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ABSTRACT

Exact solutions of a generalized nonlinear Schrédinger equation
. ) 4 . .
Uy + gy + g fu Pu + g lu s + dgp Ju Pou + ig, Ju Pu, = 0

are obtained by transforming the equation to one whose coefficients satisfy a sim-
ple algebraic relationship. The transformed equation also yields conservation
laws and sufficient conditions for boundedness and blow-up of solutions for the

original equation.

1. Introduction

A generalized nonlinear Schrédinger equation (GNLS)
g+ gy + g uPu + g lu e + igy Ju Pou + dgy Ju Pu, = 0 (1.1)

governs the modulation of a quasi-monochromatic wave train in a weakly nonlinear, dispersive
medium. Here u(z,t) is the complex wave amplitude, i%=—1, and the parameters g,, 445 9m, and
g, are real constants. We are considering the initial value problem for (1.1) with u(z,0)=uqz)
specified. Equation (1.1) was derived independently by Johnson [1] and Kakutani & Michihiro [2]
to describe the behaviour of the Stokes wave near the state of modulational instability.
(Although Johnson’s equation includes a term in u¢, where ¢,= |u [?, this may be eliminated as
shown in [2] .) The GNLS also has wide applicability as a model equation for a large class of evo-
lutionary systems where the relevant time and space scales are greater than those captured by
the usual nonlinear Schrodinger equation with a cubic nonlinearity [3]. It contains, as special

cases, the nonlinear Schrédinger equations

z‘ut‘ + Uz + ¢ Iu |2u =0 (12)



Uy + Upp + 1qm([u Pu), = 0 (13)
Wy + Uy, + 2qy JuPu, =0 (1.4)
Uy + Uy + ¢ |uPu + g fulu = 0. (1.5)

Eq. (1.2) is the well-known cubic Schrodinger equation, which has important applications in non-
linear optics [4], plasma physics (5], and fluid dynamics [6]. The derivative nonlinear Schrédinger
equation, Eq. (1.3), governs the propagation of nonlinear Alfvén waves [7], while Eq. (1.4)
describes the self-modulation of the complex amplitude of solutions to the Benjamin-Ono equation
[8]. Eq. (1.5), the cubic-quintic Schrddinger equation, governs the propagation of light beams in
an inhomogeneous medium when the nonlinear polarization contains susceptibilities of third and
fifth orders [9], and also describes the boson gas with 2- and 3-body interactions [10].

Egs. (1.2)-(1.4) are particularly interesting, being completely integrable and consequently possess
an infinite number of invariants of motion. For certain initial conditions, they can be solved by
the Inverse Scattering Transform [11] and, for those initial conditions which decay rapidly as
z—+00, they admit soliton solutions, solitary waves which preserve their shapes and velocities
upon interaction. In general, however, the GNLS (1.1) does not belong to the class of completely
integrable equations. Enns et al [12] demonstrated numerically that the solitary waves of the
cubic-quintic Schrodinger equation do not exhibit the stability of solitons (unless g,=0), although
they found that quasi-soliton behaviour persisted over a large region of the parameter space.
Outside this region, they observed that the solitary wave interaction resulted in dispersive or
explosive behaviour, depending both on the initial condition and on the choice of parameters g,
and q,. As the GNLS represents, in some sense, a correction to the cubic Schrédinger equation, a
study of the behaviour of its solutions may provide a more realistic assessment of the physical

stability of solitary waves.

In this paper, we use a gauge transformation to obtain a new generalized equation from which
exact solutions to (1.1) are found. The solutions include solitary wave forms (although these are
not solitons in general) as well as singular and oscillatory functions. The transformed system is
also used to find three invariants of (1.1) from which sufficient conditions for boundedness and
blow-up of solutions are derived. A Galilean invariance of the GNLS suggests a rate for the

blow-up which agrees with numerical experiment.

2. Gauge Transformations Between GNLS Equations

Consider a gauge transformation
u(z,t) = ¢(z,t)exp 10 (zt), (2.1)

where 9(z,t) is a complex valued function, and where 0(z,t) is real and defined by



ea: = 26 |¢|2
b, = 6[4Im(¢;/)-z‘) - (2qm + q, + 86)'¢ |4]

(Here % denotes the complex conjugate of ¥.) Under (2.1), the GNLS transforms to a new GNLS
for ¥(z,t)

i+ Yoo + QLY + Q1 + i@ WPy + iQ, ¥ Py, = 0 (2:2)
with
Q.= 4.
Q. =q, + 28q, — 5g, + 45°
Qm = @y + 46
Qu = qu-

The transformation parameter, &, is an arbitrary constant and introduces one degree of freedom
in the choice of @, and @,,. We note that the compatibility condition 8 ,,=0,, is satisfied by the
field equation for ¢, and @ is therefore well defined by the theory of conservative vector fields.

The transformation preserves the modulus of the solution, |¢|= |u |, and works both ways.

