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Abstract

In message-passing systems, client and server processes interact
with messages to perform computations on behalf of a number of hu-
man users of the system. Most existing protection mechanisms for
such systems are based on capabilities. We show that it is also pos-
sible to use the other well-known protection model based on access
control lists in these systems. We propose a mechanism, based on sig-
natures, which is simple to use from a programming viewpoint, can be
implemented efficiently, and does not require the use of cryptographic
techniques. Through the use of signatures accompanying messages,
access of clients to services and information can be controlled and
changed on a per-message basis, as clients of one service in turn im-
plement higher-level services for their own clients. We also discuss
some duality properties of signature and capability mechanisms.

1 Introduction

There is a trend in many modern operating systems toward the use of
lightweight processes communicating through message passing. This has
resulted in the development of new programming styles involving, for exam-
ple, client-server models and remote procedure call. Protection mechanisms
for these systems tend to be based on the use of capabilities. However, we



feel that it is also possible to base protection policies on the use of more
conventional access control lists with the assistance of a mechanism which
is practical, easy to understand, and relatively cheap to implement and use.
In this paper, we propose a protection mechanism for message-based
distributed operating systems which we feel has these properties. It in-
volves little additional programming complexity, adds very little overhead
to the operating system kernel, is easy to understand, and does not require
the use of cryptographic techniques. In Section 2, we present our view of
a distributed system based on processes communicating by messages. In
Section 3, we recall some of the background material on protection models,
and discuss the relationships between these models and the class of dis-
tributed systems which we describe in the previous section. Section 4 then
gives our signature mechanism for protection, which is justified in greater
detail by the examples of Section 5. Section 6 presents our conclusions.

2 The Message Passing Model of Distributed
Systems

We consider systems in which a number of nodes are connected by some
communication medium. Each node, which may be implemented by one
or perhaps many processors, supports a number of processes. Processes
communicate only by sending and receiving messages; they have disjoint
virtual address spaces. (In some cases, this is only a convention which
is not enforced by the system.) A process is identified by a fairly long
bit string called a process identifier or PID. The PID is allocated by the
system when the process is created, and is guaranteed not to be reused flor
a reasonably long period of time (i.e., PIDs can be assumed to be unique in
time). Processes are transient, in that they survive neither system crashes
nor orderly system shutdowns. Some small amount of stable storage is used
to ensure the PID uniqueness across shutdowns and crashes.

Examples of systems which fit this model include several with strong
links to Waterloo [2,3,4,8], and others such as Accent [14] and Amoeba [12].
Several systems based on the use of remote procedure call (RPC) [5,7,10]
also fit the model, although the client-server type of interaction in the
former is slightly more general than the interactions typically found in the
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Figure 1: A client-server exchange with Request-Receive-Reply

latter. Commercial systems such as UNIX 4.3BSD are also developing large
numbers of client-server applications. However, they must also continue
to support the more classical process and operating system interactions
originally developed for centralised time-sharing systems.

For the sake of exposition, we will assume the style of communication
primitive adopted by the Waterloo systems. In these systems, there are
three primitives for message passing, called Request, Receive, and Reply.
They are used as shown in Figure 1. A client wishing to request service from
a server uses the Request primitive, supplying the identifier of the target
server process and buffers for the request message and the reply message
from the server. This client is then blocked until the server receives the
message, processes it, and replies to it. From the client’s point of view, this
is very much like a remote procedure call, ignoring details such as argument
type-checking and parameter marshalling.

Whenever the server wishes to service requests, it makes a blocking
call to Receive, which either blocks the server if no messages are queued,
or removes a client message from the server’s queue. Some time later,
the server completes the client’s request and calls Reply, supplying the -



client’s identifier and the reply message. However, since the server is free
to make a number of calls to Receive without issuing any Reply messages,
and also to reply to multiple clients without intervening calls to Receive,
the client’s illusion of remote procedure call is intentionally missing at the
server. This freedom allows the server to serve multiple clients simulta-
neously if it chooses and removes from the system any need to create or
allocate processes in response to individual RPCs from clients.

