CS-88-33 - ON EFFICIENT ENTREEINGS

ABSTRACT:

A data encoding is a formal model of how a logical data structure is mapped into or represented in

ysical storage structure. Both structures are complete trees in this paper, and we encode the logical
orguesttreeintheleavesofthephysicalorhostteegivingamuicteddassofemodingseaﬂedeme-
ings. The cost of an entreeing is the total amount that the edges of the guest tree are stretched or dilated
when they are replaced by shortest paths in the host tree. We are particularly interested in the asymptotic
average cost of families of similar entreeings.

Our investigation is a continuation of the study initiated in [6].

AUTHORS: Paul S. Amerins, Ricardo A. Baeza-Yates, Derick Wood
PRICE: $2.00

CS-88-34 - THE SUBSEQUENCE GRAPH OF A TEXT

ABSTRACT:

We define the directed acyclic subsequence graph of a text as the smallest deterministic partial finite
automaton that recognizes all possible subsequences of that text. We define the size of the automaton as
the size of the transition function and not the number of states. We show that it is possible to build this
automatonusmgo(n logn)nmeandspaceforatextofslzen We extend this construction to the case

of multiple strings obtaining a O (n %log n ) time and O (n2) space algorithm, where 7 is the size of the set
of strings. For the later case, we discuss its application to the longest common subsequence problem
improving previous solutions.

AUTHOR: Ricardo A. Baeza-Yates
PRICE: $2.00

iﬁ

SN
gv)(\\.,
X

A
/@gj



- 8-

If you would like to order any reports please forward your order, along with a cheque or international
bank draft payable to the Department of Computer Science, University of Waterloo, Waterloo, Ontario,
N2L 3Gl, to the Research Report Secretary.

Please indicate your current mailing address and if you wish to remain on our mailing list.

MAILING ADDRESS: g’} eniy Lo [feors /<
C 707 Zent

YES, REMAIN ON MAILING LIST

NO, DELETE FROM MAILING LIST



OXFORD UNIVERSITY COMPUTING LABORATORY
PROGRAMMING RESEARCH GROUP

Professor of Computation: » .
CTX.;?,SOI;(?are ort‘t;xpsu aton ' ‘ 8-11 Keble Road

o  Numerical Analvsi Oxford OX1 3QD
rofessor of Numerical Analysis: )
K.W. Morton ‘ Tel: Oxford (0865) 273837 (direct)

October 26, 1988

Research Reports Secretary
Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3Gl
CANADA

Dear Sir/Madam

We would like to order one copy of each of the following reports:

g

. CS.‘~88~23 Patdern matching in trees by Peng Li. Price $5.00

I enclose a cheque for $7.00.

Also enclosed is a list of our current publications for your interest. We are happy to
implement exchange arrangements. '

Yours sincerely

Q’N\i‘\,& %mr‘?”‘

David Brown
Librarian

encl: Cheque for $7.00
List of PRG Technical Monographs to October 1988

Q:%
PR
PAE



Pnntngeqwsmow(:raphsc;‘cpemces 15066

b i

1. Please complete unshaded areas oun 2. Distribute copies as foilows: White and : v oompistion of ciaer the Yellow copy 4 Please direct enquiries, quoting requisi-

form as applicable. Yellow to Graphic Services. Ketain Pink m!l be retumed with  the printed tion number and account number, to
F Copies for your records. materiai extension 3451.
L_ITI_E OR DESCRIPTION )
On Efficient Entreeings CS=-88=-33 B
DATE REQUISITIONED DATE REQUIRED ACCCOUNT NO.
August 15/88 ASAP R l1.12.6 le 1171614 .1J
rReEQuUIsIiTIONER- PRINT FPHONE smmr\m AUTHORITY
D, Wood , , .4456 . e J A&a / AN Qi ) / A //"'r‘ C‘/"
MAILING NAME CEET. _DG. & F{OOM}J’IO / [m DELIVER
INFO - gye Deangelis N C.S. e DC 2314  piewur

Copyright: | hereby agree to assume all responsibility and liability for any mfrmgemcn' of cupyrights and/or patent rights which may arise from
the processing of, and reproduction of, any of the materials harein requested. | further agree to indemnify and hold blameless the
University of Waterioo from any Iiabiiity which may arise from said processing or reproducing. | aiso acknowledge that materials
processed as a result of this requisition are for educational use only.