The above transformation is a generalization of that used by Calogero & Eckhaus [13] and Kundu
[14] (their analyses correspond to the choice §=(g,—g,,)/4 ) to transform the GNLS (1.1), subject
to the constraint 4qq=qm2—qmqu, to the mixed nonlinear Schrédinger equation, which is com-
pletely integrable [15] and has N-soliton solutions [16]. Solutions for those GNLS equations which
satisfy the integrability condition are then constructed from known solutions for the mixed NLS
equation. For example, if g, =0, so that 4q,= gm?, and if g,>0, a solitary wave solution
corresponding to the one-hump soliton of the cubic NLS is given explicitly by

20 12
u(z,t) = [—(;—] sech(Va(z—ct)+p) exp id(z,t) (2.3)
d(z,t) = —(z~bt) — 2 tanh(Vo(z—ct)+p) + v

2 9
clec
=—|=——b 0
o 5 [2 ] >
where b, ¢, #, and v are arbitrary constants. We note that the GNLS solution differs from the

cubic Schrédinger soliton only by the peculiarities of its phase and that the interaction of the soli-
tary waves (2.3) should exhibit the same clean interactions as the cubic Schrédinger solitons.



The choice § = -—%(2(1,” + g,) forces 2Q,,,+Q,=0 in (2.2) so that the resulting equation for 1 is
iwt + d)z:t + Qc |'/f |2'¢' + Qq I'rb I4¢ + sz |¢‘ |2z¢ + zQu W’ |2¢z =0 (24)
where
Qe =g (2.5)

1
Qq = qq_-iE(QQm + qu)(zqm - 3Qu)

1 1
Qm = "‘?Qu = _E'qu
Qu = qy-

Noting that 2Q),,+@,=0, we rewrite Eq. (2.3) in the equivalent, but more convenient, form
W + Yoo + F($)Y =0, (26)
where the real function F(¢) is given by
F(¥) = Q. WF + @, ¥ |* + QuIm(v,).
Hereafter, a reference to the transformed system refers to Eq. (2.6), corresponding to the above

choice of 6.

3. Exact Solutions

The GNLS (1.1) has a plane wave solution with constant amplitude a,
u(z,t) = a exp {(kx—wt).

The real dispersion relation, w = k% + aPk —q.la P — g, la |}, depends on the amplitude, and
Qy ¢ q

on the three parameters q,, q,, and g,.

We now obtain new exact solutions of (1.1) using the transformed equation (2.6). Writing ¥(z,t)

Yz,t) = f(z—ct)exp ig(x—bt) (3.1)

where f and g are real functions, with

[
9(y) = SV +

and where b, ¢, and v are arbitrary constants, allows us to easily calculate 8 (z,t) as



0(zt) =26 [ fHx—ct)d(z—ct) = ——%(2qm + qu)f fAz—ct)d(z—ct).

Solutions to (1.1) are then readily obtained, using the relation (2.1), once ¥(z,t) is determined.

Substituting (3.1) into the transformed GNLS (2.6), we get a cnoidal wave type equation for

f(z—ct), which can be integrated up once to obtain

Q@ 1 c c c
ne q 6 = _x 4 ) = 2 —
(IN°+ 57+ 5 |Q—5@ |+ -5 [/°+C=0
where C is an arbitrary constant. Defining z= f2, z then satisfies
4
()2 + ?q 2+ (2Q,—¢Q,)7® + (2bc—c?)2? + 40z = 0 (3.2)

and may be solved for in terms of the elliptic functions. If C=0, these solutions can be expressed
in terms of the elementary functions and include oscillatory, singular, phase jump, and solitary
wave solutions. These are four-parameter families of solutions, with arbitrary constants b, ¢, v,
and pu. The parameters b and ¢, representing, respectively, the speeds of the carrier and envelope
waves of 1, partly determine the form of the solution. We list below some interesting cases.

Qq < 0: Defining

4Q,
3

o =
3
4Q,

3
4Q,

8= (cQu —2Qc)

N=- (c®—2bc)

equation (3.2) becomes
(2?2 = az®(2? + Bz + 7) = az¥(z—r)(2—ry).

The values of r; and ry determine the form of the solution z; solitary waves arise if r; and ry are
real and r;>r,>0. The solution to (1.1) is then

- rrs 12 bzt (3 3)
ula,t) = r + (ri—ry)sinh*(x) exp i9(@.) .
18 18
#(x,t) = _(2(],,,_4—{-(],,)_ —-C—gq—] tanh™ [:—f-] tanh(x) | + 'g‘(:c—bt) + v




1
X = [—7‘1;2Qq ] (z—ct) + p.
Q4 > 0: Now with
a = 49,
3
3
:3 = 4Qq (cQu_ch)
= 0 (c?—2bc)
q

equation (3.2) becomes
(2% = az¥(=22 + Bz + 7) = az¥Yr;—z)(z—ry).

If r; and rp are real, with r;>02>>r;, a solitary wave solution exists and the corresponding solution
for (1.1) is

12
u(z,t) = N7 exp i$(z,t)
’ ro + (ro—ry)sinh¥(x) ’
2+ 4y e 2
b(z,t) = _(_?_Z_i’_) Qiq tan~! [.:_;] tanh(x) | + S(z—bt) +
1
_rlr2Qq &
X=|—73 (z—ct) + p.
If r, and r, are real, with #; >r,>>0, then z is oscillatory and
(2.4) Y exp iote)
ulz,t) = exp 1¢(x,t
ry + (rg—ry)cos’(x)
2¢m+9. 12 r 12
b(z,t) = —Lg_zl—q—) -Zg-q— tan™! [f] tan(x) | + —;—(x—bt) + v
1
riroQ, &
X=|—7%— (z—ct) + p.

