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AN EFFICIENT ALGORITHM FOR NONLINEAR MINIMAX
PROBLEMS

ANDREW R. CONN* AND YUYING LI!

Abstract. We present a new method for solving a nonlinear minimax problem. This new algorithm
exploits the structure and characterisation of the solution whenever possible. The exploitation is based
on the results that have been established in [13]. The algorithm is globally convergent with a superlinear
convergence rate. Numerical results indicate the efficacy of the new method.

Key Words. nonlinear Chebyshev approximation

AMS(MOS) subject classifications. 41A50, 65D99, 65F20, 65K05

1. Introduction. We want to solve a discrete nonlinear minimaz problem which
is written as
1.1 i i
(1.1) min max fi(z),
where M is a finite index set. We seek to find the minimum value for the mazimum
function

¥(2) = max fi(2).

For simplicity, we describe in detail our algorithm in terms of the discrete Chebyshev
problem, which is a major class of discrete minimax problems. The extensions required
for the problem (1.1) are mentioned. It is clear that a discrete Chebyshev problem,

(1.2) min max |fiz)],

could be regarded as a special case of a general minimax problem (1.1) with

M={1a2)"',m,m+1a"'72m}1

fi+m(z) = _fi(w)’ 1= 11 s,

In this paper, we are content to find a local minimum of (1.1) and we assume that a local
minimum for (1.1) always exists. We also assume that each f;(z) is twice continuously
differentiable.

Numerical methods for the discrete nonlinear Chebyshev/minimax problem are less
prolific than for the linear problem. It is well-known that the maximum function, ¥(z) =

* Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario N2L
3G1, Canada. The research of this author was supported in part by NSERC grant A8639.

! Computer Science Department, Cornell University, Upson Hall, Ithaca, NY, 14853. The research
of this author was partially supported by the U.S. Army Research Office through the Mathematical
Science Institute, Cornell University.
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max;cy fi(z), is not differentiable at kinks that arise whenever fi(z) = f;(z), i,5 €
M, ¢ # j. Therefore, traditional gradient type methods cannot be applied directly.

As is mentioned in [13] in more detail, the existing methods are essentially based
on successive linear programming or nonlinear programming techniques applied to an
equivalent nonlinear programming problem. Examples include [1], [12], [17], [19], [20],
[21], [24], [26], [28], [32] and [33].

Classical Chebyshev theory provides us with characterisations for best linear Cheby-
shev approximation. These properties uniquely determine a solution in many instances
and thus requiring approximations with these special features is likely to result in a
more eflicient technique. Indeed, such has been the experience with classical Remez al-
gorithms for best continuous/discrete linear Chebyshev approximation (see for example,
31)).

In [13], we have established a characterisation for a solution of a nonlinear minimaz
problem. These characterisations are generalizations of those for best linear Chebyshev
approximation. Hence, forcing the approximate solutions of a nonlinear minimax prob-
lem to have these properties will expedite the solution finding process, in particular for
those problems arising from the discretisation of continuous approximation problems.

The new approach proposed in this paper is different from the existing methods in
that the structure and characterisation of a solution of the minimax problem has been
used explicitly.

2. The Model Algorithm. In [13], we have given a characterisation for a solution
of a nonlinear minimax problem. We briefly summarise the main result here and the
interested reader is recommended to see [13] for the motivation and details.

DEFINITION 2.1. The vector set C = {Vf;; §'=o is called a cadre if and only if:
1. rank([Vfi,, -,V =1;
2. for any {Vf;,---,Vfi} CC, rank([Vf;,---,Vf;]) = L.

It is easy to prove the following.

LEMMA 2.2. (Lemma 20 in [13] ) C = {Vf;;}\_, is a cadre if and only if
1. rank(C) =1, and
2. there exist multipliers {\;} such that

l
EAJVfIJZO and AJ#O, j:o’...,l'
j=0

We refer to {};}, normalised by Z;':o A;j=1,if E§'=o A; #£ 0 and Ay = 1 otherwise,
as cadre multipliers.

DEFINITION 2.3. The functions {f;;(z)},— are said to be locally forming a refer-
ence set of a minimaz problem (1.1) if C = {Vf,-j}§~=0 is a cadre such that
1. The cadre multipliers {)‘j}lj=o satisfy A; >0, 3=0,---,1;
2



2. The functions {fi;(z)},—, all have the same sign.
The reference set is further called alevelled reference set if the value of each function
is the same, viz.,

fi;(2) = fi(x), for any 15,1, € C.

A local minimum of (1.2) can be characterised as follows.

THEOREM 2.4. (Theorem 31 in [13])

Suppose z* is a local minimum for a minimaz problem (1.1). Then, there erists
a set of I + 1 functions {f;;(z)},—o which is a levelled reference set at z* on the cadre
C = {Vf;;(z*)},—o with the mazimum deviation.

A reference set is a generalisation of the alternating sign property of a best Cheby-
shev approximation ([13]). Our experience with the numerical methods for linear I
problems ([5]) has shown that it is very important to computationally exploit the above
properties of a solution. The algorithm proposed in this paper is developed using this
principle.

The proposed algorithm is a descent method with a line search. The special features
of the suggested algorithm, however, are that the search directions always decrease the
maximum function and attempt to enforce the characterisation of a solution at the
same time. Since a levelled reference set with the maximum deviation characterises a
solution to a minimax problem, we attempt to compute the solution by constructing
approximate solutions with such properties.

Assume W = {ig,%1,---,%} is an index set and all the functions in W form a
reference set, not levelled. Denote

A= [vfio - Vfin tec 7Vfio - Vfit]’

Q(‘l’)T = [fio(z) - fil(z)7 fio(x) - fiz(m): ot fio(w) - fiz(z)]’

and ip € A(z,0). Here, A(z,0) denotes the indices of the active functions which are
the functions achieving the maximum value at the current point z. In other words,
A(z,0) = {i € Mlyg(z) = fi(=)}.

