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\;435 - ERRATA: THEORY OF COMPUTATION
AUTHOR:Derick Wood

ABSTRACT:

This report prov:des two lists of corrections for my textbook ¢ Theory of Computation”. The first
list are those corrections that have been incorporated into the second printing. The second list are those
corrections that will be incorporated into the third printing.

The second printing of the North American bardback edition was published in April, 1988, by John
Wiley & Sons. It has ISBN Number 0-471-60351-1. T expect thatﬂmethxrdpnnhngwdlnotbcpmduoed
until late 1989, therefore, these lists will continue to be helpful for at least one more year.
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ABSTRACT:
We describe and analyze three simple and fast algorithms for solving the problem of string matching

with at most k mismatches. These are the naive algorithm, an algomhm based on the Boyer-Moare
approach, and ad-hoc deterministic finite automata searching.

FRICE:$2.00

~,
k":j}
:.j) <
AV 5“@&;’
N 2 ~
A KA
Dy, ANO
NSy
e W 3,@
ooy B



APR 20 '89 14:40 764 PO2

ﬂ-WALGORITHMIN)R PATTERN MATCHING WITH OR
WITHOUT MISMATCHES

o Amms:mmdo A. Baeza-Yates, Gaston H. Gonnet

N

ABSTRACT:

We introduce a family of simple and fast algorithms for solving the classical string matching prob-
lem, string matching with don’t care symbols and complement symbols, and multiple patterns. We also
solve the same problems allowing up to k mismatches. Among the features of these algorithms is that
they are real time algorithms, that they don’t need to buffer the input, and that they are suitable to be
implemented in hardware.
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CS-88-38 - A GLOBALLY CONVERGENT AUGMENTED LAGRANGIAN ALGORITHM
FOR OPTIMIZATION WITH GENERAL CONSTRAINTS AND SIMPLE BOUNDS

AUTHORS:A.R. Conn, N.LM. Gould, Ph.L. Toint

ABSTRACT:

The paper extends an algorithm for optimization with simple bounds (Conn, Gould and Toint, Siam
Journal of Numerical Analysis 25, 433-460, 1988) to handle general constraints. The extension is
achieved using an augmented Lagrangian approach. Global convergence is proved and it is established
that a potentially troublesome penalty parameter is bounded away from zero.
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CS-88-39 - THE COMPUTATIONAL STRUCTURE AND CHARACTERIZATION
OF NONLIMEAR DISCRETE CHEBVSHEV-PROBLEMS - - -

AUTHORS:A.R. Comn, Y. Li

CT: Dy

We present the generalisation of some concepts in linear Chebychev theory to the nonlinear case. 47 )

We feel these generalisations capture the inherent structure and characteristics of the best Chebychev
approximation and that they can be usefully exploited in the computation of a solution to the discr%te\v,

Key Words. nonlinear Chebyshev approximation S
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ABSTRACT:
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PLA. Finally, a modified dynamic CMOS PLA design is described and its increased switch-level testabil-
ity properties are stated.
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Fast String Matching with k£ Mismatches

Ricardo A. Baeza-Yates
Gaston H. Gonnet

Data Structuring Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1 *

Abstract

We describe and analyze three simple and fast algorithms for solv-
ing the problem of string matching with at most k£ mismatches. These
are the naive algorithm, an algorithm based on the Boyer-Moore ap-
proach, and ad-hoc deterministic finite automata searching.

1 Introduction

The problem of string matching with k mismatches consists of finding all
ocurrences of a pattern of length m in a text of length n such that in at
most k positions the text and the pattern have different symbols. The case
of k = 0 is the well known string matching problem. We will assume that
0 < k < m and m < n (otherwise the problem is trivial).

Landau and Vishkin [6] gave the first efficient algorithm to solve this par-
ticular problem. Their algorithm uses O(k(n + mlogm)) time and O(k(n +
m)) space. While it is fast, the space required is unacceptable for practi-
cal purposes. Galil and Giancarlo [5] improved this algorithm to O(kn +
mlogm) time and O(m) space. This algorithm is practical for small k.
However, if k = O(m) it is not so.

