areas are not independent. The DI model must eventually be related to the issues
in the area of domain description for external communication and the area of system support for

implementation. However, because of its overall importance in the design of a DDS, we concentrate

our discussion on the D) model; nevertheless, the issnues in the other areas are discussed whenever

appropriate.

4 Basic Debugging Techniques

Although most of the techniques presented in this section have been used extensively to debug se-
quential programs, their use in distributed programs involves further considerations of effectiveness,

implementation difficulties and semantics.

All existing distributed debuggers are based on explicit or implicit assumptions. The following

are three common ones:

1. The necessary system software (so-called hard core), such as the distributed operating system,
the communications subsystem and the debugging tools, is debugged!, and programmers can
therefore concentrate on the debugging of application software. By excluding pieces of system

software from the hard core, we can think about debugging them too.

2. The main focus of a DDS is the interaction among processes, rather than the internal logic of
each process. We assume that internal bugs of the processes are or can be removed by the use
of a sequential debugger. In other words, a distributed debugger deals with programming-in-
the-large, in which processes are considered as the basic building blocks. A sequential debugger

deals with programming-in-the-small; that is, the internal behaviour of an individual process.

3. All interactions among processes are based on the use of message passing for IPC.

Although many DDSs assume a sequential debugger to deal with internal bugs, there is little
literature discussing the interface between a DDS and a sequential debugger. In many cases, we
do not know whether a failure is caused by an internal bug or an interaction bug. It is definitely
useful to develop the interface between distributed and sequential debuggers, in order to exchange

debugging information and to switch easily between the two.

In the following discussion, we keep the general assumptions listed above. That is, the DDS
assumes the existence of a hard core of debugged software and focuses on process interactions based
on message passing.

'That is, it is assumed that no bugs are found in hard core software.

4.1 Output Debugging

This is the most primitive debugging technique, but is also the easiest to implement. Indeed, it is
often the only technique available. A programmer inserts debugging probes, usually output state-
ments, at carefully selected places in the program. Using the output data, the programmer tries to
understand the execution behaviour, in order to find bugs. The advantages of this technique are
that only simple output statements are required, and that the programmer sees only the data he
selects. However, it has disadvantages. First, the programmer needs to observe output of processes
on multiple processors at the same time. When the number of processes is large, such observation
becomes infeasible. Also, the technique relies completely on the programmer to select appropriate
places in the program to insert output statements. This art is guided by the programmer’s expe-
rience and thinking. Furthermore, the technique requires modifications to the program and hence
may alter the existing program structure or even introduce new bugs. More importantly, it can
easily change the behaviour of a cluster, and thus is not effective for locating time-dependent bugs.

However, it 1s often combined with other techniques to make the debugging job easier.

4.2 Tracing

This differs from output debugging in that the operating system provides a standard trace facility
to display selected tracing information. The programmer turns the trace on and off in the program
when necessary. The trace facility keeps track of execution flow or obhject modification, and reports

relevant changes at certain times.

This technique has the advantages of output debugging and also eases the task of inserting
traces. However, it still relies completely on the programmer to specify appropriate actions. Also,
if traces are enabled for multiple processors, the programmer or debugger has to assemble them to
obtain a global trace. In either case, global timestamps (either physical or logical time) for all trace
information are necessary. In other words, we need a clock synchronization facility. Although the
development of a clock synchronization facility is feasible, many existing distributed operating sys-
tems do not provide such a facility. When there is no such facility available, a selected processor can
be made responsible for forming the global trace, according to the order in which trace messages are
received from all other processors. Due to variable communication delays and the nondeterminism
of processor scheduling, the trace messages may not arrive at the processor in the order they were
generated. Also, the selected node can become a bottleneck for the collection of trace information.

Thus, the provision of a clock synchronization facility is a better solution.

4.3 Breakpoints

A breakpoint is a point in the execution flow where normal execution is suspended and cluster state
information is saved. At a breakpoint, a programmer can interactively examine and modify parts
of cluster states, such as execution status and data values, or control later execution, by requesting
single-step execution or setting further breakpoints. Execution continues after the breakpoint when

requested by the programmer.

Using this technique, no extra code is added to the program by the user. Therefore, it avoids
some of the effects of debugging probes on distributed programs. Also, the programmer can control
cluster execution and select display information interactively. The main disadvantage is that a
programmer must be knowledgeable enough to set breakpoints at appropriate places in the program

and to examine relevant data.