We note that, in contrast to the cubic NLS, the GNLS can have solitary wave solutions for both

positive and negative values of Q.

Assume ¢, #0. Then the GNLS is invariant under the Galilean transformation



e” = A¥z + 2A%Bt) (3.4)
t'= A%

*

u = %u(x,t)exp 1A’B(z+A%Bt)

where

and A is an arbitrary nonzero real constant. Then, since
ok o ot g P gy b g B g, P = 0,
we can construct new solutions for the GNLS using the relations (3.4).

We can also use this invariance to reduce the GNLS to an ordinary differential equation. If we
think of the solutions u(z,t) as defining a manifold (u,z,t) on which the GNLS is satisfied, then

(u”,2"t") must also lie on this manifold, and u "=u(z",t")
%u exp iA?B(c+ABt) = u(AXz+2A%Bt), A%). (3.5)
Differentiating Eq. (3.4) with respect to A and then setting A=1, and hence B=0, we get a first
order linear partial differential equation for u
[2z'ﬂ:v—1]u=2(:c+2ﬂt)u,+4tu, (3.6)

where we have, for convenience, defined 8=¢,/q,. The characteristic equations for (3.5) are

du _ dz _dt
28z —1)u  2(z+pt) 4t

which may be solved to yield the two invariants of the transformation
n=t"2(z—-28¢) (3.7)
v=t"uexp —if(z—Ft). (3.8)
Therefore the general solution of (3.5) has the form
I(v,n)=0

where I'(-,-) is an arbitrary function. If we define the functional dependence as v=v(n), we see

that the necessary and sufficient form for u(z,t) to be invariant under the Galilean transforma-

tion is given by



u(z,t) = t7 %y [t_lﬂ(m—Qﬂt)] exp i Bz — B t) (3.9)

where v(7) must satisfy the GNLS when reduced by (3.9) to the ordinary differential equation
—iv — 2inv’ + 4" + 4q, v 'v + 2ig, (v PYv + 4ig, o ' = 0. (3.10)

The general solution of (3.10) will give, according to (3.9), the general solution of the GNLS
invariant under the Galilean transformation (3.4).

We now introduce a change of variables and let
F=x; t=tg—t; 4(z,) = u(zt) (3.11)
where £, is a real constant. Under (3.11), the resulting equation
—iU; + Uz + g |8 Pa + g la [*d + igp | 120 + dg, Ji Pa; = O (3.12)
is invariant under the Galilean transformation
z’ = A¥F — 2A%Bt)
t' =A% (3.13)

*

u' = %ﬁ(i,f) exp iA?B(§ — A%BY)
where A and B are defined as before. The invariants for the transformation (3.13) are now
found to be
7=tz + 28t) (3.14)
o =t Vi exp —ip(F+Bt). (3.15)
and Eq. (3.12) reduces, if we use the functional dependence v = v(), to the ODE
0 + 2670 + 40" + 4q, |5 ['0 + 4ig,, (16 P)'0 + 4ig, v Po' = 0. (3.16)

In terms of the original coordinates, we find that the necessary and sufficient form of u(z,t)

corresponding to this Galilean invariance is

u(@ ) = (to=t) 45 ((10—t) A +28(tg1)) | exp i B(w+B(ts—1)) (3.17)

which is valid for t<t; and for v a solution of (3.16).



4. Conservation Laws

Consider the GNLS transformed to (2.6) and assume that 9(z,t) is a rapidly decreasing function
of &, p(x)D,9%=0 as x—+oo for any polynomial p(x). We have the three conservation laws

[ Wldz = E, (4.1)
f [4 Im('waz) + Qu |¢ l4] dz = El (4.2)
J WP = 5. Bl - 30, WP dz = B, (43)

—_00

We note that these laws are also valid if 9 is periodic in «; in this case, integration is performed
over the spatial period. For the purpose at hand, however, we consider only the case of rapidly
decreasing functions on oco<z < o0 henceforth, integration with respect to z is performed over

the real line, unless otherwise indicated.

Proof of (4.1)
Multiplying (2.6) by ¥ and subtracting the complex conjugate of the resulting equation,

[ Py = 2(Im(y, )], (4.4)

which, when integrated over the real line, observing the vanishing boundary conditions, yields
(4.1).

Proof of (4.2)

Multiplying (2.6) by E, adding the complex conjugate of the resulting equation, and differentiating
the sum with respect to z,

[P+ V=P V= P0s] + [Wanat WWnsa) + W Po + 2[F(W)], WE + 2F(¥) [0 [2, = 0. (4.5)

Now, multiplying (2.6) by ZEG , and adding the complex conjugate of the resulting equation, one

obtains
2i[¢z¢t_¢zat] + 2 |¢z I2:z + 2F(1/)) I¢ I2z =0
which when subtracted from (4.5) gives

(VB )] = = (Pbuaet VPiec] + 302 P = [FOL 9. (46)

Integration over the real line, observing the vanishing boundary conditions, yields



10.