In [13], we have shown that it is possible to determine descent directions which
attempt to construct a levelled reference set in the neighbourhood of a cadre or reference
set. The results are summarised in the following lemmas.

LEMMA 2.5. Suppose the functions in W form a reference set which includes all
the current active functions. Then, the direction defined from W by

(2.1) v = —A(ATA) 7 &(z),

s a descent direction for all the active functions provided the reference set is not lev-

elled.



If a unit step along v is taken, $(z) + ATv = 0. Thus the functions in W would all
have the same value as the representative function, up to first order.

LEMMA 2.6. Suppose C = {Vf;,,Vfi,, -+, Vfi,} is a non-reference-set cadre with
cadre multipliers {/\j}ljzo summing to one and f; (z) achieves the current mazimum
deviation for (1.1). Then, the direction v defined on W = {0,191, -, 0} by

(22) [Vfi, — 000V, ) v = —(fi, — 0003 f;;), 15 € W,i; # do, 05 = sgn(fy;),

decreases all the active functions, assuming W includes all the active functions at z.

We build up cadres using the concept of working sets. As defined in [13], a work-
ing set is a function index set which includes all the indices of the current maximum
functions. We emphasize, however, that the working set W is not an active set in
general.

The search direction is determined from the working set. If a cadre has not been
located, in addition to decreasing the maximum function, the search direction is con-
structed to level the functions in the working set, when this is possible. The motivation
behind this levelling comes from the fact that the structure of the solution requires the
error curve to be levelled on the extreme points.

The suggested model algorithm is now outlined.

MODEL ALGORITHM

Step 1 Suppose an initial point z° is given. Set k « 0.

Step 2 [Set Up a Working Set]
The new working set W* is determined. Check if there is a cadre C*
whose indices form a subset of W*. If there is no such cadre, go to
Step 4.

Step 8 [ Construct a Levelled Reference Set ]
Check reference set conditions. If the cadre corresponds to a reference
set, compute a descent direction by levelling the reference set. Oth-
erwise, find a descent direction that attempts to construct a reference
set. Go to Step 5.

Step 4 [ Descend and Level ]
A search direction d* is found that decreases all the e-active functions
and levels the working functions in the working set W*, if possible.

Step 5 [ Line Search |
A line search is performed on %(z) along the direction d*

AR N R T

Step 6 [ Termination ]
If optimal, stop. Otherwise, go to Step 2.

The Step 3 of the model algorithm is the major part in which the characterisation
of the solution is exploited. In [13], we have indicated that Step 3 is computationally
4



possible. In this paper, we discuss how to construct a working set (§4), how to identify
cadres (§3) and how to compute a search direction when there is no cadre (§5). We also
present details of the computation, including degeneracy handling (§7). (Following [13],
the current point z* is degenerate if and only if there is a cadre C = {Vf;,, Vf,, -+, Vf;,}
such that {ig,%1,---,4} C A(z*,0)).

3. Identifying Cadres. Given a set of functions {f;,,- - -, fi, }, we discuss whether
there exists a cadre within this set. We divide cadres into two types, depending upon
whether

1 i
Z/\_.,':l, or Z/\j=0,

i=0 i=0

where {);},_, are cadre multipliers. The cadre which defines a reference set always
belongs to the first type.
It is straightforward to prove the following lemma.

LEMMA 3.1. Suppose {Vfi, —Vfi,, -, Vfi,— Vf;,} are linearly independent. Then,
the rank of the vector set {Vf;,,Vfi,---,Vfi,} is at least .

The following lemma gives, under certain assumptions, necessary and sufficient
conditions for the existence of a cadre with the sum of cadre multipliers being zero.

LEMMA 3.2. Suppose A = [Vf,, — Vi, -, Vi, — Vfi,_,] is of full rank and that
ZTVf;, # 0, where the columns of Z form a basis for the null space of AT. Then, there
ezists a cadre C C {Vfi,, Vfi, -, Vfi,} with cadre multipliers summing to zero if and
only if [Vfi, — Vi, -+, Vi, — Vfi] is rank deficient.

Proof. Suppose C = {Vfi,, -+, Vfi, }isa cadre and {ko, k1,---, k. } C {io,%1,---,ui}
with

Z’\jvfk,'=0’ E/\j=0, Aj#0, 7=0,...,v.

j=0 J=0

Then it is obvious that

(3.1) S (Vi = Vfi;) = 0.

Jj=0
From (3.1) and the assumption that {Vf;,, — Vf;,,---, Vfi, — Vf;,_,} are linearly inde-
pendent, we know that i; € {ke,---,k,}. Hence, A\; # 0 and we have

-1 .
(Vfio - Vfix) = 2 A.1'(Vfio - Vfi,-),

2

after padding with zeros if necessary. On the other hand, if we assume that {Vf; —
Vfis ++, Vfi,—Vfi,_, } are linearly independent and {Vf;,—Vf,, -+, Vfi, —Vfi,_,, Vfi,—
5



Vf:.} are linearly dependent, we have
-1
(3‘2) Vfio e Vfu = ZAJ'(Vfio - Vfi,)
=1
From the assumption that A is full-rank and Lemma 3.1, we have that
rank({Vf,-o, Vfiu ) Vf"x—x}) 21-1

Moreover, from ZTVf; # 0, and the argument that follows, we can conclude that

(33) ra.nk({Vf;o, Vfi;, ttty Vfi(—x}) =1

The above is true because, if {Vf;, Vf;,---, Vf;_,} are linearly dependent, then there
exist {);} which are not all zero such that

-1
SOV =0.

