//\\\\

-\ Laboratoires de Marcoussis
=
—

W

W

CIGIE

Route de Nozay, 91460 Marcoussis (France) Tél. : (1) 64.49.10.00
Télex LABMARC 602 415 - Télécopie : (1) 64.49.06.94

UNIVERSITY OF WATERLOO
Department of Computer Science
Waterloo

Ontario N2L 3G1 - CANADA

Attn. The lLibrarian

DOCUMENTATION CENTRALE
SD/SH.89.696

Marcoussis, le 28 aoit 1989

Dear Sirs,

We would be interested in receiving one copy of the
following Technical Report:

— "NEW ALGORITHM FOR PATTERN MATCHING
“““ ' MISMATCHES"

¢ ou ou, please, send the document and inveoice to
- LABORATOIRES DE MARCOUSSIS

Service DOCUMENTATION CENTRALE
Route de Nozay

61480 MARCCUSSIS - FRANCE

We thank you in advance for your cooperation.

Yours faithfully.

F/b ﬂ“’*%

S. DESMOUSSEAUX (Mme)

Centre de Recherches de la Compagnie Générale d’Electricité
Société anonyme au capital de 80 millions de francs - R.C. Corbeil-Essonnes B 689 802809

intingRequisition, GraphicServices

. rlease complete unshaded areas on
form as applicable.

2. Distribute copies as follows: White and
Yellow to Graphic Services. Retain Pink
Copies for your records.

3. On completion of order the Yellow copy 4. ¢
will be retumed with the printed
material.

TITLE OR DESCRIPTION

New Algorithm for Pattern Matching with or without Mismatches @ (CS-88-37
DATE REQUISITIONED DATE REQUIRED TTaT o oun s
March 27/89 ASAP l1,.2 6'6 3 1 7
reEqQuisiTioNER— PRINT PHONE ALETHOEIT

~ G. Gonnet 4460
MAILING NAME DEPT. 'v {,‘,;.,‘,» -
INFO — Sue DeAngelis c.s. WDC2314 o

Copyright: | hereby agree to assume all responsibility and liability for any infringement of copyrights and.’:
the processing of, and reproduction of, any of the materials herein requested. | further agree to
University of Waterloo from any liability which may arise from said processing or reproducing. |

alsy @ bhnn o

processed as a result of this requisition are for educational use only.

NEGATIVES

NUMBER NUMBER)
OF PAGES 14 OF COPIES 50 IF[L[M' Ll | 1 ! L * [
TYPE OF PAPER STOCK A ! Lo P
D BOND DNCR_____~ PT. DCOVER {_ BRISTOL [‘ SUPF’L]I.EpDa%IIVOZ‘Y ! F[LIM. ! l ! ! | ; [l [] i

1 bl

PAPER SIZE

. 10x14 Glosscoat

4.1

17 8y x 11 Lox 14 x 17 - ol : -

e Ue R U310 pt Rortand e [FEM 0 Tl
“PAPER COLOUR INK SR “

[owere K] Kl ounex [R R I e
PRINTING NUMBERING ! : . |
[]1sme___rpss. 2 SiDES _____PGS. FROM To lF lLiMl L] J l Lo ! ! { L
BINDING/FINISHING) PMT
xi COLLATING D STAPLING [—_vJ . SS:JEHED D PLASTIC RING | |
S~ — PMT]
FoLone’ 7x10 saddle stitchédy '

[PMIT]) g

Special Instructions

[PMIT] | |

Beaver Coves

PLATES

Both cover and inside in black ink please

-IPILITI N

Py Tl

LP|L|T| v b

STOCK

N R

COPY CENTRE

DESIGN & PASTE-UP OPE

BN

LABOUR

L
RN R

" TIME CODE

R
L1 llpoyt

NO.
|

l Lol 1 .
L JLa 11 |[pjo]| BINPERY o
IRING| | 1L Lot

Loy Jpogd] (
TYPESETTING QUANTITY ’ ‘ R |NIG‘ R T J i | ' 1 !
IPAPl0000000] b e IBRING] T RN
P,AP[010,0050) [1 Ly Tl o tTo] M, 1,8]0,0,010,0, || | IR R
IPAP0,0,0,000, || 4 o 1 Ll 11 |[T01]f OUTSIPE SERVICES
PROOF . N
PRFL o b e e T)
PRFL b e] | i}
IP‘R'F' L 11| |J| I H IJI Ll | JL' l J TAXES — PROVINCIAL [| FEDERAL [| '.af-:APH:::VLP.‘.r S gt P