<[ (4, ) = Q. f W PlIm(4%,)] . da. (47)

Multiplying (4.4) by |[¢[%, we find
l¢ I4t =4 hb |2[Im(¢aa: )] z

which, together with (4.7), gives the conservation law (4.2).

Proof of (4.8)

Multiplying the GNLS (2.3) by ¥;, adding its complex conjugate and integrating with respect to
z,

S it +9:%,.)de = [1Q WP W PA+Q, 0¥ P+ Q. Im(v9,) [¢ 2] dz = 0

which may be simplified to

d 1 1 -
E f [|¢x |2_?Qq |¢ P——é_Qc hb |4 dz | = Quf I¢ IQtIm(¢¢z)dm
= 2Q, [ Im(¢9,)Im(¥¥, )] ,d=
=0
using (4.4) and in view of the vanishing boundary conditions. o

In terms of our original equation (1.1) the conservation laws are

o]
f IU |2d$ = EO

o0
f [2Im(ut,) — g [u [*] dz = E;
-0

o0

1 _. 1 1
f [qu F— 5 (20n+a) lu Pim(ui;) — —-g. lu l + lam(20m+0.)-29,] lu [’ |do = Ep.

~00

(Here, E; is half that of (4.2) ).
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5. Boundedness and Blow-up of Solutions

It is well known [4], [17] that solutions of the nonlinear Schrédinger equation with a power non-

linearity
z‘ut + Upe + QIU Ip,u =0,

evolving from a smooth initial condition, are bounded for all time if p =2, but may blow up in
finite time if p >4. We can determine sufficient conditions for boundedness and blow-up of solu-
tions of the transformed GNLS (2.6), which may be tested a priori given the values of Q., @,,
®@m, and @, and the initial condition ty(z)=4(z,0). From these we can then obtain conditions
for the boundedness and blow-up of solutions to the GNLS (1.1).

In what follows, we assume that 9¥(z,t) is a rapidly decreasing function of =, and that ¢, while it
exists, is sufficiently smooth so that all relevant integrals are well defined. We let I(t) denote
f [, Pdz for convenience.

Theorem 1

Let M=min(4E28|Q, | E;). Then the solution to the transformed GNLS (2.8) will remain
bounded if MQ,<3.

Proof of Theorem 1 :

Since ¥ = 2 [ ¥, da

WP <] Wivhdz <2 ([ Whiz)” ([ 1. paa)” = 2mp2r (5.1
Zoo
using Cauchy’s inequality. Then
[ Wlde < 2E212 [y Pdx < 2E1V2 (5.2)
[ Wlfde < 2E21V2[ lpltdz < 4B (5.3)
From the second conservation law (4.2) we have (assuming @,#0)
J Wldz < 41Qu MBI + Q.7 | (5.4)

and hence
[ Wlde < 2E21V2[ [plide < 81Q, 7Bl + 21Q, B, |Ex2IV2. (5.5)

We can use the above inequalities, together with the conservation laws, to find sufficient condi-
tions for the boundedness of I. This boundedness also implies the boundedness of ||¢|]. by (5.1).
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From the conservation law (4.3)
1 1
I——QfWldz = By + Q. [ [¥['dz
< By + 1Q. BT

by (5.2). If @, < 0 then I < E, + |Q, |E;**I'/%, which is impossible if I is unbounded. If @, > 0
then from (5.3)

[1 - %QqEOQ]I < By + 5 1Q, 15
and I must be bounded if 1 — %EOQQq > 0. Similarly, from (5.5),

IEI IQq
Ey + E'212
|Qc l o + 3 IQu I 0

[1 - 3|QuIQqE0]I<E2+

which again implies that I is bounded if 1 — |Q4E0>0 So I, and hence |[¢||co is

3 IQu
bounded if either 4Q Ey? < 3 or 8Q,E, < 31Q, |. o

Corollary 1
Assume u(z,t) is a smooth and rapidly decreasing function of x. Let M=min(4Ey8 |q, |7 1E).
Then the solution to the GNLS (1.1) will remain bounded if

M[leq - (2‘1m+(Iu)(2qm —3Qu)] S 48, o

Proof of Corollary 1 :

Replace the coefficients for the transformed system (2.3) with the corresponding ones of the ori-
ginal system (1.1), and the result follows immediately since |u |= [¢]. m)

The condition for boundedness is automatically satisfied if @, <0 or, in terms of the original
parameters, if 16¢, <(2¢,,+¢,)(2¢,—3¢,). Otherwise it imposes a smallness condition on the L?
energy of the system. The presence of the nonlinear derivative term increases the boundedness

space; if this is absent we can find sufficient conditions for blow-up of the solution.

