'IRECT INQUIRIES TO:
INDIANA UNIVERSITY
ACCOUNTS PAYABLE

812-855-4004 INIIAN

/

\

'// [\\\\

)

3 \\\l’//// 2\

2
Iy
\-“Zd

4

X

NA015065890602 890531 | 109050156 | AP239248
TERMS - |PREPAID -

NET AMOUNT| OF CHECK | ******x**2 (0

INDIANA UNIVERSITY
PURCHASE ORDER PAGE 01

P.O. NUMBER: 10905-0156
S NA o 15065 57040 51

VENDOK: SHIP TO ADDRE S5
UNIVERSITY OF WATERLOO INDIANA UNIVERSITY/10905-0156
DEPT. OF COMPUTER SCIENCE CENTRAL RECEIVING DEPARMENT
ATTN: RESEARCH REPORT SECRETARY 11TH & WALNUT GROVE
WATERLOO, N2L 3Gl BLOOMINGTON, IN 47405
ONTARIO,)
BILL 10O ADDRESS:
URLEN DATE: LU, CUSTOMER NGO INDIANA UNIVERSITY
ACCOUNTS PAYABLE
05-31-89 POST OFFICE BOX 4040
- - BLOOMINGTON, IN 47402
‘:UM QUANITTY um DESCKIPTTON UNIT COsl EXTENDED COSI

LO01 1 COPY OF RESEARCH REPORT CS-88-30 2.00 2.00
| [| CONCURREKRCY IN C BY P.A. BUHR, G.J. | T EE

DITCHFIELD AND C.R. ZARNKE.

| CHECK ENCLOSED

TOTAL| ORDER T 82.00

)

GUY J. DE STEFANO Z%Q;Z ;Z,)Z;4m/~

UNIVERSITY DIRECTOR OF PURCHASING PURCHA%\]G AGENT s RAY E NEW 8 l 2_8 5 5...8 7 5 2

1. ACCEPTANCE OF THIS ORDER IS REQUESTED STATING DIUIVERY DAIE

2. UNLESS OIHERWISE INSTRUCIED, ALL LOCAL THUCK DELIVERIES ARE 1O BE MADL At Tift HUGEIVING DEF . Gl sTort S BeGo Vi 51 AND WALNLIT GHOVE
8 12 OR 1 H MONDAY THRU FRIDAY

3 SEND AL CORHESPONDENCE MAHKED Wilts OHDEIC NURMSE B ATTENTION. PURGHADING a0 bl PURCHASING DEPARTRIENT 0G0 bhioe G0,

4 INDIANA UNIVERSITY IS FREE OF ALL EXCISE AN INUDIARA SAlLy TANES CERTIFICaTE #5000 1a /74 OGS Vil b roraadbatb b o ON KEGUE Yy |

5. PLACE ORDER NUMBER ON Atl BILLS AND PACRAGES Do MOV CONSOLDATE SEaeMe i OF ORDERS BREESS Fac stie Booy SECna GATED By Gritdb b NONIE 00 Al

SHIPPING CONTAINL . SHOWS Al ORDER NUMGE WS INCLODED

© INDIANA UNIVERSTTY FOLICY PROPIBITS IDISCHRIVINA TORY FRACTICL S N AL PHALES S EETOYMENT WO T REGARD Tu HAGL . Cor o, KEETOION S s oy
NATIONAL ORIGIN Tl CONTHRACTGH O VENDGKh AGHE LG WIHTHE T Vot STATED vy AND AGHIEES T BE bUUND bY THE EGUAL EMPCOYMEN T OF oot iy
CLAUSE {41 CHH ou 1AL ISSULD UNDER £ (2 11230 At IMATIVE A Hioi CHAGSE 14 1 o 290 4) ISSUED UNJER VIE TNARM FEHA VETLRANS ASDISTANCE A Ol
1974 ON CONITRAUCTS OH ORDERS OF $10.U0u Ol MG AND Tre AL MATIVE ACTION i AUSE (31 CER 74 1.4) 1SSULD UNOER THE REHABILITATION ACT on
1973, AS AMENDED. ON CONTRACIS OF $2.500 O MOt

Concurrency in C++

P.A. Buhr
@G.]. Ditchfield
C.R. Zarnke

Research Report CS-88-30
July 1988

Concurrency in C++4

P. A. Buhr*, G. J. Ditchfield*, C. R. Zarnke**

* Dept. of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
** Waterloo Microsystems Inc., 175 Columbia St. W., Waterloo, Ontario, Canada, N2L 5Z5

1. Imtroduction

C++ already supports many programming paradigms: procedural programming, data hiding, data
abstraction, and object-oriented programming [Str87]. All of these are subdivisions (though not
necessarily disjoint) of the imperative programming style.