One of the common ways in which this client-server model is used to
construct more complex software systems is called the administrator model
[9]. In this model, all requests for a particular service or class of service
are first interpreted by an administrator process, which has a main loop
containing a call to Receive. In order to avoid becoming a bottleneck, an
administrator never calls Request, as it might block indefinitely. Instead,
it manages a pool of worker processes, each of which calls the administrator
with Request when it finishes a task; the administrator’s Reply message
to the blocked worker contains the next task for it to perform. Thus the
administrator typically expects two classes of Request messages (and man-
ages one or more associated queues of outstanding requests): one class
from clients requesting service and one class from workers requesting new
tasks to be performed. In effect, client requests are propagated through
an administrator to a worker and perhaps beyond, while the client remains
blocked awaiting the Reply from the administrator. The administrator does
some amount of interpretation of client requests, but most of the work is
performed by its worker processes. See Figure 2.

Up to now, we have viewed the client-server paradigm in terms of dy-
namic control structure. A complementary view in terms of specification
of behaviour is that the server presents some abstraction (or abstract data
type) to its clients. Clients request service (or invoke abstract operations)
through some message protocol published as part of the specification of the
server. The details of how the server implements the service and of how
many other processes are involved are hidden from the client, and not spec-
ified by the message protocol. In the most general view of this client-server
relationship, the server is free to implement whatever protection, authenti-
cation, and accounting policies it wishes; in practice, these policies are often
severely limited by the trusted information available to the server and by its
ability to exploit this information with acceptable performance. Examples
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of common services are file and directory service, printing, name service,
communication with other systems, electronic mail, window management,
compilation, and document preparation.

In many operating systems, processes request system services by mak-
ing supervisor or system call requests of the underlying kernel. In message-
passing systems, the tendency is to provide many system services in server
processes outside the kernel, keeping the kernel as small, efficient, and un-
derstandable as possible. Thus, the only system calls in message-passing
systems are those to send and receive messages, and perhaps a very few
others to perform process operations such as creation and termination, for
which the ultimate responsibility rests with the kernel. Typically, nor-
mal system services are requested through message exchanges with server
processes, leading to extensive and frequent use of message passing for fun-
damental services such as those described above. From the point of view
of the kernel, there is not necessarily any difference between a user process
and a process providing a critical and trusted system function. While the
kernel may have some notion of trusted and untrusted users, it is no longer
the case that the hardware protection boundary between user and super-
visor states can be used to separate untrusted user software from trusted
system software.

Compared with monolithic centralised operating systems, there has
been a very significant degree of function migration out of the user pro-
cess and out of the kernel. To a large extent, the kernel no longer performs



any system services beyond message passing and process creation: all the
functionality normally associated with operating system supervisor calls
has been migrated out of the kernel, into system server processes. Even
more importantly, many functions previously performed by library mod-
ules within the user process are now performed in disjoint server processes:
common examples are file services and window management. Even when
there is no obvious benefit to be obtained from extra parallelism, func-
tions tend to migrate into disjoint processes due to the pervasiveness of
the client-server model. In a sense, the two-layer view of user process and
kernel has evolved into one with multiple layers of process abstractions.

This is a very different environment for user-level protection from that
of the centralised operating system.

3 Protection Mechanisms and Trust

Protection within a computer system is required if the system is to be
shared by a number of mutually suspicious users. Sharing in this sense
may involve arbitrarily long timescales, since protection is typically re-
quired both among a number of simultaneous users of the system, and
for information stored on external storage by active and currently inactive
users.