Lemma 1

Define y(¢ f:c Im( ¢¢,)+ Qu [¢|)dz . Then y(t) = —2E, — %ch [ tdz. O
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Proof of Lemma 1 :
From (4.6) we have

(%)) ¢ = — e + $ae] + 5 e P — (). WP
Multiplying by = and integrating over the real line,
Sl (B} = [ o [Peeat Bunclde + [ 2 Frde — [ PP o Pz,
Integrating each term on the right hand side by parts, we have
J & (Possa+ ¥z )z = 3[ g, Pz
Jol. Fodz = = [ b, Fda
o WFFW)Lde = —5Q.[ Wldz — 2Q,f WP + 1@, [« ¥z

SO

L[ llm(h.) + S0 1de = ~2f 10, Pda + 2Q,[ [oPde + L@, [ Itz
= —28, - 2Q.f [oldz. o

Theorem 2

Assume ¥(z,t) is a rapidly decreasing function of =, and assume ¥ satisfies
iwt + "l":ta: + Qc |¢I2¢ + Qq |¢|4¢ =0

with smooth initial condition ¢¥y(z). Then ¢ will blow up in time T where OSTST*, for some
finite time T, if £, < 0 and @, < 0. Furthermore,

* 1 - - 2 2 2 12
T" < 5o | [ «Im(vdo,.)dz — (1] 21 )da)? — Eof a2lvoPaz) " | -
2

Proof of Theorem 2

. 4
We first note that the conditions £y < 0 and @, < 0 imply that ?QqE’02> 1. From the conserva-
tion law (4.3)

By=1—+Q,f Wiz — 2] plida
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1 1
I—2Qf WPz = By + Q[ [bl'dz <0
Since [ | [fdz <4Ey?I,

I1<0

4
[1 - ?QqE02

s0 %Q4E02> L
Now
%fg;ledex = [2?ly Prda
= 2[ a¥Im(¥, )] ,dz
= —4 zIm(y, )dz

= —4y(t).
Since y(t) = —2F,— é—Qc [ Wlde > —2E,, y(t) grows at least linearly and there exists some fin-
ite time 7" such that

li 2lylPdz = 0
fim [ s* Pz

where 0<T<T" and

td —— - 1/2
s 21E2 [fmIm(¢0¢o'z)dw - [[fxlm(¢0¢0,z)d$]2 - E2f$€2|¢o Pdx ] ]

By Weyl’s inequality,

(f woPae)” <4 f2twPas) ([ 1o, Paa)

$0
E2

I> —

4[ 2%y Pdx

Hence lim [ = oo

t—T

This implies that |}¢||. blows up in finite time. From the third conservation law, since E,<0
and ¢, <0,
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1
+Q,J loldz > 1
80 limf l¥[°dz = oo Since
t—T

JWlde < [l f lu Pdz = |W]1.0'E,

it follows that lin} ||% | |loo= 0.
t—

Corollary 2

Let u(z,t) be a solution of the GNLS with u(z,0)=ug(z). Then, if ¢,=0, u will blow up in finite
time 7', where 0<T<T*, if £y < 0 and g, < 0. Furthermore

* 1 —_ 1
T < E f z [Im(uouo,x) - Z(2Qm+Qu)Iu0 14](122

12
— 1
- f z [Im("o“o,z) - ‘4‘(2% +qu) luo |4]df¢ 2- Ezf"’2|“0 [fdz
O
Proof of Corollary 2 :
The result follows immediately if we replace % by u in the blow-up theorem. O

The conditions for boundedness and blow-up agree with the intuitive notion that if the quintic
nonlimearity dominates the dispersion, the solutions will experience explosive growth. Physically
of course, the wave amplitude cannot grow indefinitely; the assumptions under which the
mathematical equation is derived become invalid as the solution blows up, and new physical
processes must be included in the model. Nevertheless, the blow-up according to (1.1) is of physi-
cal interest as it explains the formation of "spikes” which have been experimentally observed (in
the context of optics, for example, the early stages of blow-up correspond to the self-focussing of
laser beams; see [18] for a comprehensive review of blow-up phenomena for nonlinear Schrédinger
equations). The form of the similarity solution (3.17) suggests a growth rate

ot 1eo ¢ (80274,

the same as has been suggested for the nonlinear Schrodinger equation with a simple quintic non-

linearity [19)].
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6. Numerical Experiments

We present below some numerical experiments to illustrate the results presented above. The
problems were solved using a pseudo-spectral split-step discretization and all experiments were
run on a SUN 3/160 computer. The accuracy of the computed solutions was checked by moni-
toring the change in the theoretically conserved quantities Ey, E|, and E,.

(i) The integrable GNLS equation
iy + ugy + Jufu + Julu - 2 Pu =o0.

is solved for the initial condition

u(z,0) = vlz-sech [—;—(x—IS)]exp 7 -;—(a:—15)+tanh [i—(m—w)]

+ %sech [-2—%2-(:1:—35)]exp ¢ —%(:c—35)+tanh [2712—(:10—35)]

which corresponds to two initially well-spaced solitons of the form (2.3), the one initially on the
right moving left with unit speed, the one on the left moving right with speed 1,/2. Theoretically,
the two solitary waves should emerge from their interaction with their shapes and velocities
unchanged, although they may be displaced from the position they would have occupied had the
collision not occurred. The elastic collision of the waves (Figure 1) nicely exhibits the stability of
the solitons.

(¥i) The computed solitary wave solution for the choice of coefficients
. 1 7
Zut'*'ua:a:__2“|u|2 _Zlul4u— |u|2zu_2|u|2ux=0

has the form

4
4 + 3sinh*(z —2t—15)

12
u(z,t) = [ ] exp 1¢(x,t)

+ x — 15.