A paradigm that is not supported by C++ is multi-process structuring, where a program is
designed as a set of processes that cooperate to solve a problem [Che82]. This paper considers
several ways to add support for concurrency to C++. A number of alternatives must be considered
because of the number of programming paradigms available in C++-, any of which could be adapted
to provide multiple processes.

Any scheme for providing concurrency must provide a way to start new processes, a way to
synchronize the execution of processes, and a way for processes to communicate with each other.
We also impose the following requirements.

e Both static and dynamic process creation must be supported, that is, processes can be created
by declarations or by allocation using the new operation. Both forms of process creation are
necessary to make maximum use of concurrency in a particular algorithm and in the hardware
resources.

e Static type checking of all communications between processes must be done. We feel that
static type checking is extremely important for early detection of errors and efficient gener-
ation of code. As well, this requirement is consistent with the fact that C++ is already a
statically typed programming language.

e There must be some way to control the duration of synchronization between processes so
that there is complete flexibility in the order that a process can respond to requests. This
requirement has been shown to be of fundamental importance in concurrency systems, as
demonstrated in the send-receive-reply paradigm [Gen81]. Without it, certain classes of
concurrency problems are quite difficult to implement, and the amount of concurrency that
can be specified by the programmer is restricted.

e Any system chosen should allow concurrency within an address space or in many address
spaces, and should support distributed processing.
For the sake of simplicity, this paper will not deal with remote processes in detail, although
we have endeavored to keep these problems in mind.

e Any system chosen must blend well with the syntax, semantics, and philosophy of C++.

2. Processes

This section discusses some ways of introducing processes into C++.

2.1 Unix style

The Unix! operating system provides concurrency with the fork() system call, which creates a new
process which is a mnearly-exact copy of the parent. The parent and child can identify themselves
by examining the value returned by fork().

This form of process creation is unsatisfactory for a number of reasons.

e Since the mechanism for process creation is not part of the programming language or a
standard library, programs that use it are not necessarily portable to other operating systems
that provide different concurrency primitives.

e Whole program duplication means that there is no clear distinction between the parent pro-
cess’s code and that which defines the action of the new process, and is wasteful of storage.

e Creation of separate address spaces is not always desirable. Running multiple processes in a
single address space can have distinct advantages in efficiency when transferring information
among the processes.

2.2 Mesa style

In the Mesa style [MMS79], new processes are created by invoking a function in a special way.
The process is given its own state, and a new thread of control executes the function body. When
the function body returns, the thread ceases execution. Some facility is provided which allows the
original process to wait for the new process to terminate, deletes the new process, and returns the
value returned by the function body, if any. Information may be passed to the process through the
function’s parameter list.

This approach is a good extension to the existing “sequential” programming style in C, as the
notion that execution of a program is essentially a concurrent invocation of main(...) is simply

generalized.
Processes of this form can be added to the language in several ways. First, it can be added as
a library along the lines described in [Cor88|. Briefly,

Process pid;
declares that pid can hold a process identifier.
pid = emit (5000, £, 3, 3.5);

creates a process to execute the function £ () with 5000 bytes of stack space?, passes 3 and 3.5 to .
f as arguments, and returns a process identifier.

v = absorb(pid);

1{nix is a trademark of AT&T Bell Laboratories
2his is needed if the new process runs in the same address space as the current process.

waits for that process to terminate, and assigns whatever value was returned by f to the variable v.
A second, alternative, which allows static process creation, is to perform the emit () and absorb()
implicitly in the constructor and destructor of the Process class.

These schemes result in poor type checking of the arguments and return type of the emitted
function, or place severe restrictions on the types of functions that can be emitted, or both. A
third alternative regains type checking by extending C++ with a new derived type process and
two new programming language constructs for starting and synchronizing with the process. The
type “process executing function type” should be analogous to “pointer to function type”. For
example,

int (process pid)(int, float);

declares a variable pid that can contain a process identifier for a process that executes a function
which takes an integer and a real parameter and returns an integer.