The technique raises particular problems in a distributed environment. First of all, it is impossi-
ble to define a breakpoint in terms of precise global states. Thus, people usually define a breakpoint

in terms of events in a process or interactions among processes.

Second, the semantics of single step execution are no longer obvious. Some define it to be the
execution of a single machine instruction or a statement of source code on a local processor. Others
consider it to be a single statement on each processor involved. Some people treat an event, such
as message transmission, message reception or process termination, as a single step. Executing a
single instruction may not be very productive. To find bugs which result from the interaction of

processes, it is more effective to run the cluster until a significant event occurs.

Third, there is the problem of halting the process cluster at a breakpoint or after a single step.
When a breakpoint is triggered, the whole cluster must be stopped. One simple way to do so is
to broadcast “pause” messages to all processors. A processor suspends its execution entirely when
it receives the pause message. In many cases, we only want to stop the process cluster in which
we are interested, rather than the entire distributed system. In such cases, pause messages with
a cluster identification are sent out. When a processor receives such a message, it only suspends
the execution of those processes which belong to the specified cluster. To resume the execution, a
“continue” message is broadcast to all processors. However, the “pause” and “continue” operations
are not so simple. For example, when a process which is subject to a timeout request halts for
debugging, the real time clock is still running. At the time the process resumes execution, it will
encounter a much shorter timeout interval, and its behaviour may change significantly. Cooper
introduced a logical clock mechanism to maintain correct timeout intervals, and thus to provide

transparent halting [2].

10

There is also a problem of how to halt the cluster in a consistent global state. Chandy and
Lamport introduced a distributed algorithm to obtain distributed snapshots of a cluster [3]. The
algorithm is intended to capture only global states with stable properties which, once they become
true, remain true thereafter (e.g., deadlock, process death). The algorithm is divided into two
independent phases. During the first phase, local state information is recorded at each process.
This phase ends when it is determined that all information, both in processes and in transit over
communication channels, has been taken into account. In the second phase, local state information

of each process is collected into a snapshot by the process(es) which initiated the snapshot.

There are two important issues in the use of this algorithm. First, halting a process depends on
the interactions between itself and other processes. The algorithm cannot collect local information
about a process which has no or only one communication channel connected to other processes.
Furthermore, consider a process which has only infrequent interactions with other processes: that
process would halt long after all other processes have halted. Miller and Choi deal with this issue
by introducing two additional control channels between a debugger process and each process in the
cluster [4]. The second issue is that messages must be received in the order in which they are sent.

Hence, the algorithm cannot be based directly on a datagram-type communication facility.

4.4 Assertion Execution

An assertion is an executable predicate which specifies invariant conditions of execution at the
point where it is placed in a distributed program. Note that this involves run-time verification, and
is not the same as a “logical assertion” in a program proof. More powerful assertions allow the
specification of invariant conditions to hold over intervals of program execution. Assertions may be
inserted dynamically by a programmer at a breakpoint. This allows the programmer to introduce

assertions to detect malfunctions of interest.

Assertions behave like conditional breakpoints. They are inserted into the program by a pro-
grammer. During execution, whenever an assertion is violated, the system reveals the situation to
the programmer and usually halts execution. This can save the programmer from examining large
traces in order to detect the violation. Also, assertion execution is more powerful than normal
breakpoints. The former can detect certain errors based on the assertions while the latter leaves
detection entirely to the programmer. Because it is impossible to obtain precise snapshots at ar-
bitrary points in execution for checking, assertions can only describe states local to an individual
processor, or focus on sequences of transmitted messages, or deal with approximate or stable global

states.

11

4.5 Controlled Execntion

The behavior of a cluster depends not only on input data, but also on the relative speeds of
processors and on communication delays. Hence, special kinds of control are useful, such as changing
the relative speeds of the processes, simulating delays in the communication paths (perhaps for
race detection) and altering the order of message-passing events. Controlled execution allows a
programmer to analyze concurrent events at the speed and in the order expected. However, some

errors may disappear due to changes of relative speed and interaction sequence.

This technique is very useful for revealing bugs in the testing phase; the programmer can alter
the order of interactions to perform a set of pre-defined tests. However, exhaustive testing of all
possible interactions is almost always impossible. Techniques are needed to prune the number of

tests, such as by identifying equivalence classes of interaction sequences.