3=0

If 520 A # 0, without loss of generality, we can assume Yib A = 1. Thus, Ao =

) R A;. Hence

-1
Vfie = Z Ai(Vfi, = V).

We conclude that ZTVf;, = 0 which is a contradiction.
I YL A\ =0, we have \p = — ¥°/22 A;. Hence

7=0 F=1

=1
’\i(vfio - Vfl’j) =0

=1

which is again a contradiction to the assumption that A is full rank.
Thus, using (3.2), we obtain

! !
(3.4) D AVfi; =0, and Y A; =0,
7=0 3=0
where do =1 — 211;11 :\j,:\g =—1.
Define C = { Vfj; | :\_,- #0,7=0,...,v} Using (3.4),
rank(C) < |C] - 1.
From (3.3), we know that

rank(C) > |C| — 1.

6



Hence
(3.5) rank(C) = |C}| — 1.
Moreover

3 #0, Vfi, ec, with Y };=0.
Vfi; €C

Using Lemma 2.2, C is a cadre with the sum of the cadre multipliers being zero. O

Now, we present a lemma which tells us how to identify cadres with cadre multipliers
summing to one.

LEMMA 3.3. Suppose {Vfi, — Vfi,++,Vfi, — Vf,} are linearly independent. Then
there ezists a cadre C C {Vf;, Vfi,, -+, Vfi,} with cadre multipliers summing to one if
and only if the orthogonal projection ZTVf,, is zero, where

A= [Vfio - Vfin tee avfio - Vfi;]a zTA=o.
Proof. Since {Vf;,—Vfi,, -+, Vfi,—Vf;} are linearly independent, using Lemma 3.1,
(3.6) rank({Vf.-o, Vfin ey, Vfi,}) 2 l

The orthogonal projection of Vf;, on the null space of AT is ZTVf;,. The vector ZTVf;,
is zero if and only if there exist {};}}_, such that

! !
(3.7) )‘vaio + E A,’Vf;’. =0, Z Aj =1.
i=1 3=0

Suppose (3.7) is satisfied. From (3.6) and (3.7), rank({Vf,, Vfi,, -+, Vfi,}) = L
Let C = {Vf; | \; #0,5 =0,1,...,1}. Then, as in the argument for (3.5), C has rank
|C| — 1. From Lemma 2.2, C is a cadre. Moreover, the sum of the cadre multipliers is
one.

On the other hand if there is a cadre C C {Vf;,, Vf;,, - -, Vf;,} with cadre multipli-
ers summing to one, then, following Lemma 2.2, there exist {};} such that (3.7) holds
and then, ZTVf, = 0.

The lemma has been proved. O

With both Lemmas 3.2 and 3.3, we know whether there exists a cadre.

4. Establishment of the Working Set. A working set is a function index set
which is used to determine the current descent direction. Since we want the search
direction to decrease all the e-active functions, this working set W* is chosen to include
all the e-active functions at the current point =*. Nonetheless, there is flexibility in
constructing such a set. We have chosen to build up the working set by selecting the
functions that are maximum through iterations. This is motivated by the fact that it

7



is the extreme points that are important in determining the best approximation for a
Chebyshev approximation problem. Thus, we require that

(4.1) WE CWET U A(k, €).

Moreover, the current e-active functions are given priority over the old working functions
in forming the new working set.

However, since adjustment of the functions in the working set is necessary when
the current working set is not approaching a reference set, we use W* to denote the set
after possible modification and the rules for changing the set will be described precisely
later. Hence, in general, we require

(4.2) W* C WU A(¥e).

Assume, at the kth iteration, that a representative function f,(zx), which can be
any function f,(z) such that g € A(z*,¢), is selected. Suppose W* = {u,4;,---,4;}.
The following Jacobian matrix corresponding to W*

(4.3) A* = [Vf, — Vfy, -, Vi — Vfi)

is required, numerically to have full rank where the columns of Z are an orthnormal
basis for the null space of AT More specifically, our implementation accounts for this
numerical rank. Conceptually it is equivalent to having some tolerance on the smallest
singular value of A.

In implementation, we consider the projection Z7Vf, numerically zero if

127 Vi) < =&

where 7% is a small positive constant. Hence, if we identify cadres according to Lemma 3.3,

we have a near cadre.

Since we need the QR decomposition (see, for example [18], Chapter 6) of the
matrix A* in computing the direction (see § 5), we build up the current working set W*
as follows.

CONSTRUCT Wk:

Step 1 Set @ « Iuxn, W* — {u}, where p € A(z*,¢). t « 0.

Step 2 If A(z*,€)\ W* = 0, go to Step 3. Otherwise, let Q, be the last n — ¢
columns of @ and j € A(z*,¢) \ W*. If |Q.T(Vf. — V)| < 7o, go to
Step 2. Otherwise, go to Step 4.

Step 3 If Wk-1 \ WF =0, stop. Otherwise, let Q, be the last n — ¢ columns of
Q. If[|QTVA| < 7, stop. Let j € WAL\ W, If [ Q.7 (Vf, — V£, <
To, g0 to Step 3. Otherwise, continue.

Step 4 Let a = Vf, — Vf;. Add the column a to A* and update Q and R
accordingly. Set:

AF  [A* 6], W WFU{G), te—t4 1L
Go to Step 2.



Thus, the working set is the largest subset of WE-1U A(z*, €) (largest in the sense of
the corresponding Jacobian matrix A* being full rank), where the indices of the current
e-active functions have been entered preferentially.

Following the procedure of constructing a working set, it is clear that, if the current
point is nondegenerate and there is no cadre with cadre multipliers summing to zero,
the Jacobian corresponding to all the e-active functions is of full rank. Therefore

A(zk, e) C Wk,

Moreover, if || ZT Vf,|| < 7%, where Z = Q, for some @, then a cadre (or a near cadre)
with cadre multipliers summing to one is found.