PrintingRequisition/Gra

phicServices

20953

1. Pleagse complete unshaded areas on
form as applicable.

2. Distribute copies as follows: White and
Yellow to Graphic Services. Retain Pink

Copies for your records.

3. On completion of order the Yellow copy
will be retumed with the printed

material.

4. Please direct enquiries, quoting requisi-
tion number and account number, to
extension 3451.

s

TITLE OR DESCRIPTION

New Algori CS-88-37
DATE REQUISITIONED DATE REQUIRED ACCOUNT NO.
Sept. 30/88 ASAP l1,2,6l61311,714a,1
rREqQuisiTIoNER— PRINT PHONE SIGNING AUTHORITY
G. Gonnet 4460
MAILING NAME DEPT. NoO. DELIVER
INFO — Sue DeAngelis C.S. pDC 2314 [] Pickeup

Copyright: | hereby agree to assume all responsibility and liability for any infringement of copyrights and/or patent rights which may arise from
the processing of, and reproduction of, any of the materials herein requested. | further agree to indemnify and hold blameless the
University of Waterloo from any liability which may arise from said processing or reproducing. | also acknowledge that materials
_processed as a result of this requisition are for educational use only.

NEGATIVES

ER

P "
NO. TIME

LABOUR
co

o]
:;’MPBAEGRES 14 ZL;MBOEPRI S 50 AUANTITY °E
T or or PAPER STock =t Alpac Ivory Feml o I TEe b Jleogt
E]A::SE]:R r Dleover Lemerer Dl;ijlﬂ m—HFem e T b Tleon
‘ , X Glosscoat
Cetwn Dherxre v Uy seportanaine| [FIeM 00 0 Il o Loy 1 [leion
PAPER COLOUR INK
(0 ware [X K] evace [A (T
PRINTING NUMBERING
[]1sioe___pos. [Ke sines____ros. FROM To N1 R | ST § B AN B (e
BINDING/FINISHING PMT -
COLLATING STAPLING D :S:gHED D PLASTIC RING
ELDING/ E p— - eyt e e e 1 Teo
:::c?:instlfignssaddle seitched Pt e T L lerogt
Pt b T by g Teopt
Beaver Cover PLATES
P,L Tt
Both cover and inside in black ink pleasel = % LAt L | L IJ !I e ‘]P|0|1
PO e e oyt
I | I A I N LT
STOCK)
I S AR RO e A A
COPY CENTRE opER. MACH,
»’N"l‘ BLIDI' | |N0|‘ |Jt o e e e 1oy
DESIGN&PASTE-UP OPER. LABOUR I 1| ! A H L1 IJI |j‘ - [J10|0|1
NO. TIME CODE :
Lot e b e I l[1|JL01011'
Lol JLD_JQ_U_I BINDERY
Tt HDOU\RWIGIHIJ1J|||1tJ||H|[|HBIOH
! L 10}
TYPESETTING QUANTITY LRIN|GI | I l[L1 Il | ll | ILB!O|1
IPLAP10,0,010000 I v o Ll JmoptIRNGE L T b o[BIy
IP,AP10,001000) 1 ol b lmoepl|imislooo00 [y I Ly o][Biogt
PAP[0,0,0,050; || 1 vy y [l o Il o o |70 1]] OUTSIPESERVICES
PROOF
PRFL e e e e
PRFL e b b
COSsT
'PIRIFI L1 | Iul N H 'Jl L | j—” ' 'J TAXES ~ PROVINCIAL | | FEDERAL [| GRAPHICSERV. OCT.85 e