NUMBER 12 NUMBER NEGATlVES QUANTITY SSER TIME LABOU?ODE
> F PA ... L I ~ I Q COEiES 150 I - | i
:YPE ZisF’APER STOCK - - Alpac Ivory ir{L'M| [ 5 I L1 J I ’ j l L L] | {CIO”J
") Bonp | |ner____ew :“‘;;uv.r,ﬁ f;rwan:;’ru_ [» SURPLIED ‘L: 1 . - i !
tLPER;;L ~ 5 - | Laom Fe o e bt ee
18} x ] et oxoia ] x 17 10x14 Glosscoat :
Lheier U S Jf;o_pgrgg;;and“gint,LfJLLM[ o b b b Tejop
) PAPER COLOLJR INK o X | :
L P X!« O ML e I g ey
PRINTING NUMBERING | ,
[:] 1 sIpe ______ PGS, kl 2 51DES PGS, FROM TO ,F |L§M[ | 1 | | | J L | | | | I ‘ | J | | 1 | l lC[O]1J
BINDING/FINISHING o - PMT ' .
COLLATING [:1 STAPLING D ______ T:.ﬁ?ﬁaa ;Tl PLAZTIC RING i . | .
fileG/ : cyrne - P e e L gl eon]
y 7x10 saddle stitche N , ' ‘
i — = Pty v e e le041]
Special Instructions
! . .
PMT b by r 1 ey01]
Beaver Cover . { PLATES . - ' v
PUT e L e Heogd
Both cover and inside in black ink please| , ,
POT s b e b oy
PLTh s b b oyt
STOCK _
Lo b e e b 1041
COPY CENTRE OPER MACH
L 11 JLa ] | 10,01}
| I L1 Pt 11950
DESIGN & PASTE-UP opER. LABOUR I Lol L b eg0p1]
. NO. TIME CODE
ERIEEERI L N | RN | e L
L L1 11 ||Djoy1]] BINPERY
' !RINIGI o b e e b I eyogt ]
Lo fiDIOILJ‘
TYPESETTING aUANTITY BNGL L L Begt
PAPI00 000000 [y ol mepilRNG] b b L ] Byt
IP,AP10,0,01000¢ || v L s melivinsleio00 I L L L o ] [Boy1]
[PiAP10,0,0,010y [y ooy Ly JL gy g [ (70 1] OVTSIOR SERVICES
PROOF
PREL e b e e b
PRE e e
. ‘ ! COST
'P‘ RIFI [ I J l | J! i : | i J l ‘ Jl I l ’ ‘l l l TavEa o DORAVINCTL AL ™ CEMEDAL 1 GRAPHIC QFRV OCT RR  4R2-9



August 12, 1988

-—stit:

Can you have 150 copies of each tech.report made
up in the "Beaver" cover? Thanks. (126-6176-41)D.Wood

Thanks also for the cgl work - terrific job!
z



MENT

NGE BERASH
NCE DEPARTMENT
ENCE DEPARTMENT

E
E

33 CalRIER <

WATERL
F WATERL

gF

Y
iy
Iy

10

UNIVERSITY OF WATERLOO COMPUTER SC

OhvER

On Efficient Entreeings

Paul S. Amerins,
Ricardo A. Baeza-Yates
and

Derick Wood

Data Structuring Group
Research Report CS-88-33

August, 1988




On Efficient Entreeings *

Paul S. Amerins Ricardo A. Baeza-Yates Derick Wood !
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Abstract

A data encoding is a formal model of how a logical data structure
is mapped into or represented in a physical storage structure. Both
structures are complete trees in this paper, and we encode the logical or
guest tree in the leaves of the physical or host tree giving a restricted
class of encodings called entreeings. The cost of an entreeing is the
total amount that the edges of the guest tree are stretched or dilated
when they are replaced by shortest paths in the host tree. We are
particularly interested in the asymptotic average cost of families of
similar entreeings.

Our investigation is a continuation of the study initiated in [6]. In
particular, the paper contains the following main results.

