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Implicit Selection*

Tony W. Lait Derick Wood!
August 8, 1988

Abstract

We consider the problem of selecting the kth smallest element of
a multiset of n elements using only a constant amount of additional
space, the implicit selection problem. We demonstrate that this prob-
lem can be solved in O(n) time in the worst case. Moreover, we prove
that 6.4217n + o(n) comparisons are sufficient if all elements are dis-
tinct, 6.4514n+o(n) comparisons are sufficient in the general case, and
24.8388n + o(n) data movements are sufficient in either case.

1 Introduction

The problem of selecting the kth smallest of a multiset of elements from some
totally-ordered universe has been the subject of vigorous investigation. For
many years it was assumed to be as difficult as sorting, but the linear upper
bound of Blum et al. [2] demonstrated this not to be the case. Since it is
straightforward to obtain a linear lower bound, one might expect the story
to end here. However, this is not the case, since the multiple of n resulting
from the first algorithm of [2] is large, indeed it is 19.3n. The hunt was on for
a faster algorithm; the state-of-the-art is a lower bound of 2n comparisons
[1] and an upper bound of 3n comparisons [10].

In this paper, we study the selection problem, for a multiset of n el-
ements, under the assumption that apart from the space for the elements
themselves we allow only a constant amount of extra space. The extra space
is restricted to O(logn) bits, thus preventing the possibility of encoding a
copy of the n elements. We call this the implicit selection problem. Before

*The work of the first author was supported under an NSERC Postgraduate Scholarship
and that of the second under a Natural Sciences and Engineering Research Council of
Canada Grant No. A-5692 and under an Information Technology Research Centre Grant.
A preliminary version of this paper was presented at SWAT 1988; see [7]; however, we
have improved the bounds given in [7].

tData Structuring Group, Department of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada.



explaining why we are interested in this problem, observe that it is indeed
a new problem. Blum et al. [2] devised an O(n) worst-case selection algo-
rithm; however, it uses ©(logn) extra space [5]. Schoénhage et al. [10] also
devised an O(n) worst-case algorithm; a straightforward implementation of
it requires (2(n!/2) extra space. This means that these algorithms cannot
be used to solve the implicit selection problem without major modifications.
We provide a solution by giving an implicit emulation of the basic BFPRT
algorithm with preconditioning; see [2]. This algorithm is first described in
Section 3, and the emulation is described in Section 4. As will be proved,
our emulation requires fewer than 6.5n comparisons and fewer than 25n data
movements. Two open problems remain, namely, is the lower bound for im-
plicit selection greater than 2n comparisons, and can the upper bounds of
6.5n comparisons and 25n data movements be reduced?

The implicit selection problem arises from various implicit data struc-
tures [9]. First, in Lai [6], the maintenance of an implicit minimal height
k-d tree under insertions and deletions was explored. This needs an im-
plicit selection algorithm, hence, the implicit selection problem. Second, in
van Leeuwen and Wood [11], the notion of a “median” heap is explored.
Since a heap is an implicit data structure, it seems reasonable that its con-
struction also be implicit, hence, an implicit median algorithm is needed.

Finally, before describing our implicit selection algorithm in detail, we
should point out that in practice one would use the probabilistic algorithm of
Floyd and Rivest [3]. This algorithm is, essentially, implicit and is expected
to require 1.5n + o(n) comparisons. In other words, the implicit selection
problem is of limited practical interest and is pursued solely for its theoretical
interest.

2 The implicit selection problem

The selection problem is: determine the kth smallest element of a multiset
of n elements, given the values of k and the n elements. We define a new
problem, the implicit selection problem, in which we want to find the kth
smallest of n elements using only a constant amount of additional space.

For our model of computation we assume a comparison-based arithmetic
RAM. We assume that comparisons have three outcomes (<, =, or >), and
that arithmetic operations are allowed only for manipulating indices. We
have space to store the n elements and a constant amount of additional space
in which we can store data elements and indices in the range [0,n]. Note
that an index allows us to store logn bits, so O(logn) bits can be stored
using a constant number of indices. In particular, we can maintain a stack
of size O(logn) bits.