4.6 Replay

Replay simulates the history of a process cluster in a controlled environment. The debugger contin-
ually captures relevant execution information (e.g., input, messages) for the cluster and saves it in
a history log. When an error occurs, the program is suspended. Using the history log, the debugger
replays the program execution in an artificial environment. The programmer can control the speed
and direction of the replay via the debugger. By close examination of the program behaviour before

the failure, the programmer may be able to locate the bug.

One problem of replay is recording cluster behaviour. LeBlanc and Mellor-Crummey proposed
a general solution to this problem, termed Instant Replay [5]. During cluster execution, the relative
order of significant events (calls to monitors, in their case), rather that the data associated with
such events, is saved. As a result, the technique requires little time overhead (less than 1%) and less
space to save the information for replay. Therefore, it can be used to record events of a production
system. However, the replay is not a simulation run. Instead, it is an execution with the same input
from the external environment and with a mechanism to enforce the event order that occurred in the
original execution. Instant Replay assumes that each process is deterministic; that is, the process
does not contain nondeterministic statements or allow asynchronous interrupts. Also, the replay
must involve the whole cluster, rather than a subset of the processes. This implies that the system

can neither speed up the replay nor be confined to a part of the cluster behaviour.

Bugnet allows a programmer to replay part of cluster execution by using a checkpoint algorithm
[6]. It also aims to replay events in physical time, rather than just in their correct relative order.

All processes in a cluster start execution synchronously with reference to a global clock. During

12

execution, Bugnet collects IPC events of the cluster. After a period of time, the whole cluster is
halted, and the state of each process is captured. During the checkpoint pauses, the only events
that may occur are the arrivals of messages that were transmitted just before a pause. If such
pending messages were lost, inconsistent checkpoints would result: the senders know the messages
were sent but the receivers never receive them. Thus, these messages must be saved and then
presented to the receivers during the next run period. All processes are synchronized so that they
continue execution at the same time. This run, stop, checkpoint, and continue cycle repeats until
an error occurs or the programmer decides to quit or replay. For replay, the latest checkpoint is
located, and a common clock time as well as necessary replay information are sent to the agents
which monitor the replay process. While the checkpoint algorithm facilitates physical time replay,
it imposes significant overhead during normal execution: two extra processes for each application
process and large storage for keeping checkpoints. Moreover, the halting period (0.5 seconds) may

be unacceptable for time-critical applications.

4.7 Monitoring

Many existing distributed debuggers adopt this technique, or from another viewpoint, many moni-
toring systems are developed to aid in debugging. The idea of monitoring is to capture useful data
during execution, and then display it to the programmer. Sometimes, the data is saved for later
use, such as replay. A debugger may also analyze the captured data in some fashion to detect an
error. Since the execution is monitored continuously, the occurrences of infrequent, unpredictable
and irreproducible bugs are not missed, and the recorded data may provide valuable information

for diagnosing those bugs.

However, keeping a copy of every event is not cheap. Full monitoring of a cluster produces large
volumes of data and requires tremendous amounts of processing time and storage to manipulate.
Furthermore, the examination of the monitoring records is a very tedious activity and requires
a high degree of expertise. Therefore, filtering and clustering techniques are used to reduce the

amount of information to be examined.

Filtering attempts to ignore data which is irrelevant to the current debugging interest. Although
it introduces extra filtering time, it can save time needed to process such data. This monitoring
data may be filtered in two ways. In display filtering, while all data is stored, only selected data is
shown to a programmer. In data filtering, only relevant or selected data is saved in storage and all
other data is discarded. Display filtering does not reduce the amount of storage to keep the data,
but avoids flooding the display with irrelevant data. Data filtering goes a step further, to discard

the irrelevant data, in order to save a large amount of storage. However, it may not save sufficient

13

data to completely reconstruct the original cluster behaviour (say, for replay).

Clustering is used to group a designated set of events into a single composite event. To use
this technique, a programmer first defines composite events in terms of previously-defined events
or primitive events obtained directly from monitoring data. During execution, by recognizing a
sequence of events as a composite event, the latter is recorded and the former is discarded. The
clustering process can be exercised in a hierarchical manner, so that more abstract and higher level
information is maintained. However, there are problems associated with recognizing distributed
composite events, such as filtering out irrelevant events, handling the relative timing of processes,
distributing event information to other processors, and sharing a primitive event among several

composite events.