1. We refute a conjecture in [6] that a particular family of entreeings
of binary guests into binary hosts was optimal.

2. We provide an efficient family of entreeings for k-ary guests into
k-ary hosts, for k > 2.

3. We provide an efficient family of entreeings of k-ary guests into
binary hosts, for k > 3.

4. We provide a new simple lower bound technique that can be
applied to the entreeings of (2) above to prove that they are very
close to optimal. Moreover, it can be adapted for the entreeings
of (3) above, in which case we are able to show near optimality
when k is sufficiently large.

*The research of the second author was supported by a scholarship from the Institute
for Computer Research and that of the third author was supported by an Information
Technology Research Centre Grant and by a Natural Sciences and Engineering Research
Council of Canada Grant No. A-6192.

tData Structuring Group, Department of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, CANADA
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1 Introduction

A data encodingis the physical storage representation of a logical data struc-
ture [4]. In this paper, both kinds of structures are represented by complete
trees and an encoding is an embedding of a guest tree (the logical structure)
into a host tree (the physical structure). Moreover, the nodes of the guest
tree are mapped injectively into the leaves of the host tree; this is called an
entreeing [5,6]. The cost of an encoding is the total amount that the edges
of the guest tree are dilated when they are replaced by shortest paths in the
host tree via the entreeing.

Interest in encodings of trees has recently been revived because of the
advent of tree machines; see [1]. In this setting, emulating a tree machine
within some other architecture, for example, a hypercube, is modeled by
data encoding. Moreover, being able to efficiently entree a logical tree,
for example, a divide-and-conquer tree, into a physical tree, that is, a tree
machine, is a basic problem.

Throughout, we entree a (complete) guest tree of height h into the leaves
of a (complete) host tree of smallest possible height. This is reasonable be-
cause we are interested in cost efficient entreeings. For, entreeing a guest into
a host that is higher than necessary is more expensive unless the entreeing
is restricted to a minimal height subtree of the host. Furthermore, we are
interested in families of related entreeings, rather than in ad hoc entreeings
for particular heights of guests. For this reason, we consider entreeings €
of a guest of height h that are defined recursively in terms of ¢;, 1 < ¢ < h.
For each family {ej : h > 1} of recursive entreeings, as we call them, we
wish to compute its asymptotic average cost, for a uniform distribution on
the edges of the guest tree. Rosenberg et al. [6] studied, in detail, one such
family of recursive entreeings of binary guests into binary hosts and proved
that its asymptotic average cost is 5+ 0(1). They also proved a lower bound
of 4.786 + o(1) for the asymptotic average cost of any family of entreeings,
not only recursive ones, and, therefore, conjectured that their family was
optimal. Indeed, they said, “Although we have been unable to verify the
conjectured optimality of the entreeing €5, the bound just obtained shows
€n to be close enough to optimal . ..to forestall any serious search for a less
ACOSTly encoding.”

Surprisingly (at least to the third author), a less ACOSTly binary entree-
ing has been found; it is defined and analyzed in Section 3. Its asymptotic
average cost is 4.83+0(1); very close indeed to the lower bound 4.786+0(1)
of [6]. Apart from this refutation, we present efficient entreeings of k-ary
guests into k-ary hosts, for k > 3, in Section 3 and efficient entreeings of
k-ary guests into binary hosts, for k > 3, in Section 5. To complement this
extension of the investigation in [6], we provide, in Section 4, a new, simple
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lower bound technique which can be applied to the entreeing problems we
study. This enables us to demonstrate that our new entreeings are efficient
in that they are close to optimal, for all values of k.

2 Definitions

Let h be the height of a complete k-ary tree, defined as the number of edges
in a path from the root to a leaf. The number of nodes of a complete k-ary
tree of height h is

khtl 1
M=
and the number of edges is
kh+l -k
Ey,=N,-1= %1
and the number of leaves is
Ly=k"

Let Gp be a guest tree of height h and H be a host tree. An entreeing
is an injection of nodes in G}, into the leaves of H. To compute the average
cost we use a uniform distribution for the edges of G}, that is, each edge
has the same probability. Thus, we define the cost of an entreeing ¢, as

Cu(en)= Y.  dilation(en(e))
e€ Edges(G)
where the dilation of an edge e in the guest tree is the length of the shortest
path between the images of the two incident vertices under the entreeing.
Given a family {e, : h > 1} of entreeings, the asymptotic average cost of an
entreeing ¢, is defined as
. Ch(eh)
=1 _— s
4 hlj?o E)
We define the ezpansion cost of an entreeing as the size of the host tree
divided by the size of the guest tree

_ Nodes(H)
" Nodes(G)
The aim of this paper is to obtain entreeings with minimal expansion and
minimal asymptotic average cost.
We define the inorder traversal of a k-ary tree recursively as:

Traverse the first |k/2] left subtrees in inorder; visit the root;
and traverse the other subtrees in inorder.