The process construct can then be used to emit a function running concurrently with the
calling function, for example:

int foo(int x, float y);
pid = (process(5000) foo) (3, 3.5);

The general form of this call is: (process(stack-size) function-valued-ezpression) (argument-list).
It yields a process identifier as its result.
The process identifier is used in the join construct to synchronize with the new process.

int result = join pid;

All of these variations have the disadvantage that the programmer must be explicitly aware of
process identifiers, and nothing in the variations can be construed as object-oriented.

2.3 Concurrent Objects

In this style, C++ is extended with concurrent classes. A call to a member function of such a
class is considered to start the member executing concurrently. (Alternately, the function could be
executed by a thread of control associated with the concurrent object.) The member function call
also provides a means of synchronization, and transfers data between the processes. Languages that
take this approach include ConcurrentSmalltalk [YT86] and ABCL/1 [YBS86]. It differs from the
Mesa style in that only one member function for a particular concurrent object can be executing
at a time. This restriction ensures that processes have mutually exclusive access to the object’s
members®.

Inheritance among concurrent classes is possible. The member functions of a concurrent class
are likely to interact with each other in intricate ways, so the addition or re-writing of member
functions will require a thorough understanding of the implementation of the base process.

This approach has the advantage that it is a semantically simple extension to a class based
language, requiring few extensions to the language. It requires that the compiler generate special
code for member function calls, access to static class members, and access to public members of
concurrent classes.

3Mutual exclusion over all instances of a class must also be provided for access to the static members of the class.

2.4 Ada Style

In the Ada* style, mew processes are created from instances of class-like constructs [Ada83]. It
differs from the Concurrent Object style in that the thread of control executes a special section of
code that controls which call to a member function of the class will be processed next, and which
automatically provides some concurrency.

This style of process creation requires a new type specifier, process, which has all the properties
of a class, and which must contain a member called main(). When a process object is created,
a new thread of control is created which executes the constructor, calls main(), executes the
destructor for the process type, and waits for the process to be deleted. The process that created
the new process continues execution at the point where the new process was created. main() has
protected visibility, since it can not be called by the user, but it may be redefined by a derived
class. Arguments can be passed to main() by constructors in the same way that arguments are
passed to constructors of base classes, for example:

process fred {
protected:
main(int i);
public:
fred(int i, int j) : main(j) { ... };
}

However, the difference is that the constructor is executed first and then main() is invoked.

A block will not terminate until all the processes statically declared within it have terminated.
This is easy to implement by having the compiler implicitly insert the equivalent of a join operation
at the point where the process goes out of scope. Dynamically created processes can be explicitly
waited for by preforming a delete operation, which will also implicitly perform a join.

In general, there are no problems with inheriting from a process. The derived class inherits
the members of the base class. The main() member that is executed by the process is the one
defined in the derived class. If the derived class does not define its own main, then it can not define
any new member functions. This is because the main() in the base class only controls the calls to
the set of functions it has defined.

Multiple inheritance from several processes seems straight-forward. Multiple inheritance from
mixes of processes and classes also seems simple, if processes can contain “ordinary” member
functions and variables. The result is a process with the members of the ordinary classes, as well.

This scheme is a simple extension of the “object-oriented” approach where an object is viewed
as executing a method in response to being sent a message. Constructors and destructors provide
convenient initialization and termination of processes. The specification of a block of code to be
executed by the process allows flexibility in the handling of requests from other processes. Processes
can be allocated statically or dynamically by putting them on the stack or on the free store.

One disadvantage of the scheme is that it conflicts with the idea that a program is a process
executing the (ordinary) function ::main(). However, if ::main() is viewed as a member of a
process class that contains the entire program, the conflict disappears. Another disadvantage is
that process can not be implemented as a standard library. One would have to create process
types by deriving from a class Process. main() would be a virtual member that would be spawned
by Process: :Process() using the concurrency primitives of the operating system. But then the
derived process’s main() would begin execution before the derived class’s constructor!

4Ada is a trademark of the U.S. Government

3. Synchronization and Communication

3.1 Pipes

In the Unix fork() model, synchronization and communication are done by reading and writing
from special objects called pipes, which provide buffered streams of bytes.

Since pipes are streams of bytes, communication through them is not type-safe. Programmers
are forced to build type-safe abstractions over top of them.

