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1 Introduction

In this paper, we consider the problem of finding a local minimizer of the function

1.1 fx)
where x is required to satisfy the constraints

(1.2) c;(x)=0,1<i<m
and the simple bounds

(1.3) I€£x<u

Here fand ¢; map R" into R and the inequalities (1.3) are considered component-wise; we shall
assume that the region B={x|/<x<u} is non-empty and may be infinite. We further assume
that

AST1: the functions f{x) and the c¢;(x) are twice continuously differentiable for all xe B.

We assume that any general inequality constraints ¢;(x) =0 have already been converted into
equations by the introduction of slack variables (see, e.g. Fletcher, 1981, p.8); we wish the
combinatorial side of the minimization problem to be represented purely in terms of simple
bound constraints. We shall attempt to solve our problem by means of a sequential minimization
of the augmented Lagrangian function

(1.4) B, 20, 1) =f )+ 5. €00 A + (1124 S, 5.¢,09%,
= =1

where the components, A;, of the vector A are known as Lagrange multiplier estimates, where
the entries s; of the diagonal matrix S are positive scaling factors and where & is known as the
penalty parameter. Notice that we do not include the simple bounds (1.3) in the augmented
Lagrangian function; rather the intention is that the sequential minimization will automatically
ensure that these constraints are always satisfied.

Our principal interest is in solving large-scale problems. With a few notable exceptions (see,
for example, Murtagh and Saunders, 1980, Lasdon, 1982, Drud, 1985), there has been little
progress in constructing algorithms for such problems; this is somewhat understandable in view
of the lack of a consensus as to the “best” algorithm for solving small nonlinear programs.
Nevertheless, there are many large-scale applications awaiting a suitable algorithm.

A similar situation existed for unconstrained optimization in the early 1970’s. However,
during the past ten years, this deficiency has been redressed primarily through the development
of three important ideas. The first has been the recognition that large problems normally have
considerable structure and that such structure usually manifests itself as sparsity or low rank of
the relevant matrices. This has lead to suitable ways of storing and approximating problem data
(function, gradient and Hessian approximations), see, for example, Griewank and Toint (1982).
The second development has been the realization that, although Newton’s method (or a good
approximation to it) is necessary for rapid asymptotic convergence of an algorithm, in early
iterations only very crude approximations to the solution of the Newton equations are needed to
guarantee global convergence. In particular, the steepest descent method often makes very good
initial progress towards a minimizer. This lead to a study of realistic conditions that suffice to
guarantee global convergence of an algorithm and also of methods which satisfied such
conditions, the truncated conjugate gradient method being a particularly successful example.
This work is described, for example, by Toint (1981), Dembo, Eisenstat and Steihaug (1982)
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and Steihaug (1983). Thirdly, the development of trust-region methods (see, e.g., Moré, 1983)
has allowed a sensible handling of negative curvature in the objective function; for large-scale
problems whose second derivatives are available (contrary to popular belief, an extremely
common circumstance in many problem areas), this enables meaningful steps towards the
solution to be made when the Hessian matrix is indefinite. Significantly, these ideas have had a
important impact on the design of algorithms not only for large problems but also for small ones
(see, Toint, 1988, Dixon, Dolan and Price, 1988).

One issue that is not present in unconstrained minimization, but is in evidence here, is the
combinatorial problem of finding which of the variables lie at a bound at the solution. In active
set algorithms, the intention is to predict these variables and to minimize the function with
respect to the remaining variables. Obviously, an incorrect prediction is undesirable and it is
then useful (indeed essential for large problems) to be able to make rapid changes in the active
set to correct for wrong initial choices. Unfortunately, many existing algorithms for constrained
optimization only allow very small changes in the active set at each iteration and consequently,
for large problems, there is the possibility of requiring a large number of iterations to find the
solution. Fortunately, for simple bound constraints, it is easy to allow for rapid changes in the
active set in the design of algorithms (see, e.g., Bertsekas, 1982b, pp. 76-92, Conn, Gould and
Toint, 1988a).

Our intention here is to develop a fairly general algorithm which may benefit from the
above-mentioned advances. We have recently developed and tested (Conn, Gould, Lescrenier
and Toint, 1987, Conn, Gould and Toint, 1988a,b) an algorithm for solving bound constrained
minimization problems (problems of the form minimize (1.1) subject to (1.3)) which is
appropriate in the large scale case. Our basic idea is now to use this algorithm within an
augmented Lagrangian framework, that is to use the algorithm to find an approximation to a
minimizer of the augmented Lagrangian function (1.4) subject to the bounds (1.3) for a
sequence of different values of S, A and x. The novelty comes from being able to solve the
augmented Lagrangian problems approximately and on being able to deal with the bounds in an
efficient manner.

The augmented Lagrangian method was proposed independently by Hestenes (1969) and
Powell (1969), partly as a reaction to the unfortunate side effects associated with
ill-conditioning of the simpler differentiable penalty and barrier functions (Murray, 1971).
Indeed, Powell showed, using a very simple device, how to ensure that the penalty parameter
does not converge to zero and hence that the resulting ill-conditioning does not occur. A similar
device is employed in the algorithms that we are concerned with in this paper with the same
consequence. A concise statement of the salient features of augmented Lagrangian methods are
given, for example, by Fletcher (1981). The most comprehensive references on augmented
Lagrangians are the paper by Tapia (1977) and the book by Bertsekas (1982b). Interest in
augmented Lagrangians declined with the introduction of successive quadratic programming
(SQP) techniques but recently has gained in popularity — see for example the papers of
Schittkowski (1981) and Gill, Murray, Saunders and Wright (1986) which combines SQP with
an augmented Lagrangian merit function. Both these methods are not pure augmented
Lagrangian techniques since they perform a line search on the augmented Lagrangian as a
function of both the position, x, and the multipliers, 4, in contrast to the method described in this

paper.
One strong disadvantage of SQP methods for large-scale problems is that, although there is a
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theory of how to truncate the solution process in the early iterations (see, Dembo and
Tulowitzki, 1984) — as used so successfully in the unconstrained case — it is not clear to us how
to construct an efficient algorithm which conforms to this theory. We feel that solving a
quadratic programming problem to completion at each iteration is probably too expensive a
calculation for large-scale problems in the same way that solving the Newton equations exactly
is considered too expensive in large-scale unconstrained minimization. We thus feel compelled
to try to use an alternative to the SQP approach.

Bertsekas (1982a) and others, however, have remarked that augmented Lagrangians are
particularly attractive for large problems, where active set strategies are inappropriate and we
tend to agree with this sentiment. In this paper we explore some of the issues involved in using
an augmented Lagrangian approach for large-scale problems. We have deliberately not included
the results of numerical testing as, in our view, the construction of appropriate software is by no
means trivial and we wish to make a thorough job of it. We will report on our numerical
experience in due course.

Our exposition will be considerably simplified if we consider the special case where [;=0
and u; =<~ forall 1<i<nin (1.3). Although straightforward, the modification required to handle
more general constraints will be indicated at the end of the paper. Thus we consider the
problem:

(1.5) minimize f{x),
subject to the constraints

(1.6) c;(x)=0,1<i<m,
and the non-negativity restrictions

a.n xe B={xe R"|x=>0}.

The paper is organised as follows. In §2 we introduce concepts and definitions and then state
a pair of related algorithms for solving (1.5)—(1.7) in §3. Global convergence is established in
§4, while issues of asymptotic convergence follow in §5. An example showing the importance
of a certain assumption in §5 is given in §6, while in §7 the consequences of satisfying second
order conditions are given. We conclude in §8 by indicating how this theory applies to the
original problem (1.1)(1.3).