5 Debugging Methodologies

Distributed programming is still a young discipline. We have difficulty understanding the additional
complexity of distributed programs compared with sequential programs. This makes the use of an
explicit process of reasoning especially important in distributed debugging. In addition, since a
large distributed program is usually too complex to debug in a single piece, several methodologies
have been proposed to simplify the job. We identify three in the literature: top-down, bottom-up,
and two-phase debugging. Notice that they can supplement one another. For example, two-phase

debugging can be embedded into one step of top-down or bottom-up debugging.

5.1 Debugging Reasoning

Experience sometimes gives us the intuition necessary to debug a program, but cannot always be
relied on. There is no guarantee that the intuition is correct, since a symptom may be due to more

than one bug. Therefore, when experience fails, or is lacking, the only recourse is reason.

Some general methodologies have been proposed to tackle debugging with the aid of reasoning
[7]. In debugging by induction, one tries to look for relationships among clues from collected data
which lead to the error and to devise hypotheses about the bug. The hypotheses are refined and
proven or disproven until the bug is located. In contrast, debugging by deduction first hypothesizes
a set of suspicious faults. Then, by elimination and refinement, the programmer attempts to prove
that one of the suspicious faults is actually the bug. Clearly, these two methodologies may fail when
the correct hypothesis cannot be devised. Another methodology is debugging by state-sequence
backtracking. This is based on the proposition that if S’ was the state of the program at time 77,

then S must have been the state of the program at an earlier time T. A programmer backtracks

14

the production of the incorrect results through the logic of the program, unti] he discovers the point
where the logic went astray. Usually, this method is workable for small programs, but too compli-
cated for large programs. However, the technique of program slicing [8] may be used to simplify
the work by isolating relevant program slices for backtracking. A program slice is a simplified form
of the program that still produces certain specified behaviour. The programmer may backtrack the
program slices instead of the original program to identify the bug. Finally, debugging by systematic
testing can help the user of inductive and deductive methods to devise hypotheses. The programmer
executes a sequence of test cases, and formulates a hypothesis about the bug based on the outcomes

of these tests. Then the hypothesis is verified.

5.2 Top-Down versus Bottom-Up Debugging

A large distributed program is composed of a large number of processes. If it is modular in design,
the processes are generally grouped into various functional modules, several modules are merged
again to form a larger module, and so on. Some debuggers provide a facility to support this
kind of process grouping, such as hierarchical process groups in Bugnet. To debug such grouped
processes, researchers have proposed two very familiar methodologies: top-down debugging and
bottom-up debugging. In top-down debugging, the behaviour of the entire cluster is considered
first and erroneous modules are identified. Then, debugging focuses on the erroneous modules
and more detailed behaviour within them is considered. The process is repeated until the bug 1s
located. In bottom-up debugging, the process is reversed. In the first step, each process is debugged
separately in an artificial environment. Then, several processes are merged together and debugging
concentrates on the interactions among the processes. Again, the process is repeated until the whole

cluster is formed and debugged.

Basically, these two methodologies attempt to reduce the complexity of the debugging process.
There is no general agreement on which methodology is better; this may depend on the situation. For
example, top-down debugging may be more convenient in a fully developed system, as all processes
are implemented. Bottom-up debugging is more appropriate for a newly-developed system since we

can test and debug the system gradually from processes up to the whole cluster.

Actually, the use of these methodologies in distributed debugging is an extension of their use
in sequential debugging. We manipulate processes instead of program segments as basic module
units. We deal with message flows between processes instead of data flow between program proce-
dures. However, the control flow is now in multiple threads instead of a single thread. Also, the
communication structure of a cluster may change dynamically. Therefore, we must not only group

the processes into functional modules, but also restrict message interactions among these modules

in order to use the methodologies effectively.

5.3 Two-Phase Debugging

One basic idea of debugging is to monitor the events of a cluster, and hope that the trace will exhibit
an abnormality which may help in localizing the fault within a relatively small part of the cluster.
Two-phase debugging, introduced by Garcia-Molina [9], applies this idea in distributed debugging.
The debugging process goes through two phases:

1. Phase One. The software continues to execute until an error is observed. During execution,
the system saves a monitoring trace for truly significant process events. When an error occurs,

the trace is examined and the buggy processes are identified.