X

The enumeration induced by this traversal is the enumeration used to rep-
resent the vertices of the guest tree.
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3 Entreeing k-ary trees into k-ary trees

Let G, and H be complete k-ary trees (k > 2). If we are to embed a tree
G}, into the leaves of a host tree H, the height of H must be at least h + 1.
Hence, to obtain the minimum expansion, the host tree H must have height
exactly h + 1. This gives an expansion of

_ (k _ l)kh+1

— —h
X= g =k-1+0(k™)

For simplicity we will consider the case k = 2 in detail giving the results
for general k later. The simplest entreeing is the inorder entreeing; this is the
recursive entreeing studied in [6]. We encode the nodes, using the inorder
enumeration of Gj, in the leaves of Hp4; from left to right; see Figures 1
and 2 for an example. Alternatively and recursively, one can express this
as entreeing the left subtree of G}, in the left subtree of Hpy; using €51,
entreeing the right subtree of G, in the right subtree of Hpy; using €1,
and associating the root of G, with the rightmost and unused leaf of the left
subtree of Hpy3. The cost of entreeing a tree of height h can be expressed
by the recurrence equation

P h=1
= 21 +4h+2, R>1

Its solution is
Cp=5-2"'—_4n—-10

which gives an asymptotic average cost of 5 as shown in [6].

Figure 1: Guest tree

In [6], it was conjectured that this entreeing was optimal, but we now
demonstrate that this is not the case. The following algorithm is almost
optimal and is also based on the inorder entreeing. If the height is less than
3, the entreeing is identical to the inorder entreeing. Otherwise, we apply
the algorithm recursively as depicted in Figure 3. The idea is first to embed,
recursively, subtrees g1, g2, and g3 of G}, into the subtrees hy, hg, and hs
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Figure 2: Host tree obtained with the inorder entreeing

of Hp41 (after this step, the righmost leaves of hy, h2, and h3 are empty).
Second, we modify the partial entreeing ¢ constructed so far. Consider the
node €x(z) in hy corresponding to the rightmost leaf z in g; and let y be the
left child of the root r of G,. Now, we define €4(r) to be the rightmost leaf
of h, define €, (y) to be the current value of €4(z), and redefine €;(z) to the
rightmost leaf of h;. In the example of Figure 2, the only difference is that
nodes 4 and 7 are interchanged.

9 g2 gs hy ha hs

z T yr

Figure 3: Improved inorder entreeing

Each recursive call increases the dilation of an edge in a lower level,
decreasing the dilation of one of the edges at the root to 2, yielding a saving
of 2. Note that the leaves of different interchanges do not interfere. We call
this entreeing the improved inorder entreeing, or IIE for short. Its recurrence
equation is

6, h=1
Ch=1{ 22, h=2
Ch-1+2Cp_2+8h—-2, h>2

and its solution is

_1\h
Ch=%2"+l+%—4h—-9
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giving an asymptotic average cost of % = 4.83. This is almost optimal,

since a lower bound of 4.786 is given in [6]. Table 1 gives some values for
the cost of this entreeing compared with the values for the inorder entreeing
for small h.

h o1 2 3 4 5
IE |1 6 22 56 134 290
IIE|1 6 22 56 130 280

Table 1: Entreeing values for small A

For general k, the natural way to generalize the inorder entreeing is to
apply a divide and conquer strategy. We call this entreeing the divide-and-
conquer-entreeing or DCE. We embed each subtree of G into the corre-
sponding subtree of Hj41, mapping the root of G}, to one of the subtrees of
Hp41. The corresponding recurrence equation is

o = | %2 h=1
P=) kChoy+2(k—1)(h+1)+2h, h>1

and its solution is

_ 2(2k% - 2k+1) 2k

= Kh—1) - =22
Ch (k—1)? ( )= x=1t
giving an asymptotic average cost of
_ 2(2k*-2k+1) 2 _3
ApcE = k= 1) =4+ 5 +O0(k7)