2 Notation

In this section we introduce the notation that will be used throughout the paper. We will use
the projection operator defined component-wise by

0ifx;<0
2.1 P L=
@D (PlxD: x; otherwise.
This operator projects the point x onto the region B. Furthermore, we will make use of the
“projection”
2.2) P(x,v)=x-P{x-v].

Let g(x) denote the gradient, V, fix), of fix) and let H(x) denote its Hessian matrix, V, f(x). Let
A(x) denote the m by n Jacobian of c¢(x), where

(2.3) c(x)=[c(x), ccerr ¢ (17,
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and let H,(x) denote the Hessian matrix, V_ c;(x), of c;(x). Finally, let g, (x,A) and H, (x, 1)
denote the gradient and Hessian matrix (taken with respect to its first argument) of the
Lagrangian function

2.4) L(x, A)=f(x)+ i/’L‘- c;(x).
=1

We note that L(x, A) is the Lagrangian function with respect to the c; constraints only. If we
define first order Lagrange multiplier estimates

@.5) Mx, 4, S, )= A+S c(x)/ 1,
we shall make much use of the identity
(2.6) V, (x4, S, 1) =8 (x, Mx, 4, S, 1) |

Now suppose that {x® >0} and {A®} are infinite sequences of n— and m-vectors
respectively, that {S ®1 is an infinite sequence of positive definite diagonal matrices and that
{1®1} is an infinite sequence of positive scalars. We shall use the notation that F® denotes the
generic function F(- ) evaluated with arguments x®, 20 s® or 4® a5 appropriate. So, for
instance, using the identity (2.6), we have

' = (K
@.7) v, 00 =V,a: 9,490,589, u®)=¢, ¥, 2%),
where we have written
(2.8) i(k) =i(x(k)’l(k)’s(k)’#(k)).
For any x®, we have two possibilities for each component x{*, namely
@ 0<xP<(V,@W),; or
2.9 .
) (V,09),<x®
In case (i) we then have
(2.10) (Pa®,V,0®)),=x®
whereas in case (ii) we have
(2.11) PP,V oWy, =V, oY),

We shall refer to anx,-(") which satisfies (i) as a dominated variable; a variable which satisfies (ii)
is known as a floating variable. The algorithms which we are about to develop construct iterates
which force P(x®, V, &®) to zero. The dominated variables are thus pushed to zero, while the
floating variables are allowed to find their own level.

If, in addition, there is a convergent subsequence {x®1, ke K, with limit point x*, we wish to
partition the set N={1,2,....,n} into the following four subsets which are related to the two
possibilities (i) and (ii) above and to the corresponding x*:

I, ={ilx ,-(") are floating for all ke K sufficiently large and x;” >0},
. 1,={i|x{® are dominated forall k € K sufficiently large},
.1
I3 ={i|x® are floating for all k € K sufficiently large but x =0} and

I,=N\(I; VI, Ul;)
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From time-to-time we will slightly abuse notation by saying that a variable x; belongs to (for
instance) /,, when strictly we should say that the index of the variable belongs to /,. We will
also mention the components of a (given) vector in the set /, when strictly we mean the
components of the vector whose indices lie in /,.

If the iterates are chosen so that P(x®, V. W) approaches zero as k increases, we have the
following result:

Lemma 2.1. Suppose x®, A®, s® gng ;t(") are as above and that P(x®, V. o®) approaches
zero as ke K increases. Then

(i) the variables in sets I, 15 and I 4 all converge to their bounds;
(ii) the components of (V, CD(")) ; in the sets 1, and I converge to zero; and

(iii) if a component of (V, o®) ; in the set I ; converges to a finite limit, the limit is zero.

Proof. (i) The result is true for variables in /, from (2.10), for those in /, by definition and for
those in /, as, again from (2.10), there must be a subsequence of the ke K for which x® is
equal to a sequence converging to zero.

(ii) The result follows for i in /, and /4 from (2.11).

(iii) This is true for i in I, as there must be a subsequence of the k € K for which, from (2.11),
(V,@%), is equal to a sequence whose limit is zero. n

It will sometimes be convenient to group the variables in sets /4 and /, together and call the
resulting set

As we see from Lemma 2.1, /5 gives variables which are zero at the solution and which may
corresponid to zero components of the gradient of the augmented Lagrangian function. These
variables are potentially (dual) degencrate at the solution of the nonlinear programming
problem.

We will let g(x) denote the components of g(x) indexed by / 1- Similarily, A(x) denotes the
corresponding columns of the Jacobian matrix; indeed any matrix M refers to the columns of the
generic matrix M indexed by /,. In addition we will define the least-squares Lagrange
multiplier estimates (corresponding to the set /)

@.2.1) Mx)=—(A@*)T§(x)
at all points where the right generalized inverse
2.2.2) A@*r=Aw) Ax AxT)™

of A(x) is well defined. We note that A(x) is differentiable; for completeness the derivative is
given in the following lemma.

Lemma 2.2. Suppose that (AS1) holds. If A(x) A(x)T is non-singular, M(x) is differentiable and
its derivative is given by

(22.3) V,Ax) == (A" H (x, Ax) - (A®) A®) ) ' R(),
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where the i~th row of R(x) is (§(x)+A(x)TA(x))TH ,(x).
Proof. The result follows by observing that (2.2.1) may be rewritten as
(2.2.4) r(x)—A(x) TAx)=g(x) and A(x) r(x)=0

for some vector r(x). Differentiating (2.2.4) and eliminating the derivative of r(x) from the
resulting equations gives the required result. u

We stress that, as stated, the Lagrange multiplier estimate (2.2.1) is not a directly calculable
quantity as it requires an a priori knowledge of x*. It is merely introduced as an analytical
device but we shall show in due course that a variant of this estimate may be calculated and
used.

We are now in a position to describe more precisely the algorithms we propose to use.
3 Statement of the algorithms

In order to solve problem (1.5)—(1.7), we consider the following algorithmic models.
Algorithm 1:
step 0 : [Initialization] An initial vector of Lagrange multiplier estimates, A, is given. The

positive constants 7]y, Ko, T<1, ®y<1, ¥, <1, 0, <1, 1, <1, a,, B, @, and B, are

specified. The diagonal matrices S, and S,, for which 0<S;’ <S8, <o, are given (the

inequalities are to be understood element-wise for the diagonal elements). Set #(0) =g,
@ =min(u?, 1), ®® =y (@), 19 =1, (@) " and k=0.

step 1 : [Inner iteration] Define a diagonal scaling matrix S® for which §;! <S® <5, . Find
x® e B such that

k K
(3.1) IPx®,V.o®)<0®.
If

32 lex®)i<n®,
execute step 2. Otherwise, execute step 3.

step 2 : [Test for convergence and update Lagrange multiplier estimates] If ®® <, and
n® <n,, stop. Otherwise, set

A®D Z W 20 g® @)y

k+1 k
g0 =y ®

(3.3) a®D =minu®?, ),
0®D = ® ( a(k+1))ﬂ., ’
n® = n® (a(k+1))l’., ,

increment & by one and go to step 1.

step 3 : [Reduce the penalty parameter] Set
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A0D) - l(k),
p =y ®
(34) a®V =min(u®D, y,),
RO @, ( oDy %
7D = o (a®Vy%n
increment k by one and go to step 1.