2. Phase Two. Erroneous processes are then tested in an artificial environment which attempts
to recreate the conditions under which the original bug was observed. The original conditions,
such as input data, message exchange sequence and auxiliary test processes, are reconstructed
and execution is replayed. This replay is needed in many cases, since it is not feasible to
collect all the necessary information during Phase One. Various tests may be needed to reveal

the bug.

Creating the artificial environment for the second phase may be a difficult and time-consuming
task. Also, this methodology encounters problems similar to those of monitoring. Garcia-Molina
suggested the use of wraparound tracing to keep the trace storage of reasonable size. That is, the
storage can be written in a circular fashion, with the newest data written over the oldest data.

However, it is not always easy to determine a “reasonable size.”

6 Three General Approaches for Distributed Debugging

A general approach provides a high-level abstract model for tackling the debugging process and gives
guidelines on how to manipulate debugging information. We identify three general approaches in
the literature: the database approach, which emphasizes information manipulation; the behavioural
approach, which emphasizes cluster behaviour manipulation; and the Al approach, which considers
automation of the debugging process, using artificial intelligence techniques. Not all debuggers
incorporate a particular, well-defined approach. Some simply provide sets of basic debugging tools

to support the technigues described in Section 4.

16

6.1 The Database Approach

This approach views debugging as performing queries on a database that contains program informa-
tion (e.g., system specification, source code) as well as execution information. Initially, program in-
formation is stored in a database. Then, execution information is forwarded to the DDS as database
updates. The programmer tries to understand the program behaviour by making database queries,
the intent being that answers to the queries provide clues to the bug. Thus, in this approach,

debugging is a matter of understanding the execution and specification of a distributed program.

The use of the database paradigm offers several advantages. First, the facilities of a typical
(distributed) database system are available, including storage management, data retrieval and con-
current access control. Therefore, a debugger which adopts this approach simply monitors program
execution and forwards execution information to the database system. Second, the database system
usually allows a rich set of queries on the values of and relationships among the data. Third, the
query interface of the database system can be used as the user interface of the debugger. Fourth, the

programmer can access program and execution information in an integrated fashion for debugging.

In the following, we briefly discuss two examples of this approach: Snodgrass’ monitor [10} and

the Program Visualization System [11].

To capture execution information, Snodgrass’ monitor uses a relational database with a query
language, both extended to incorporate time. The system was actually implemented to monitor
programs on a tightly-coupled multiprocessor system. Due to central manipulation of the execution

information, the maximum number of processors 1s bounded to roughly fifty.

The Program Visualization System is implemented using the INGRES relational database. It
represents a distributed program as a set of objects (e.g., program blocks) and binary relations
among these objects, and stores them in a database. A vicw of the program is a sequence of queries
regarding the objects and their relations in the database. A sophisticated graphical interface is
provided for view construction and display. Multiple, alternative views of a single distributed
program can be constructed so that a programmer can consult different views to obtain various
information for debugging. The program views are static relations, and do not change automatically
as new information is added to the database. This feature has the advantage of obtaining a series
of “snapshot” views of the program. However, it does require the programmer to rederive the views

explicitly if he wishes to include new information.

17

6.2 The Behavioural Approach

In this approach, debugging is viewed as the process of comparing the execution behaviour to the
expected behaviour as defined by the user in some formal specification. The debugger monitors
execution events, deduces the actual behaviour from the events and compares it with the expected
behaviour. If they are different, the debugger notifies the programmer of the discrepancy. The

programmer attempts to locate the bug by studying the discrepancy.

Current research emphasizes the development of machine-based tools to aid a programmer in
understanding program behaviour. This is achieved by providing for the creation of multiple view-
points of a program and the ability to view the program at different levels of abstraction. The
notion of behavioural abstraction [12] is one example. A set of primitive events constitutes the low-
est level of cluster behaviour. This may provide a particular viewpoint of the program. Based on
this, the mechanism allows the programmer to define alternative, high-level viewpoints. This idea is
similar to that of multiple views in the Program Visualization System except that the behavioural
abstraction is based on a behavioural description of a cluster, while the multiple views are based

on program objects and their relations.