BECARTMENT

DEPARTMENT
DEPARTMENT

PR SEENGE
TE SERNGE

caEy
COMPU

- AR

i

I

IVERSITY OF WATERLOO

New Algorithm for
Pattern Matching with
or without Mismatches

Ricardo A. Baeza-Yates
Gaston H. Gonnet

Data Structuring Group
Research Report
CS-88-37

September, 1988

New Algorithm for Pattern Matching
with or without Mismatches

Ricardo A. Baeza-Yates
Gaston H. Gonnet

Data Structuring Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1 *

Abstract

We introduce a family of simple and fast algorithms for solving
the classical string matching problem, string matching with don’t care
symbols and complement symbols, and multiple patterns. We also
solve the same problems allowing up to k mismatches. Among the
features of these algorithms is that they are real time algorithms, that
they don’t need to buffer the input, and that they are suitable to be
implemented in hardware.

1 Introduction

The string matching problem consists of finding all occurrences of a pattern
of length m in a text of length n. We generalize the problem allowing
don’t care symbols, the complement of a symbol, and any finite class of
symbols. We solve this problem for one or more patterns, and with or
without mismatches. For small patterns the worst case time is linear on the
size of the text.

For example, if we want to search for references to any CS report we can
use the pattern [Cc|[Ss] — [6 — 8][0 — 9.

The main idea is to represent the state of the search as a number, and
each search step costs a small number of arithmetic/logical operations, pro-
vided that the numbers are big enough to represent all possible states of

*The work of the first author was supported by a scholarship from the Institute for
Computer Research of the University of Waterloo and by the University of Chile and that
of the second author by a Natural Sciences and Engineering Research Council of Canada
Grant No. A-3353.

New Algorithm for Pattern Matching 2

the search. Hence, for small patterns, we have a O(n) time algorithm us-
ing O(|XZ|) extra space and O(m + |Z|) preprocessing time, where I is the
alphabet.

For string matching, empirical results show that the new algorithm com-
pares favourably with the Knuth-Morris-Pratt (KMP) algorithm [11] for any
pattern length and the Boyer-Moore (BM) algorithm [4] for short patterns.

For patterns with don’t care symbols and complement symbols, this is
the first practical and efficient algorithm in the literature; generalizing this
to any finite class of symbols or their complement.

The main properties of this class of algorithms are:

o Simplicity: the preprocessing and the search are very simple, and only
bitwise logical operations, shifts and additions are used.

e Real time: the time delay to process one text character is bounded by
a constant.

e No buffering: neither the text nor the pattern need to be stored.

It is worth noting that the KMP algorithm it is not a real time algorithm,
and the BM algorithm needs to buffer the text.

All these properties indicates that this class of algorithms is suitable for
hardware implementation.

2 A Numerical approach to String Matching

After the discovery of linear time string matching algorithms [11,4] a lot
of research has been done in the area. Our algorithm is based in finite
automata theory [11] and also exploits the fact that in practical applications
the alphabet is finite [4].

Instead of trying to represent the global state of the search as in previous
algorithms, we use a vector of m different states, in where state ¢ tell us the
state of the search between the positions 1, ..., of the pattern and positions
(7 —¢+1),...,5 of the text, where j is the current position in the text.

Suppose that we need b bits to represent each individual state. Then we
can represent the vector state efficiently as a number in base 2°:

m—1 .
state = Z s,-+12""

1=0

where the s; are the individual states. Note that if s,, corresponds to a final
state we have to output a match that ends at the current position.

To update the state after reading a new character on the text, we have
to:

New Algorithm for Pattern Matching 3

e shift the state b bits to the left to reflect that we advanced in the

text one position. In practice, this sets the initial state of s; to be by
default O.

e update the individual states according with the new character. For
this we use a table T that is defined by preprocessing the pattern with
one entry per alphabet symbol, and an operator op that given the old
vector state and the table value, we obtain the new state. Note, that
this works only if the effect of the operator in the individual state s;
does not produce a carry that will affect state s;4;.