The general literature on protection is based on the access matrix model,
which involves subjects, objects, and rights {11, Chapter 8|. Subjects are
active entities such as human users and processes. Objects are the protected
entities in the system, such as files, processes themselves, devices, memory
segments, or procedures, to name only a few. The granularity of objects in
a particular model can be low (memory segments, procedures) or high (files,
users, devices, the system itself). Each subject possesses a set of rights to
perform operations upon each object, and the protection state of the system
can be encoded into a (sparse) access control matriz. Each row corresponds
to a subject, each column to an object, and each entry in the matrix encodes
the particular subset of operations which can be performed by a subject
upon an object. In the case of a client-server system, what is required is
some mechanism allowing individual servers to implement arbitrary objects
and access rights for subjects such as users and client processes. The two
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main approaches to implementing the access control matrix involve the use
of either access control lists or capabilities. See Figure 3.

An access control list encodes one column of the matrix: for a partic-
ular object, it lists the rights of each subject with access to the object.
Typically, it is stored with the object. In the common case of files and
directories, the subjects are human users or pseudo-users which implement
system services, and the file system keeps some information with each file
or directory on who can access it in which fashion (read only, read-write,
execute only, search, etc.). Groups of users may also be subjects in this
sense. The advantages of access control lists are that it is easy to change
individual entries in a column of the matrix, as each entry is stored with
the object, and it is easy to enumerate those subjects with access to the
object. One disadvantage is that on each access by a subject, the operation
requested must be checked against those allowed for that particular subject.
For objects implemented by general server processes, the server must have
available information about the subject who is requesting an operation, in
order to verify the rights of the subject.

Historically, the subjects in the access control list approach have been



processes working on behalf of a particular human user, and many operat-
ing systems associate some user identifier with each active process. This
is perfectly adequate when essentially all of the computation can be at-
tributed to the user process, and the synchronous nature of most system
calls makes well-defined the notion of which user is performing each opera-
tion. In client-server systems, system processes are not necessarily associ-
ated with any single user. Each request serviced by a system process may
be on behalf of a different user. As each request is executed, the server or
its workers may make further requests of other servers, and each of these
is then also on behalf of the originating user, not on behalf of the user
or system process which created the server or worker. This leads us to
conclude that conventional protection schemes based on user identifiers are
not particularly applicable to operating systems based on the client-server
paradigm.

In protection models which use capabilities, the access control matrix
is stored by rows, so to speak. That is, each subject (a client process)
possesses a list of capabilities which completely defines the set of objects
and operations on them which is available to the subject. Each capability
is encoded and/or protected in such a fashion that simple possession of
a capability is sufficient to guarantee to a server that the client has the
rights to perform each operation. Capabilities are appealing because the
cost of storing them is pushed back onto the client and because they may
also contain low-level object identifiers which can be used by the server
to make access more efficient. However, it is difficult to revoke them or
to perform garbage collection on them, because the system does not keep
track of all clients with capabilities to a particular object. Also, capabilities
have fixed formats in most systems, which make it difficult or impossible
to implement new objects with operations and capabilities which cannot be
encoded into the existing system-wide standard. Finally, the system must
be able to guarantee the integrity and validity of capabilities presented by
clients: thus, the system must explicitly control and store all capabilities,
or some relatively strong form of cryptographic sealing of the capabilities
is required to prevent forgery by malicious or buggy processes.

In both models, some minimal mechanism must be provided to ensure
that a server can trust the information upon which some authorisation de-
cision is made. For access control lists, the server must convince itself of



the identity of a client subject. For capabilities, the server must be able to
trust the authenticity of the capability presented by the client. This trust
may be established based upon the presumed security of the kernel which
transports subject identities or capabilities, or upon cryptographic proper-
ties of the capability encoding, the subject identity, or the communication
channel between the client and the server.

Capability-based protection mechanisms for distributed systems have
been quite well-represented in the recent literature, in such systems as
Amoeba [12] and Accent [14]. They seem well-suited to client-server in-
teractions, since the simple presentation of the capability is evidence of
authority to access the object it represents. Access control lists have been
less visible in the research literature, but perhaps more common in exten-
sions of centralised systems such as UNIX into distributed environments. In
such systems, the two key problems are how a server may trust the origin
of a message and how the server may appear to operate on behalf of various
clients when he makes requests to third parties.