Our main result is:



Theorem 2.1 The implicit selection problem can be solved in O(n) time in
the worst case. Furthermore, 6.4217n + o(n) comparisons are sufficient if
all elements are distinct, and 6.4514n + o(n) comparisons are sufficient in
the general case; 24.8388n + o(n) movements are sufficient in either case.

In the remainder of this paper, we describe two algorithms that solve the
implicit selection problem in linear time in the worst case by emulating other
linear time worst-case selection algorithms. We consider two cases: the case
when all elements are distinct and the case when repetitions are permit-
ted. Complications occur in our emulation techniques when repetitions are
allowed.

3 The Blum-Floyd-Pratt-Rivest-Tarjan algorithm

Blum et al. [2] devised two selection algorithms that require ©(n) time
in the worst case. They devised a simple, “slow” algorithm that requires
19.3n comparisons and a complicated, “fast” algorithm that requires 5.4305n
comparisons. Our algorithms are based on a well known variant of the
slow BFPRT algorithm that incorporates some optimizations of the fast
BFPRT algorithm; we refer to this variant as the BFPRT algorithm with
preconditioning. Let ¢ be some odd integer constant, where ¢ > 5. Let
#S denote the size of a multiset S. Then the BFPRT algorithm with
preconditioning computes the kth smallest element of a multiset S as follows.

function BFPRT-SELECT(S,k)
1. Arrange S into |#5S/c| lists of ¢ elements and sort each list.

2. Return RSELECT(S k).
end BFPRT-SELECT

function RSELECT(S,k)

1. We maintain the invariant that S consists of |#S/c| sorted lists of ¢
elements on entry to RSELECT. Let T be the set of medians of the
lists of size c. Arrange T into |#T/c| lists of ¢ elements, and sort each
list. Compute m = RSELECT(T,[#T/2]).

2. Find the rank r of m in S, and let S<, S=, S5 be the lists of elements
whose middle elements are less than, equal to, and greater than m,
respectively.

3. If r = k, then return m. Otherwise, if r < k, then set k' to k— (#S<+
#S=)[%], discard the leftmost [5] elements of S¢ U S=, and merge
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Figure 1. The conceptual organization of elements in RSELECT.

the lists of S< U S— to form sorted lists of size c. Otherwise, set k' to
k, discard the rightmost [§] elements of S= U S, and merge the lists
of S— U S5 to form sorted lists of size c.

4. Return RSELECT(S< U S= U S ,k').
end RSELECT

We refer to the problem instance associated with the recursive call in
step 1 as the first subproblem and the problem instance associated with the
recursive call in step 4 as the second subproblem.

This algorithm can easily be shown to require O(n) time; actually, it
requires approximately 6.166n comparisons for ¢ = 31. However, this algo-
rithm requires ©(n) additional space to compute S< US=U Ss.

4 Achieving constant space

Before we proceed further, it is worth noting that we ensure that selections
are always performed on the leftmost elements of the input array, and that
we simulate the recursion of RSELECT. Also, if the number of input ele-
ments of a subproblem is less than a specified constant, then we perform the

selection using some other algorithm.
There are four factors that contribute to the storage requirement of the
BFPRT algorithm with presorting, the first three being due to the recursion.

1. Saving arguments—endpoints.

2. Saving arguments—&k.



3. Implementing recursive calls.
4. Recopying space.

We show in turn how each of these costs can be reduced to a constant.

Saving function values may also appear to contribute to the storage
requirements of the BFPRT algorithm, but function values never have to
be saved. This is because in RSELECT, the result of the recursive call of
step 1 is discarded before the recursive call of step 4, which implies that two
function values never have to be stored simultaneously.