We present and analyse the naive or brute-force algorithm to solve this
problem. While the worst case is O(nm) time, the expected time is only
O(kn) without using any extra space. We also present a Boyer-Moore ap-
proach to the problem [3] that has the same complexity, but the probability
of the worst case is much lower, using O(m — k) extra space. Finally, we use

*The work of the first author was supported by a scholarship from the Institute for
Computer Research and by the University of Chile and that of the second author by a
Natural Sciences and Engineering Research Council of Canada Grant No. A-3353.



Fast String Matching with Mismatches 2

finite automata theory to solve the problem in time O(m**2 + nlogm) and
O(mF**?) space. This algorithm is better when k is comparable to m and m
is not too big.

2 Naive algorithm

The naive algorithm is basically to try all possible positions and count the
number of mismatches found. If more than k has been found we try the
next position. When we reach the end of the pattern we report a match.
Clearly, the worst case number of comparisons is m(n — m + 1).

Average Case Analysis

Let the text and the pattern be random strings of length n and m, respec-
tively, over an alphabet of size ¢ > 1. If the alphabet size is not known or
not finite, we can replace ¢ by n. The probability that two symbols, one
from the pattern and one from the text, being equal is p = 1/c.

Let Efn be the average number of comparisons between the pattern and
a text of length m to decide if there are at most k mismatches between both
strings. Then

m

—k

C,.= E 1xPj_1k,
j=1

where Pj is the probability of finding at most k mismatches in the first
J characters of the text (pattern), because we perform one comparison at
position j with probability Pj_j k.

Clearly P;j = 1if 7 < k. We can define P;; recursively as

The solution to this recurrence is
- ()Y >0
Hence for m > k we have

—k m—k—1
C,, = k+1+ Z Prijk
=1

m—k—1j-1 .
k+1\ ;
— m_(l_p)k+1 Z ( )pt
i=1

1=0 ¢
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But (*7%) = (~1)‘(‘("i+1)), then

5; — m—(l-— )k+1m—zk:l§( (k+1)> p)

=1 =0
m—k—2
~f—(k+1 ;
= m-(1-p** > (m-k- 1—*)( (k- ))(—p)’
1=0 ¢
Using the binomial theorem we obtain

Crn = m—(1-p)* ((m-k-1)1-p) " - p(k+1)(1 - p)~*++?

- Y (m-k-1- =)( "‘“’)( p))

i>m—k—1
k+1 g\ .
_ -l-i—+(1 P (m—k- 1-;')(’“.”),)'
i>m—k-1 ¢
k+1 -
= 1=, oe" k(1 p)*tim*)

For a text of length n, we try n — m + 1 times, that is
C’,’f=5ﬁ,(n— +1) < ( + 1 n<2(k+1)n

For k = 0 (brute force string matching) we have

~ _1—-p™ _ ¢ 1
Cn= " (n m+1)—c_1<1 cm)(n m+1)

A result already obtained in [1].

Figure 1 shows the experimental results (100 trials) for an English text
of size approximately 50K and an alphabet of size 32 (lowercase letters plus
some other symbols). In the same graph the theoretical results are shown.
The agreement is very good, and the differences are due to the fact that
English text is not random [1].

For values of k closer to m it may be better to count matches rather
than mismatches. That is, string matching with at least m — k matches. In

this case
C“v;n—k k+1 m—k—1_ m—k
-———n_m+1=(m—k+1)c—0(p (1-p) m™")

Therefore the break-even point is k &~ (m+2)(1—1/c)—1, and this is greater
or equal than m/2 for ¢ > 2.
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Figure 1: Theoretical results for random text (dashed line, ¢ = 32) and
experimental results in English text (Naive algorithm) for k from 0 to 3.

3 A Boyer-Moore approach

The idea in this method is to search from right to left until we find a match
or too many mismatches. At this point, using a precomputed table, we
decide how much we can shift the pattern [3]. The definition of this table
follows.

Suppose that we have found a partial match of length 5 (from the right)
with at most k mismatches such that the next character is another mismatch.
We define s; as the maximum shift such that overlapping two copies of the
pattern shifted in £ characters for £ from 1 to s; — 1 implies that at least
there are 2k + 1 mismatches between both strings. This is to make sure that
there are at least k + 1 mismatches in the overlap (at most k mismatches
are overriden by the mismatches in the partial match).

