PrintingRequisiﬁon/GraohicServices ' 19942

1. Please complete unshaded areas on 2. Distribute copies as follows: White and 3. On completion of order the Yellow copy 4. Please direct enquiries, quoting requisi-
form as applicable. Yellow to Graphic Services. Retain Pink will be retumed with the printed tion number and account number, to
Copies for your records. material. extension 3451.,

TITLE OR DESCRIPTION

The Subsequence Graph of A Text CS~88-34
DATE REQUISITIONED DATE REQUIRED ACCOUNT NO.
August 19/88 ASAP 12161613123 171a.1]
ReEQuisiTiIoNER- PRINT PHONE SIGNING AUTHORITY
R. Baeza-Yates 2192 B N—
MAILING NAME - DEPT. e — [X] pELIVER
INFO - gye DeAngedis C.S. DC 2314 (] picx-ue

Copyright: | hereby agree to assume all responsibility and liability for any infringement of copyrights and/or patent rights which may arise from
the processing of, and reproduction of, any of the materials herein requested. | further agree to indemnify and hold blameless the
University of Waterloo from any liability which may arise from said processing or reproducing. | also acknowledge that materials
processed as a result of this requisition are for educational use only.

NUMBER 16 NUMBER 50 NEGATIVES QUANTITY REER rime ABOUR e
OF PAGES — OF COPIES
Tvoe or ParcnoTock o Tvo Pl o I I g e
ELPERSEE L s jammo 141 140M oM o L 1JL| L1001
APE - i x14 Glosscoat
[yerxr Cleix [ " 10'pERomdand Tine Y/ FLM o bbb e
PAPER COLOUR INK
Clware [ flooee O NFLM e Tl L eog]
PRINTING NUMBERING
L]lsmsvpcs.EZSH)ES_____PGS. FROM TO lF|L|MI [ | | IL! | | ]JI [JI | 1 1 JLC|0|1I
BINDING/FINISHING e - PMT
f:ll_ome/ — D—M:D.NG : PMTL v b T b e
7x10 saddle stite
:::cDilaTGlnstructions i ‘PIM{T[ L1 1] !—ILI ' ‘J—JL-‘—-H_.L.J__L_HQLQJLJ
Pt b T e 1 ey
Beaver Cover PLATES
PLTl e Lo Pogr
Both cover and inside in black ink please .
POT s e Lt L [Pog 1]
PUT e e b b I rogt]
STOCK
| Lovce b e b by 1119041
COPY CENTRE OPER. MACH. -
[”"l‘ HBLIDG]' | E"l dl I R R N R
DESIGN & PASTE-UP oRER. LABOUCRODE I 11 I A O A | ILL | 1 lJl !JLI | LJIO|0|1l
Lol 1 ] ipogtl]] N R RN | A R I
Lo L1 1 1 ||Djo;1]| BINPERY
o HDOUIRINIGII|IIIHIIIIJlIHIle[ 0,1]
| Ll 10}
TYPESETTING QUANTITY RNGL L L oy
IPiAP10,0,01000) || o L I moptJIBRNGL b L Lo ] [Biogt]
IPLAP[010,01000y || vy o Il L I fmensioo0000 L Lo Lo ] [Bog1]
[PAIP1010,0,00, || 10 )Ll 1y | [T 1]| OUTSIDE SERVICES
PROOF

PREL v e e e b 1

PRFE e e b |
PRFEL b b b e

COsT

_TAXES ~ PROVINCIAL [ | FEDERAL [ | GRAPHICSERV. OCT.85 4822



BEPARTMENT
DEPARTMENT
DEPARTMENT

A SEENCE
i

33 et

WATERLOO COMPUTE

WATER
WATER

Y8
Y OF
Y OF

S
-

The Subsequence Graph
of a Text

Ricardo A. Baeza-Yates

Data Structuring Group
Research Report
CS-88-34

August, 1988




The Subsequence Graph of a Text

Ricardo A. Baeza-Yates
Data Structuring Group
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada N2L 3G1 *

August 1988

Abstract

We define the directed acyclic subsequence graph of a text as the
smallest deterministic partial finite automaton that recognizes all pos-
sible subsequences of that text. We define the size of the automaton
as the size of the transition function and not the number of states.
We show that it is possible to build this automaton using O(nlogn)
time and space for a text of size n. We extend this construction to the
case of multiple strings obtaining a O(n?logn) time and O(n?) space
algorithm, where n is the size of the set of strings. For the later case,
we discuss its application to the longest common subsequence problem
improving previous solutions.