5. Determining the Search Direction. Assume the working set at the current
point z, is

W(.’Bc) = {1:0, ctt 77:1}, and n = 9.

The desired search direction, in addition to being one of descent, attempts to enforce
the characterisation of a solution.

Before a cadre with multipliers adding to one is located, we would like the search
direction to decrease all the active functions and level all the working functions, if
possible. It is clear that d = ¢ — z., where z attempts to solve

fel;l;{}. fu(=z)

(5.1) subject to
fu(z) — ft'j(z) =0, i; € W(z.),

is the required direction. Note that p is in fact a function of . and we use it to denote
the current representative function as long as no confusion arises.

Dropping the subscript on z. to simplify the description, one may approximate
(5.1) as follows:

. 1
min Vf,,(:c)Td + EdTGd
(5.2) subject to
&(z) + ATd =0,

where

A= [Vf#(z) - Vfil(m), Vf#(z) - Vfiz(a’)’ Tt Vf#(w) - Vf,',(il:)],
Q(z) = [f#(m) - fil(z)’ f#(m) - fiz(z)’ Tt f“(:l:) - fit(w)]Tv

and G is a matrix such that ZTGZ is positive definite, where the columns of Z form
an orthonormal basis for the null space of AT.
When close to a stationary point, ZTGZ is chosen to contain the curvature infor-
mation of the working functions in the null space of AT (see §6 for details).
9



From the construction of the working set W(z), we know that A is of full rank.
Following [10], the solution to (5.2) may be written as

d=h+ v,
h=-2(27GZ) 2% (Vi (z) + Gv),
v=—A(ATA) ().

It has been suggested in [10] that one could ignore the computation of ZZ7Guv alto-
gether without significantly effecting the rate of convergence. In this case, an approxi-
mate solution to (5.2) can be written as

d=h+o,
where
h= —ZB27(Vf,(2)),
(5-3) { v = —A(ATA)'%(z),
and

B=27az.

It is clear that h is in the null space of AT while v is in the range space of A. The
direction in the null space of AT will be called the horizontal direction and the direction
in the range space of A will be called the vertical direction. We also point out that,
given W, Z and B, the value of h and v is independent of the choice of u (see [14] for
details).

We now prove that a nonzero horizontal direction k is a descending direction for
all the functions in W.

LEMMA 5.1. Assume W is the working set that defines the search direction.
Assume further that B is positive definite. Then, assuming there is no cadre C =
{Vfip, -+, Vfy}, with the cadre multipliers summing to one, such that {i,---,5} C W,
the horizontal direction decreases all the functions in W equally (up to the first order );
otherwise, the horizontal direction h defined from W is zero.

Proof. The horizontal direction defined in (5.3) is

h=—ZB (i), =i
where ZTZ = I,_;, ATZ = 0. Since B is positive definite and
KVfu(2) = (27 Vfu(2))" BT (27 Vfu(2)),
it follows that

RTVf,(z) <0, iff ZTVf, #0.
10



Since there is no cadre C = {Vf, -, Vf;,}, with the cadre multipliers summing to

one such that {ig,---,4} € W, we have, from the definition of W and Lemma 3.3,

ZTVf, # 0 and h is a descent direction for the representative function f,(z).
Furthermore, since

ATh =0, and Vf,Th=VfTh, i;eW,

any function in the working set W will be decreased by the same amount (up to first
order) as the representative function f,.

On the other hand, assuming there exists a cadre with cadre multipliers summing
to one, by Lemma 3.3, the result follows. 0O

In conclusion, the horizontal direction & is a projection of the negative gradient of
the representative function onto the null space of AT. It is always a descent direction as
long as W is not a cadre with cadre multipliers summing to one. As a descent direction,
it decreases the functions in the working set by the same amount ( up to first order ).
The horizontal direction h defined on the cadre with the cadre multipliers summing to
one is always zero.

5.1. No Cadre. If there is no cadre with cadre multipliers summing to one, we
have h #£ 0.

If there exists a cadre with multipliers summing to zero, the cadre does not corre-
spond to a reference set. In this case, although v (see §5.1 below) corresponds to level-
ling, we emphasize decreasing the maximum function. Thus, we simply take d* = h*.

When a cadre is not located, vertical directions are descent directions in most cases.
In this case, we perform the levelling process, i.e, set the search direction d = v+ k. In
the case that the vertical direction is ascending, the vertical direction is discarded and
the horizontal direction alone is taken as the search direction, specifically we define

(54) h* otherwise.

& — { R* +o* if VETv* <0

Our numerical experience shows that an ascent vertical direction is a rare occurrence.
This may be explained by the fact that the working set is constructed to approach a
reference set. In the event that ascent does occur, we consider this as an indication
that the working set is not approaching a reference set. This may be caused by some
function which will not be maximum being included in W*. Thus, the next working set
will not always include all the functions of the current working set, instead, we define

WE — WE\ T+, if VfIv* >0, where
(55) It = { {jo} if A(z*,€) CW* and f, — fj, = maxjews(fu — £3)i

0 otherwise.

Note that this is not the only way the working set is modified ( see 5.7, below).

11



5.2. Levelling a Reference Set. If the functions in the working set form a ref-
erence set, the vertical direction v* defined by (5.3) attempts to level the functions in
the working set while the horizontal direction h* (again defined by (5.3)) makes the
gradients approach an ezact cadre. From Lemma 2.5, v* is a descent direction. Thus,
d* = h* 4 v* is a descent direction (note that h* alone is also a descent direction).