Then each search step is:
state = (state << b) op T|curr char]

where << denotes the shift left bitwise operation. The complexity of
the search time in the worst case is O([22]n), where [22] is the time to
compute a shift or other simple operation on numbers of mb bits using a
word size of w bits. In practice (small patterns, word size 32 or 64 bits) we
have O(n) worst case time.

The definition of the table T will be basically the same for all cases. We
define

m—1
T, = Z §(patiyy = z)2%*

=0
where §(C) is 0 if the condition C is true, or 1 otherwise; for every symbol
z of the alphabet. Therefore we need b- m - |Z| bits of extra memory, and
if the word size is at least b - m, only |Z| extra words are needed. We setup
the table preprocessing the pattern before the search. This can be done in
O([2](m + [])) time.

For each kind of patterns or searching problem, we will adequately choose
b and op. An idea similar to this one was presented by Gonnet [8] applied
to searching the signatures of a text.

For string matching we need only 1 bit (that is b = 1), where s; is 0
if the last ¢ characters had matched or 1 if not. After this the choice for
op is almost unique: a bitwise logical or. We have to report a match if
sm is 0, or equivalently if state < 0™~111.... Figure 1 shows an efficient
implementation.

3 String Matching with Classes

Now we extend our pattern language to allow don’t care symbols, comple-
ment symbols and more. Formally, every position in the pattern can be:

New Algorithm for Pattern Matching 4

e z: a character from the alphabet.

3: a don’t care symbol (matches any symbol).

[characters]: a class of characters, in where we allow ranges (for ex-
ample a — z).

e —C: a complement of a character or class of characters (C). That is,
matches any character that not belongs to this class.

For example, the pattern [Pp|a—[aeiou]E—alp — tv — 2] matches the word
Patter, but not python or Patton.

For this pattern language, we only have to modify the table T', such
that, for each position, we process every character in the class. To maintain
O([2t](m + |Z])) time (instead of O([Zt|m|Z|) time) where m is now the
size of the description of the pattern (and not its length) we include don’t
cares and complements in the initial value of each entry of the table.

String matching with don’t care patterns was addressed before in [6]
(O(nlog? mloglogmlog|Z|) asymptotic search time), and also in [13] in-
cluding complement symbols (same complexity). However, these are theo-
retical results, and their algorithms are not practical. Pinter also gives a
O(mn) algorithm that is faster than a naive algorithm. For small patterns
the complexity of our algorithm is much better, and also a lot easier to
implement.

Attempts to adapt the KMP algorithm to this case had failed [6,13],
and for the same reason the BM algorithm as presented in [11] cannot solve
this problem. It is possible to use Horspool version of the BM algorithm
[9], but the worst case is O(mn), and on average if we have a don’t care
character near the end of the pattern, the whole idea of the shift table is
worthless. By mapping a class of characters to a unique character, Karp and
Rabin algorithm [10] solves this problem too. However, this a probabilistic
algorithm, and if we check each reported match, the search time is O(n +
m+mM), where M is the number of matches. Potentially, M = O(n), and,
on the other hand, their algorithm is slower in practice (because of the use
of multiplications).

4 String Matching with at most £ Mismatches

Landau and Vishkin [12] gave the first efficient algorithm to solve this partic-
ular problem. Their algorithm uses O(k(n+mlogm)) time and O(k(n+m))
space. While it is fast, the space required is unacceptable for practical pur-
poses. Galil and Giancarlo [7] improved this algorithm to O(kn + mlogm)
time and O(m) space. This algorithm is practical for small k. However, if
k = O(m) it is not so.

7—

New Algorithm for Pattern Matching 5

We solve this problem explicitly only for one string, but the solution can
be easily extended for patterns with classes and multiple patterns, usmg the
same ideas of the previous and next sections.

In this case one bit is not enough to represent each individual state.
Now we have to count matches or mismatches. In both cases at most
O(logm) bits per individual state are necessary because m is a bound for
both, matches and mismatches. Note, too, that if we count matches, we
have to complement the meaning of § in the definition of T'. Then, we have
a simple algorithm using

B = [logy(m +1)]

and op being addition. If b,, < k then we have a match. Note that this is
independent of the value of k.