4.1 Saving arguments—endpoints

Only one endpoint need be saved during each recursive call, since we ensure
that selections are performed only on the leftmost elements of the input
array. Given an input array of n elements, we guarantee that the number
of elements of the first subproblem is |n/c|, and the number of elements
of the second subproblem is [(1 — L%z-l)n] This way, given the number of
elements of one of the subproblems, we can multiply by a factor and add
a term to obtain n. Observe that the factor depends solely on whether
the subproblem is the first or second, and the added term is bounded by a
constant. Also, the maximum depth of recursion of RSELECT is O(log n).
This suggests that we can maintain a stack of O(logn) bits to record which
subproblems the recursive calls correspond to and another stack of O(logn)
bits to record the added terms.

4.2 Saving arguments—k

To encode k, we use a binary encoding scheme. If we have a list of size
n, then since 1 < k < n, we can encode k in the relative order of 2[logn]
elements. Use a pair of unequal elements to encode each bit of k, placing
the elements in ascending order to indicate a 0 and in descending order to
indicate a 1. Figure Figure 2 displays such an encoding of 5 in a list of size
8. Note that we always use 2[logn] elements to encode k; leading zeros
are kept. This technique was used by Munro [8] to encode pointers in an
implicit data structure based on AVL trees.

Observe that k has to be encoded only during step 1 of RSELECT. To
encode k, we use the 2[logn] elements immediately following the elements
of the first subproblem. This is straightforward when all elements are dis-
tinct. In the general case, there may not be enough distinct elements for the
encoding to work, so we have to search for elements; this will be discussed
in detail in Section 5.
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Figure 2. Binary encoding of 5 in a list of size 8.

4.3 Implementing recursive calls

We use an iterative routine that conceptually performs a postorder traversal
of the recursion tree of RSELECT. This is straightforward since we maintain
a stack and recover previous endpoints and values of k.

4.4 Recopying space

To avoid recopying, we ensure that selections are only performed on the
leftmost elements of the input array, and maintain the invariant that the
selections are performed on collections of sorted, contiguous lists of size c.
We discuss in detail how we ensure these requirements during the first and
second subproblems.

4.4.1 The first subproblem

In the first subproblem, we want to find the median of the medians of the
n/c lists of size ¢. To do this, we want to place these medians in the leftmost
n/c positions of the input array. These n/c positions contain n/ c? medians
and 2 — % non-medians. The remaining positions contain § — % medians
and (%31)%n non-medians. Thus, to move the medians of all lists to the
leftmost n/c positions, swap the non-medians of the leftmost n/c elements
with the medians of the remaining elements. To maintain our invariant, sort
the sublists of size ¢ of the list of medians, and reorder the corresponding
lists of non-medians such that we obtain blocks of ¢ lists of size ¢ — 1 in
which the lists of each block are sorted by their original median elements.

4.4.2 The second subproblem

In the second subproblem, we want to discard elements and place the re-
tained elements in the leftmost positions. However, first we must undo the

swapping of the medians that we performed when solving the first subprob-

n

lem. Swap the center elements of the rightmost % — % lists of size ¢ with the

non-center elements of the leftmost n/c? lists of size c. It is unlikely that we
will obtain the original list because the n/c medians are usually rearranged
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Figure 3. Rearrangement in the first subproblem.
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Figure 4. Rearrangement in the second subproblem.

during the first recursive call. Nevertheless, if the center of each list of size
¢ is removed, then we know we have sorted lists of size ¢ — 1.

Actually, this is not quite true. O(log n) lists of size ¢ may not be restored
properly because of the binary encoding of k. The encoding of k interacts
with the rearrangement performed during the first subproblem in such a
way that these O(logn) lists must be considered separately. We discuss this
in detail below; for now we ignore this problem.

We have n/c lists of size c; each list of size ¢ contains a sorted list of ¢ —1
elements and an element in the center that is the median of some list. We
want to determine the rank of the median m of medians computed during
the first recursive call, and we want to discard elements. When computing
the rank of m, we simultaneously rearrange the elements so as to reduce the
time needed to discard elements.