Algorithm 2:

step 0 : [Initialization] An initial vector of Lagrange multiplier estimates, A© is given. The
non-negative constant ¢, and the positive constants 7y, iy, T<1, ¥<1, @5 <1, 7; <1, @, <1,
n.<1, v, a,, B, and B, are specified. The diagonal matrices S; and S,, for which

0<S;l<S, <o, are given. Set u@=p;, a@=min@®,y,), ©0®=aw,@®)%,
19 =1, (@®)*" and k=0.

step 1 : [Inner iteration] Define a diagonal scaling matrix S® for which §;! <s® <§,. Find
x® e B such that

(3.5) 1P(x®, V. 0o®)<0®.
Compute a new vector of Lagrange multiplier estimates A% gp

(3.6) lex®<n®,
execute step 2. Otherwise, execute step 3.

step 2 : [Test for convergence and update Lagrange multiplier estimates] If o® <o, and
n(") <., stop. Otherwise, set

k k;
2D =y ®

04 _ A% e A% <y ()Y
AW otherwise,

3.7 a®D =min(u®*V, 1)),
0™ = p® (gD )ﬂw’

increment k by one and £0 to step 1.

step 3 : [Reduce the penalty parameter and update Lagrange multiplier estimates] Set
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1 =gy ®,

l(k-p-l) _ i(""‘l) if "i(k*'l)" < V(ll(k+l))_y
A®  otherwise,
(3.8) oD =min@®?, ),

0D = g (D)%,

a
n(k-f-l) = T’o (a(k+l)) n ,

increment k by one and go to step 1.

The motivation for both algorithms is quite straightforward. Traditional augmented
Lagrangian methods are known to be locally convergent if the penalty parameter is sufficiently
small and if the augmented Lagrangian is approximately minimized at each stage (see, for
instance, Bersekas, 1982b, §2.5). In order to ensure that the method is globally convergent, as a
last resort we must drive the penalty parameter to zero and ensure that the Lagrange multiplier
estimates do not behave too badly. The convergence of such a scheme is guaranteed, since in
this case, the iteration is essentially that used in the quadratic penalty function method (see, for
example, Gould, 1987). We consider this further in §4. In order to try to allow the traditional
multiplier iteration to take over, the test on the size of the constraints (3.2)/(3.6) is based upon
the size that might be expected if the multiplier iteration is converging. This aspect is considered
in §5.

The algorithms differ in their use of multiplier updates. Algorithm 1 is designed specifically
for the first-order estimate (2.5); the multiplier estimates are encouraged to behave well as a
consequence of the test (3.2). For large-scale computations, it is likely that first-order estimates
will be used and thus algorithm 1 is directly applicable. Algorithm 2 allows any multiplier
estimate to be used. This extra freedom means that tighter control must be maintained on the
acceptance of the estimates to make sure that they do not grow unacceptably fast. In this
algorithm, we have in mind using any of the well known Lagrange multiplier update formulae,
including the first order update (2.5) (used in algorithm 1), the least-squares update (2.2.1) and
other updates summarized, for instance, by Tapia (1977). We note, however, that some of these
updates may require a significant amount of computation and this may prove prohibitively
expensive for large-scale problems.

Both algorithms use a number of free parameters. To give the reader some feel for what might
be typical values, we suggest that for well scaled problems a,= f,= y= v= n,= @,=1,
a,= py= 1,=0.1, ,=0.9 and 7=0.01 are appropriate.

4 Global convergence analysis
In this section we shall make use of the the following assumptions.

AS2: The iterates generated by algorithms 1 or 2 all lie within a closed, bounded domain
Q.

AS3: The matrix A(x*) has column rank no smaller than m at any limit point, x*, of the
sequences {x®'} generated by algorithms 1 or 2.

Notice that AS3 excludes the possibility that /, is empty unless there are no general constraints.
In view of Lemma 2.1, this seems reasonable as otherwise we are allowing the possibility that
all the constraints and bounds are satisfied as equations at x*.
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AS4: The second derivatives of the functions f{x) and the c;(x) are Lipschitz continuous at
all points within £2.
We shall analyse the convergence of the algorithms of §3 in the case where the convergence
tolerances @, and 7, are both zero. We require the following pair of lemmas in the proof of

global convergence of our algorithms. Essentially, the results show that the Lagrange multiplier
estimates generated by either algorithm cannot behave too badly.

Lemma 4.1. Suppose that u(") converges to zero as k increases when algorithm 1 is executed.
Then the product ;t(") ll/l(") Il converges to zero.

Proof. If u(") converges to zero, step 3 of the algorithm must be executed infinitely often. Let
K={ky,k,,k,,....} be the set of the indices of the iterations in which step 3 of the algorithm is
executed and for which

@.1.1) 1® <ming', 7).

We consider how the Lagrange multiplier estimates change between two successive iterations
indexed in the set K. At iteration k; +j, for k; <k;+j<k,,,, we have

1
4.1.2) AkitD _ 4D +y sEHD o kitDy /#(k,.+[)
=1

and
(4. 1.3) u(k,'...]) =#(",' +j) =ﬂ(k.'+ 1) — T#(",‘)

’

where the summation in (4.1.2) is null if j=1. Now suppose that j>1. Then for the set of
iterations k; +1, 1 <l<}, step 2 of the algorithm must have been executed and hence, from (3.2),
(4.1.3) and the recursive definition of 7%, we must also have

Combining equations (4.1.1) to (4.1.4) and using the imposed upper bound on S ® | we obtain
the bound
Kty o Dy D k4D
&< BT P ey kit
I=1
k; k. 12 -1
4.1.5) <IA® 45, n(®) Ty (i) Pat= D
=1

k. k. -1 k.
< A% +s, no ™) 7 (1= (%) Py

k. k. -1
<A ®)+2s, nouy s,
where s, is the norm of §,. Thus we obtain that
(ki +)) 4 (ki +)) (k) 4 (k; k;,
(4.1.6) G E < on 1 ® 425, @by 5.

Equation (4.1.6) is also satisfied when j=1 as equations (34) and (4.1.3) give
ko+1), o (k+1 k). o (k;
pIRE P =1y,

Hence from (4.1.6),
k. k. (# k. k.
@.1.7) ﬂ( »l)ul( M)"STIL( ')IM( ')"+2S2 no(u( 1) a,,.

Equation (4.1.7) then gives that ;t(k" )Il/l(k") |l converges to zero as k increases. For, if we define
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k; k;
(4.1.8) ;= 1A% and B, =25, 1o @™ )™,
equations (4.1.3), (4.1.7) and (4.1.8) give that
4.1.9) @, <t1a;+1°"B; and B, =17""B;

and hence that

X -1 _
(4.1.10) 0<o < Ty +(T™) S (T 1) B,.
=0

If a,< 1, the sum in (4.1.10) can be bounded to give

@4.1.11) 0<a; <t oy +(z™) By 1(1-1' "),
whereas if o, > 1 we obtain the altemative

4.1.12) 0<a;<?(ag+7™ ' Byr(1-1"""Y),
and if &, =1,

(4.1.13) 0<a; <oy +it' B,

But, both &, and ﬂo are finite. Thus, as i increases, ; converges to zero, equation (4.1.9)
implies that 3; converges to zero. Therefore, as the right-hand-side of (4.1.6) converges to zero,

the truth of the lemma is established. u

We note that lemmas 4.1 may be proved under much weaker conditions on the sequence
{n(")} than those imposed in algorithm 1. All that is needed is that, in the proof just given,

z lex® ™)l in (4.1.5) should be bounded by some multiple of a positive power of z*.

=1
Tuming to algorithm 2, we have the following easier-to-establish result.

Lemma 4.2. Suppose that u® converges to zero as k increases when algorithm 2 is executed.
Then the product p®A®|| converges to zero.

Proof. Let K={ky, k,,k,, ...} be the iterations on which

4.2.1) MEP < vty
and consequently on which ¢+ =A%D Then, from (4.2.1),
4.2.2) PGP <y @Dy,

If X is finite, A%’ will be fixed for all k sufficiently large and the result is immediate. If K is
infinite, for any k; <k<k,,,, A® =2%*Y and y® <u“*"_ Hence, from (4.2.2)

)

By hypothesis, the right-hand side of (4.2.3) can be made arbitrarily small by chosing k; large
enough, and so ,u(") lll(") |l converges to zero. u

4.2.3) pOIAO < v

We now establish that both algorithms 1 and 2 possess a powerful global convergence
property under relatively weak conditions.