Therefore we need O(|Z|m logm) bits of extra space. If we assume that
we can always represent the value of m in a machine word, we need O(|Z|m)
words and preprocessing time. However for small m, we need only O(|Z|)
extra space and O(|Z| + m) preprocessing time. For a word size of 32 bits,
we can fix B = 4 and we can solve the problem up to m = 8, as presented
in Figure 4, in where we count matches.

Clearly only O(logk) bits are necessary to count if we allow at most k
mismatches. The problem is that when adding we have a potential carry in
to the next state. We can get around this problem, by having an overflow
bit, such that we remember if overflow had happened, but that bit is set to

zero at each step of the search. In this case we need
B = [logy(k+1)] +1

At each step we record the overflow bits in an overflow state, and we reset
the overflow bits of all individual states (in fact, we only have to do this
each k steps, but it is not practical to get in all that trouble). Note, that
if k > m/2, then we count matches. The only problem for this case, is that
is not possible to tell how many errors there are in a match. Table 1 shows
up to what m we can use for a 32 bits word.

Therefore, with a slightly more complex algorithm we can solve more
cases, and using only O(cmlogk) extra bits.

5 Multiple Patterns

We consider the problem of more than one pattern, for patterns with classes
(also we can extend this to mismatches). To denote the union symbol we
use “|”, for example p; |p; searches for the pattern p; or the pattern p;.

New Algorithm for Pattern Matching 6

[k,m — k | Bits per state | m |

0 1 32

1 2 16
2-3 3 10

4 4 8

Table 1: Maximum pattern length (m) for a 32 bits word depending of k.

The KMP algorithm and the BM algorithm had been extended already
to this case (see [1] and [5] respectively), achieving a worst case time of
O(n + m), where m is the total length of the set of patterns.

In our case, if we keep one vector state per pattern, we have an immediate
O([—";—,-"]sn) time algorithm, for a set of s strings. On the other hand, if we
use s bits for each individual state, we can keep all the information in only
one vector state achieving O([22]n) search time. The disadvantage is that
now we need numbers of size s max(|p;|) bits, and then O(|Z|s max(|p;|))
extra space.

The preprocessing is very similar to the one in Figure 3. The main
differences are that we have to count the number of patterns to compute
B, and that we have to compute the maximum pattern length. The only
change in the search phase is the match testing condition:

if((state & mask) != mask) /* Match? */

where mask has a one bit in the adequate position for each pattern. Note
that this indicates that a pattern ends at the current position, and it is not
possible to say where the pattern starts without wasting O([22]sM) time,
being M the number of matches.

6 Implementation

In this section we present efficient algorithms to count the number of matches
of the different classes of patterns in a text using one word numbers in the C
programming language. The programming is independent of the word size
as much as possible. We use the following symbolic constants:

e MAXSYM: size of the alphabet. For example, 128 for ASCII code.
e WORD: word size in bits (32 in our case).

e B: number of bits per individual state (1 for string matching).

New Algorithm for Pattern Matching 7

e EOS: end of string (0 in C).

Figure 1 shows the string matching algorithm.

Faststrmat(text, pattern)
register char *text;
char *pattern;
{
register unsigned int state, lim;
unsigned int T[MAXSYM];
int i, j, matches;
if(strlen(pattern) > WORD)
Error("Use pattern size <= word size");
/* Preprocessing */
for(i=0; i<MAXSYM; i++) T[i] = -0;
for(1lim=0, j=1; *pattern != EOS; lim |= j, j <<= B, pattern++)
T[+*pattern] &= ~j;
lim = “(1lim >> B);
/* Search */
matches = O; state = ~0; /* Initial state */
for(; *text != EO0S; text++)
{
state = (state << B) | T[*text]; /* Next state */
if(state < lim)
matches++; /* Match at current position-len(pattern)+1
*/
}

return(matches);

Figure 1: Shift-Or algorithm for string matching.

Another implementation is possible using op as a bitwise logical and
operation, and complementing the value of T; for all z € X.