We first make the obvious assumption that users and processes may
trust the kernel of a machine on which they run to implement the protection
mechanism correctly. In particular, they trust the kernel to identify them to
other kernels and to identify other kernels correctly in incoming messages.
That is, each kernel is trusted to transport each message to its ultimate
destination host, and to identify the source host of each incoming message
correctly. However, we suggest that the problem of secure and trusted
kernel-to-kernel communication is separate. If inter-kernel communication
is not secure and trusted, the problem can be solved by standard encryption
techniques and/or specialised protocols, such as that suggested by [1]. If
remote kernels cannot be trusted to identify their users correctly, then
the local kernel can collapse all subjects on the untrusted remote machine
into one in a fashion which is transparent to the local processes. With
the increasing use of personal workstations, this becomes more and more
realistic, since the complete software of a workstation must be assumed to
be under the control of a single user. In very large distributed systems
which tend to be more loosely-coupled, an effective protection granularity
of the human user is quite acceptable.

The second problem of how a server can authenticate himself to third
parties on behalf of various clients is addressed in the next section.



4 A Protection Mechanism Based on Signa-
tures

The protection mechanism we discuss in this section is intended to be im-
plemented by the trusted kernel of a single computer. In the general case,
the computer is shared among a number of human users and communicates
with other computers which implement their own versions of the mech-
anism. The individual users of the distributed system are assumed to be
autonomous and mutually suspicious. As mentioned above, we assume that
the inter-kernel transmission medium is secure and trusted.

In the model, a process consists of an unchanging load image and a
changeable data segment. A signature (w,u) is associated with every pro-
cess. Each component w or u identifies a subject, in the terminology of the
previous section. With the exception of a distinguished subject called root,
the signatures and subjects are never of interest to the kernel.

The first component, w, is a subject called the owner of the process.
Roughly, w identifies the source of the unchanging data and executable text
in the load image of the process. If a second process chooses to trust the
owner with certain operations on its behalf, the kernel guarantees that the
process has been vested with the authority of the owner. Owners may be
human subjects, or artificial subjects like trusted file systems, mail servers,
or printer servers.

The second component, u, is called the user of the process. It identifies
the source of the data part of the process, or equivalently, of a particular
instance of the process image. Each time the load module is used to create
a new process, the contents of the changeable data segment will in general
depend on the input data to the process. The distinction here between
owner and user is very similar to that found in UNIX between the real and
effective user identifiers of a process, and can be used in much the same
way.

Note that, in particular, our mechanism does not specify any structure
of signatures beyond the existence of the owner and user components: sys-
tem designers may wish to encode or structure signatures to contain group
identifiers or other more complex atiributes of a user. For example, the
file system may choose to implement arbitrarily complex notions of protec-
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tion and permissions based on signatures. One possible scheme based on a
lattice structure is given in [15].

Under the Request-Receive-Reply model of interaction, a process may
choose to transfer its signature to a server when it makes a blocking Request.
The kernel will guarantee that only one other process possesses the signa-
ture at any point in time, and that the signature is returned to the issuer
when it is unblocked by the reception of a Reply message. The server may
use the signature to authenticate the client and may forward it to other
processes in the course of responding to the request from the client. To
avoid forgery, process identifiers are used to refer to signatures in kernel
primitives, and processes may ask the kernel to provide an explicit signature
in the form (w,u), given any process identifier.

More formally, the following primitives are available for manipulating
signatures. The reader may wish to refer to Figure 2.

¢ Request(topid, msg, msg_sigpid, rslt, rslt._sigpid)

The first, second, and fourth parameters are the server process iden-
tifier, and buffers for the request and result messages. If the two sig-
nature process identifiers are zero, no signature is sent or returned,
and Request behaves according to its normal semantics. Otherwise,
the signature of process msg_sigpid is transferred to the server.

If msg_sigpid is that of the client, the client is temporarily supplying
its own signature to the server while it is blocked awaiting the reply.
In this case, rslt_sigpid is guaranteed to be equal to msg sigpid
on return. In Figure 2, this is the case when C sends a request to A.