To find the rank of m, we have to consider only the non-medians, since m
is the median of medians. However, when discarding elements, it is beneficial
to partition the medians such that the medians less than m occupy the
uppermost positions, and the medians greater than m occupy the lowermost
positions, upper and lower being with respect to Figure 4.

We now want to find the rank of m among the non-medians while re-
arranging the lists in such a way as to facilitate discards. There are three
types of lists of non-medians.

1. Lists in which the leftmost °—'2'l + 1 elements are less than m.

2. Lists in which the leftmost % elements are less than or equal to m,
and the rightmost 5—;-1 elements are greater than or equal to m.

3. Lists in which the rightmost c_;l_ + 1 elements are greater than m.



Observe that the lists of non-medians are sorted lists of size ¢ — 1. When
processing a list of non-medians, identify the type of the list, and perform a
binary search to find the rank of m in the list. While processing these lists,
rearrange them such that the lists of type (1) are the uppermost lists and
the lists of type (3) are the lowermost lists.

Care must be taken when determining the rank of m if repetitions are
allowed. Occurrences of m in the leftmost % positions of any list must
be considered equivalent to elements less than m, and occurrences of m in
the rightmost % positions of any list must be considered equivalent to
elements greater than m; otherwise, we may erroneously discard too many
occurrences of m if the kth smallest element is in fact m.

Now discard exactly -[52[52-171-\\-0(1) elements, unlike the BFPRT algorithm
with presorting, which can potentially discard more elements. Note that this
does not affect the worst case. To discard elements, observe that at least
half of the lists must be of types (1) or (2) and at least half of the lists
must be of types (2) or (3). Therefore, discard the leftmost [§] elements
of the uppermost [ ] lists if the rank of m is less than k, and discard the
rightmost [§] elements of the lowermost [ ] lists if the rank of m is greater
than k.

To satisfy the invariant, we must form sorted lists of size ¢. For | 7]
lists of size ¢ — 1, simply perform a binary insertion of a retained median
to form a list of size c. For the remaining [ 1] lists of size 5;—1, merge two
lists, steal an element from another list, and perform a binary insertion of
this element to form a list of size c.

Once this is done, all of the retained elements will be in one contiguous
block in the left end or the right end of the part of the array currently being
processed. If the retained elements fall in the right end, then rotate the
elements so that the retained elements fall into the leftmost positions of the
array.

There is one complication with this scheme, however. The encoding of k
scrambles O(log n) lists, so we cannot ensure that at least half the lists are
of types (1) and (2) and at least half are of types (2) and (3); furthermore,
we cannot ensure that the - uppermost medians are no greater than m
and the 7+ lowermost medians are no less than n. Simply sorting each of
the O(logn) lists is not sufficient. Fortunately, we know that there is some
ordering of the O(logn) list elements that ensures these conditions; a greedy
algorithm suffices to enforce this condition.

To handle this complication, swap the O(logn) scrambled lists into the
right end of the part of the array currently being processed once we identify
them. Then search for and rearrange the remaining elements as above.
Before discarding any elements, determine the number of lists whose left
halves are no greater than m that are needed, the number of lists whose
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right halves are no less than m that are needed, the number of medians that
are no greater than m that are needed, and the number of medians that
are no less than m that are needed. Then sort the O(logn) scrambled lists
of size ¢ sc as to place the smaller elements in the leftmost positions and
the larger elements in the rightmost positions. We may then need to swap
some elements with some middle elements to obtain the necessary number
of medians less than or greater than m. Now swap the middle elements

into their correct positions; that is, ensure that the 3. uppermost middle

elements are no greater than m and the 7 lowermost middle elements are
no less than m. Finally, sort the O(logn) lists of size ¢ — 1, and swap these

lists into their proper positions.