Clearly s; for j from 0 to 2k is 1. To compute the other values of s; we
slide two copies of the pattern until we find less than 2k 4+ 1 mismatches.
For example, if all the characters of the text are different, then s; = m — 2k
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for j > 2k. Therefore, this procedure will be useful for k£ < m/2. Figure 2
shows an example.

pattern: pointing
pointing
pointing
pointing
pointing
pointing
s[j]: 666633111
j : 876543210

Figure 2: Example for the table s; (k =1).

Clearly s;j41 > s;, because if we slide s; positions and we have a partial
match of 7 or more elements, then we have at least 2k +1 mismatches. Also,
because we have more characters in the partial match, potentially we have
more mismatches. Using this property, there exists a very simple algorithm
to set up the table in m(m — 2k) worst case time (if all the characters are
different only 2mk comparisons are necessary). With a slightly more com-
plex algorithm (based in [4]) a O(km) preprocessing time can be achieved
for any pattern.

The worst case is 2kn for many patterns (still O(mn) in general but only
for periodic patterns) using m—2k space. On the average this algorithm will
be slightly better than the naive algorithm, improving for long patterns. In
the best case, when all the characters are different, we have that the average
shift is

S=1+ (m -2k — 1)P2k+1,]¢
(the shift is m — 2k if we compare more than 2k + 1 characters and this

happen with probability Pai+1,k; otherwise the shift is 1). Then, a lower
bound for random text is given by

~k
ok > -?m(n—m-i- 1)

In Figure 3 are shown the experimental results for English text and the
lower bound for random text. For long patterns, this algorithm is clearly is
better. Then, we have a (k+1)n+0(mk) total expected time and O (m—2k)
space algorithm.
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Figure 3: Theoretical results for random text (dashed line, ¢ = 32) and
experimental results in English text (Boyer-Moore approach) for k from 0
to 3.

4 Finite Automaton approach

The problem can be also stated in terms of a regular expression. For example
if we are searching ab with one mismatch, then that set is described by
6*(6b + ad), where 8 denotes a don’t care symbol. In general there are (%)
terms inside the parenthesis, and hence the length of the regular expression is
(m+1)(7) +1 without counting parentheses. Let r be the regular expression
that denotes our searching problem and let p,,...p; be the pattern. A slightly
more compact representation is

r=0'(sk)
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and )
€ m=0
PmSk_l k=0
Sy =
05":;_11 k=m
| Pm(SE_1) +Pm(SETY) O<k<m

where T denotes any symbol with the exception of z. The number of terms
in this case will be proportional to (7).
From this recursive definition, it is very easy to construct the DFA that

recognizes r. For example if r = §*(af + @b) we have

State Symbol Regular expression left State Output

r 0
0 a r+6 1
0 0—a r+b 2
1 a r+0+e¢ 1 match
1 b r+b+e 2 match
1 0—a—-b r+bdb+e 2 match
2 a r+60 1
2 b r+b+e 2 match
2 0—a-b r+bd 2

Note that we have replaced accepting states (¢) by output, and then we
do not have final states (and hence additional states). Figure 4 shows the
resultant automaton for the example.

The regular expression after reading a symbol (p;) is computed by the
following formulas
r(pi) = r + Sp(p:)
and
Sk _ 1 pm=pi (if m=1, match)
Sk(p) =13 SEL k=mor pn # pi(m>0)
o otherwise

In general we will have O(m**!) states and any state can have at most
min(c, m + 1) different transitions, where c is the alphabet size. Hence the
size of the automaton is O(m**! min(c,m)). Table 1 gives the number of
states when all the characters in the string are different for small values of
k and m.

Clearly we can build the DFA in O(m**2) space and time (this reduces
to O(cm**1) for an alphabet of size ¢ < m). In general, the search takes
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@ (match if b)
Figure 4: Automaton for the pattern ab and k = 1.

m\k| 1 2 3 4
2 3 2
3 6 7 3
4 10 16 15 4
5 14 30 43 31

Table 1: Number of states for some m and k.

O(nlog(min(c, m))) time. However, for finite alphabets, and using a com-
plete table for each transition, we have O(n) search time. It is worth to
point out that the size of the automaton is in the worst case exponential in
k and not in m.

The construction rules are so simple that we can build the automaton
as needed during the search. That is, we will use O(mF*+?) worst case extra
time and space only if all possible sequences of mismatches appear in the
text. In many applications this is not the case.