Usually, this approach provides a language facility for specifying events, behaviour and actions.
It may include a behavioural definition language to define expected behaviour, based on primitive or
user-defined events, and an action langunage to specify the operations (e.g., halt the cluster, log the
event) to be performed automatically after certain behavionur has been detected. For behavioural

abstraction, the behavioural definition language can also specify alternative high-level viewpoints.

Using a behavioural definition language, we can impose a redundant, independent specification
of the expected behaviour on a program. Based on this specification, the debugger checks if the
actual behaviour deviates from the expected behaviour. In addition, the reporting mechanism may
be invoked selectively, thus avoiding the need to analyze large volumes of data. Moreover, the
use of behavioural definition languages is more powerful than traditional debugging techniques.
For example, a breakpoint can only be used to report when a computation has reached some
specific state, and the programmer must determine by himself where to place it. Also, several
execution paths may lead to the same breakpoint, and not all of them are necessarily useful to the
programmer. In contrast, in a behavioural definition language, it 1s easy to express an execution
path, thus allowing very selective debugging. Another example is that of an assertion statement,
which tests for state violations at single points in the execution history. Behavioural definition

languages, on the other hand, are able to express the correct sequences of interactions.

In recent years, there have been a number of studies in distributed debugging using this approach.

We describe the EBBA Toolset [12], the ECSP Debugger [13], and the Task Graph Language and

18

Token Lists [14].

The EBBA Toolset uses a language called EDL to specify some models of expected cluster
behaviour in hierarchies of event definitions. Each event definition describes how an instance of
the event might occur and what the attributes and constraints of the instance are. The debugger
tries to match these models to the execution events. When the models fail to match, the debugger
attempts to characterize the differences. However, when the models match the actual behaviour,
they may only demonstrate that some aspects of the program behave as expected, since the models

need not fully describe the cluster behaviour.

The ECSP Debugger has a notion of grouping processes in a hierarchy. A process P hides the
interactions between processes Pi, ..., P, activated by a paralle] statement of P. The basic events
are defined as a set of Event Specifications. A Behaviour Specification defines a partial order on
the events of a process to describe the allowed sequences of interactions. It also includes a set of
assertions, each to be evaluated after the occurrence of a given sequence of interactions. The main
features of the debugger are the association of a behaviour specification with a process, the feasibility
of defining events at various process levels and the strong connection between the debugger and the
semantics of ECSP. However, the latter feature precludes porting the debugger to other languages.

Also, the debugger has no notion of behavioural abstraction.

The Task Graph Language (TGL) is based on a general communication model in which TPC is
through message exchanges. It is intended for expressing expected IPC patterns in a task (or pro-
cess) graph. Using TGL, a programmer specifies expected IPC interactions in regular expressions.
A compiler parses a TGL specification to generate a set of token lists which form a distributed
representation of the task graph. FEach process receives a list of tokens, containing information
needed to synchronize the IPC operations of that process with its peers. A run-time package, called
the Token List Mechanism, enforces the constraints specified in TGL by checking the token lists: a
send token must match a receive token before the token list mechanism allows the IPC operation to
proceed. The TGL is easy to use and the token list mechanism is not complicated. However, it has

no notion of process or behavioural abstraction and has poor support for dynamic process creation.

6.3 The AI Approach

The idea here is to use artificial intelligence technigues to help in detecting bugs, suggesting possible
causes of bugs, and even proposing corrections. One method is to use an expert system. The intent is
to capture the debugging expertise of an experienced programmer in a knowledge base and to make
it available to all programmers. The main potential advantage is that it can serve as an intelligent

assistant to the programmer for reasoning and developing fault hypotheses. The programmer is

19

relieved of the burden of tracing the execution of the program.

There are apparently no existing debuggers which use Al techniques directly to debug distributed
programs. However, there are some systems which have been developed for sequential program
debugging at source level, such as the Fault Localization System and PROUST. Seviora provides a

good general study of such knowledge-based debugging systems [15].