5.3. Constructing a Reference Set. Suppose a cadre with multipliers summing
to one has been located within the working set. As we see in the following Lemma 5.2,
moving along v, which is defined by (2.2)

[Vfu — 000V ]To = —(fu — 0003 f;;), 3 €W, i # o,

attempts to construct a reference set. Furthermore, v is a descending direction for the
maximum function. Equivalently, we can write (2.2) as

Av = —& where
[Vf# - 0’00'1Vfi., R Vfu - UoUlVfi,]
[fu - 0'001fz'n Tty fu - UOUlfix]T'

We also modify the working set for the next iteration as follows. The cadre multi-
pliers associated with the functions in the working set are used to construct the working
set for the next iteration. The functions with positive multipliers are considered to be
the functions which should be in the working set, i.e., the correct functions. For the
functions with negative multipliers, we would like to put its negative function into the
working set. However, because of nonlinearity and the fact that the cadre and reference
set are both local properties, we prefer not to do so. Instead, the functions with negative
multipliers are simply deleted from the working set, since the functions corresponding
to negative multipliers will no longer remain e-active when the direction v is taken and
the multipliers sum to one. Thus we define

(5.6)

(=8 >>
I

Il

(5.7) W — Wk {2 <01}

The multipliers are thus used as a means to construct the working set and more than
one functions may be removed.

In [13], we have been able to prove the following.

LEMMA 5.2. Suppose W = {u,11,---,141} consists only of indices of the currently
active functions. Assume further that C = {Vf,,Vf;,,---,Vf,} is a cadre. Assume the
direction v is determined from W as in (2.2). Then:

1. all the active functions with negative multipliers will be decreased more rapidly
than dll the other active functions if the cadre multipliers sum to one, i.e.
iz X =1

2. all the active functions are decreased equally (up to first order) provided the
cadre multipliers sum to zero, i.e., E;zo A;=0.

12



Thus, if the functions in the working set are all active and the multipliers sum
to one, moving along the vertical direction initially decreases all the functions with
the negative multipliers faster (up to first order) than those with positive multipliers.
This corresponds to (possibly multiple) dropping of active functions for the equivalent
nonlinear programming problem.

Now, consider a general nonlinear minimax problem written as

R B 1)

The search direction can be computed in the exactly same way except that the reference
set, after a cadre has been located, could not be established as before. Since there
exists no negative function of a given function, the vertical direction that determines
which active functions should be dropped is not defined. Thus we now discuss how the
definition of the vertical direction is modified for the general minimax problem.

If the current maximum deviation 9¥(z*) is positive, we assume that for any given
fi(z), there exists an artificial f;1m(z) = —fi(z). The working set W* is chosen such
that

—9(z*) < f;;(z*) < P(=*), for any i; € W*.

Hence locally we can treat the problem as a Chebyshev problem and the vertical direc-
tion, defined as for the Chebyshev problem, is a descent direction.

If the current maximum deviation ¥ (z) is nonpositive, we first displace the problem
by a (local) constant 2¢(z*). We now add artificial f;ym(z) = fi(z). Of course, this
can be done implicitly rather than explicitly.

Hence, once again, locally we can treat the problem as a Chebyshev problem and
the vertical direction, defined as for the Chebyshev problem, is a descent direction for
the original minmax problem.

6. Approximation of the Hessian. In order to obtain a horizontal descent di-
rection at each iteration, B¥, an (n — I) X (n — I) matrix, is assumed to be sufficiently
positive definite.

For problems whose solutions are on a smooth valley, i.e., the number of active
functions is less than n + 1, the second order information from the nonlinear active
functions becomes significant for the fast final convergence of the algorithm. When

close to z*, B* should be a good approximation to the projected Lagrangian Hessian,
ZkTG"Z", where G* = ljzo /\;?Wf,-j(zk), the columns of Z* form a basis for the null
space of AkT, and )\jk is an approximation to the Lagrangian multipliers (which are
defined by the first order optimality conditions of the equivalent nonlinear programming
problem, see for example, [13]).

If we assume the second order sufficiency conditions hold at z* and let \* be a
good approximation to the cadre multipliers, A*, at a solution z*, (which are equal to
the Lagrangian multipliers at a solution), then the matrix Z"TG""Z", for z* sufficiently

close to «*, is positive definite, as follows from continuity arguments.
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The first order method, for example of [9], sclves the problem whose solution is
at a vertex (i.e. with n + 1 linear independent activities) with a fast asymptotic rate
of convergence since, once the correct activities are determined, one is merely using
Newton’s method (or a quasi-Newton method) to determine the unique intersection of
these activities, with the corresponding quadratic (or superlinear) rate of convergence.
First order directions are usually good descent directions when we are far away from a
stationary point and the computation of a first order direction is cheaper than a second
order direction. We choose to use the first order direction if it gives a good improvement
in the sense of constructing reference sets.

Computationally, we consider that the first order direction fails to improve the
establishment of reference sets when the working set has not been changed for v con-
secutive iterations (this may be a result of having the correct set but in this case it is
reasonable to want to accelerate convergence by using a second order direction). We ar-
bitrarily set v+ = 3 in our implementation. When failure occurs, we use the second order
information of the representative function or of all the working functions, depending on
how close we are to a stationary point of the subproblem.

Let ibase denote the number of consecutive iterations for which the working set
remains unchanged. Suppose pis a small positive constant used to measure the closeness
to a stationary point. The matrix G* is set up as follows:

~ V2 f,(z*) if ibase >« and ||Z¥" V£,|| > p,
(6.1) G* ) m TL_  AEVRF, (%) if ibase > v and || Z¥T VL, || < p,
=1 otherwise,

where )\;* is an approximation to the Lagrangian multipliers. We note that when
||ZkTVf,,|| < p, it is reasonable to expect a suitable approximation to the Lagrangian
multipliers.

Also, when G* = I, the search direction is a first order direction.