Other possibility is to describe the automaton as pairs of the form (m, k),
where m indicates the length of the string to match and k the maximum
number of allowed errors. Clearly, at least k pairs (states) will be active at
any point in the text and at most m pairs are generated by each symbol in
the text. This suggests another O(kn) expected time algorithm with O(mn)
worst case time and using O(m) extra space. This approach also suggests to
use a number in base m to represent the pairs, and then if the numbers are
smaller than the word size it is possible to have a very efficient algorithm.
This idea is pursued in [2] for standard string matching and this problem
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for more general patterns.

5 Mismatches with different costs

All the algorithms presented can be extended when we have different costs
for different classes of mismatches. For example, the cost of a mismatch
between a vowel and a consonant is twice the cost of a vowel-vowel or
consonant-consonant mismatch. In this section we discuss the necessary
changes for this case. We will assume that there is a finite set of integer
costs {costy, ..., cost,} and we want a match with at most cost C.

For the naive algorithm the solution is trivial. We count the total cost
of the mismatches using a multiple if structure for each case. Using more
space, we can replace the multiple if by a table indexed by the character in
the pattern and the character in the text. This requires O(|c|?) extra space,
where c is the alphabet size.

For the Boyer-Moore approach additionaly to the same changes of the
naive algorithm, we have to modify the table s;. Now, instead of slide two
copies of the pattern until we find less that 2k + 1 mismatches, we have to
slide until we have a mismatch cost less or equal than

——i—_] max(cost;)
min(cost;) costil

C+|
where I.EF&TtJ ] is the maximum number of mismatches in a partial match
with at most cost C, and each one of them can override in the worst case a
mismatch of maximal cost.

In the case of the DFA, we keep track of the total cost, associating the
corresponding mismatch cost to each transition, and we output a match if
the total cost is in the appropiate range in the appropiate transitions.

6 Final Remarks

Table 2 gives a summary of the different complexities.

Given the simplicity of the Boyer-Moore approach (actual code for this
algorithm and the naive algorithm are presented in the appendix), this
method is a good choice against Galil and Giancarlo algorithm [5].

For small alphabets the finite automaton is the best choice, mainly be-
cause the time will be independent of k.

Finally, all these algorithma can be extended to more general patterns
(for example don’t care symbols, a symbol that represents a class of symbols,
etc.). In this case, only the concept of what constitutes a mismatch must
be changed [2].
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Algorithm Search time Preprocessing Extra
Worst case | Average time space
LV [6] kn kn kmlogm k(n + m)
GG [5] kn kn mlogm m
Naive mn kn 1 1
Boyer-Moore mn kn m(m — 2k) m
(diff. symbols) kn kn mk 1
DFA nlogm nlogm mk+? mF+?
(small alphabet) n n mk+1 mkF+1

Table 2: Summary of the time and space complexities (order notation).
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Appendix

The code in the C programming language for the Naive algorithm is:

Search( k, pattern, m, text, n ) /¥n>=m, k<m*/
int k, m, n;
char pattern[], text[];

{
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int i, j, count;

for( i=0; i < n-m+1; i++ )

{
count = O;
for( j=0; j<m && count <= k; j++ )
if( pattern[j] != text[i+j] ) count++;
if( j ==m)
Report_match_at_position( i, count );
}

A simple version for the Boyer-Moore approach is:

#define max(a,b) (a>b)? (a):(b)
#define MAXPAT 255

BMmist( k, pattern, m, text, n ) /*n >=m, k<m %/
int k, m, n;
char pattern[], text[];

{

int i, j, 1, count, shift[MAXPAT+1];
int matches;

/* Preprocessing */
for( i=m+1; id>m-2xk; i-- ) shift[i] = 1;
for( 1=1; i>0; i-- )

{
for( count=2%k+1; count > 2xk; 1++ )
{
j = max(1, i-1);
for( count=0; j<=m-1 && count <= 2%k; j++ )
if( pattern[j] != pattern[j+1] ) count++;
}
shift[i] = --1;
}
1 = n-m+1;

/* Code to avoid having special cases */
text [0] = CHARACTER_NOT_IN_THE_PATTERN;
pattern[0] = CHARACTER_NOT_IN_THE_TEXT;
/* Search */

matches = O;
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for( i=0; i < 1; i += shift[j+2] )
{
for( count=0, j=m; j>0 && count <= k; j-- )
if( pattern[j] != text[i+j] ) count++;
if( count <= k )
Report_match_at_position( i+1, count )
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