*This work was supported by the Institute of Computer Research of the University of
Waterloo and by the University of Chile.



2 Baeza-Yates
1 Introduction

Given a text, a subsequence of that text is any string such that its symbols
appear somewhere in the text in the same order. Subsequences arise in data
processing and genetic applications, being the longest common subsequence
problem (LCS) the most important problem. They are used in data pro-
cessing to measure the differences between two files of data, and in genetic
research to study the structure of long molecules (DNA).

The first interesting question to answer, is the membership problem.
That is, if a given string is a subsequence of another string. This can be
expressed as a regular expression (see [1] for the standard notation). For
example, if the subsequence is z;z3 - - - z,, and t is the text, then the problem
may be expressed as

t € 0"z 0"z 6%+ 0%z, 0% 7

where 8 is the don’t care symbol and * the star operator or Kleene closure.

A natural question is which is the size of the deterministic finite au-
tomaton that given a text, recognizes any possible subsequence of that text.
We allow the automaton to be partial, that is, each state need not to have
a transition on every symbol. As all the states of this automaton are ac-
cepting, it can be viewed as a directed acyclic graph, which we call the
Directed Acyclic Subsequence Graph (DASG). This problem is analogous
to the Directed Acyclic Word Graph (DAWG) in where we are interested in
subsequences instead of subwords [3].

In section 2 we introduce the DASG, and in section 3 we show how
to build it in O(nlogn) time and space for arbitrary alphabets, and in
O(nlog|Z|) time and space for finite alphabets. With this structure, we
can test membership in O(|s|logn) where s is the subsequence that we are
testing. One interesting thing to point out is that the DAWG recognizes all
possible O(n?) subwords using O(n) space, while the DASG recognizes all
possible 2" subsequences using O(nlogn) space.

In section 4 we extend the DASG to the case of multiple strings and
we use it to solve the longest common subsequence problem and variations
of it [2]. Our algorithm improves upon previous solutions of this problem
for more than two strings, running in time O(n?logn) using O(n?) space.
-Previous solutions to the general case used O(n’) time and space for L
strings [7] by using dynamic programming, or O(n®) time and O(n?) space
[6] using an approach similar to the one developed in this paper.



The Subsequence Graph of a Text 3

2 Building the DASG

We can define the DASG recursively in the size of the text. The DASG of
a text of size n must recognize all possible subsequences of the last n — 1
symbols of the text, and all possible subsequences that start with the first
symbol. As a regular expression this is:

Sp = (€+1t1)Sp-1 and Sp=c¢

where ¢ is the empty word and t = t;23---t, is the text. The size of the
regular expression Sy, is linear on n, and so is the non-deterministic finite
automaton equivalent to S,. Suppose that all the symbols of the text are
different. The “deterministic” version of Sy, for this case is

Sp=€+t18p-1 + 12802+ + 1250

Clearly, the size of Sy, is O(n?). Figure 1 shows the DASG for the text abcd.
This automaton has n+ 1 states (all of them are final states) and n(n+1)/2

transitions. The number of states is minimal because we have to recognize

the complete text (the longest subsequence). The number of edges (given

the minimal set of states) is also minimal, because in the position 1 of the

text we have to recognize any subsequence starting with ¢; for j = 1+1,...,n.

It is not difficult to generalize this for the case of repeated symbols.

d
Figure 1: Minimal state DASG for the text abecd.

Definition: Let ¥ be the alphabet. We define the effective size of X as
¢ = min(|Z[, n).
To build the DAWG in O(cn) time and space we use an incremental algo-

rithm scanning the text from the right to the left. At each step we maintain
a dictionary that contains all different symbols of the already scanned text,



4 Baeza-Yates

and the state in which the first skeleton transition labeled with that symbol
appears. Hence, the algorithm is

1. Create state s, and create an empty dictionary D.
2. For each symbol in the text t; scanning from the right to the left do:

(a) Create state s;_j.