As expected this reduces to 5 for k = 2. However, it is possible to improve
this result considerably. To do this we embed the tree using the generaliza-
tion of the inorder traversal defined in Section 2. We call this entreeing the
IE entreeing. The recurrence equation is now

o = | 2+2 h=1
=1 kCh_1 +2(k-1h+2(h+1), h>1

Its solution is

2(k2+k—-1),,, 2k
Ch=——-—(k"-1)— ——h
h (k—1)2 ( )~ %o1
giving an asymptotic average cost of
2(k*+ k-1 4 -
Arp = 2 +k—1) =24+ —-+0(k7?)

k(k — 1) k
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To see that this is considerably better, consider the ratio

Apce _ 2k*—2k+1 _,_ 4
Arg T Ok24+k-1 k
Clearly, ApcEk is, asymptotically, almost double the cost of Asg.

Our last entreeing is a generalization of the improved inorder entreeing.
It is defined recursively as follows.

+0(k™%)

1. If the height of G}, is less than 3, use the IE entreeing.
2. Otherwise, for the first k — 1 subtrees of G (¢9;) and Hpy1 (ki) do

(a) Recursively entree all the subtrees of g; (gf ) into the correspond-
ing subtrees h] of h;.
(b) Map the root of g; (r) to the free leaf of h;.
(c) Interchange ep(r) with ex(y), where y is the rightmost element of
gi.
3. Entree g; into hg.

4. Map the root of G}, to the free leaf of hj.

The corresponding recurrence equation is

2k + 2, h=1
Ch=1{ 2k®+6k+2, h=2
Ch-1+k(k —1)Cp—3 +2hk? — 2k + 2k +1, h>2

and its solution is

2(2k* + k3 — 4k?* + 3k — 1) G

Cn k2(2k? — 3k + 1)(k — 1)

2 _ahe1 2k _2(k3+k—1)
Ty L Gk A s Ly~ Py
yielding an asymptotic average cost of
2(2k* + k> —4k2+3k—1) _ 4 s
Ane=—"—pem gy 2t oK)

We can compare Ajg and Ajrg by examining the ratio

Arg 1 _3
=14 —+0(k
ArrE + 2k? +O(k™)
In this case the difference is slight, since both equal two in the limit.
Table 2 gives some values for the asymptotic average cost of the three
previous entreeings for some values of k along with the known lower bounds.
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k | Lower Bound | IIE | IE | DCE
2 478[6] |483| 5 5

3 3.15 3.58 | 3.67 | 4.33
4 2.89 3.11 | 3.16 | 4.17
5 2.73 2.86 | 2.90 | 4.10
6 2.62 2.71 | 2.73 | 4.07
7 2.53 2.60 | 2.62 | 4.05
8 2.47 2.52 | 2.54 | 4.04
9 2.42 2.46 | 2.47 | 4.03
0o 2 2 2 4

Table 2: Asymptotic average cost for different k

4 A New Lower Bound Technique

Rosenberg et al [6] gave an involved packing argument that led to the lower
bound for binary-binary entreeings. We now give a simpler approach that
works for general k. For this purpose, we decompose the entreeing problem
into two subproblems. We separately consider the guest subtrees of height
J (subtrees on the bottom) and the remainder of the guest tree (the top)
that we call T'. Now, the cost C of any entreeing is bounded below by

C > Dilation(subtrees of height j) + Dilation(T)

Let C; be the cost of an optimal entreeing of a tree of height j. A tree of
height h has k*~7 subtrees of height j. Each internal node in T, apart from
the root, is incident to k + 1 edges. Hence, each internal node in T, except
the root, contributes at least 2k + 6 to the cost of any entreeing. This is
simply because at most k — 1 nodes can be at distance two from any other
node. Substituting these values into the above inequality we obtain

(k - l)Cj 2k + 6

> . .
A2 kit1 (k+ 1)k

The cost of an optimal entreeing of a tree of height 1 is 2k + 2. This
is because the root can be at distance 2 from at most k — 1 children. The
remaining child must be at distance four, at least. A similar argument shows
that C; is at least 2k? + 6k + 2. Substituting this value into the previous
equation, for 5 = 2, we obtain

4 3 2 _
Akzz(k + 3k% + k% — 1)
(k+ 1)k
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Table 2 gives the values of this lower bound for different values of k. An
exhaustive search of all possible entreeings for binary trees has proved that
the IIE entreeing is optimal for A = 3.