In our algorithm, we use a quasi—-Newton method to update the projected Hessian.
Suppose Z* is the orthogonal matrix such that Z*" A* = 0, where A* is defined as in
(4.3). In the implementation, we have used the extended BFGS updating given below.
Finite differences are used to initialise the approximation.

Extended BFGS Updating

1 T i
B*' = B* - ———B*s*s¥ BF 4
skT Bk gk ror y*T sk’
r r r

r

where

sk = Z""’lT(:z:""+1 —z*),
T T
y,]-c = Z+1 Vf#(mk+1) - z* ny(zk).
Assume B* is positive definite. Then B**! remains positive definite if szyf >
0. For unconstrained minimization, this condition is ensured by a line search. For
constrained minimization, however, it can not be satisfied in general. We have chosen
to skip the update if the above condition is not satisfied.
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7. Degeneracy. For a discrete Chebyshev problem, degeneracy handling is an
important part of a useful algorithm. This is because, for example in the linear case, it
is not unusual for many residuals to achieve the maximum deviation. In this section,
we discuss the handling of degeneracy in our algorithm.

Denote

W= {p,ir,-+,a}, A*=[Vii— Vi, -, Vi, — V£,

If z* is a degenerate point, the following difficulty may occur. There is more than
one cadre C = {Vf,,Vfi, -+, Vf,} satisfying W* C A(z*,0). Thus it may not be
possible to define a search direction such that it decreases the functions in all the
cadres, although we know how to define a descending direction on one cadre.

If we consider the cadres which correspond to subsets of active functions, then there
can be three types of degenerate points:

Type A there only exist cadres with cadre multipliers summing to zero;

Type B there exists a unique cadre and its cadre multipliers sum to one;

Type C there exists more than one cadre and at least one with cadre multipliers
summing to one.

A point z* is a stationary point if and only if there exists at least one reference set
consisting of active functions only.

For the degenerate points of Type A, there can not be any reference set consisting
of only the active functions. This is because, for any reference set, each of the corre-
sponding cadre multipliers is positive and the sum of them is one. Thus, the current
point cannot be optimal. For this type of degeneracy, the horizontal direction b defined
on the current working set decreases all the e-active functions, up to first order, by the
same amount.

For the degenerate points of Type B, it is possible that a reference set exists within
the active set. If there is such a reference set, then the current point is already a
stationary point. Otherwise, since there exists a unique cadre, the vertical direction v
defined on the cadre by (2.2) attempts to construct a levelled reference set. Moreover,
other maximum functions not in the cadre can also be decreased at the same time. Since
we identify cadres by a tolerance of 7%, the (numerical) degeneracy identified depends
on the tightness of 7.*. Thus, when degeneracy is encountered, we reduce it by

k
(7.1) Tc’°+1 — %

For the degenerate points of Type C, we do not know a direct way of defining
a descent direction. Following a similar approach to [6], we solve the least squares
problem:

OERH»I

l
min || Y 6; V.|l
7=0
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(7.2) subject to

i
> 0;,=1, 6;>0, j=0,---,1

3=0

Assume {)%} is the solution to (7.2). Analogous to the proof in [6], d* defined by

(7.3) d* = _Z)‘?Vfij

is a descent direction unless d* = 0, in which case we are optimal. Moreover, it is not
difficult to prove that (7.2) can be solved via a least squares problem with only simple
nonnegativity constraints [14].

8. Summary of the Algorithm. Now we give a more detailed description of the
algorithm.

Initialization: Suppose an initial point z° is given. Set k « 1, W® — 0.

Step 1 [ QR Decomposition ]

Find the working set W* C W¥-1 U A(z*, ¢), Jacobian A* and its QR
decomposition. Assume the columns of Z* form a basis for the null
space of AT

If A(z*, ¢) C W* and ”Z"TVf‘,H < 7k, go to Step 2;

If A(z*,e) C W* and || Z2*" Vf,|| > 7*, go to Step 3;

If A(z*,e)  W* and || Z¥T V.|| > 7*, go to Step 4;

If A(z*, e) € W* and ||Z"TVf,,|| < 1¥, go to Step 5;

Step 2 [ Cadre “Found” with $;cc A; =1 ] If W* is a reference set, obtain
B* = Z"TG"Z", where G* is defined as in (6.1); Compute the horizon-
tal direction h* and the vertical direction v* from (5.3); Set the search
direction d* = h¥ 4 v* and Wk — Wk,

Otherwise, compute the vertical direction according to (5.6) and set
W* using (5.7). Modify 7* by (7.1). Set d* = v*. Go to Step 6.

Step 8 [ Cadre not Found ]
Obtain B* = Z*"G*Z* where G* is defined as in (6.1). Compute
the horizontal direction h* and the vertical direction v* from (5.3).
Compute the search direction d* using (5.4). Set up W according to
(5.5). Go to Step 6.

Step 4 [ Cadre “Found” with Y ;cc A = 0]
Compute d* = —-Z"Z"TVf"f. WE — WF. Go to Step 6.

Step 5 [ More than One Cadre and at Least One with Y ;cc A; = 1]

Compute the search direction d* using (7.3). Obtain WF from {(5.7).
Set TA+! "2—:-

Step 6 | Line Search |
Perform a safeguarded line search. Set k «— k + 1. If ||d*||; < 7, and
WEF includes a levelled reference set, stop. Otherwise, go to Step 1. O
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We use quotes around “found” to emphasize that 7¥* is nonzero. The safeguards and
details of the line search are given in [14].

9. Numerical Testing. In this section, we compare the new algorithm with four
other typical methods: [7], {12], [20], [33].

The numerical results are for both minimax problems and discrete Chebyshev prob-
lems all written in the form:

(9.1) min max fi(z).