(b) Insert the pair (t;,7 —1) in D. If ¢; is already in D, its associated
state is updated to ¢ — 1.

(c) For each symbol in D (dj), append a transition labeled with d;
to state sx41, where k is the state associated to d; in D.

Step (a) takes constant time. The insertion, step (b), can be performed
in log ¢ time, because the size of D is O(c). For the same reason, step (c),
the traversal of D takes O(c) time. The cycle is performed n times. Then,
the total time is O(n(c + logc)). If we apply the same algorithm scanning
the text from the left, we obtain the DASG of the reversed text. For this
DASG, we can test the membership of a subsequence s using s reversed.

A membership query in this DASG takes O(|s|logc) time, where the
log ¢ term is the time to search for the appropriate transition in each state.
Using hashing or a complete table for small alphabets, a O(|s|) average time
can be achieved.

3 The Smallest Automaton

It is possible to reduce the time and space requirements? The answer is yes.
The main problem is that the number of edges is O(n?) while the number of
states is linear. Here we are not interested in the minimal set of states, we
are interested in minimal space and that means a minimal number of edges.
In other words, the smallest transition function for the automaton. To the
best of our knowledge, this is first time that such concept is given.

Definition: The smallest deterministic partial finite automaton A that
recognizes the regular language L(r) defined by the regular expression r,
is such that does not exist other automaton that recognizes L(r) with less
transitions than A.

We shall show that minimal number of states it is not, in general, equiv-
alent to the smallest automaton. In [3] is claimed that the DAWG is the
smallest automaton that recognizes all the subwords of a text. However,
they show that is the smallest in the sense of minimal number of states. In-
tuitively, the DAWG may be the smallest automaton, because the number
of states and the number of edges only differ in n + O(1). In our problem,



The Subsequence Graph of a Text 5

it is not the case, and we introduce a method that we call encoding, since it
basically encodes the alphabet used.

To achieve the previous goal we will balance the number of states and the
number of edges. For that we encode each symbol using k < ¢ digits. This
means log, ¢ digits per symbol. Hence, our skeleton will have O(nlog, c)
states, each one with at most k edges. Then, the total space is O(nklog, c).

Intuitively, what happens is that the encoding permits to share transi-
tions. We can see this by noting that the skeleton representing a symbol has
k transitions times all the transitions of a skeleton one state short. That is

T, = kT,

and T} = k. But the length of the skeleton for each symbol is log, ¢. Thus,
T(logi c) = k'°8x¢ = ¢ different transitions per state. That is, the number
of transitions obtained in the O(cn) DASG.

The optimal choice for k is 3. However, for practical obvious reasons
we want an integer power of two. In that case, the best integer choices are
2 and 4. Thus, using k£ = 2 (typically most inputs are already encoded in
binary) we have at least 2 edges per state and n[log, c] + 1 states. Of these
states, n+1 are final. However, we do not have to distinguish them, because
any input must be of length multiple of [log, ¢]. This leads to the following
theorem:

Theorem 3.1 The smallest deterministic partial finite automaton that rec-
ognizes all possible subsequences of a tezt of size n over an alphabet of ef-
fective size c, has at most nflog, c] + 1 states and at most (2n — ([log, c] +
1)/2)[log, ¢] transitions.

Proof: It is only necessary to prove the result in the number of edges.
Clearly, any state has at most 2 edges. However, the last state has no transi-
tions and the previous [log, c] states only can have 1 transition because they
represent the last symbol. For the same reason, the skeleton representing
the symbol n — ¢ has at most ¢ states with 2 transitions for any ¢ < [log, c].
n

These upper bounds can be slightly improved using k = 3. This result
is optimal, because the length of the encoded text is O(nlogc), and then
we need at least O(nlog, c) transitions to recognize the complete text (the
longest subsequence).

Figure 2 shows the encoded version for the text abed. This DASG does
not have less transitions that the one presented in Figure 1. However, this
only happens for small n or periodic strings (for example a™).