#(z,t) = 2tanh™? [—;—tanh(x—2t—15)

For the initial condition ug(x) corresponding to the above, the numerical output (Figure 2) agrees
with the predicted solution of a bell-shaped solitary wave propagating to the right with speed 2.

(?1) The derived conditions for boundedness and blow-up of solutions are supported by numeri-

cal experiments, the results of which are presented in Figures 3 and 4. The initial condition for
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Figure 2 : Solitary wave solution for iu; + uz — ?lu Pu — Zlu [fu — JuPpu — 2 Pu, =0.
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both cases was the Gaussian function u(z,0) = e’

In the first test case, with the choice of parameters g, = -2, q, = —1, and g, = g, =0, the solution
remains bounded (Figure 3) in accordance with Theorem 1. In the second case, the parameters
were chosen to be g, =—2, ¢, =20, and g,, = ¢, =0, so that E;=—2.6844673 and the predicted

time of blow-up, according to Theorem 2, was T"~1.7. This bound appears to be quite loose, as

the impending blow-up is well under way (Figure 4) by time ¢ = 0.07.

=
&3
E
—] w —t—
I <=
7 q
f 7 :J’ =
~10 6 —t— =
10

Figure 8 : Decay for tu;, + uy, — 2|uPu — Jul'u = 0.

The (t(,—t)"l/4 growth rate suggested by the the similarity solution seems to hold even for this

problem (Figure 5) during the early stages of the blow-up, 0.035<¢<0.055.



Figure 4 : Blow-up for tu, + u,, — 2Ju [Pu + 20|u ['u = 0.

1.00 -
0.75 -
e |1
0.50 -
0.25 -
0.00 | | Ll I
0.00 0.02 0.04 0.06

Figure 5 : Spike evolution for tu, + tz, — 2Ju Pu + 20[u ['» = 0.
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ABSTRACT

Exact solutions of a generalized nonlinear Schrédinger equation
iut + Uz, + g, |u IQU + 94 'u I4u + iqm lu Fz“ + '.qu lu Fuz =0

are obtained by transforming the equation to one whose coefficients satisfy a sim-
ple algebraic relationship. The transformed equation also yields conservation
laws and sufficient conditions for boundedness and blow-up of solutions for the

original equation.

1. Introduction

A generalized nonlinear Schrédinger equation (GNLS)
iut + Uz, + Q. IU IQU + g, Iu I4u + iqm Iu |2zu + iqu Iu I2uz =0 (1'1)

governs the modulation of a quasi-monochromatic wave train in a weakly nonlinear, dispersive
medium. Here u(z,t) is the complex wave amplitude, 1°=—1, and the parameters g, 445 9m, and
g, are real constants. We are considering the initial value problem for (1.1) with u(z,0)=uq(z)
specified. Equation (1.1) was derived independently by Johnson [1] and Kakutani & Michihiro [2]
to describe the behaviour of the Stokes wave near the state of modulational instability.
(Although Johnson’s equation includes a term in u¢, where ¢,=|u [, this may be eliminated as
shown in [2] .} The GNLS also has wide applicability as a model equation for a large class of evo-
lutionary systems where the relevant time and space scales are greater than those captured by
the usual nonlinear Schrodinger equation with a cubic nonlinearity [3]. It contains, as special

cases, the nonlinear Schrédinger equations

i + Uy + g Jufu=0 (1.2)



b, =25yF
6, = §[4Im(v¥,) — (2gm + g + 86) W |¥.
(Here ¢ denotes the complex conjugate of ¢¥.) Under (2.1), the GNLS transforms to a new GNLS
for ¥(z,t)
W+ Voo + Qe WPY+ QWY + iQn WPt + iQy WPy, = 0 (2:2)

with

Qe = ¢

Q, = q, + 28, — 6qg, + 462
@m =qm + 46
Qu = qu-

The transformation parameter, &, is an arbitrary constant and introduces one degree of freedom
in the choice of @, and @,,. We note that the compatibility condition 0 ,,=8,, is satisfied by the
field equation for ¢, and 6 is therefore well defined by the theory of conservative vector fields.
The transformation preserves the modulus of the solution, | }= |u |, and works both ways.

The above transformation is a generalization of that used by Calogero & Eckhaus [13] and Kundu
(14] (their analyses correspond to the choice §=(g,~g,,)/4 ) to transform the GNLS (1.1), subject
to the constraint 4qq=qm2—qm ¢y, to the mixed nonlinear Schrddinger equation, which is com-
pletely integrable [15] and has N-soliton solutions [16]. Solutions for those GNLS equations which
satisfy the integrability condition are then constructed from known solutions for the mixed NLS
equation. For example, if g, =0, so that 4q, = gm2, and if g,>0, a solitary wave solution
corresponding to the one-hump soliton of the cubic NLS is given explicitly by

12
u(z,t) = [%oi sech(Va(z—ct)+p)exp i 6(z,t) (2.3)

Vag,,

$(z,t) = —;—-(:r—bt) - tanh(Va(z —ct)+u) + v

(4

a

clc
= —|=——b
*=3 [2
where b, ¢, p, and v are arbitrary constants. We note that the GNLS solution differs from the

cubic Schrodinger soliton only by the peculiarities of its phase and that the interaction of the soli-
tary waves (2.3) should exhibit the same clean interactions as the cubic Schrédinger solitons.