Experimental results for searching for all possible matches 100 times a
text of length 50K are presented in Table 2. For each pattern, a prefix
from length 2 to 10 was used. The patterns were chosen such that each first
letter has a different frequency in English text (from most to least frequent).
The timings are in seconds and they have an absolute error bounded by 0.5
seconds. They include the preprocessing time in all cases.

The algorithms implemented are Boyer-Moore as by HorspoJl [9] (or
BMH) which according to Baeza-Yates [2] is the fastest practical version of
this algorithm, Knuth-Morris-Pratt as suggested by their authors [11] (or
KMP;) and as given by Sedgewick [14] (or KMP3), and our new algorithm

New Algorithm for Pattern Matching 8

Pattern: epresentative Pattern: representative
m | BMH KMP, KMP; SO, SO | BMH KMP, KMP, SO; SO;
2 | 36.5 24.4 58.7 30.2 15.8 | 23.6 15.5 49.9 30.2 13.2
3| 25.2 24.3 59.0 30.2 15.7 | 16.2 15.0 50.2 304 13.0
4 | 20.5 24.5 58.7 30.2 15.6 | 12.6 15.0 50.1 30.2 13.1
5 17.3 24.3 58.8 304 15.8 | 11.0 15.2 50.1 30.4 13.1
6 15.3 244 58.7 30.3 159 9.6 15.1 50.9 306 134
7| 13.2 24.3 58.6 30.1 15.7 | 9.0 15.3 50.8 30.5 13.1
8 125 24.4 58.6 30.4 15.6 7.9 15.3 50.7 306 133
9| 11.6 24.4 59.7 30.1 15.8 7.5 15.3 50.5 30.7 133
10 | 11.2 24.3 58.3 30.1 15.8 7.1 15.4 50.1 30.2 13.0
Pattern: legislative Pattern: kinematics
m | BMH KMP, KMP; SO; SO; | BMH KMP;, KMP; SO; SO
2| 377 21.0 58.2 306 11.9 | 35.2 19.0 57.6 30.2 10.4
3| 25.6 21.0 58.6 311 123 | 249 19.0 57.4 30.1 10.5
4 | 199 20.9 57.8 30.4 11.8 19.9 18.8 57.4 299 104
5 | 16.5 20.6 57.8 30.1 11.7 | 16.7 19.0 574 300 10.4
6 | 143 20.6 58.0 30.2 11.6 | 143 19.1 576 30.1 10.4
71 129 20.5 57.5 30.1 11.8 | 13.0 19.0 57.5 30.1 10.4
8 | 12.0 20.6 57.9 30.3 12.0 | 12.2 19.0 57.6 30.0 10.4
9 | 11.2 20.7 57.7 30.3 12.1 10.8 19.0 57.3 30.1 10.6
10 | 10.3 20.9 58.2 30.3 11.8 | 10.0 19.1 57.5 30.2 10.5

Table 2: Experimental results for prefixes of 4 different patterns.

as presented in Figure 1 (SO;) and another version using KMP; idea (SO3),
that is, do not use the algorithm until we see the first character of the pat-
tern. The changes needed for the later case (using structured programming!)
are shown in Figure 2. Note that SO; and KMP; will be independent of
the pattern length, that SO, and KMP; will be dependent of the frequency
of the first letter of the pattern in the text, and that BMH depends on the
pattern length.

From Table 2 we can see that SO2 outperforms KMP; being between a
40% and 50% faster. Also is faster than BMH for patterns of length smaller
than 4 to 9 depending on the pattern.

Figure 3 shows the preprocessing phase for patterns with classes, using
“~? ag the complement character and “\” as escape character. The search
phase remains as before.

For string matching with at most k mismatches and word size 32 bits,
we use B = 4 and we count matches, solving the problem up to m = 8, as
presented in Figure 4.

Figure 5 shows the changes needed for the case in where we use O(log k)
bits per state.

New Algorithm for Pattern Matching 9

initial = “0; first = *pattern;
do {
do { .
state = (state << B) | T[*text]; /* Next state */
if(state < lim) matches++;
text++;
} while(state != initial);
while(*(text-1) != E0S && *text != first) /* Scan */
text++;
state = initial;
} while(*(text-1) != EOS);

Figure 2: Shift-Or algorithm for string matching (trickier version).