If msg_sigpid is not that of the client, that process must be blocked
on this client or some other process, and this client must have received
its signature previously. On return from Request, rslt sigpid may
contain a signature transferred by the server; this would be the normal
means of transferring a signature from an administrator to a worker.
In Figure 2, W receives the signature of C as rslt _sigpid when rslt
is returned to him in response to his previous “Give me new work”
message to A.

An exception is signalled if the client does not possess msg_sigpid.

11



e Receive(frompid, msg, msg sigpid)

If msg sigpid is non-zero, it is the PID of a process currently blocked
on a Request. If frompid = msg sigpid, the signature has been
transferred directly from that process. If not, process frompid may
be sending the signature away from its originator (as when S receives
it in Figure 2), or back towards the originator (as when A receives a

work completed or “Give me new work” message and signature from
W).

e Reply(topid, rslt, rslt_sigpid)

If rslt_sigpid is non-zero and is possessed by the caller, the sig-
nature is transferred to topid. This is used by A to transmit the
signature to W, and by A and S to transmit it back towards C and
W respectively.

An exception is signalled to both process topid and the caller if
rslt sigpid is that of the caller, or if the caller does not possess
rslt sigpid, or if process topid sent its own signature but the caller
does not return it.

e Get sig(sigpid, sig, status)

This primitive discloses signature information and process status to
the caller. Possible values for status are Signature, No_signature,
and No_such process. The first two cases indicate whether the caller
currently possesses the signature for process sigpid. In both these
cases, sig contains the signature (w,u) of process sigpid when the
call returns.

e Set_uid(v)

If the caller initially has signature (w,u), then the caller’s signature is
set to (w,v) if and only if v = w or v = u or w = root. An exception
is signalled otherwise.

When a process is created, it must also be given a signature. Roughly,
we want the creator to have some control over the signature of the child.
However, being more precise depends on the exact semantics of process cre-
ation, which we do not wish to specify. Nevertheless, we give two examples
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of reasonable semantics. In both UNIX and Shoshin [2]|, the kernel main-
tains an abstraction of a loadable process image. In the case of UNIX, this
is simple because the kernel also implements the file system, and so a load
module is simply a file in the file system. In the case of Shoshin, process
images are either loaded with the kernel or installed dynamically. In either
system, we assume that the owner component of the newly-created process
is taken from the owner component of the load module, while the creator
can influence the user component by supplying a sigpid. For example,

e pid := Create(image, sigpid)

Let (z,u) be the signature of process sigpid, or of the caller if sigpid
is zero. Then if the image has owner w, the child process is created
with signature (w,u). In order for a process with owner root to be
able to create a child with a different owner, we assume that such a
process is able to set the owner of the image to an arbitrary value.

In another form of process creation, such as used by the V Kernel [3],
an “empty” process is created by the kernel, and the creator is given direct
write access to the code segment of the new process. We would then propose
a primitive like

e Create(sigpid, owner flag, user flag)

The two flags indicate whether the two components of the signature
of the child process are to be obtained from those of the caller, or
from those of process sigpid. In order for a process with owner root
to be able to create a child with a different owner, we also require a
variant form of Create which uses a signature as the first parameter,
and whose use is restricted to root processes.

The semantics given above require that the kernel validate each sig-
nature transfer, and maintain some notion of the current location of the
signature. In addition, we require that any exception which abnormally
terminates the client’s Request result in the return of the signature to
the client. As a special case, this includes failure of the process or host
possessing the signature. (This is very similar to the problem known as
“orphan-killing” in the remote procedure call literature [13].)



Since each process has exactly one signature, the process descriptor
provides a logical repository for any information required by the im-
plementation of the mechanism.

In the case of a local transfer, only local information is required.

In the case of a transfer to a second machine, the signature can be
transmitted with the message, and kept on that remote machine as
part of the state information associated with the IPC exchange. Some
care is needed to ensure that signatures are reclaimed whenever some
exception causes resumption of the client. Examples of such an ex-
ception include failure or disconnection of the remote machine.