>0




8(x,t) = 26 [ [Hz—ct)d(z—ct) = —-i—(zq,,, + 0.)[ [z —ct)d(z—ct).

Solutions to (1.1) are then readily obtained, using the relation (2.1), once ¥(z,t) is determined.

Substituting (3.1) into the transformed GNLS (2.6), we get a cnoidal wave type equation for
J(z—ct), which can be integrated up once to obtain

Q
3

(/2 + e+

e, llp_c N Y -
f+2Qc 2Qu 62f+0—0
where C is an arbitrary constant. Defining 2= f2, z then satisfies
4Q,

3

()2 + 24 (2Q.—cQ,)2® + (2be—c)22 4+ 4Cz = 0 (3.2)
and may be solved for in terms of the elliptic functions. If C=0, these solutions can be expressed
in terms of the elementary functions and include oscillatory, singular, phase jump, and solitary
wave solutions. These are four-parameter families of solutions, with arbitrary constants b, ¢, v,
and p. The parameters b and ¢, representing, respectively, the speeds of the carrier and envelope
waves of ¢, partly determine the form of the solution. We list below some interesting cases.

Q4 < 0: Defining

3
4Q,

B = (cQu —2Qc)

n=- 42 (c2—2bc)

g
equation (3.2) becomes
()=} + Bz +7) = az¥(z—r)(z—ry).

The values of r, and r, determine the form of the solution z; solitary waves arise if r; and ry are
real and r;>r,>0. The solution to (1.1) is then

= 172 12 ¢( t) (3 3)
ulz.t) = r1 + (r,—rg)sinh*(x) xXp HOLE ’
12 12
#(z,t) = _(2"'"7“'"""). _-cs’— tanh™ [_:_?.J tanh(x) | + %(:c—bt) +v
7




2’ = A¥z + 2A°Bt) (34)
t' = A%

*

u = %u (z,t)exp 1A’B(z+A%Bt)

where

and A is an arbitrary nonzero real constant. Then, since
iu'tn+ u'z.zo-q- g lu'Pu’ + g |u” v’ + igy, |u.|23¢u'+ gy |u.|2u':. =0,
we can construct new solutions for the GNLS using the relations (3.4).

We can also use this invariance to reduce the GNLS to an ordinary differential equation. If we
think of the solutions u(z,t) as defining a manifold (u,z,t) on which the GNLS is satisfied, then
(«",2",t") must also lie on this manifold, and u "=u(z "t ")

% u exp iA?B(z+A%Bt) = u(A¥(z+2A4Bt), A%t). (35)

Differentiating Eq. (3.4) with respect to A and then setting A=1, and hence B=0, we get a first
order linear partial differential equation for u

[22'/59:—1]11=2(z+2ﬁt)u,+4tu, (3.6)

where we have, for convenience, defined 8=g¢,/q,. The characteristic equations for (3.5) are

du _ dx _dat
(21 8z - 1)u  2(z+Bt) 4t

which may be solved to yield the two invariants of the transformation
n=t"2(z-281) (3.7)
v=1tYuexp —if(z—Bt). (3.8)
Therefore the general solution of (3.5) has the form
I(v,n)=0

where T'(-,) is an arbitrary function. If we define the functional dependence as v=v(n), we see
that the necessary and sufficient form for u(z,t) to be invariant under the Galilean transforma-

tion is given by



4. Conservation Laws

Consider the GNLS transformed to (2.6) and assume that y(z,t) is a rapidly decreasing function
of z, p(z)D,¥=0 as — oo for any polynomial p(z). We have the three conservation laws

[ WPdz = E, (4.1)
[ 4Im(v,) + Q, ¥[']dz = E, (4.2)
JIW.F- %Qc Wl - -}Qq 1] dz = E,. (4.3)

We note that these laws are also valid if ¢ is periodic in z; in this case, integration is performed
over the spatial period. For the purpose at hand, however, we consider only the case of rapidly
decreasing functions on co<z <oc; henceforth, integration with respect to x is performed over

the real line, unless otherwise indicated.

Proof of (4.1)
Multiplying (2.6) by ¥ and subtracting the complex conjugate of the resulting equation,

[¢ P = 2[Im(v¥,)]. (4.4)

which, when integrated over the real line, observing the vanishing boundary conditions, yields
(4.1).
Proofof (4.2)

Multiplying (2.6) by v, adding the complex conjugate of the resulting equation, and differentiating
the sum with respect to z,

[ BVt D~ V=) + [Paaat W] + W, Po + 2[F(9)), WP + 2F(¥) W = 0. (4.5)

Now, multiplying (2.6) by 21,_02, and adding the complex conjugate of the resulting equation, one

obtains
2i[0, 9 ~¥ ] + 2[. Fo + 2F() WP, = 0
which when subtracted from (4.5) gives

Mn($%)] ¢ = — 5 Wues+ W] + 31 P = (OO IO (4.6)

Integration over the real line, observing the vanishing boundary conditions, yields
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5. Boundedness and Blow-up of Solutions
It is well known [4], [17] that solutions of the nonlinear Schrédinger equation with a power non-
linearity

fu, + u, + qlufu=0,
evolving from a smooth initial condition, are bounded for all time if p = 2, but may blow up in
finite time if p >4. We can determine sufficient conditions for boundedness and blow-up of solu-
tions of the transformed GNLS (2.6), which may be tested a priori given the values of Q,, @Q,,

@m, and @, and the initial condition ¥y(z)=v(z,0). From these we can then obtain conditions
for the boundedness and blow-up of solutions to the GNLS (1.1).