7 Final Remarks

We have presented a simple class of algorithms that can be used for string
matching and some other kinds of patterns, with or without mismatches.
The time complexity achieved is linear for small patterns, and this is the
case in most applications. For longer patterns, we need to implement integer
arithmetic of the precision needed using more than a word per number. Still,
if the number of words per number is small, our algorithm is a good practical
choice. Other solution, is to use VLSI technology to have a chip that uses
register of 64 o 128 bits that implements this algorithm for a stream of text.

This class of algorithm can also be used for other matching problems,
for example mismatches with different costs (see [3]) or for patterns of the
form (set of patterns)T*(set of patterns) (see [13]).

References

[1] Aho, A. and Corasick, M. “Efficient String Matching: An Aid to Bib-
liographic Search”, Commaunications of the ACM, 18 (1975), 333-340.

[2] Baeza-Yates, R. “On the Average Case of String Matching Algorithms”,
Research Report CS-87-66, Department of Computer Science, Univer-
sity of Waterloo, Ontario, Canada, 1987.

[3] Baeza-Yates, R. and Gonnet, G.H. “Fast String Matching with k Mis-
matches”, Dept. of Computer Science, University of Waterloo, 1988.

[4] Boyer, R. and Moore, S. “A Fast String Searching Algorithm”, Com-
munications of the ACM, 20 (1977), 762-772.

New Algorithm for Pattern Matching 10

/* Compute length and process don’t care symbols and complements %/
for(i=0, j=1, len=0, mask=0; *(pattern+i) != EOS; i++, len++, j <<= B)
{

it (*(pattern+i) == =) /* Complement */
{

i++; mask |= j;
}
if(*(pattern+i) == °[*) /* Class of symbols */
{

for(; *(pattern+i) != *]°; i++)

i2(*(pattern+i) == °*\\’) i++; /% Escape symbol */

} .
else if(*(pattern+i) == °**) i++; /* Escape symbol */

else if(*(pattern+i) == *.°) mask |= j; /* Don’t care symbol */
}
i2(len > WORD ") Error("Use B*maxlen <= word size");
/* Set up T */
for(i=0; i<MAXSYM; i++) T[i] = “mask;
for(j=1, lim=0; *pattern != E08; lim |= j, j <<= B, pattern++)
{
compl = FALSE;
if(*pattern == *=°) /x Complement */
{

}
if(*pattern == °[*) /* Class of symbols */
for(pattern++; *pattern != °]°; pattern++)

i++; compl = TRUE;

if(*pattern == °\\’) pattern++; /* Escape symbol */
if(compl) T[*pattern] |= j;
else T[*pattern] &= ~j;
if(*(pattern+i) == °-*) /% Range of symbols %/
for(k=*(pattern++)+1; k<=*(++pattern); k++)
i2(compl) T[k] |= j;

else Tlk] &= ~j;

}
elge if(*pattern != °.°) /* Not a don’t care symbol */
{

if(*pattern == °\\’) pattern++; /* Escape symbol */

if(compl) T[*pattern] |= j;

else T[*pattern] &= ~j;
}

}
lim = “(lim >> B);

Figure 3: Preprocessing for Patterns with Classes.

[5] Commentz-Walter, B. “A String Matching Algorithm Fast on the Av-

New Algorithm for Pattern Matching

11

Fastmist(k, pattern, text) /* String matching with k mismatches */

int k;

char *pattern, *text;

{

int i, j, m, matches;

unsigned int T[MAXSYM];

unsigned int mask, state, lim;

if(strlen(pattern)*B > WORD)
Error("Fastmist only works for pattern size <= WORD/B");

/* Preprocessing */

for(i=0; i<MAXSYM; i++) T[i] = O;

for(m=0, j=1; *pattern != E0S; m++, pattern++, j <<= B)
T[*pattern] += j; ’

lim = (m-k) << ((m-1)*B);

if(m*B == WORD) mask = ~0;

else mask = j-1;
/* Search */
matches = 0; state = O; /* Initial state */

for(i=1; i<m && *text != E0S; i++, text++)
state = (state << B) + T[*text];
for(; *text != EO0S; text++)