Theorem 4.3. Assume that (AS1-AS3) hold. Let x* be any limit point of the sequence {(x®}
generated by algorithm 1 or by algorithm 2 of §3 and let K be the set of indices of an infinite
subsequence of the x® whose limit is x*. Then
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() x* is a Kuhn-Tucker point (first-order stationary point) for the problem (1.5)—(1.7) and
the sequences {/i(x(") LAW g® u("))} and {A(x(") )} converge to the corresponding vector
of Lagrange multipliers A* for ke K;

(ii) the gradients V,®® converge to g, (x*,A") for ke K;

(iii) there are positive constants a,, a,, S| and an integer kg such that

(43.1) 1Ax®, 49,59, 4®)-2"I1<a; 0® +a,Ix® —x|,
(4.32) 1Ax®) =A< ay e ® x|

and
(433 lecl<s; (@000 +uOIAP -2%1+a,1P 1P -27))

for all k2K0, (ke K).

Proof. As a consequence of AS1 and AS3, we have that for ke X sufficiently large, A(x("))+
exists, is bounded and converges to A(x*)*. Thus we may write

4.3.4) IAx®) ") I<a,

for some constant a; >0. As the variables in the set /, are floating, equations (2.7), (2.8), (2.11)
and the inner iteration termination criterion (step 1) give that

(4.3.5) 18:®)+Ax®)TAP < 0®.

Define A* =A(x"). By assumption, A(x) is bounded for all x in a neighbourhood of x*. Thus we
may deduce from (2.2.1), (4.3.4) and (4.3.5) that

IA® - 2P)i= 1Ax®) ") g ®)+ 1)
(4.3.6) =IAE*MT@EE®) +Ax®)TA))
<IAx*) NN 0® <a,0®

Moreover, from the integral mean value theorem and lemma 2.2 we have that
1

43.7) Mx®)-Ax*)= j V, Ax(s))ds-(x® —x*),
0

where V, A(x) is given by equation (2.2.3) and where x(s)=x(") +s(x* —x(k)). Now the terms
within the integral sign are bounded for all x sufficiently close to x* and hence (4.3.7) gives

(4.3.8) AR - A%< a,llx® —x*|

for some constant a, >0, which is just the inequality (4.3.2). We then have that Ax®)
converges to A*. Combining (4.3.6) and (4.3.8) we obtain

@39 MO -2"1<iA® - 2D +1M®) -2 I<ay 0P +ay e ® x|,

the required inequality (4.3.1). Then, since by construction o™ tends to zero as k increases,
(4.3.1) implies that i@ converges to A* and from (4.3.5) we have that

(4.3.10) g (", AN =g(x")+A(x")TA" =0.
Moreover, from the identity (2.6), V,®® converges to g, (x*,1"). Furthermore, multiplying
(4.3.9) by 1™ and using (2.5), we obtain (4.3.3), where s, is the norm of S . We also have that

(4.3.11) c(x*)=0.

October 1988 11



12

To see this, we consider two separate cases.

@) If u® is bounded away from zero, step 2 must be executed every iteration for k
sufficiently large. But this implies that (3.2) is always satisfied (k large enough) and n®
converges to zero. Hence c(x(")) converges to zero.

Gi) If ,u(") converges to zero, lemma 4.1 for algorithm 1 and lemma 4.2 for algorithm 2 show
that £®@JA® —A*|| converges to zero. But then, inequality (4.3.3) gives the required
result.

Finally, we consider the status of the variables in the sets I, /, and /5. Lemma 2.1 and the
convergence of chb(") to g, (x*,A") show that the complementary slackness condition
4.3.12) g (x", A x* =0

is satisfied. The variables in the set /, are, by definition, positive at x*. The components of
g, (x*,A") indexed by 7, are all non-negative from (2.9) as their corresponding variables are
dominated. This then gives the conditions

x>0 and (g, (x*,1"));=0 foriel,,
4.3.13) x!=0and (g,(x*,A"));20 foric I, and
x;=0and (g, (x",A"));=0 foriels

Equations (4.3.11) and (4.3.13) thus show that x* is a Kuhn-Tucker point and A* are the
corresponding set of Lagrange multipliers. Hence the theorem is proved. u

Notice that theorem 4.3 would remain true regardless of the actual choice of {w® } provided
that the sequence converges to zero.

§ Asymptotic convergence analysis

We now give our first rate-of-convergence result. It is inconvenient that the estimates
(4.3.1)(4.3.3) depend upon |Lx(") —x"|l. The next lemma removes this dependence and gives a
result similar to the classical theory in which the errors in x are bounded by the errors in the
multiplier estimates IA® —A*|, (see Bertsekas, 1982b, p.1C8); however, as an inexact
minimization of the augmented Lagrangian function is made, a term reflecting this is also
present in the bound. Before giving our result, we need to make an extra assumption.

We use the notation that, if J, and J, are any subsets of N, H L(x‘,/".‘)[,1 J,] 18 the matrix
formed by taking the rows and columns of H (x*,A") indexed by J, and J, respectively and
A(x")[,l] is the matrix formed by taking the columns of A(x") indexed by J,. We use the
following assumption

ASS: Suppose that (x*, A*) is a Kuhn-Tucker point for problem (1.5)—(1.7) and that
Jy={il(g (x*,A"));=0 and x" >0}
(5.1.1) . . .
Jy={il(g,(x",A"));=0 and x; =0}
Then we assume that the matrix

H (x", 2, ATy,
Ax") 0

is non-singular for all sets J, where J is any set made up from the union of J, and any
subset of J,.
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We note that assumption ASS5 implies AS3. Furthermore, any point satisfying the well known
second-order sufficiency condition for a minimizer of (1.5)—(1.7) (see, e.g., Fletcher, 1981,
Theorem 9.3.2) automatically satisfies ASS (see, e.g., Gould, 1985).

Lemma S5.1. Suppose that (AS1) and (AS4) hold. Let {x(")},ke K, be a subsequence which
converges to the Kuhn-Tucker point x* for which (ASS5) holds and let A* be the corresponding
vector of Lagrange multipliers. Assume that {A®},ke K, is any sequence of vectors, that
{S (")},ke K, is any sequence of diagonal matrices satisfying 0<S; 1<s® <8, <o, and that
{u(")},ke K, form a non-increasing sequence of positive scalars, so that the product
u(") IA® — A*|| converges to zero as k increases. Now, suppose further that

(5.1.2) 1P(x®, v, oWy < 0®

where the ©® are positive scalar parameters which converge to zero as ke K increases. Then
.. - . o (kg) -
there are positive constants [, a4, a4, ds, dg and s, and an integer value k, so that if u( Y<i

then

(5.1.3) Ix® —x*|<a; 0P +a,u®PA® - 1%,

(5.14) 1Ax®,29,5®, 4®) - 2*|<as0® +a,u®A® - 2%
and

(5.1.5) leN<si(as0® p® +@® +agw®)?NA® -271

forall k2k, (ke K).

Proof. We will denote the gradient and Hessian of the Lagrangian function at the limit point
(x*,A%) by g/ and H; respectively.

We first need to make some observations concemning the status of the variables as the limit
point is approached. We pick & sufficiently large that the sets /, and /,, defined in (2.12), have
been determined. Then, for ke K, the remaining variables either float (variables in /) or
oscillate between floating and being dominated (variables in /,). Now pick an infinite
subsequence, K of K such that:

(ii) variables in / are floating for all ke K; and
(iii) variables in I, are dominated for all ke K.

Notice that the set /5 of (2.12) is contained within /. Note, also, that there are only a finite

number (< 2"") of such subsequences K and that for k sufficiently large, each ke K is in one
such subsequence. It is thus sufficient to prove the lemma for ke K.