5 The general case

The preceding techniques for emulating the BFPRT algorithm with presort-
ing are sufficient if all elements are distinct, but are inadequate in the general
case. The problem in the general case is that we use 2[logn] elements to
encode k, and we must ensure that no element appears more than [logn]
times. To deal with this problem, first sort the elements in O(log nloglog n)
time. Second, observe that if some element e has more than [logn] occur-
rences, then the two middle elements are occurrences of e; thus, take one
of the two middle elements, and perform two binary searches to find the
leftmost and rightmost occurrences of this element in O(loglogn) time. If
we find that no element has more than [log n] occurrences, then we encode
a bit using the relative order of the fth and (¢ + [logn])th elements, for
1<1i< [logn]. -

1If some element e occurs more than [log n] times, then we must search
for elements distinct from e. We inspect the next R(c)n + [logn] elements,
for some 0 < R(c) < 1. If at least R(c)n elements are equal to e, we avoid
solving the first subproblem as follows. Discard the R(c)n elements equal
to e and move them to the rightmost end of the currently processed block.
Sort the O(logn) scrambled lists of size ¢, and perform binary searches to
determine the rank of e. Then adjust k depending on the rank of e, and
solve the second subproblem.

All that remains is to show how to efficiently search for elements distinct
from e and what to do with these elements. In general, we need only 2¢
comparisons to determine if all of the elements of a block of ¢ — 1 lists of
size ¢ are equal to e; the block consists of ¢ — 1 lists that are sorted if the
middle element of each list is removed, and this set of middle elements forms
a sorted list of size ¢ — 1, for a total of ¢ lists, and we compare the first and
last element of each list to e. If we find an element distinct from e, we
swap it with one of the excess occurrences of e. We then swap the list of
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size ¢ from which the element came to some positions next to the 2[logn]
locations used to encode k, because this list is, effectively, scrambled, and
we want to quickly identify scrambled lists. Note that we need some index
computations to determine the starting location of the block of lists whose
middle elements are sorted lists of size ¢ — 1.

6 Analysis

6.1 A sketch of the algorithm

For the purposes of analysis, it is useful to sketch the basic algorithm. Let
no be some sufficiently large constant, and let SELECT be some selection
algorithm.

function ISELECT (array A, endpoint u, rank k)

1. Initialize:
Arrange A[l..u] into |u/c| contiguous lists of size ¢, and sort each list.

2. Check simple cases:
If u < ng, then m « SELECT(A,u,k), and go to recovery.

3. Solve first subproblem:
Rearrange elements for first subproblem. Set u' « |%|. Encode k
in A[u' 4+ 1..u' + 2[logn]]. (In the general case, if Iﬁgln occurrences
of the same element are inspected, then rearrange elements and go to
solve second subproblem.) Push 1,u — cu'. Set u — v/, k — [%]. Go
to check simple cases.

4. Solve second subproblem:
Rearrange elements for the second subproblem, using m. Set ', k' to
the new values of u, k. Push 2,u — 2c—2?: o7u. Set u — u', k — k'. Go
to check simple cases.

5. Recovery:
If stacks are empty, then return m. Pop sub, d. If sub =1, set u' « u,
u + cu + d; recover k from Afu' + 1...u' + 2[logu]], and go to solve
second subproblem. If sub = 2, set u « 75:2|£'7§Tu + d, and go to
recovery.

end ISELECT
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6.2 The distinct element case

We derive a recurrence relation to measure the cost of ISELECT indepen-
dently of the cost measure. The cost of the algorithm is

T(n) = To(n) + T1(n) (1)

where Ty(n) is the cost of initialization and Ty (n) is the cost of the emulation
of RSELECT. ISELECT emulates RSELECT by maintaining a stack, so
Ti(n) is described by the recurrence relation

Ty(n) = T1(s1(n)) + T1(s2(n)) + f1,5(n) + fir(n) + f2,5(n) + for(n) (2)

where s;(n) is the number of elements of the {th subproblem, f;,(n) is the
cost of preparing for subproblem 1, and f; ,.(n) is the cost of recovering from
subproblem 1, for ¢ = 1, 2. If we are mea.surmg the total cost of all operations
of ISELECT, then Tp(n) is O(n), s1(n) = 2, s2(n) = (1 - L‘5-/—21)71, and for
all ¢, f;, is O(n) and f;, is O(n). Clearly for ¢ > 5, there exists a constant
d < 1 such that s;(n) + s2(n) < dn, which implies that T'(n) is O(n).