3.2 Concurrent Objects

Synchronization in the Concurrent Object scheme is provided by the calls to the member functions.
The maximum amount of concurrency is provided by having the caller resume execution imme-
diately without waiting for the called function to do anything, but this makes it difficult for the
member function to return any data.

If data is to be returned, the calling process must block until the function returns a value.
If this is done by executing a return statement, there is no gain in concurrency. To regain the
concurrency, C++ must be extended with a reply statement which specifies a value to be returned
to the calling process, allows the caller to resume execution, and allows the called function to
continue executing the remainder of the function body.

Member function calls are processed in first-in, first-out order. Futures are an additional syn-
chronization mechanism that allows requests to be processed in arbitrary order. future is a generic
container type with set and receive operations. Future objects are either empty or contain an
object of the parameter type. A concurrent member function that can not fulfill its function im-
mediately returns an empty future. The caller performs a receive on the future when it needs the
returned value. The receive operation blocks until the future is set>. When a member function
returns an empty future, the future will have to be noted in the object’s data structures so that
later invocations of member functions can fill it in. This is likely to result in complex interactions
between member functions.

3.3 Ada Style

Ada style synchronization (rendezvous in Ada) involves synchronous calls to the members (entries
in Ada) of a process (i.e. the caller blocks until the member function returns with its results), and
passing information using the standard argument-parameter mechanism. The process’s main ()
member decides which call to which member function will be accepted next. The following are the
statements and declarations that are required in a process to support this form of synchronization.

3.3.1 entry Members

Either all member functions will have synchronization associated with their calls (except the con-
structor and destructor, since no concurrency is possible during their execution), or there must be
a way to specify those members that will be synchronized and those that will not. The argument
for not having synchronization on all calls is that simple functions that perform reads from the
process’s member variables can be accomplished asynchronously, hence saving the execution time
cost of synchronization. The argument against is that if an asynchronous function changes the
state of the process, then the integrity of the process is forfeit. At this point, we feel that providing

5This variant of the future concept is most like the ConcurrentSmalltalk CBoz.

both kinds of member functions is reasonable. Distinguishing these two kinds of functions is done
by prefixing a member function with the clause entry, as in:

process fred {

entry ... fool(...); // synchronization on call
. foo2(...); // no synchronization on call

}

entry functions can never be inline because synchronization code must be in the member not at
the call site.

3.3.2 accept Statement

The accept statement is used to dynamically choose which call to an entry member will be allowed
to occur next. When an accept is executed, the process instance is accept-blocked until a call to
that particular entry member occurs. Two forms of the accept statement are possible depending
on whether the code executed when an entry call is accepted is placed in the accept statement or
outside of it.

Out-of-Line Accepts In thisscheme, a block of code is specified for an entry member just as it is
for an ordinary member. An accept statement has the form: accept entry-member-name;. When
an entry call is accepted, the body of the entry member is executed. If the caller is expecting a
return value, then this value must be specified in the body of the accept. When the body ends, the
caller and the acceptor continue execution at the entry call and the accept statement, respectively.
POOL-T [Ame87] takes this approach, and adds a “post-processing” section to the member body
that is executed after the caller has been allowed to resume execution.
If inheritance of process types is supported, virtual entry members might be useful.

In-line Accepts This scheme is like that used in Ada. There is no body associated with an entry
member using the usual mechanisms in C++. Instead the body becomes a block of statements that
forms part of the accept statement, as in: accept entry-member-name(parameter-list) statement; .
If the accept body must return a value, it can not do so with a return statement because that would
cause the containing function to return. The syntactically similar, reply ezpression;, statement is
used. When it is executed, the calling process resumes execution at the call point and the called
process resumes execution after the statement in the accept.

In-line accept bodies require more language extensions than out-of-line accept bodies. Specifi-
cation of the parameter list is the difficult part in C++ as there is nothing in the language that
is roughly equivalent. Since functions can not be nested in C++, there is no precedent for such a
facility. Out-of-line bodies bear greater resemblance to ordinary member functions.

Anything that can be done with in-line accepts can be done with out-of-line accepts. However,
in-line bodies are arguably more concise and readable. Out-of-line bodies have to communicate with
the code that executes accept statements by leaving “memos” in the process’s data structures. In
cases where the in-line form has several different accepts for the same entry, out-of-line bodies must
start with switching logic to determine which case applies. We choose program simplicity over
language simplicity and recommend in-line accept bodies.