Again, to construct this version of the DASG, we use an incremental
algorithm scanning from the right to the left. Now, we need two auxiliary



6 Baeza-Yates

Tl a=00b=01,c=10d=11
Figure 2: DASG for the text abcd (encoded).

structures. One that given a symbol tell us its encoding (encoding dictio-
nary/function) and another that given a prefix of a symbol code, returns
the position of the first symbol (in the previously scanned text) with that
prefix (analogous to the D dictionary of the previous algorithm). For the
last data structure we use a binary trie, where in each node we store the
position (state) needed. Let b be [log, c]. If ¢ is not known in advance, we
may use ¢ = n or we compute it using O(nlogc) time. The detailed steps
of the algorithm are:

1. Create state s,;+1 and create an empty binary trie D.
2. For each symbol in the text ¢; scanning from the right to the left do:

(a) Set the root as the actual position in D.

(b) Create state s(;_1).

(c) Encode t;.

(d) For every bit z; (0 or 1) in the encoding of ¢; do:

i. Create state s(;_1)p4+; if J <.

ii. Append a transition labeled z; between states s(;_1)p4+j-1
and S(;—1)p+;-

ili. If the Z; (complement of z;) child of the current trie node
exist, append a transition labeled Z; from state s(;_1)p+; to
state k where k is the state stored in the child.

iv. Set the z; child of the current trie node as the new position
in D and update its value (state) to (1 — 1)+ 5. If the child
does not exist, we create it.

All the steps in the internal loop takes constant time, and the internal
loop is repeated nb times. Hence, the total time is O(nlogc). The extra
space is O(clogc) for the trie and O(nlogc) for the encoding structure (if
we do not have a function or table). This leads to the following theorem:



The Subsequence Graph of a Text 7

Theorem 3.2 It is possible to construct the DASG of a text of size n us-
ing O(nlogn) worst case time and space for arbitrary alphabets, and using
O(nlog|X|) worst case time and space for finite alphabets.

In practice the implementation is very simple. We need two words for
each state (the 2 possible digits), and we need nb + 1 states (contiguous
space) for the whole automaton.

A membership test of a subsequence s is answered in O(|s|log, ¢) time
(the time to encode the subsequence plus the the time to answer the query).
Additionally to the DASG we may have to maintain a structure or a function
to encode each symbol. This at most requires O(nlogc) space. In practice
this is not needed, since most inputs are already encoded in binary (e.g.
ASCII).

This result proves the following (almost obvious) lemma:

Lemma 3.3 The minimal state partial DFA and the minimal transition
partial DFA are not equivalent.

What this means, is that to share part of a transition function in 2
“similar” states we need additional states. Encoding is one technique to
share states. However, it is possible that the general problem of finding
the smallest transition function is NP-complete based on related problems
presented in [4,5]. Further research is being done in this problem and in
local techniques to minimize space in finite automata.

The next lemma gives a necessary condition to have an encoding that
may reduce the size of the automaton:

Lemma 3.4 Given a minimal state partial DFA with s states, where sy of
them do not have outgoing transitions, and t transitions, then encoding may
reduce the size of the automaton only if t > 2(s — sg).

Proof: If we apply encoding, each state is at least transformed in 2
states. That means that the number of transitions of the automaton of
the encoded text is at least 2(s — so) transitions, because each new state
must have at least one transition, s — sg of the original number of states
also must have one transition and it is not necessary to encode symbols
representing states without transitions. Hence, the new automaton may
have less transitions if t > 2(s — so). m .

For example, any DAWG such that ¢ < 2s — 2 (sp = 1 for this case)
cannot be reduced using encoding. We have not found a single example
where t > 25 — 2 in the DAWG. Based in the results presented in [3] we
know that ¢t < 3s — 6.



8 Baeza-Yates

3.1 Average Size of DASGs

In this section we assume that the text is random. In many cases the
text is close to be random according to statistical tests. We assume that
the probability distribution of the symbols is uniform and that the text
can be viewed as a sequence of independent, identically distributed random
variables. First, we estimate the expected number of different symbols in a
text of length m, and with an alphabet size ¢ = |Z| (¢ > 2). This estimate
is given by the following recurrence:

Dp=(1-1/¢)"'4+ Dp1

where (1 — 1/c)™"1 is the probability that the first symbol is different than
all the others. The solution to this recurrence is

Dy =c¢(1-(1-1/e)™)

Hence, the expected number of edges in the minimal state version of the
DASG is

E(Edges) = Xn:Dm =cn—c(c—1)(1-(1-1/c)")
=1

This differs from the worst case only by a constant. For bigger alphabets,
this expression becomes

(4a+ 3)e /e
2402

E(Edges) = a’e™/*n?+(a(1—e"Y/*)+e /2 /2)n+ +0(1/an)
where a = ¢/n. For example, for ¢ = n we have that the number of edges is
roughly n?/e. Because the formula for D,, does not consider that at most m
different symbols can exist, the expression above is bounded by n(n +1)/2.
This bound is reached when the alphabet size is approximately 1.1n.