Now, for ke K, define
(5.1.6) Ip=1,Ulgand Ip=1,01;
So, the variables in /I are floating while those in /, are dominated. We may deduce that

(.1.7) 1A% =2 I1<a, 0P +a,Ix® —x*|
and

(5.1.8) lee®<s, (@, 0P u® +pPIA® — 2%+ a,uPx® —x*|)

for all sufficiently large k€ K in exactly the same way as we established equations (4.3.1) and
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(4.3.3) in the proof of theorem 4.3. Moreover, 1*) converges to 4" and hence V, ®® converges
to g, . Therefore, from lemma 2.1,

(5.1.9) x! =0 forall ie I, and (g;),;=0 forall ie I.
Using Taylor’s theorem,
VoW =g 4 40T O
x
=g(x")+Hx")x® -x*)+Ax")TA®
m
(5.1.10) +YAPH,aHa® —x")+r (@, 27, A9)
1

=g, (", AN +H, (", AP —x")+A)TAP - 1Y)

+r, «®,x* A%+ ra(x®,x*, 19,2%),

where
1
G.111) r,e®,x*,2%)= J(HL(x(k) +50"=x®), A9y —H, (x*,A9) x® - x*) ds
0
and
(5.1.12) ra(x®,x*, 1%, /’L'):é(ij(k) -A; )Hj(x')(x(k) -x*).

The boundedness and Lipschitz continuity of the Hessian matrices of f and the c; in a
neighbourhood of x* along with the convergence of 1% to A* then give that
Iy e ®,x", A9 <aq Ix® —x*|1?
(5.1.13) and
Iy ®,x%, A%, A" <aglxc® —x* A% - 47|

for some positive constants a, and ag. In addition, again using Taylor’s theorem and that
c(x*)=0,

(5.1.14) c(x®)=A@E")(x® —x*)+r,(x®,x"),
where
1 1
(5.1.15)  (r;(x%®,x*));= jsj(x(k) —x)TH " +1s(x® —x*))x®P —x*) dr ds
00

(see Gruver and Sachs (1980, p.11)). The boundedness of the Hessian matrices of the c¢; in a
neighbourhood of x* then gives that

(5.1.16) lIr3(x®, x" )< agle® —x*|?
for some constant a4 >0. Combining (5.1.10) and (5.1.14) we obtain

Hy (", A%) A""(f)) <x<">—x‘ ) _ (Vﬁ"‘)-&("*»”)) _ (’1 +'2)

(5.1.17) < A G 0 10 _ g+ c(x®) ry
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where we have suppressed the arguments of r,, r, and r, for brevity. To proceed further, we
introduce the notation that y,, is the vector formed by taking the components of the vector y
indexed by the set J. We may then rewrite (5.1.17) as

* % * qx T, * (] *

- - * * T/, *
HL(x , A, )[’D"F] HL(x ’ l )HD’ID] A (x )[]D] (x(k))[lD]
A(x.) . A(x-r) ; 0 i(k) —2A*
(5.1.18) el ’ o
(Vx¢( ))[l’:] (rl +7'2)[]F]
= (V,@® g, ", AV | = | 147y,
c(x(")) rs

using (5.1.9). Then, rearranging (5.1.18) and removing the middle horizontal block we obtain

* T, * k
HiG Ay Ay | (6P =xDy,

A(X‘)[[F] 0 i(k) —1*
(5.1.19) ® - ®
( Vx¢ )[IF] -HL(x ) A )['F'ID] (x )[’D] (rl +r2)[IF]
k * k)
C(x( ))_A(x )[ID](x( ))[ID] r3

Roughly, the rest of the proof proceeds by showing that the dominant term on the right-hand
side of (5.1.19) is the first term and, moreover, that this term is o0(@®y+owu® 1A% =2*D.
This will then ensure that the vector on the left-hand side is of the same size, which is the result
we require. Firstly observe that

(5.1.20) lx l(ll?; NS o®,
from (2.10) and (5.1.2) and
(5.1.21) IV, 2®)y 1< 0®,

from (2.11). Consequently, again using (5.1.9),
(5.1.22) ® —x" 1< ® -x")y 1+ 0®.

Let Ax® =[x® —x"); Il and 4A% =IA® — 4*|.. Combining (5.1.7) and (5.1.22), we obtain
(5.1.23) AP <a,0® +a,%,

where a,=a, +a,. Furthermore, from (5.1.13), (5.1.16), (5.1.22) and (5.1.23),

(ry +r2)[,F]
T3

where a, =a;+ag+aga,, a,,=2(a;+aq)+ag(a,g+a,) and a;3=a;,+ag+aga,,.
Moreover, from (5.1.8), (5.1.20), (5.1.21) and (5.1.22),

( Vx ¢(k))[[F] _HL(x‘s l‘)[IF,ID](x(k))[ID]

(5.1.25) cx®)-AE") D)y,

(5.1.24) <a (x®)? +a,6P 0P +a,,(0®)?,

aMw(k) +5, (,u(k) lm(k) At "+a10w(k)#(k) +a2ﬂ(k)Ax(k)),

where
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(5.1.26) | 4=

HL(X‘, A")[IF’ID]
A(x')[,D]

By assumption ASS, the coefficient matrix on the left-hand side of (5.1.19) is non-singular. Let
its inverse have norm M. Multiplying both sides of the equation by this inverse and taking

norms, we obtain
K _ =
(x X )[,F]
A

+a,u® Ax®) +a,,(4x®)? +a,, 6P 0P + a5 (0®)?]

<Mla,;,@® +s, WPIAP - A*|+a, 0@ u®
(5.1.27)

Now, suppose that k is sufficiently large that
(5.1.28) o® <min(1,1/(4Ma,)).
Furthermore, let '
(5.1.29) A=min(1,1/(4Ma,s,)).
Then, if #® <, (5.1.27), (5.1.28) and (5.1.29) give
(5.1.30) AP <A ® +M(a s 0P +5, uPIAR — 2% +a,,(axP)?),
where a,5=5,a,q+a;;3+ay,. Thus
(5.131)  HMx®)=Ma,;(A4xP)? -1 x® +M(a ;5 0% +5, p@IAP -2 |) 20,
a quadratic inequality in Ax®_ Now consider ¢(Ax(")) in detail. For convenience, write
«a) =aa? —ba+c. Then

(a) a and b are positive constants while ¢ is positive and approaches zero as k increases.
Therefore, ¢(0)=c is also positive.

(b) &) is convex and attains its smallest value c—(b2/4a) at a,, =b/2a. This smallest
value is negative for all k sufficiently large, and hence ¢(a) has two positive real roots for
such k. Inequality (5.1.31), and the fact that Ax® approaches zero as k increases then
imply that Ax® is no larger than the smaller of these two roots, ¢; say, for all ke K
sufficiently large.