5 Entreeing k-Ary Trees into Binary Trees

Since a host tree represents the physical structure, it is more usual for it to
be binary. Hence, we would like to entree a k-ary tree (k > 2) into a binary
tree. To entree a k-ary tree of height h we need a binary tree of at least
height A', where
s R |

- k-1
giving h' =~ hlog, k. To simplify the relation we will use a binary tree of
height h x b with b = [log,(k + 1)]. This gives an expansion factor of

(k —1)2h
khtl — 1

2

which is no larger than
k-1 (k+1\"

We define the inorder entreeing by entreeing each group of k consecutive
leaves of the guest tree as the leaves of a subtree of height b in the host tree
H. This leaves one free leaf for every k leaves in the host tree. Now, we
apply this algorithm recursively (bottom-up) treating the next level of G as
leaves and the level of the subtrees of height b as leaves in H.

The recurrence equation for this entreeing is (k is a power of two minus
one for simplicity)

C, = (b_1)2b+1+2: h=1
T kChoy +2(RB—1)(22 —1)+2b, h>1

Its solution is

24 (k(d-1)+1)+2(k—b—1) , 2b(2% - 1)
Cn = (k= 172 (k" —1) = =7k
giving an asymptotic average cost of
b+1 _ —b-1
AIE = 2 (k(b 1)+ 1)+2(k b ) :2log2k+0(1)

k(k — 1)

Using a similar lower bound technique to that of the previous section
with j = 1 we have
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because each edge in T has at least a dilation of 2. We use the value of C;
given by the inorder entreeing because it is optimal for this height. Thus

A> (k—1)((b- 123"“ +2) + 2k

Hence, the inorder entreeing is asymptotically optimal in k. Table 3 shows
some values for the lower bound and the inorder entreeing.

= 2log; k+ O(1)

k | Lower Bound IE

3 2.89 5.33

7 4.45 5.86
15 6.23 7.10
31 8.12 8.66
63 10.06 10.38

Table 3: Asymptotic average cost of entreeing k-ary trees into binary trees

6 Concluding Remarks

We first comment on the entreeing of other tree-like structures and second
we state some open problems.

We consider four variations of binary trees that include additional edges.
For example, a complete binary tree with edges added between two consecu-
tive leaves if they have different parents. In this case, the asymptotic average
cost of the inorder entreeing is 3.25. That is, adding one edge for every two
leaves, we decrease the asymptotic average cost by 35%. Now, if we add one
edge between every pair of consecutive leaves, the asymptotic average cost
decreases to 2.

An interesting tree-like structure is a dree. Drees were introduced in [6].
A dree is a tree with undirected threads added such that there is a path of
length 2 between adjacent leaves passing through the root of the smallest
subtree containing both leaves. These trees are also called depth inorder
trees [2].

It is shown in [6] that the dilation of any edge in any endreeing, is no
more than 3, and that the asymptotic average cost for the inorder endreeing
is 2.5. Using a similar lower bound argument to that in Section 4 we can
prove that this endreeing is optimal.

Another interesting tree-like structure is depth preorder trees. Depth
preorder trees were introduced in [2]. In these trees, each leaf has an edge to
the next node in the preorder traversal. In this case, the inorder entreeing
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has an average cost of 2.5. A lower bound for this case, using a similar
method, is 1.75.

Finally, we have still been unable to prove the optimality of the improved
inorder entreeing for binary guests to binary hosts. However, our new upper
bound is within .05 of optimal. It would be useful to extend our new lower
bound technique to larger subtrees so that the lower bound of [6] can be
improved. This implies that we need to find an optimal entreeing of height
4 trees and this is too time consuming for naive enumeration.

Also the lower and upper bounds for k-ary guests to binary hosts are
rather far apart — only getting close for k > 31.

Historical Remark

The third author ran a problem-solving seminar for new Ph.D. students
in the 1986 Fall term at the University of Waterloo. One of the problems
discussed was the conjecture of [6]. A number of students found the coun-
terexample described here as the improved inorder entreeing, but only the
second author of this paper provided asymptotic average cost for general k.
It was decided to write this up with P.S. Amerins as the first author, since
this is a weak anagram of P. S. Seminar which denotes the nine students in
the course.
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