In the case of a signature transfer to a process on a third host, more
complicated “signature tracking” is required. If this tracking infor-
mation is maintained at the site of the owner process, an interkernel
message exchange may be required to update the location of the sig-
nature in the owner’s process control block. We are currently devel-
oping and implementing a distributed signature tracking algorithm
which avoids these extra interkernel messages in the normal case of
exception-free interaction [6].

e Because process identifiers are unique in time, a signature authenti-
cating a client need only be transferred on an initial interaction with
a server, not on every request issued by the client to the same server.

e A server and other processes who trust each other can retain sig-
natures as data indefinitely, and transmit them in the clear among
themselves.

e As Set_uid changes the signature of a process, the frequent use of it
by a client may require more frequent signature transmission between
client and server il the semantics of the interactions depend on such
signature changes.

The examples in the next section suggest that the cost of signature use
need not be unreasonable.
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5 Examples

The previous section discusses a kernel mechanism which can be used to
protect users from each other. However, it does not discuss how this mech-
anism might be used to implement one or more protection policies at a
higher level. It is not our purpose to propose such policies, but rather to
give some indication of the range of policies which can be constructed on
top of the mechanism described above. Thus, the set of examples which
follows is simply intended to illustrate the use of the mechanism, and to
convince the reader of its utility in implementing more conventional pro-
tection policies as are currently prevalent in centralised and distributed
systems.

5.1 System Initialization

When a system is bootstrapped, some kernel software is loaded and exe-
cuted, and at least one distinguished user process must be started by the
system. Ultimately, all trust in the system software must stem from trust in
the source of the kernel and initial process image, which may be physically
secure on a disk in a machine room or perhaps transmitted in a secure
fashion across some communication medium. We need to show that our
protection mechanism allows human users to trust the identity of various
system servers, based on their trust in the source of the kernel and initial
process image.

The initial process must be created with signature (root,root), for oth-
erwise, no non-trivial executions of Set_uid will succeed, and no non-trivial
set of processes without root signatures can be created. The initial process
normally creates some system service processes, which it can arrange to
give arbitrary signatures. Examples of standard system services might in-
clude a name server, file system servers, printer servers, and login servers.
Many of them would be created with well-known or root signatures. If
desired, the initial process could create specialised or trusted processes of
various types on demand from users or other system services. Thus, at
the end of system initialization, a number of standard and trusted system
services have been created. In general, they run with known signatures,
so that suspicious users can confirm process identities with Get_sig before
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trusting these processes to perform as claimed.

5.2 File System

It is tempting to consider the file system as just another set of user processes
outside the kernel and as no different in principle from other user processes.
However, the reliance placed upon the file system by users necessitates
careful consideration of how it can effectively safeguard information for
users and guarantee that this information is only used in ways permitted
by the protection policies of the human user and system administrator.

In the simple case of file and directory access, the user process uses
some name server to find the process identifier of the file system server,
and then uses Get sig to convince itself of the identity of that process.
On individual file system requests, it sends its own signature, which the
file system uses according to its published specifications to permit or deny
access and, possibly, to store with the data committed to it for safekeeping.
The file system makes requests of other lower-level server processes, such as
disk storage subsystems, to whom it may pass the signatures of its clients.

5.3 Print Servers

We suppose that print spooling with accounting for physical pages printed
is required. If requests to print have copy semantics, a user process can
forward its signature to the print server when it requests printing, and
can remain blocked while the server forwards the user signature to the file
system to request a copy of or access to the file for printing.

If spooled requests are serviced without making copies at the time of
the request, the print server must somehow arrange to have access through -
the file system to the stored information. This is only a problem because,
at the time of printing, we assume that the requesting user process is no
longer blocked on the print server, and indeed, may no longer even exist.
Efficient solutions to this appear to involve file system policies allowing
some form of controlled access to some processes not owning the data. In
many existing systems, similar services run with root privileges to ensure
they have access to the data.
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In addition, the print server can use the signature of the requesting
process to account and charge for pages printed.