The Method of Conn. The method of [12] basically applies the active set strategy of
nonlinear programming to the equivalent form of a minimax problem. It is a globally
convergent algorithm with a superlinear convergence rate.

At each iteration, an equality constrained quadratic programming subproblem is
solved to determine the search direction. The subproblem is established upon all the
current e-active functions. The finite difference of the derivatives is used to approximate
the second order information. '

This approach essentially corresponds to the sequential equality constrained quadr-
atic programming (EQP) approach for nonlinear programming problems, using pro-
jected Hessians. However, once the search direction is determined, the line search is
done directly on the non-differentiable maximum function #(z).

Although numerical results for general nonlinear minimax problems have been rel-
atively fewer than for linear problems, to date, the available numerical results seem to
indicate that the following method ([20]) which is a combination of a linear program-
ming (LP) approach and a quasi-Newton method for a nonlinear system of equations,
works well on most types of minimax problems.

The Method of Hald and Madsen. At each iteration of the first stage, the method of
[20] requires an exact solution to a constrained linear minimax problem
: (o (T
min max {f;(z") + Vfi(z")"d}
subject to

]l < A*

in order to find the search direction. A trust region method has been incorporated to
ensure convergence.

If a solution is suspected to go through a smooth valley, i.e., the number of active
functions at the solution is less than n + 1, a switch to a second stage is made within
which a nonlinear system of equations established by the Kuhn-Tucker conditions for
the active functions is solved by some quasi-Newton method.

The entire Lagrangian Hessian is approximated by some modified secant updates.
It is possible for the maximum (z) to be increased. A return to the first stage might
be necessary.
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Under certain conditions, the method of [20] is globally convergent with a quadratic
or superlinear final convergence depending upon whether or not a quasi-Newton method
is involved.

The first stage of the method essentially corresponds to a sequential linear pro-
gramming approach (SLP), stabilized via a trust region, for nonlinear programming
problems.

The Method of Womersley and Fletcher. The method of [33] is similar to that of [12].
It is a descent method which uses an active set strategy, a nonsmooth line search and
a quasi—-Newton approximation to the projected Hessian of the Lagrangian function.
Global convergence of the algorithm has been proved. Under certain conditions,
superlinear convergence occurs.
Like that of [12], this method could be considered as belonging to the class of
sequential equality constrained quadratic programming (EQP) approaches.

The Method of Charalambous. In the approach of {7], the original minimax problem is
defined as a modified least pth objective function which under certain conditions has
the same optimum as the original problem.

9.1. Computational Costs Comparison. At each iteration, the methods of [12]
and [33] and the new algorithm require the computation of a search direction by solv-
ing an equality constrained quadratic programming (EQP) or an equality constrained
linear programming (ELP). Comparable nonsmooth line searches have been used in
the methods of Conn and Womersley and Fletcher, whereas Hald and Madsen used
the trust region method. For our new algorithm, determining a cadre and dropping
one working function, when a non-reference-set cadre is found, requires no extra work
compared with the methods of [12] and [33]. When more than one working function
is dropped, an equivalent number of QR updates are required. Since these functions
should be dropped and function evaluation is more expensive than a single QR update,
in general, this extra work is well justified. The amount of computation per iteration re-
quired by the above three methods is roughly O(n®), assuming the functions are indeed
nonlinear.

The amount of work required by each iteration of [7] is roughly the same as per-
forming a quasi—Newton step for an unconstrained function. It involves solving a linear
system of equations of dimension n x n. Hence, the amount of work per iteration is also
comparable with the aforementioned three methods.

At each iteration of [20], in stage one, a linear programming problem of size at least
n X |M]| is solved up to optimality. At each iteration of stage two, if it is ever entered,
the computation required is similar to the methods of [12] etc. However, in general,
most of the iterations are spent in stage one.

Loosely speaking, comparison of computational costs of one iteration of the new
algorithm and that of [20] is similar to the comparison between one iteration of EQP
and IQP methods.

A solution of EQP can be obtained by solving two linear systems of equations. The
18



size of each linear system is at most n. A solution for IQP, however, usually requires
iterative methods (i.e. inner iterations). Although the number of iterations are bounded
by the number of unknowns and constraints, it is potentially very large and it could
even become prohibitive for a discretised Chebyshev problem because the number of
the constraints of its associated IQP can be much larger than those of usual nonlinear
programming problems.

Therefore, considering the amount of work required per iteration, the method of
[20] is considerably more expensive than the others.

For nonlinear programming problems, the advantage of the IQP approach compared
to EQP, however, has been the iterative search for the correct active set. It can be
shown that in a neighborhood of the solution, under certain conditions, some IQP
subproblems will make the correct choice of active set, in the sense that the set of active
linear constraints at the solution of the QP is equivalent to the set of active nonlinear
constraints active at the solution of the original nonlinear programming problem ([27]).

Likewise, one would expect that the advantage of the method of [20] over that of
[12], [33] and the new algorithm is similar to that of the successive IQP method over
the successive EQP approach for programming problems, namely, it can identify the
correct active set faster. This probably is true for the methods of [12] and {33]. The
new algorithm, however, is not an active set method. It can also identify the correct
active set quickly. It achieves this not by an iterative search but by recognising the
structure of the optimum and constructively building up the reference set. Through
exploiting the structure of the Chebyshev problem and minimax problem, we are able
to retain the advantages of both the EQP approach and the IQP approach.

Finally, we remark that for a degenerate point of Type A or B, there is no extra
work required compared with that for a nondegenerate point. For a degenerate point
of Type C, we must solve a least squares problem with nonnegativity constraints.

9.2. Numerical Results. We present some limited numerical results in this sec-
tion.
For our numerical testing, the constants required by the algorithm are set as
1
=005 7w=10""? 1, = 510-5, p=0.5.