For the encoded DASG, we have to replace ¢ by 2 and n by nlog,c,
obtaining

E(Edges) = 2nlog, c — 2+ O0(1/2")

and again this differs only by a constant with the worst case.

4 The DASG for a Set of Strings

Now we want to solve the following problem: Is a given string a subsequence
of a string in a set of strings? Again, we can express the problem as a regular
expression. To do this we need some additional notation.

Let S be a set of L strings, and s; be the i*# string of the set. We
assume that no string is a subsequence of any other string (this implies



The Subsequence Graph of a Text 9

that at least there are two different symbols in §). Let n = SF | |s;| be
the total number of symbols. Let T'(S) be the set of distinct symbols in §
(2 < |T(S)| £ ¢ = min(Z, n)).

Definition: We define (as in [6]) a matched point of § as a j-tuple of pairs
([#1,p1), [32, P2].--s [#5,25]) (1 < 5 < L) which denotes a match of a symbol
at positions p; in string s;,, p2 in string s;,, ..., p; in string s; ;- A matched
points is mazimal, if the symbol matched does not appear in the L — j
remaining strings.

For example, all the maximal matched points for § = {aba, aab, bba} are
(11,1],[2,1],(3,3]), ([1,1], [2,2], 3, 3]), ([1, 2], [2, 3], [3,1]),
([1’ 2]’ [2’ 3]’ [3’ 2])’ ([1»3]’ [2’ 1]’ [3’3])» and ([1’ 3]’ [2> 2]’ [3’ 3])

Definition: We define the initial mazimal matched point (IM(S,z)) in the
set § for a given symbol z as the smallest maximal matched point (in a
lexicographical sense) that matches z. That is, the maximal matched point
with the smaller position p; in each string that belongs to the matched point.

For the previous example, IM(S$,a) is ([1,1],[2,1],[3,3]) and IM(S,b)
is ([1,2],[2,3],[3,1]).

We denote by R(S, matched point) (right set) the set of non null sub-
strings that are to the right (higher positions) of a matched point (we also
eliminate any substring that is a subsequence of other substring). For the
previous example, R(S,IM(S,a)) = {ba,ab}. Now, the regular expression
that defines all possible common subsequences of § is recursively defined by

Subseq($) = Y t;Subseq(R(S,IM(S,t;)))
t;€T(S)

and Subseq(@) = e. This definition generates the subsequence automaton,
and then allow us to count the number of states and edges needed by this
automaton:

States(S) <1+ Y States(R(S,IM(S,t)))
t;€T($)

and
Edges(S) < |T(S)|+ Y_ Edges(R(S,IM(S,t)))
t:€T( S )
Both results are not equalities, because identical right sets may appear (du--
plicated partial results). An example is given in Figure 3.



10 Baeza-Yates

- - - ‘d’ transitions

d
Figure 3: DASG for the strings abcd and bade.

Theorem 4.1 The DASG of a set of L strings of size n over an alphabet of
effective size ¢ has at most n — L+ 2 states and at most (N — L+ 1)c edges.

Proof: We use induction on the number L of strings. From section 2,
the theorem is true for L = 1 (n + 1 states are necessary and sufficient).

Now, we will see what happens when we try to include a new string s in
a DASG of a set S of L strings of size n. We will show that for each position
in s (except one) we need to create at most one state. If we create a state for
a transition labelled with s;, we mark that position j in the string. We show
that if position 5 has been marked, then there exists a state that recognizes
Subseq(s') and only that, where s' = s;41...5|,]. Note that the last position
‘will be never marked, because Subseq(e) exists already in the DASG of §
(last final state or sink state).