In what follows, we assume that y{z,t) is a rapidly decreasing function of z, and- that ¥, while it
© exists, is sufficiently smooth so that all relevant integrals are well defined. We let I(¢) denote
J l. Fdz for convenience.

Theorem 1

Let M=min(4E,°8|Q, |7'E;). Then the solution to the transformed GNLS (2.6) will remain
bounded if M@, <3.

Proof of Theorem 1 :

Since ¢ = 2 [ Yy, dzx

WP < 2}0 Wikl dz <2 [f 7 I’*’dw]w [f . fdx]w = 2E,'°I'~ (5.1)
—0
using Cauchy’s inequality. Then
[ Wltdz < 2EV2P2[ [ Pde < 2E21Y? (5.2)
[ Wiz < 2E,212[ |plide < 4B (5.3)
From the second conservation law (4.2) we have (assuming @,#0)
[ pldz <41Q, IP'EI + 1Q,7Ey | (5.4)

and hence
J Wltdz < 2EMV 1A Iy l'dz < 81Qu TEol + 21Q,™'Ey |[E;AIM2. ~ (5.5)

We can use the above inequalities, together with the conservation laws, to find sufficient condi-
tions for the boundedness of /. This boundedness also implies the boundedness of |}¥|]. by (5.1).
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Proof of Lemma 1 :
From (4.6) we have

1009, )} = —5 Pbeee + Whuse] + 5 W P = [FO)L P
Multiplying by z and integrating over the real line,
L[ S 1m($B. ) =~ [ 2 [Pest sl + 5[ 2 W, Podz — [ 2[F(g)], v Pda.
Integrating each term on the right hand side by parts, we have
[ 2P+ 99, )dz = 3 I, Fdz
[z, Fedz = ~ [ |y, Pdz
[ WP de = —3Q.[ Whdz = 3Q,f WPdz + Q. [z lwlde

o

L[ m(v%) + TQuWHdz = ~2f Iy, Pdz + 2Q,f Wide + LQ.[ Iofaz
= —2E, - 2Q.[ lvldz. D

Theorem 2

Assume ¥(z,t) is a rapidly decreasing function of z, and assume ¥ satisfies
Y + Y, + Q. W’F'/’ + Qq WJW’ =0

with smooth initial condition 44(z). Then % will blow up in time T where 0<T<T", for some
finite time T, if £, < 0 and @, < 0. Furthermore,

. o - v
7" < ‘22:—2 [f eim($fo.)dz — ([[ 2Im(ooe)da]? — Eyf 22Ivo Pz |

Proof of Theorem 2
We first note that the conditions E; < 0 and @, < 0 imply that :;-QqE02> 1. From the conserva-

tion law (4.3)

By=1-3Q,f wldz — o[ Wldz
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1
?Q,f Wlldz > 1
so 'lm}f |¢|*dz = oo Since
Jwldz < |Wlle' [ lu Pdz = |1¢]1LE,

it follows that ].ilI:lr W | loo= o
1=

Corollary 2

Let u(z,t) be a solution of the GNLS with u(z,0)=uy(z). Then, if ¢,=0, u will blow up in finite
time T, where 0<T<T", if E, < 0 and ¢, < 0. Furthermore

. 1 —_ 1
T < '2?2 f z [Im(“ouo,z) - -4-(29m+‘h)|u0|4]dz

1/2
— 1
- f z [Im(uouo,,) - '4-(2%. +qu) luo |4]d-’¢ 2 E2f22|u0 Pdx
a
Proof of Corollary 2 :
The result follows immediately if we replace ¥ by u in the blow-up theorem. a

The conditions for boundedness and blow-up agree with the intuitive notion that if the quintic
nonlinearity dominates the dispersion, the solutions will experience explosive growth. Physically
of course, the wave amplitude cannot grow indefinitely; the assumptions under which the
mathematical equation is derived become invalid as the solution blows up, and new physical
processes must be included in the model. Nevertheless, the blow-up according to (1.1) is of physi-
cal interest as it explains the formation of "spikes" which have been experimentally observed (in
the context of optics, for example, the early stages of blow-up correspond to the self-focussing of
laser beams; see [18] for.a comprehensive review of blow-up phenomena for nonlinear Schrédinger
equations). The form of the similarity solution (3.17) suggests a growth rate

ot oo o (t0—) ™4,

the same as has been suggested for the nonlinear Schrédinger equation with a simple quintic non-
linearity [19].
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Figure 2 : Solitary wave solution for tu, + u,, — ?Iu Pu — -Zlu Pu — luPou —2JuPu, =0



Figure 4 : Blow-up for fu, + u,, — 2|u Pu + 20u [*u = 0.
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Figure 5 : Spike evolution for fu, + u,, — 2Ju[Pu + 20Ju ['u = 0.
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