3.3.3 suspend Statement

The Ada rendezvous mechanism restricts the order in which calls can be replied to. If the acceptor
does not wish to, or can not deal with the currently accepted message, but wants to continue
receiving calls, then new accepts must be nested in the current accept clause. This does not allow
a dynamic number of deferred calls, and enforces a last-in, first-out order of processing. What is
necessary is the ability to suspend the current accept and requeue the accept so that it can be
reaccepted at a more appropriate time.

One way to accomplish this is with a suspend statement, which has the form: suspend entry-
member-name. suspend terminates execution of the accept body at that point, but the caller
remains blocked and the caller’s request is requeued at the end of the specified entry member’s
queue. This request can then be reaccepted (by the named entry) at some time in the future when
the request can be handled by the accepting process.

3.3.4 Request Queues

Suspending onto entry members does not work, in general, because there is no way to differentiate
between newly arrived calls and suspended ones. Without this distinction, it is possible to loop
infinitely accepting and suspending the same call. Therefore, it is necessary to have queues internal
to the process on which calls can be suspended, called request queues.

A request queue must be specified with the type of the entry calls that can be suspended on it,
so that its use can be checked by the compiler, for example:

int (requestqueue q[6])(int, float);

This declares an array of request queues that can have entry calls of the specified type suspended
on it. A request queue variable can then appear in an accept statement just like an entry member,
as in:

accept q[3]; // using out-of-line accept style
accept q[3]1(i, £) { ... } // using in-line accept style

In the out-of-line accept style, it is necessary to assign a function body to the request queue
variable to define the code that will be executed when an entry call is accepted, for example:

process bar {
int (requestqueue q[5]) (int, float);

int foo(int i, float £) { ... }
public:
bar() { ql0] = &foo; ql[1] = &foo; ... }

}

It is possible to check an entry/request queue to determine if there are any processes waiting
on it using an attribute, as in: q[3].isEmpty ().

If a request queue is public or passed to another process, many processes could attempt to
accept from one queue at the same time. Because of the complexity in implementing this, we
choose to allow only one process to receive from a request queue, but allow multiple processes to

suspend on a shared request queue.

3.3.5 select Statement

A select statement is provided which has the same semantics as the Ada select statement.

select {
when (/* conditional-expression ¥/) // guard on accept
accept ... ;
or when (/* conditional-expression */)
accept ... ;
}

The select statement lets a process accept an entry call on any of the entries whose guards are
true. If no entry calls are waiting, the process waits for a call to be made to one of those entries.
(A facility to wake up the process after some period of time should also be provided; however, we
have not yet dealt with this.) In the implementation, the accepts are tested in the order that they
appear in the select list. It is up to the programmer to make sure that requests for a particular
entry/request queue are eventually accepted.

3.3.6 Monitor Style Synchronization

The process construct and its subsequent instantiation provides the mechanism to start a new
thread of control at execution time. Request queue variables and accept and suspend provide
the mechanism for synchronization. An interesting question is whether these two facilities are
in fact orthogonal in the design. Clearly, it is possible to start separate processes that do not
need to synchronize with other processes because they are not performing operations on shared
data. However, is the opposite true? Does it make sense to have a non-process object, such as
a class, executing accepts and suspends? In fact, this is largely what happens in a monitor
which synchronizes multiple processes as they make calls to member functions of the monitor.
Appendix A illustrates this by using a class to create a monitor which implements a bounded
buffer. Instances of this synchronization object can then be used for communicating information
among process instances. The point here is not to mimic monitors in their entirety, but to show
that the synchronization constructs can be used in unorthodox ways.

3.4 Messages

In message passing systems, information to be transmitted is bundled up into a message, which is
a visible, manipulable object. One process executes a send operation to transmit the message, and
the other process executes a receive operation to pick it up.

The sending process may continue execution after performing the send, or it may be blocked
until the message is received. A third option is to have the sending process block until a reply
operation is performed. We prefer this form because the simple semantics and implementation
match C++’s minimalist philosophy, because information can be returned conveniently to the
sender via the reply, and because the reply operation allows flexibility in the order in which
requests are processed.

In traditional send/receive/reply systems, messages and replies are sent to processes. This
interferes with type checking, since a process may have to receive more than one type of message or
expect more than one type of reply. Instead, messages should be sent to message queues, which are
objects whose type includes a message type and a reply type. Processes then have message queues

for each message type they handle. A consequence is that some means of receiving from any of a
set of message queues is needed.