6.2.1 Counting comparisons

We count the number C(n) of comparisons more carefully, using equations 1
and 2. Let ¢ = 31 since this is the optimal value of ¢. The cost of initializa-
tion is simply the cost of sorting lists of size 31; since 116 comparisons are re-
quired by the Ford-Johnson algorithm [4] to sort 31 elements, Co(n) = 3én.
Consider Cy(n), noting that s;(n) = 3} and s3(n) = (1 - IEQl)n =2n.

To set up the first subproblem, we have to find the medians of the sorted
lists requiring no comparisons; sort lists of size ¢ of the medians, requiring

- Cp(n) comparisons; encode u, requiring no comparisons; and encode k,
requu'mg O(logn) comparisons. Thus 18 + O(logn) comparisons are re-
quired to set up the first subproblem. To recover from the first subproblem,
we have to recover u and k, requiring O(log n) comparisons.

Before discussing the second subproblem, we show how to efficiently
identify the types of lists and search for the median m of medians. The most
straightforward method is to inspect one of the two middle elements, and
perform a binary search on 9—31—— 1 elements, requiring 1+ |log ¢| comparisons
per list. Observe that if we know that a list is of type (1) or (2), we need
only perform a binary search on its right half, saving one comparison; if
we know that a list is of type (2) or (3), we need only search its left half.
Since we have sorted blocks of ¢ lists by the former contents of their middle
elements, if we find a type (1) list, all lists above it in the same block must
be of types (1) or (2), and if we find a type (3) list, all lists below must be
of types (2) or (3).
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This suggests a more efficient search method. For a given block of b
lists, we search in the [6/2]th list in the following manner: inspect the two
middle elements, and then perform a binary search on one half. If the list
is of type (2), we do not perform the binary search and, therefore, save
|log(c — 2)] — 1 comparisons. Then continue searching the ([5/2] —¢)th and
([6/2] + 9)th lists for 1 = 1,2,... in this manner until either a list of type
(1) or (3) is found, or all lists are exhausted. If the list is not type (2),
we save comparisons from the new knowledge of the types of some of the
lists; we apply our technique recursively on the portion of the block that
has yielded no information. We use the straightforward search technique for
blocks of less than 5 lists. By induction, we can show that we save at least
s(b) comparisons, where

0, ifb<5
s(b) = { [%] —24 s(l%]), otherwise

To set up the second subproblem, we have to identify and reposition
O(log n) scrambled lists, requiring no comparisons, and we partition the list
of medians, requiring n/c comparisons. We then search and reposition lists
of size ¢ — 1, requiring "[1 |loge] — icﬂ] comparisons using the above
techmque and perform binary insertions of medians into 3. lists, requiring

- |log(2¢ — 1) | comparisons. We also form lists of size ¢ by merging two

lists of size "—;1- and performing a binary insertion of some element into the

list of size ¢ — 1, requiring (} — [EBl) Zlc — 2+ |log(2¢ — 1)|] comparisons.
We finally process the O(logn) scrambled lists, requiring O(log n loglog n)
comparisons. Thus the number of comparisons required to set up the second
subproblem is gfn + %%gn + O(lognloglogn). To recover from the second
problem, we recover u, requiring no comparisons.