An example closer to our interests is the Message Trace Analyzer (MTA) developed by Gupta
and Seviora [16]. MTA is a knowledge-based system designed for debugging a single-processor
concurrent system in which all activities are encapsulated in processes and their interactions are
only via message exchanges. Given a correctly integrated trace of message events from an execution,
it consults a knowledge base of rules to detect any illegal message sequence and its cause. MTA
works on the assumption that a trace would exhibit an abnormality which would help to localize the
bug, and it only localizes a failure rather than the bug itself. Also, it assumes that failures are known
at the system level. This limitation makes MTA unable to handle unspecified failures. However,

this work demonstrates the potential of Al techniques for debugging concurrent programs.

7 Concluding Remarks

We have identified three major approaches: the database approach, the behavioural approach and
the AI approach. Generally speaking, these three approaches are based on different divisions of
the debugging task between a programmer and the debugger. The database approach deals only
with program information and leaves it to the programmer to locate the bug, by formulating the
queries and by analyzing the answers. The behavioural approach is able to detect errors by checking
discrepancies between actual and expected behaviour. It is a step beyond the database approach,
towards provision of automatic error detection based on behaviour description. The event sequence
and the discrepancy also give additional clues for bug location. The Al approach is very attractive
as it has the potential to release the programmer from much drudgery. However, current research in
Al on diagnosis is still at an early stage. More importantly, heuristics cannot replace reasoning. In
our view, further research on debugging reasoning is required before we can consider this approach

seriously.

None of the three approaches suggests any way to locate and repair a bug. Perhaps, bug
locating and repairing should not be considered solely in the realm of debugging. The integration of
program development tools is probably the better strategy, since we can use more program-related
information for debugging analysis. In our opinion, the behavioural approach is currently the most

effective and promising one. It also appears the one most suited to the use of formal specification

20

techniques.

Although many issues in sequential debugging are relevant to distributed debugging, the latter
has some unique problems. These include lack of global knowledge, and management of a large
system state space with multiple foci of control. Even though various algorithms, mechanisms and
debuggers have been developed in the last few years, there is still room for improvement and a

number of open issues remain.

The first area is DD models. Various approaches, methodologies and basic techniques need to be
explored to tackle the technical difficulties in distributed debugging. In recent years, although there
have been many studies on particular aspects of DDS models, few general principles for designing

and evaluating DD models have appeared.

The second area concerns the interaction between a DDS and its debugging environment. This
area is particularly important for the the human domain. Research here includes the role of people
in distributed debugging, human debugging behaviour, human-oriented representations of debug-
ging objects, effective communication between human and DDS, and human factors related to the
understanding of parallel dynamic execution. While there are some interesting studies on the psy-
chological aspects of sequential debugging, their extension to distributed debugging is an unexplored
subject. On the other hand, the Execution interface has been recognized as difficult to study. The
issues are basically time delay, synchronization, size of state space and the lack of a global view-
point. These problems are only partially solved, and there is still much room for improvement.
In the program domain, many researchers have concentrated on developing languages to express
errors, system behaviour and assertions. We notice that a large portion of work on the behavioural
approach is in this category. Although a number of languages have been introduced, there are still

no general principles to guide the development of such languages.

In recent years, sophisticated workstations with high-resolution color graphics displays have been
used extensively in developing distributed debuggers. With such a graphical debugger, researchers
usually claim that a programmer can easily observe cluster behaviour and detect bugs. However,
little empirical evidence exists to support this claim. Moran and Feldman [17] show in an experiment
that, for simple bugs which occur early in an event sequence within a concurrent Ada program, the
type of debugger display (textual or graphical) has no statistically significant impact on debugging
time. One possible reason for this is that the bugs and the programs were so simple that the subjects
in the experiment did not fully utilize the graphical debugger. Further experiments are necessary
to determine if a graphical debugger is better than a textual debugger for hard bugs in a complex,

distributed program.

In general, it is useful to study the characteristics of the debugging domains and formulate

21

appropriate models. For example, a distributed computational model gives us a picture of how
the components of a distributed program compute and communicate. Based on this, we can make
assumptions about the execution behaviour and also design the execution interface effectively. Also,
the study of the interfaces may give interesting results. If system-independent elements are isolated
from all the interfaces, we may be able to construct a portable DDS. Portability is a very attractive
feature as it allows us to transfer a DDS from one implementation to another implementation with
little effort, and to maintain a well-developed DDS despite changes to the environment. Moreover,
the interface design has a significant impact on the DDS. For example, a poor design of the human
interface clearly discourages a programmer from using it and hence degrades its usefulness. A design
of the execution interface which requires a lot of remote accesses definitely reduces the performance

level of the DDS.