Then, for each position j in s (the order is not important) we need a
transition from the initial state labelled with that symbol (s;). For the last
position, if there is no transition from the initial state labelled with that
symbol, we create a transition from the initial state to the sink state. For
the other positions, we have three cases:

e A transition with that symbol does not exist and position 7 + 1 has
never been marked. In this case we create a new transition labelled
with that symbol to a new state, and we mark that position. From,
this state we apply this procedure recursively on the new state for the



The Subsequence Graph of a Text 11

string s'. Note, that this new state will recognize only Subseq(s').

e A transition does not exist, but position 7+1 has been marked. There-
fore, there exist a state that recognizes only Subseq(s'), and we create
a transition labelled with s; to that state.

e A transition with that symbol already exists. Hence, we use that
transition, and we follow it. Now, from that state, we apply this
procedure recursively.

Then, in the worst case, |s| — 1 states are created (less, if we have common
suffixes). Hence, the size of the new DASG is at most

States(S U {s}) < States(S) +|s| - 1
Using the inductive hypothesis, we have
States(SU{s}) <n—-L+2+|s|-1=(n+|s])-(L+1)+2

as claimed.

The bound in the number of edges is obtained using the fact that N —
L + 1 states have transitions, and that the number of transitions per state
is bounded by c. =

The bound is tight on the number of states, because if all the symbols
are different, n — L + 2 states and O(n?/L) transitions are needed.

For this case, it is not possible to use the encoding technique of the pre-
vious section. If not, it would be possible to solve the LCS problem (L = 2)
in O(nlogn) comparisons for an arbitrary alphabet. This is a contradic-
tion with the O(n?) lower bound in the comparison model presented in [2].
Therefore, the size of the DASG must be O(n?) for this case. In fact, the
encoding technique fails for this case, because know we have more than one
squeleton.

The only structure that resembles our automaton is the ICS tree of Hsu
and Du [6], which is used to solve the LCS problem for a set of strings. In
that case, only matched points between all the strings are considered.

Now, we will present the main ideas behind the algorithm that builds the
DASG for this case. The algorithm must find, very efficiently, all possible
different symbols at any state. For this, we first build the DASG (first
version given) for each individual string. With this, for each string, we can
find all different symbols after a given position. The algorithm recursively
generates states until all possible symbols belongs to one string (or there
are no more symbols left in that position). After that, the individual DASG
is used. To keep track of how much of this DASG we have used we have a
list of L positions D that indicates from where the DASG of each string is
already available.



12

Baeza-Yates

To find if a right set has been already generated we need two structures.
First, a structure that maps common suffixes to one representative. For this
we use a suffix tree of the strings (using O(n) space and time). Second, to
remember all the right sets (partial results) we use a dictionary that given
a right set tell us where it is or if does not exist.

The algorithm is:

1.
2.

7.

Create the last state F.

Create the right set remember dictionary, inserting the empty right
set and its associated state F.

. Initialize D; = |s;| for y =1, ..., L.
. Set up the table of representatives.

. Create the DASG for each string (DASG;) using F as common last

state.

. Call Merge with pairs (,1) for j = 1,..., L. Merge will return the

initial state.

Remove the first D; — 1 states of each DASG;.

The procedure Merge does almost all the work, merging the strings from
position ¢; for all 7 in the set of pairs P. Namely:

1.
2.

If |P| = O then return state F' (no symbols left).

Else look up on the right set remember structure. If it is there, return
the appropriate state.

. Else if |P| = 1 then we can use the individual DASG (or a copy of it).

Let 7 be the position different to 0. Return state ¢; of DASG; and if
i; < Dj, set 1; as the new value of Dj.

Otherwise

(a) Create a new state N

(b) Insert P in the right set remember structure, and its associated
state N.

(c) Look for all different symbols in state ¢; of DASG; for all values
of 7 in P. For each new symbol z, create a transition labeled
by z between state N and the state returned from Merge called
with pairs Q, where Q is defined as the pairs in P with all the
positions updated to 6(¢j,z), where § stands for the transition
function. If §(i;, z) does not exist, or is the state F, we remove
the pair corresponding to string j.



The Subsequence Graph of a Text 13

(d) Return state N.