The algorithm terminates when the following three conditions are satisfied

L ||d*]lz < 7

2. Wk C A(z*, ¢);

3. Ak >0, for all j € WE.

Thus, at termination, there exists, approximately, a levelled reference set with the
maximum deviation.
The test problems include both nonlinear minimax problems and nonlinear Cheby-
shev problems.
We implicitly write a nonlinear Chebyshev problem
min |fi(z)],
T



in the general minimax form

where f,-+m(:c) = —fi(z), for 1 = 1, cee, M.
Consider the following nonlinear programming problem:

min F(2)
subject to
gi(z) 2 0) i= 2,"‘,7"’,
and the minimax problem:
min max fi(z)

zER™ 1<i<m
subject to

fl(z) = F(z)’
fi(z) = F(z) — cigi(z), 2<i<m,

where

It is straightforward to show (see [2]) that for sufficiently large o;, the optimum of the
minimax problem coincides with that of the nonlinear programming problem.

We have tested some nonlinear programming problems through the above transfor-
mation. The o parameter is set as

a; =100, 2<i<m,

which we know, a priori, is sufficiently large.

We have listed the results for the following minimax problems (their references are
also indicated): Charalambous and Bandler 1 [8], Charalambous and Bandler 2 [8],
Freudenstein and Roth [32], Colville Problem 2 [11], Barrodale, Powell and Roberts [4],
Wong 1, Wong 2 and Wong 3 [9], Rosen and Suzuki [29], Rosenbrock [30], Transmission
Problems [3], Davidon [15], Enzyme [22], El Attar [16], Hettich [32], Bard [32], Watson
[32] and Osborne [32]. The starting points used are the same as that specified in the
references.

The results for the problems Davidon, Enzyme, El Attar and Hettich, under the
column [20], are taken from [25] which describes essentially the same method as that of
Hald and Madsen.

In Table 1, we report the number of function evaluations required by our new
algorithm, under the column NM. For each problem, we have used the nomenclature
of the cited reference. The results of other methods, using a comparable stopping
tolerance, are listed for comparison where available.
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The column under the column nact indicates the number of maximum functions at
the solution.

The Rosenbrock problem is degenerate at the solution. The Watson problem is
degenerate at the starting point. The Watson problem with n = 20 is also degenerate
at the solution obtained. For the other test problems, numerical degeneracy does not
occur.

The reported results use extended BFGS updates. Similar results were obtained
using exact derivatives. From the limited numerical results, we observe that, compared
with [7], [12] and [33], the overall number of function evaluations required by the new
algorithm is much less. We also recall that the amount of computation required by the
aforementioned four methods are comparable. Hence, the new method appears to be
more efficient than that of 7], [12] and [33].

The only method that seems to be competitive with the new algorithm is that of
[20]. The number of function evaluations required by these two methods is comparable.
However, we recall that the amount of computation required per iteration demanded
by the method of [20] is significantly more than the proposed method. Thus, our new
method still appears to be preferable.

We have also tested our new algorithm on a real application problem. The problem
has 80 functions, in terms of a general minimax problem, with 40 variables. The number
of activities at the solution is 39 ( out of 80 ). Our algorithm solved it successfully in
50 function evaluations while the method of [20] failed to locate a solution.

10. Summary. The algorithm presented is a globally convergent algorithm with
superlinear convergence rate [23]. It has been developed based on the principle that
a minimax problem, in particular the Chebyshev problem, has special properties that
can be computationally exploited in both the linear and nonlinear cases.

In [13], we have given a characterisation for a nonlinear minimax problem that can
be computationally exploited. In this paper, we present the algorithm which profits
from this exploitation.

We point out that it is possible for the Maratos effect to occur for the new algo-
rithm as presently implemented. However, we have not experienced this effect for our
numerical testings. Moreover, the algorithm can be slightly modified to guarantee that
there is no Maratos effect for any problem. We only need to re-evaluate the functions
at the point z* 4 h* and compute the vertical direction using the updated values, when
one is close to a stationary point (see [14] for more details).

Finally, we point out that the algorithm can be extended to solve the constrained
minimax problem. (see [14] for more details).
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PROBLEMS n |m |nact [NM | HM [CN | WF | CL
[20] | [12] | [33] | [7]

CHARALAMBOUS & BANDLER 1|2 |3 |2 11 |11 {18 |12

CHARALAMBOUS & BANDLER 2 {2 |3 |3 6 11* |8 6

FREUDENSTEIN & ROTH 2 |2 |2 11 | 15°

COLVILLE.2 15[ 21|12 49 | 41° [275 |80 | 413

BARRODALE,POWELL et al 5 [21(5 21 |10 38

WONGI1.1 7 |5 |3 25 123 [106 |53 |107

WONG1.2 7 |5 |3 33 |29 |77 |37

WONG2 1009 |7 24 |27 120

WONG3 20 |18 |13 33 |49 318

ROSEN & SUZUKI 4 |4 |3 12 |18 |64 [37 |66

ROSENBROCK 2 12 [4 31 |21

TRANSMISSION 1 6 (11 (4 52 |21 |67 78

TRANSMISSION 2 6 |11 (4 25 |46 |80

DAVIDON 4 (203 20 |27

ENZYME 4 (225 11 |18

EL ATTAR 6 |51[7 25 |12

HETTICH 4 |5 |4 11 | 19®

BARD 3 |[15(3 10 |9°

MADSEN 2 |3 |2 17 | 13®

WATSONS6 6 (317 24 | 12b

WATSON20 20 {31139 22 | 39

OSBORNE 5 1335 10 | 31°

@ The results are obtained by using the codes in [20].
b The algorithm stopped because of round off error without obtaining a solution.

TABLE 1

Number of Function Evaluations: BFGS Updates
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