(c) Let y(@) be the linear function which interpolates ¢(@) at the values a=0 and a=a,;, .
Then y(a@)=c—1lba. As ¢ is convex, y(@) 2 ¢ ) for all azbetween 0 and ¢, ;,. Hence, a,
is no larger than the root a=2c/b of y(a)=0. Hence inequality (5.1.31) gives that

(5.1.32) AW <2c/b=aM(a;s0® +5, p®PIAP —A7)).
Writinga; =4Ma s +1 and a, =4 M s, we obtain the desired inequality (5.1.3) from (5.1.22)
and (5.1.32). Now, using (5.1.3) and (5.1.7), we obtain (5.1.4), where a5=a, +a,a,; and
ag=a,a,. Finally, (5.1.5) follows from (5.1.4) by substituting for A%, using (2.5), and
multiplying the inequality by x®. =
We can obtain the following simple corollary.
Corollary 5.2. Suppose that the conditions of lemma 5.1 hold and that A% any Lagrange

multiplier estimate for which

A (k+1 *
(5.2.1) 1A% A% 1<a 4k ® —x"[+a,; 0@,
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for some positive constants a ¢ and a |, and all ke K sufficiently large. Then there are positive
constants 1, a,, a,, ds, ag, S, and an integer value k, so that ifu(k") <[ithen (5.1.3),
(5.2.2) IASD — 2% 1<as0® +au®@Ia® — 27|
and (5.1.5) hold for all k2k, (ke K).
Proof. Inequality (5.2.2) follows immediately from (5.2.1) and (5.1.3). u

We now show that the penalty parameter will normally be bounded away from zero in both
algorithms 1 and 2. This is important as many methods for solving the inner iteration
subproblem will encounter difficulties if the parameter converges to zero since this causes the
Hessian of the augmented Lagrangian to become increasingly ill conditioned.

Theorem 5.3. Suppose that algorithm 1 or 2 of §3 converges to the single limit point x", that
(AS1), (AS4) and (ASS) hold, that a, and B, satisfy

(5.3.1) a,
(5.3.2) Bp<min(1, B,)

and that (5.2.1) holds for all k sufficiently large when algorithm 2 is used. Then there is a
constant 1>0 such that u(") 2 U for all k. ‘

<a=min(i, a,)

Proof. Suppose, otherwise, that /1(") tends to zero. Then, step 3 of the algorithm must be
executed infinitely often. We aim to obtain a contradiction to this statement by showing that step
2 is always executed for k sufficiently large.

Firstly, we show that the sequence of Lagrange multipliers {1} converge to 1*.

Consider algorithm 1. The result is clear if step 2 is executed infinitely often as each time the
step is executed, A* =1% and the inequality (4.3.1) guarantees that A®® converges to A*.
Suppose that step 2 is not executed infinitely often. Then IA® = A1*|| will remain fixed for all
k2k, for some k,, as step 3 is executed for each remaining iteration. But then (4.3.3) implies
that ||c(x(") M<ap, u(") for some constant @, forall k=2k,2k;. As ,u(") converges 1o zero as k
increases, a7 ;t(") < no(u(")) % = 7)(") for all £ sufficiently large. But then inequality (3.2) must
be satisfied for some k>k,; which is impossible as this would imply that step 2 is again
executed. Hence, step 2 must be executed infinitely often.

Now consider algorithm 2. The result is clear if the multipliers updates are accepted infinitely
often, as each time the update is performed 280 = 16D ang assumption (5.2.1) guarantees
that 1**0 converges to A*. Suppose that the update is not accepted infinitely often. Then for all
k sufficiendy large, IA%V)>v(u*?P)7 which implies that A% diverges. But this
contradicts assumption (5.2.1) and hence A® converges to A*.

Therefore ,u(") IA® — 1*|| tends to zero as k increases for both algorithms.
Let k, be the smallest integer for which

(5.3.3) uP <y <1
forall k=k,. Now let o® be as generated by either algorithm. Notice that, by construction and
inequality (5.3.3),

(5.3.4) o® <oy (u®)%

for all k>k,. We shall apply lemma 5.1 or corollary 5.2 to the iterates generated by the
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algorithm; we identify the set K with the complete set of integers larger than &, and the scalars
u® with the set of penalty, parameters computed in steps 2 and 3 of either algorithm. Therefore
we can ensure that 4@ is sufficiently small so that lemma 5.1 applies to step 1 of algorithm 1 (or
corollary 5.2 to step 1 of algorithm 2) and thus that there is an integer k£, and constants as, a4
and s, so that (5.1.4)/(5.2.2) and (5.1.5) hold for all k>k,. Let k, be the smallest integer such
that

wyl-a, . Mo

(5.3.5) ®™) Ty s, (as+2)’

- . 1 Ny
5.3.6 ®y!~Pn < min [ —, ,
630 ®) ag @5 (as+2a)

and, if algorithm 2 is used,
(5.3.7) w®rs—Y
A1+ wya g

where a3 =as +ag. Notice that (5.3.3) and (5.3.6) imply that

(5.3.8) pP<@u®y P L
a3 G

for all k2 k5. Furthermore, let k£, be such that
(5.3.9) IA® -A* 1< w,

for all k>k,. Now define kg =max(k,,k,,k3,k,), let I"be the set {k| Step 3 is executed at
iteration k—1 and k>ks} and let £ be the smallest element of I. By assumption, I has an
infinite number of elements.

If algorithm 2 is used, inequality (5.2.2) gives that

2 (k1 *
IAEPU<IA"I+a50® +ag n®@12® -27)

<IN+ as0ow®)*® +a, pPIA® - 47| (from (5.3.4))
(5.3.10) <IA* N+ oy (as(u®@)  +aq u®) (from (5.3.9))
<IN+ wga,5(n®) (from (5.3.1))
<A1+ @gayg (from (5.3.3))

< vty
for all k> ks, the last inequality following from (5.3.7) and because ﬂ("“) S;t("). Hence, the
multiplier update AkD = 0D algorithm 2 will always take place when k2k .

For iteration k), (o(k") =, (;t(k"))a“' and n(k°) = no(y(k"))a". Then (5.1.5) gives
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e s s, (@ +agu )M -1+ 050" 1)
<s1(2;¢"‘°’||/1"‘°’ Al+as0® 1) (from (5.3.8))
(5.3.11) <5, Qg™ +a;0,u’ )t %) (from (5.3.9))
<wy s, (ag+2)u’ (from (5.3.3))
<o) =p* (from (5.3.5)).

Thus, from (5.3.11), Step 2 of algorithm 1 or the same step of algorithm 2 will be executed with

AkotD _ J*0 3¢9 ko) Ky o g%t _ 2ko*D rospectively. Inequality (5.1.4)/(5.2.2)

in conjunction with (5.3.1), (5.3.4) and (5.3.9) guarantee that
5312 A% -2%<a5 0% +ag s — 1< 0 a5 1)
We shall now suppose that step 2 is executed for iterations k +i, (0<i <)), and that
(5.3.13) e N N S

Inequalities (5.3.11) and (5.3.12) show that this is true for j=0. We aim to show that the same is
true for i=j+ 1. Under our supposition, we have, for iteration k, +j+ 1, that ;t(k° D ﬂ("‘)),

w(ko+j+l) =w0(}l(ko))ﬂo(i+l)+am and n(ko+j+l) 770(ll(ko) B (]+1)+a" Then (5.15) giVCS
"c(x(ko+j+ l))" SSI((/l(ko +j+1) +a6(lu(ko +j+l))2)"2'(ko+j+ 1) —2,‘ "

+asw(ko+j+l) ﬂ(ko+j+l))

<s, oDkt i) _ 5o
+a bt y%otit D, (from (5.3.8))

(5.3.14) <5, Qogau® @) P

+ag (o) %et PatDH1y (from (5.3.13))

<5, Qugagu’® @) +Pd (from (5.3.1),(5.3.2)
+a5 0’0 St P and (5.3.3))

<y sy (a5 +2a,)*) a0 e (from (5.3.3))

(ko))ﬂﬂ(j+1)+ oy _ n(ko +j+1)

<o (from (5.3.6)).