The third area for future research is implementation issues of a DDS, including provision of
a clock synchronization facility, consistent breakpoints, handling of monitoring data, information
filtering and behavioural abstraction. Alsa, the general architecture of DDSs needs more investiga-
tion. For example, a master-slave scheme may generate performance bottlenecks at the master node,
but permits centralized processing of debugging information. The study of DDS architecture may
include the interface between local and distributed debuggers, and coordination of DDS modules in

a distributed environment.

As we have said, there is no lack of problems in distributed debugging. However, the growing
use of distributed systems makes the need for an elegant distributed debugging system obvious and

urgent.

References

[1] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System”, CACM, Vol.
21, No. 7, July 1978, pp. 558-565.

(2] R. Cooper, “Pilgrim: A Debugger for Distributed Systems”, Proc. of the 7th Int. Conf. on
Distributed Computing Systems, Berlin, West Germany, September 1987, pp. 458-465.

[3] KM. Chandy and L. Lamport, “Distributed Snapshots: Determining Global States of Dis-
tributed Systems”, ACM Trans. on Computer Systems, Vol. 3, No. 1, February 1985, pp.
63-75.

[4] B.P. Miller and J.D. Choi, “Breakpoints and Haltings in Distributed Programs”, Proc. of
the 8th Int. Conf. on Distributed Computing Systems, San Jose, California, June 1988, pp.
316-323.

[5] T.J. LeBlanc and J.M. Mellor-Crummey, “Debugging Parallel Programs with Instant Replay”,
IEEFE Trans. on Computers, Vol. C-36, No. 4, April 1987, pp. 471-482.

22

[6]

7]
8]

[9]

[10]

11]

[12]

[13]

14)
15)

[16]

(17)

S.H. Jones, R.H. Barkan, and L.D. Wittie, “Bugnet: A Real Time Distributed Debugging
System”, Proc. of the 6th Symp. on Reliabilily in Distributed Software and Database Systems,
Williamsburg, VA, March 1987, pp. 56-65.

G.J. Myers, The Art of Software Tesiing, John Wiley & Sons, 1979.

M. Weiser, “Programmers Use Slices When Debugging”, Communications of the ACM, Vol.
25, No. 7, July 1982, pp. 446-452.

H. Garcia-Molina, F. Germano Jr., and W.H. Kohler, “Debugging a Distributed Computing
System”, IEEE Trans. on Software Engineering, Vol. SE-10, No. 2, March 1984, pp. 210-219.

R. Snodgrass, “Monitoring in a Software Development Environment: A Relational Approach”,
Proceedings of the SIGSOFT/SIGPLAN Software Engineering Symp. on Practical Software
Development Environments, SIGPLAN Notices, Vol. 19, No. 5, May 1984, pp. 124-131.

K. Schwan and J. Matthews, “Graphical Views of Parallel Programs”, ACM SIGSOFT Software
Engineering Notes, Vol. 11, No. 3, July 1986, pp. 51-64.

P. Bates, “Distributed Debugging Tools for Heterogeneous Distributed Systems”, Proc. of
the 8th Int. Conf. on Distributed Computing Systems, San Jose, California, June 1988, pp.
308-315.

F. Baiardi, N.D. Francesco, and G. Vaglini, “Development of a Debugger for a Concurrent
Language”, IEEE Trans. on Software Engineering, Vol. SE-12, No. 4, April 1986, pp. 547-
553.

J. Livesey and E. Manning, “Protection and Synchronisation in a Message-Switched System”,
Computer Networks, Elsevier Science Publishers, Vol. 7, No. 4, August 1983, pp. 253-267.

R.E. Seviora, “Knowledge-Based Program Debugging Systems”, IEEE Software, Vol. 4, No.
3, May 1987, pp. 20-32.

N.K. Gupta and R.E. Seviora, “An Expert System Approach To Real Time System Debugging”,
The First Conf. on Artificial Intelligence Applications, Los Alamitos, California, CS Press,
December 1984, pp. 336--343.

M. Moran and M.B. Feldman “Toward Graphical Animated Debugging of Concurrent Programs
in Ada”, Proc. of Int. Symp. on New Directions in Computing, Trondheim, Norway, August
1985, pp. 344-351.

	