Thus,
16 7

388
" + " + 3" + O(log n loglog n)

By induction we can show that Cy(n) < 175n + o(n). Thus

116 175 407
C(n) = Co(n)+C1(n) < -é—i—n+-—- n+o(n) = —é-é—n-}-o(n) < 6.5646n+0(n)

Ci(n) = Ca(or )+cl( )+;

6.2.2 Counting data movements

We compute the number M(n) of data movements using equations 1 and 2.
Note that we count only the movements from or to the array of n elements;
we do not charge for movements entirely within the O(1) extra storage. The
cost of initialization is Mp(n) = %n if we sort using an auxiliary array of
pointers. Consider M;(n).
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To set up the first subproblem, we have to swap the non-medians in the
leftmost n/c positions with medians, requiring 3- ——rn movements; sort lists
of size ¢ of the medians and reorder the non-medlans requiring 2n data
movements; encode u, requiring no movements; and encode k, requiring
O(logn) movements. Thus 2n + 232 + O(log n) movements are required to
set up the first subproblem. To recover from the first subproblem, we have
to recover u and k, requiring no movements.

To set up the second subproblem, we have to undo the movement in the
first subproblem, requiring 3 - °—;§ln movements. We identify and reposition

O(logn) scrambled lists, requiring O(logn) movements, and we partition

the list of medians, requiring i’: movements. We then search and reposi-
tion lists of size ¢ — 1, requlrmg 3. ——ln movements, and perform binary

insertions of medians into : lists, requiring Ll—ln data movements. We
also form lists of size ¢ by merging two lists of size T and inserting some

element into the list of size ¢ — 1, requiring (§ — L'5[11)" (2¢+ [$]) move-

ments. We then may need to perform 3 - I£&ln movements to ensure that

the discarded elements are the rightmost elements Finally, we finally pro-
cess the O(logn) scrambled lists, requiring O(lognloglogn) movements.
Thus the number of movements required to set up the second subproblem
122” + % Qs"—;wan + O(lognloglogn). To recover from the second
problem, we recover u, requiring no movements.
Thus,

170n 765
M (n) = M1(31) ( )+ 51 T Ip® n + O(lognloglogn)

By induction we can show that Mj(n) < $%8n + o(n). Thus

3 6035 12721
M(n) = Mp(n)+M;(n) < 2"t o n+o(n) = 131

n+o(n) < 29.3111n+o0(n)

6.3 The general case

The analysis of the general case algorithm is similar to the distinct element
selection algorithm; the only difference is some additional actions are per-
formed when encoding k in the first subproblem. We again apply equations 1
and 2. .

To count the number of comparisons, again choose ¢ = 31. The main
difference from the distinct element case is the encoding of k. We need
O(lognloglogn) comparisons to sort 2|'log n] elements, and we may have
to inspect R(c)n elements, requiring -£; R(c)n comparisons. Thus the num-
ber of comparisons required to encode k is -2 R(c)n + O(lognloglogn)
comparisons, as opposed to O(logn) comparisons in the distinct element
case.
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If we find that R(c)n elements are equal, we avoid one subproblem of
ISELECT. We discard the elements, requiring no comparisons; undo the re-
arrangement of elements in the first subproblem, requiring no comparisons;
correct the order of scrambled lists, requiring O(log n) comparisons; and per-
form a binary search on each list of size ¢, requiring (1 - R(c))2|log(2¢ + 1)]
comparisons.

If we do not find R(c)n elements that are equal, the worst case occurs
when we inspect R(c)n elements but are unable to discard elements and
avoid the first subproblem. Thus,

Ci(n) = —2-R(c)n

116 7 388

+maX{Cl( )+C1( )+312n+62 3"

(1 - R(e)m) + 2n) y LlogZe+ 1) g

+ o(n)

- R(c))n}

To minimize C(n), we set R(c) such that

23n 504n Tn  2R(c)n

G5y )+C‘( tar tee T oo

Co(n log(2¢+ 1 2R(c)n
C1((1—R(c))n)+ °£ ) . Llos( - A1 - repn+ 22 )1
We obtain
R(c) = —18991 + /374771761 s 0.095740
3844
Thus,