Thus, from (5.3.14), step 2 of algorithm 1 or the same step of algorithm 2 will be executed with
/l(ko+j+2)= j,(x(k°+j+l) /1(,‘°+j+1) S(k0+j+l) #(ko+j+l)) ﬂ,(k°+1+2) ﬂ.(k°+j+ 2)

Inequality (5.1.4)/(5.2.2) then guarantees that

respectively.
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ko+j+2 ko+j+1 ko+j+1 ko+j+1
“1( ot/t )—l'IISasa)( ot/ t+ )+a6ﬂ( ot/+ )“l( otJt )—l‘"

< Wyds (ﬂ(ko) ) a,+B,0+1)
+wgaga )P (from (5.3.13)
(5.3.15) <wyag () *+Pau+D (from (5.3.1), (5.3.2)

+woaga1 @@ P and(5.3.3)
= wo(as +aga (1) Pryt) *Aal+D

< wy(ag+ag)pe)*+Pal+D (from (5.3.6))
— 0y ayy )P0+

which establishes (5.3.13) for i=j+ 1. Hence, step 2 of the appropriate algorithm is executed for
all iterations k2 k. But this implies that I"is finite which contradicts the assumption that step 3

is executed infinitely often. Hence the theorem is proved. u

Notice, in particular, that if algorithm 2 is used with A®D chosen as either the first order or
least-squares multiplier estimates, the penalty parameter £ will stay bounded away from zero.
This follows directly from theorem 5.3 because of the inequalities (4.3.1) and (4.3.2).

Our definition of floating variables has a further desirable consequence if we make the
following additional assumption.

ASG6: (Strict complementary slackness condition) If the iterates x® keKk, converge to the
the limit point x* with corresponding Lagrange multipliers A*, we assume that the set

(54.1) J,={il(g,(x*,A%));=0 and x; =0}

is empty.

Notice that if inequality constraints c¢;(x)=0 have been converted to equations by the
subtraction of slack variables (i.e, rewritten as c¢;(x)-x,,;=0,x,,; 20), this statement of strict
complementary slackness is equivalent to the more usual one which says that no inequality
constraint shall be both active (the constraint function vanishing) and have a corresponding zero
Lagrange parameter (see, e.g., Fletcher, 1981, p.51). For it is easy to show that the Lagrange
parameter for such a constraint is precisely the corresponding component of the gradient of the
Lagrangian function. A constraint being active and having a corresponding zero Lagrange
parameter is thus the same as the slack variable having the value zero and its corresponding
element in the gradient of the Lagrangian function vanishing so the latter is excluded under
AS6.

Theorem 5.4 Suppose that the iterates x®, kek, converge to the the limit point x* with
corresponding Lagrange multipliers A", that (AS1-AS3) and (AS6) hold. Then for k sufficiently
large, the set of floating variables are precisely those which lie away from their bounds at x* .

Proof. From theorem 4.3, V, ®® converges to g, (x*, A*) and from Lemma 2.1, the variables in
the set /5 then converge to zero and the corresponding components of gL(x‘,l*) are zero.
Hence, under AS6, /5 is null. Therefore, each variable ultimately remains tied to one of the sets
1, or I, for all k sufficiently large; a variable in /, is, by definition, floating and converges to a
value away from its bound. Conversely, a variable in /, is dominated and converges to its
bound. u

October 1988



As a consequence of theorem 5.4, the least-squares multiplier estimates (2.2.1) are
implementable. By this we mean that if A®® and §® are the columns of A(x®) and components
of g(x(")) corresponding to the floating variables at x® respectively, the estimates

(5.4.2) j’(k)=_(A(k) +)Tg-(k)

are identical to those given by (2.2.1) for all & sufficiently large. The estimates (5.4.2), unlike
(2.2.1), are well defined when x* is unknown.

We conclude the section by giving a rate-of-convergence result for our algorithms. For a
comprehensive discussion of convergence, the reader is referred to Ortega and Rheinboldt
(1970).

Theorem 5.5. Under the assumptions of Theorem 5.3, the iterates x®, the Lagrange multiplier
estimates A® of algorithm 1 and any i satisfying (5.2.1) for algorithm 2 are at least
R-linearly convergent with R-factor at most ﬁmm P "), where l=min[y,, 1] and where 1 is

the smallest value of the penalty parameter generated by the algorithm in question.

Proof. The proof parallels that of Lemma 5.1. Firstly, for k sufficiently large, Theorem 5.3
shows that the penalty parameter u(") remains fixed at some value /, say, and, for all subsequent
iterations inequalities (3.2)/(3.6) and .

(5.5.1) o®D = (ﬁ)ﬁm o® and n®D = (;Z)ﬁ" n®

hold. Then, from (3.2)/(3.6), (5.1.20) and (5.1.21), the bound on the right-hand side of (5.1.25)
may be replaced by a,,@® +n® and consequently

(5.5.2) P <M, 0% +1® +a,,(xP)? +a,,46P 0P +a 5 (0®)?).
Hence, if k is sufficiently large that
(5.5.3) o® <min(1,1/(2Ma,,)),
(5.5.2) can be rearranged to give
(5.5.4) YAxP)=Ma,, (4x®)? -3 Ax® + M(a,y 0P +1nP) 20,
where a9 =a,; +a,,. This is of the same form as ¢ in (5.1.31) and implies that
(5.5.5) ¥ <aM(a,g0® +n®)
in the same way that (5.1.31) gave (5.1.32). But then (5.1.22) and (5.5.5) give
(5.5.6) Ie® —x*l|<ay0® +a,,n®,
where ayy=1+4Ma g and a,; =4M. As, by assumption, f, <1, (5.5.1) and (5.5.6) show that

x® converges at least R-linearly, with R-factor 1™"?»#? 1o x*_ That the same is true for 1®
and A® follows directly from (5.1.7)/(5.2.1) and (5.5.6). u

6 An example

In Theorem 5.3, we showed that, if there is a unique limit point for the iterates generated by
the algorithms, the penalty parameter u(") is necessarily bounded away from zero. We now
show that, if there is more than a single limit point, it is indeed possible for the penalty
parameter to become arbitrarily close to zero.

We consider the problem
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6.1) minimize x
X

subject to the single constraint
6.2) x?-1=0,
for some o> 0. This problem has two stationary points, namely

6.3) (1A =(1,7) and (x3°43)=(1,- 2).

No bounds appear in the problem, and hence P(x®, V, #®)=V_&® for all k. (Of course,
strictly we have not yet defined our algorithms for such a case — this case is covered in §8;
however, we might think of (6.1)—(6.2) as resulting from a transformation of variables where the
non-negativity constraint has been shifted so as to play no role here). For simplicity, we choose
S® =] for all k, and it can be verified that

6.9 V. &x, A1, )= %x(x2—1)+2x/1+ o.

We wish to show that algorithm 1 can generate a sequence of points that oscillate between x,

and a neighbourhood of x; , and such that the penaity parameter £® tends to zero. The idea is to
consider an infinite sequence of iteration cycles, each of length j+1, where j is the smallest
integer such that

©.5) Ro(minlig, v, 1) “ 7P < Tminlu 7,1

For every iteration, A® s equal to /‘Lz'. For the first j iterations of each cycle, x® is equal to x,
and step 2 is executed; for the iteration that remains, x® has a value less than x; and the penalty
parameter is reduced as step 3 is executed. The process is initialized with 1© =2, .

It remains to show that such a sequence can be constructed. It involves two types of iterations:
(i) iterations such that x® =x, and step 2 is executed,
(ii) iterations such that x*D =x,, x® <x and step 3 is executed.

Consider case (i) first. Since A®=1,, x® =x; is a stationary point of the augmented
Lagrangian function &. Therefore conditions (3.1) and (3.2) are trivially satisfied. Hence step 2
is executed and, as a consequence, both n(") and ©® are reduced. However, since c(x("))=0,
the Lagrange multiplier estimate is not modified.