5.4 Abstract Data Types

The intent of the separation between the owner and user components of a
signature is in some sense to capture the difference between the unchanging
code of a process and the changeable state of the process. Many processes
can be instantiated from a single process image, but they will all obey the
same interface and protocol for message exchange. This is very similar
to the difference in object-oriented systems between the class of an object
and an instance of the object. In our signature model, one could think of
the owner component as indicating the class of the process, and the user
component as indicating the human user on whose behalf state is being
stored in the process.

As first presented above, signatures encode ownership of resources and
control over the use of them. Here, the owner component encodes some
equivalence class of behaviours. However, this view is, in a sense, “over-
loading” the use of the signature mechanism. Whether these two views are
mutually exclusive or compatible is a subject requiring further investiga-
tion.

We believe that both these viewpoints may be useful to servers imple-
menting protection policies for mediating among mutually suspicious users.

5.5 Combined Signature and Capability

Servers may choose to implement capabilities on a per-user basis, by con-
sidering a capability to be a pair consisting of a signature and an integer
chosen from a large sparse space to make forgery unlikely. When an object
is created, the signature of the client is stored with it, and a record is kept
of the integer. By communicating the integer to other servers along with
the signature, the client can grant them explicit access to the object. Be-
cause the servers cannot forge the client’s signature, they can only access
the object in ways implied by the capability. In this way, the kernel is
relieved of any need to maintain the correspondence between a capability
and a server for the object for an indefinite period of time.
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Such a scheme might be attractive for at least two reasons. For example,
the client could avoid having to obtain the signature of a third party in
order to contact the server to modify ils access control list. In addition,
the server could replace what might be a relatively large access control list
for the object with a potentially shorter list of capabilities.

6 Conclusions

The model presented above provides a simple and cheap protection mech-
anism which can be added to client-server distributed systems. It permits
clients to identify themselves to servers in a fashion guaranteed by the un-
derlying kernel. The servers are then free to implement arbitrary objects
and operations upon them, and to maintain access control lists of arbitrary
complexity for each object. 1t is more symmetric than a pure capability
system, as both client and server can examine the other’s signature. The
use of a model with a granularity of human users helps to bring down the
cost of using the model. We need to show that in practice, this level of
granularity is sufficient. Furthermore, signatures need not be passed or
checked on each IPC interaction, which further reduces the per-message
cost of their use.

There seems to be an interesting duality relationship between the use of
capabilities and the use of signatures. (Some of this is suggested by the ge-
ometry of Figure 3.) One can consider a capability to be an authority plus
some sort of name for a server, and the authority to act on an object can be
transferred easily from one client to another by capability transmission. On
the other hand, one can consider a signature to be an authority plus some
sort of name for the client, and this authority can be transferred from one
server to another by signature transmission. Whereas a server may have
no control over transmission of capabilities to the objects it implements, a
client has no control over transmission of its signature by servers. Corre-
sponding to the problem of garbage collection with capabilities is one of
signature tracking. Whether this duality is in fact an equivalence between
the two mechanisms, or whether they are in fact complementary requires
more investigation.

In this paper, we have presented the mechanism, but done little more
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than sketch some possible policies which can be implemented on top of it.
In our view, one of the main advantages of the model is that it provides
a simple mechanism in the kernel, without requiring that the policies be
implemented there for all possible objects and object types for which pro-
tection is to be provided. Relative to capability-based systems, no fixed set
of capabilities is provided for all objects. The particular protection facilities
made available for an object depend only on the server implementing the
object. This, of course, means that in any system using such a model, a
number of higher-level, extra-kernel conventions need to be established and
published as part of the specifications for the various objects created and
supported by the system. However, this is no different from the analogous
publication of policies which must accompany any protection system.

We are currently implementing a distributed signature tracking mech-
anism to support a full implementation of signatures on Shoshin. We also
plan to experiment with the use of signatures, and to explore the duality
between signatures and capabilities further.
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