504 7 2
n) 31: + -11- + ——————R(c)n + O(log nloglogn)

C’l(n) Cl( ) +C]_(

2537 3747717
By induction we can show that Cy(n) < (331 + 3%)ﬂ + o(n). Thus

116 2537 /374771761
C(n) = Co(n) + Ci(n) < 30 n -+ (1860 + 13030 ) n

B (9497 N /374771761

+o(n)

1860 13020 ) n+ o(n) < 6.5928n + o(n)

If we avoid the first subproblem, we discard elements, requiring 3 R(c)n+
O(logn) movements; undo the rearrangement performed in the first sub-
problem, requiring 3 - Qc%ln movements; correct the order of scrambled lists,

requiring O(logn) movements; and then perform a binary search on each
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list of size ¢, requiring no movements. If we must solve the first subproblem,
we have the situation of the distinct element case. Thus the number of data
movements required in the general case is

M;(n) = max {Ml( )+M1(23n %+ ;%n+0(lognloglogn),
M;((1 — R(c))n)+ 3R(c)n+ }
3n 170n = 765

) +—r taptt O(log nloglogn)

= M1(—-) + M1(

As in the distinct element case, Mj(n) < $%2n + o(n). Thus

12721
434

M(n) = Mp(n)+M;(n) < n+%0—1§7§n+o(n) = n+o(n) < 29.3111n+o(n)

6.4 Optimizations

We are able to save movements and comparisons by relaxing some of our
invariants. By allowing discarded elements to be either leftmost or right-
most, we save 3 - Egln movements when setting up the second subproblem.
We can efficiently determine the left and right endpoints of the elements of
previous subproblems by using an extra bit in each recursive call to indicate
whether discarded elements are leftmost or rightmost.

We save 6 - ﬁ;aln movements when setting up the first subproblem by
relaxing the invariant that elements that we are selecting from must be con-
tiguous; we instead ensure that the elements that we are selecting from must
be evenly spaced. Observe that the distance between elements increases by
a factor of ¢ whenever we enter a first subproblem and decreases by a factor
of ¢ whenever we exit a first subproblem. Thus we do not need to explicitly
store the element distances on the stack of O(logn) bits.

Observe that by relaxing the invariant that retained elements must be
leftmost, elements of rank less than k are moved to the leftmost positions
and elements of rank greater than k are moved to the right positions of our
array. In conjunction with our other optimization, we no longer need to
partition the medians when setting up the second subproblem, saving n/c
comparisons and * data movements.

To count the number of comparisons required in the distinct element
case, using equations 1 and 2, choose ¢ = 31. We obtain

23n 504
Ci(n) =C -3_1) Cl(—éT) 312 =t 2n-i—O(lognloglogn)
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By induction this yields Cy(n) < 123%n + o(n). Thus

116 1163 2787
C(n) = Co(n)+Ci(n) < ——n+———n+o(n) =i te (n) < 6.4217n+o0(n)

To count the number of comparisons required in the general case, choose
¢ = 31 and R(c) = =180614y/340313401 ' We obtain

3n 504 5 2R(c)n
Ci(n) = 01( )+C1( )+§I§ +6_2- n+ c()l

+ O(lognloglogn)

which, by induction yields Cy(n) < 1682947340313401,, 4 4(n). Thus

116 16829 + /340313401 nt

C < =
() = Co(n) + Cu(n) < om + 2EBEE o)
65549 + / 40
- + V30313401 | o(n) < 6.4514n + o(n)
13020
Counting the number of movements with ¢ = 31, we obtain
23n 289 585
M, M,
1(n) = ( ) + 1( 62 I + O(lognloglogn)
Therefore, My(n) < 4875 + o(n) and
1447 770
M(n) = Mp(n)+M;(n) < —-n+ﬁn o(n) = —3—i—n+o(n) < 24.8388n+0(n)
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