The implementation of message queues becomes more complex if many processes can attempt
to receive from one queue at the same time. As for request queues, we choose that each message
queue is owned by one process, which has the exclusive right to receive from it.

The system described above can be described using the existing class construct and the pre-
processor “generic” tools. The send and receive operations can be member functions of a generic
MessageQueue type with message type and reply type parameters, and reply is a member function
of a matching Message type which is used by receiving processes. One approach to waiting on a
set of queues is to have a waitFor function that takes a list of message queue arguments, waits for
a message to arrive on one, and returns a code indicating which queue contains a message.

A more novel approach is to use access types [BZ86]. A generic access class is defined for each
message queue class. Receive operations are done implicitly by creating an instance of the access
class, and reply is done implicitly by deleting the instance. The message is accessed through the
access variable. This scheme has the advantage that the scope of an automatic access variable
statically links the reception of and the reply to a message, which is sufficient for most programs.

A third approach is to add message and message queue types, send, receive and reply opera-
tions, and a switch-like select statement to the language. The compiler can then statically check
that the process receiving messages from a queue is the owner of the queue.

4. Conclusions

We consider Ada-style processes with in-line accepts and request queues to be best of these alter-
natives for several reasons.

e It does not add explicit process identifiers to the language, as does the Mesa-style approach.
Instead, the existing concept of “object” is used.

e Request queues let processes service entry calls in any order without added protocols or
internal data structures.

e The acceptance of a request and the reply to the requestor are tied together syntactically; in
this case, the reply is implicit in the end of the accept body.

e An implementation of entry calls can choose to leave the arguments of the call in the caller’s
stack in circumstances where other styles, such as message passing, must copy them into the
called process.

Currently, we have finished the basic design for the Ada-style (out-of-line) style, and we are ex-
perimenting with implementations based on a light-weight concurrency kernel written in C [Cor88].
At the moment, the new statements are translated by a simple preprocessor (and by hand in places).
By October (the conference), we should have completed a preprocessor based on the g++ parser
to perform the transformation automatically to the C code level. If time permits, we then intend
to augment the g++ compiler to generate code directly.

5. Comparison with Other Work

There are large number of concurrency designs in an equally large number of programming lan-
guages. We have selected only programming languages that provide static type checking of com-

municated data.

5.1 Ada

The major deficiency with the Ada implementation of concurrency is that the servicing of requests
can not be postponed because of the lack of request queues. However, there is a work-around which
involves designing protocols with multiple entry calls. A minor deficiency is that entries can not
return values directly, but must use the argument-parameter mechanism.

5.2 BNR Pascal

BNR Pascal [GKC87] provides an Ada-like rendezvous along with a type QUEUE, and DEFER and
REENTER statements. Unlike our request queue variables, an instance of QUEUE allows any type of
entry call to be suspended on it. Suspension is done with DEFER (queue-name) which suspends the
current process on the specified queue. Re-acceptance is done with REENTER (queue-name) which
takes the process at the head of the queue (if any) and places it at the front of the entry on which
it initially arrived. Hence, a process can not be suspended on an entry other than the one on
which it initially arrived, which allows the compiler to maintain type safety. This scheme results
in switching logic at the start of accept bodies to determine whether a call has resulted from a
REENTER, and why it was deferred.

5.3 SR

SR [Aea88] provides concurrent objects that can have both concurrent member functions and entry
members with in-line accept bodies. The way in which a member is invoked (by a call or send)
indicates whether the caller will block until the called member is finished. (A member declaration
can state that it can only be called or only sent to.) The four combinations of call type and
member type give SR remote procedure call, Mesa-style process emission, Ada-style rendezvous
and non-blocking message passing.

We are not convinced that all 4 combinations are useful. Some combinations, such as multiple
sends to the same object, can be extremely error prone unless the members are carefully written to
deal properly with it. Our contention is that, in general, entities are written assuming that they
will be invoked in a particular way (i.e. sequentially, alternating (coroutining), or concurrently) and
will not work correctly if used in another way. To this end, SR provides pragmas that indicate that
a particular member can only be invoked in a particular way. Rather than take this general, and
potentially dangerous, approach of allowing the particular invoking form to specify the semantics of
execution, we have the definition (class or process) indicate this essential semantic information
and use a uniform syntax for invoking the members.