Step (b) takes time O(log States(S)) = O(Llogn) and we need a bit
of care in step (c). To look for all different symbols defined by the set of
positions P, we assume that there is a lexicographical order between the
symbols, and that the edges of each DASG; are ordered. Then, we can
look all the edges in time proportional to the number of edges to obtain all
possible different symbols. If d is the number of different symbols, then at
most Ld edges are inspected. Because d edges will be then generated, the
time used is proportional to L for each new state created. At the same time
that we inspect the edges, we build the new set of pairs Q. The size of the
stack is at most L max;(|s;|) = O(Ln).

The time for each call to merge in the worst case is then O(Llogn).
There are as many calls to merge as matches between the strings (or edges
created by merge). The construction of the individual DASGs takes time
O(X; |5:]?) and the construction of the table of representatives takes time
and space O(n). Hence, the total time is O(L|Edges(S)|logn+n2?/L). This
leads to the following theorem:

Theorem 4.2 It is possible to construct the DASG for a set of L strings
using O(Ln?logn) worst case time and O(n?) space for arbitrary alphabets,
or using O(L|Z|nlogn) worst case time and O((L + |Z|)n) space for finite
alphabets.

The time to test membership of a subsequence s is in the worst case
O(|s|logc). This can be improved on average (using hashing tables or a
complete table in the case of a small finite alphabet for each transition) to

O(Jsl)-

4.1 An Application: The Longest Common Subsequence

Additionally to fast searching of subsequences in a text or a set of strings,
there are at least two other interesting applications for the DASG. One
application is related to set membership problems, but it is beyond the scope
of this paper. The other application is outlined in the next paragraphs.

The DASG can also be used to solve the longest common subsequence
problem, and some of its variants. For that purpose, we append to each
edge (transition) the number of strings that are represented by that edge.
Then, to know which is the longest common subsequence problem between
k < n strings, we search for the longest sequence of edges belonging to k or
more strings. The LCS of all the strings is when k£ = n. This LCS can also
be computed while the automaton is being built.

Multiplying the space by L, we can solve the LCS problem between
any given set of strings. We only need to attach to each edge the set of



14 Baeza-Yates

strings that are represented by it. In all these cases, we find all common
subsequences in optimal time.

Hence, the DASG can be used to solve the LCS problem and many
variants of it in time O(n®logn) using O(n?) space. This improves over
the solution presented in [6] that uses O(nc + Lc|P|) time and O(nc + | P|)
space, where |P| is the total number of matched points between all the
strings. Because |P| may be as big as O(n?), this algorithm runs in O(n%)
worst case time for arbitrary alphabets (O(|2|n?) for finite alphabets) using
O(n?) space.

5 Concluding Remarks

We have defined the DASG of a text, and we give an optimal algorithm
to build the DASG in O(nlogn) time and space. To achieve this, we have
introduced encoding as a technique to reduce the number of transitions in
an automaton.

We used the number of transitions to measure the size of an automaton,
and this problem shows that a minimal state automaton is in general not a
minimal space automaton.

We extended the definition of the DASG to a set of strings, and we use
it to solve the LCS problem between those strings, and several variations of
it.

Acknowledgements

We wish to thanks the helpful comments of Gaston Gonnet.

References

[1] Aho, A., Hopcroft, J. and Ullman, J. The Design and Analysis of Com-
puter Algorithms, Addison-Wesley, Reading, Mass., 1974.

[2] Aho, A., Hirschberg, D. and Ullman, J. “Bounds on the Complexity of
the Longest Common Subsequence Problem”, JACM 23 (1976), 1-12.

(3] Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T.,
and Seiferas, J. “The Smallest Automaton Recognizing the Subwords
of a Text”, Theoretical Computer Science, 40 (1985), 31-55.

[4] Garey, M. and Johnson, D. Computers and Intractability, A Guide to
the Theory of NP-Completeress, Freeman, New York, 1979.

[5] Hopcroft, J. and Ullman, J. Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, 1969.



The Subsequence Graph of a Text 15

[6] Hsu, W. and Du, M. “Computing a longest common subsequence for a
set of strings”, BIT 24 (1984), 45-59.

[7] Itoga, S. “The string merging problem”, BIT 21 (1981), 20-30.



	