We now consider case (ii). We have to show that it is possible to have x® <x; with
lle(x®)l|>n®. Equivalently, we show that inequality (3.1) (but not (3.2)) of step 1 is satisfied
for some x® of the form

(6.6) x® <1,
We note that the mechanism of the algorithm and (6.5) imply that

(k)
n c
6.7) —_—<
u® "2

Dropping the superscripts and remembering that A® =1, =—}0, we thus require that the
inequalities (6.6),

(6.8) [y(x)| = %x(xz—l)—ax+a <o

and
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(6.9) k2-1> 7

are satisfied. Now observe that any x e (—4/1+ o u,—+/1+ 1) satisfies (6.9). At the end-points of
the interval, one has that

_ -2n o ]
(6.10) w(—w/1+n)—1j1+n{——# +a+m‘>0
and
Lo
6.11) l//(—\/l+0’[l)—0’Vl+O’ﬂ[—l+ 1+°’ﬂ_<0.

The continuity of the function y along with (6.10) and (6.11) implies the existence of a root
inside the interval. Any x sufficiently close to this root will therefore satisfy the required
inequalities (6.6), (6.8) and (6.9) and we select such a point to define x® . Because of (6.9), step
3 is executed and A% remains equal to 4.

Furthermore, since the interval (—w/ 1 +0',u(") — w/ 1 +n(")) of case (ii) shrinks to the single
point x; =—1 as k tends to infinity, this point is the only possible limit point of the sequence of
iterates besides x, .

This completes our example for algorithm 1.

We now show that a slightly modified form of this example applies to algorithm 2. Given f,,,
pick o sufficiently large such that
(6.12) Lo <g.
Assume first that

(6.13) AT I=IA5 1< vug”

and we construct an infinite sequence of iteration cycles, each of length j+2 with j defined as
before to be the smallest integer such that inequality (6.5) is satisfied. The first j iterations are
identical to those already described in case (i) above. Iteration j+1 is identical to case (ii) above,
except that the Lagrange multiplier estimate is set to ,1;‘ . For the remaining iteration, a point x®
close to x, is selected and the Lagrange multiplier estimate reset to A, . Notice that for all
iterations, (5.2.1) is trivially satisfied since its left hand side is zero, and also that the new
Lagrange multiplier estimate is acceptable because of (6.13).

It remains to show that we can construct a suitable iterate x® at the (+2) nd jteration of each
cycle. Dropping the superscripts again, we thus require that

6.14) WV, &, AL, 1 wll= %x(x2—1)+0'x+0' <o,
which can be achieved by choosing x sufficiently close to the zero
(6.15) 1+——V1“22"”

of that function. The Lagrange multiplier estimate is then reset to A, , which is allowed because
of (6.13) and the fact that the root (6.15) converges to x; =1 as u tends to zero. Whether or not
(3.6) holds is irrelevant, since its failure only causes a further reduction of the penalty
parameter, which suits our purpose.

Assume now that (6.13) is not satisfied. Observe therefore that the Lagrange multiplier
estimate will not be updated until
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(6.16) IAf1=14,1< v(u®)7.

We will ensure that this happens by using the iterates described for algorithm 1. These iterates
are applicable because, as already observed, the Lagrange multiplier estimates of algorithm 1
are never updated. As soon as (6.16) holds, we revert to the sequence described above for
algorithm 2, ensuring again that £® tends to zero.

7 Second order conditions

It is useful to know how our algorithms behave if we impose further conditions on the iterates
generated by the inner iteration. In particular, suppose that x® satisfies the following
second-order sufficiency condition:

AST7: Suppose that x® satisfies (3.1)/(3.5), converges to x* for ke K and that J; and J,
are as defined by (5.1.1). Then we assume that V, &, is uniformly positive definite
(that is, its smallest eigenvalue is uniformly bounded away from zero) for all ke K
sufficiently large and all sets J, where J is any set made up from the union of J, and any
subset of J,.

With such a condition we have the following result.

Theorem 7.1. Under (AS1-AS3) and (AS7), the iterates x®, k € K, generated by either
algorithm 1 or 2 converge to an isolated local solution of (1.5)1.7).

Proof. By definition of &,
(1.1) V 0% =H, (x®,19)+4®T s® 4®/,®
Let s(;; be any non-zero vector satisfying
(k) —
(71.2) Ayisn =0,
where J is any set as described in (AS7). Then for any such vector,
T 05
(7.3) st Ve @0 Sin 2€
for some £>0 under (AS7). It follows from (7.1)—(7.3) that
7 (K
(1.4) st H ®, A9y, sy 2e

By continuity of H; as x® and 1% approach their limits, this gives that

(1.5) SeHL O A )y sy 2 €
for all non-zero s, satisfying (7.2) which implies that x* is an isolated local solution to
(1.5)«(1.7) (see, for example, Fletcher, 1981, Theorem 9.3.2). u

There is a weaker version of this result, proved in the same way, that if the assumption of
uniform positive definiteness in AS7 is replaced by an assumption of positive semi-definiteness,
the limit point then satisfies second-order necessary conditions (Fletcher, 1981, Theorem 9.3.1)
for being a minimizer.

8 Further comments

We now briefly turn to the more general problem (1.1)-(1.3). As we indicated in our
introduction, the presence of the more general constraints (1.3) do not significantly alter the
conclusions that we have drawn so far. If we define the appropriate generalization of the
projection (2.1) by
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l;ifx;<l;
@®8.1) (Plx]);=< u; if x;2u;

x; otherwise

and let B={x|/<x<u}, we may then use the algorithms of §3 without further significant
modification. Our concept of floating and dominated variables stays essentially the same; for
any iterate x® in B we have three mutually exclusive possibilities for each component x®,
namely

(@ 0<x® -1,V oY),
8.2) i) (V,@oW),<x® -u;<0
(i) x®—u,<(V,0W),<x® -1,

In case (i) we then have

8.3) PE®, v o®)). =x® -,
whereas in case (ii) we have
(8.4) . Px®,V,00),=x® —u,

and in case (iii)
(8.5) PP, v, 00y, =(V.o®)..

The x ,.(") which satisfies (i) or (ii) are now the dominated variables (the ones satisfying (i) are
said to be dominated above and those satisfying (ii) dominated below ); those which satisfy (iii)
are the floating variables. As a consequence, the sets corresponding to those given in (2.12) are
straightforward to define. /; now contains variables which float for all k€ X sufficiently large
and converge to the interior of B. I, is now the union of the two sets /,;, made up of variables
which are dominated above for all k€ K sufficiently large, and /,,, made up of variables which
are dominated below for all k € K sufficiently large. Likewise /, is the union of the two sets /;,
made up of variables which are floating for all sufficiently large ke K but converge to their
lower bounds, and /,,, made up of variables which are floating for all sufficiently large ke K
but converge to their upper bounds. With such definitions, we may reprove all of the results of
sections 3 to 7, assumptions ASS and AS6 being extended in the obvious way and Theorem 5.4
being strengthened to say that, for all ke K sufficiently large, /,, and I,, are precisely the
variables which lie at their lower and upper bounds (respectively) at x*.

We have not made any statement here about how the scaling matrices S® should be
constructed, merely that they may be used. We consider that constraint scaling is essential for
any realistic algorithm and believe that it is important that the scaling can be changed (albeit not
too drastically) as the computation proceeds. We defer a discussion of the issues of how to
choose such scalings until we have performed significant numerical testing of our algorithms.
We also note that the results given here are unaltered if the convergence tclerance (3.1)/(3.5) is
replaced by

(8.6) ID® P(x®,V_o®)|<0®.
for any sequence of positive diagonal matrices {D®} with uniformly bounded condition
number. This is important as the method of Conn, Gould and Toint (1988a), which we would

consider using to solve the inner iteration problem, allows for different scalings for the
components of the gradients to cope with variables of differing magnitudes.
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Finally, although the rules for how the convergence tolerances n® and ®® are updated have
been made rather rigid in this paper and although the results contained here may be proved
under more general updating rules, we have refrained from doing so here as the resulting
conditions on the updates seemed rather complicated and are unlikely to provide more practical
updates.
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