{
state = ((state << B) + T[*text]) & mask;
if(state >= lim) /* Match at current position-m+i */
matches++; /* with m-(state>>(m-1)*B) errors */
}

return(matches);

/* (B=4, WORD=32, MAXSYM=128, E0S=0) */

Figure 4: Pattern Matching with at most k mismatches (simpler version).

erage”, Proceedings of the 6th International Colloguium on Automata,

Languages and Programming, Springer Verlag 1979, 118-132.

[6] Fischer, M. and Paterson, M., “String Matching and Other Products”
in Complezity of Computation (SIAM-AMS Proceedings 7), R. Karp

ed., American Mathematical Society, Providence, RI, 1974, 113-125.

matches”, SIGACT NEWS 17 (1986), 52-54.

[7] Galil, Z. and Giancarlo, R. “Improved String Matching with k Mis-

[8] Gonnet, G.H., “Unstructured Data Bases or Very Efficient Text Search-

ing”, Proc. 2nd ACM SIGACT-SIGMOD Symposium on Principles of

Database Systems, Atlanta, 1983, 117-124.

New Algorithm for Pattern Matching 12

m = strlen(pattern); type = MISMATCH; /* count mismatches */
if(2*k > m) /* String matching with at least m-k matches */

{

}
B = clog2(k+1) + 1; /* clog2(n) is the ceiling of log base 2 of n */
if(m > WORD/B) Error(“Fastmist does not work for this case");
/* Preprocessing */
lim = k << ((m-1)*B);
for(i=1, ovmask=0; i<=m; i++) ovmask = (ovmask << B) | (1 << (B-1));
i2(type == MATCH)
for(i=0; i<MAXSYM; i++) T[i] = O;
else

{

type = MATCH; k = m-k; /* count matches */

lim += 1 << ((m-1)#*B);
for(i=0; 1<MAXSYM; i++) T[i] = ovmask >> (B-1);
}
for(j=1; *pattern != EOS; pattern++, j <<= B)
if(type == MATCH)
T[*pattern] += j;
else
T[*pattern] &= ~j;
if(m*B == WORD) mask = ~0;
else mask = j - 1;
/* Search */
matches = O; state = O; overflow = 0; /* Initial state */
for(i=1; i<m && *text != EQS; i++, text++)
{
state = (state << B) + T[*text];
overflow = (overflow << B) | (state & ovmask);
state &= “ovmask;
} .
for(; *text != EOS; text++)
{
state = ((state << B) + T[*text]) & mask;
overflow = ((overflow << B) | (state & ovmask)) & mask;
state &= ~“ovmask;
if(type == MATCH)
{
ir((state | overflow) >= lim)
matches++; /* Match with more than m-k errors */
}
else if((state | overflow) < lim)
matches++; /* Match with (state>>(m-1)%B) errors */

Figure 5: String Matching with at most k mismatches.

[9] Horspool, N. “Practical Fast Searching in Strings”, Software-Practice

New Algorithm for Pattern Matching 13

and Ezperience 10 (1980), 501-506.

[10] Karp, R. and Rabin, M. “Efficient Randomized Pattern-Matching Al-
gorithms”, IBM Journal of Research and Development, 31 (1987), 249-
260.

[11] Knuth, D., Morris, J. and Pratt, V. “Fast Pattern Matching in Strings”,
SIAM Journal of Computing, 6 (1977), 323-350.)

[12] Landau, G. and Vishkin, U. “Efficient String Matching with k Mis-
matches”, Theor. Computer Science 43 (1986), 239-249.

[13] Pinter, R. “Efficient String Matching with Don’t-Care Patterns”, in
NATO ASI Series, Vol F12, 11-29, Combinatorial Algorithms on Words,
Edited by A. Apostolico and Z. Galil, Springer-Verlag, 1985.

[14] Sedgewick, R. Algorithms, Addison-Wesley, Reading, Mass., 1983.

	