SR synchronization primitives are essentially the same as Ada. Therefore, it can not respond
to messages in arbitrary order. No mechanism exists to suspend a received call, accept new calls,
and then re-accept the suspended call at a later time.

5.4 BETA

BETA [KMMN87| is like SR in that the way in which a member is invoked (by a concurrent
imperative or alternating imperative) indicates whether it will execute concurrently or not. Hence,
the caller, and not the definition, has control of this important aspect of a definition’s behaviour.

As well, BETA’s synchronization primitives are essentially the same as in Ada. Therefore, it
can not respond to messages in arbitrary order.

10

References

[Ada83]

[Aea88]

[Ame87|

[BZ86]

[Che82]
[Cor88]

[Gen81]

[GKC87)

[KMMN87]

[MMST9)]
[Str87]

[YBS86]

[YT86)

The Programming Language Ada: Reference Manual. United States Department of
Defense, February 1983.

Gregory R. Andrews and Ronald A. Olsson et. al. An overview of the SR language and
implementation. Transactions on Programming Languages and Systems, 10(1):51-86,
January 1988.

Pierre America. POOL-T: a parallel object-oriented language. In Akinori Yonezawa
and Mario Tokoro, editors, Object-Oriented Concurrent Programming, pages 199—-220,
The MIT Press, 1987.

P. A. Buhr and C. R. Zarnke. A design for integration of files into a strongly typed
programming language. In Proceedings IEEE Computer Society 1986 International
Conference on Computer Languages, pages 190200, October 1986.

D. R. Cheriton. The Thoth System: Multi-Process Structuring and Portability. Amer-
ican Elsevier, 1982.

G. V. Cormack. A micro kernel for concurrency in C. Software—Practice and Ezperi-
ence, 18(4):485-491, May 1988.

W. Morven Gentleman. Message passing between sequential processes: the reply prim-
itive and the administrator concept. Software—Practice and Ezperience, 11:435-466,
1981.

N. D. Gammage, R. F. Kamel, and L. M. Casey. Remote rendezvous. Software-
Practice and Ezperience, 17(10):741-755, October 1987.

Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Moller-Pedersen, and Kristen
Nygaard. The BETA programming language. In Bruce Shriver and Peter Wegner,
editors, Research Directions in Object-Oriented Programming, pages 7-48, The MIT
Press, 1987.

James G. Mitchell, William Maybury, and Richard Sweet. Mesa Language Manual.
Technical Report CSL-79-3, Xerox Palo Alto Research Center, April 1979.

Bjarne Stroustrup. What is “object-oriented programming”? In Proceedings of the
First European Conference on Object Oriented Programming, June 1987.

Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-oriented con-
current programming in ABCL/1. In OOPLSA ’86, pages 258-268, November 1986.
Special issue of SIGPLAN Notices, vol. 21, no. 11.

Yasuhito Yokote and Mario Tokoro. The design and implementation of ConcurrentS-
malltalk. In OOPLSA ’86, pages 331-340, November 1986. Special issue of SIGPLAN
Notices, vol. 21, no. 11.

11

6. Appendix A — Monitor Style Synchronization

This style of synchronization object works like a Hoare monitor because the acceptor (signaller)
blocks while the function associated with the request executes to completion. accept is not the
same as a monitor signal because an accept on an empty entry/request queue blocks, while a
signal on an empty condition does nothing and execution continues. Therefore, it may be necessary
to check explicitly whether there are processes waiting on an entry /request queue before performing
an accept to prevent receive-blocking that would lead to deadlock. As well, suspend is not the
same as wait because resumption of a suspended function restarts the function while waiting is
restarted after the wait statement.

class BoundedBuffer {
const int Size = 100;

int front, back; // position of front and back of queue
int Elements [Size + 1]; // queue of integers
void (requestqueue Full)(int elem); // wait if queue is full
int (requestqueue Empty)(); // wait if queue is empty
public:
BoundedBuffer () {
front = O;
back = 1;

Full = &insert;
Empty = &remove;
}: // BoundedBuffer

entry void insert(int elem) {
if (front == back) suspend Full;
Elements [back] = elem;
back = (back + 1) % (Size + 1);
if (1Empty.isEmpty()) accept Empty;
}; // insert

entry int remove() {
int elem;

if ((front + 1) % (Size + 1) == back) suspend Empty;
front = (front + 1) 9% (Size + 1);
elem = Elements[front];
if (1Full.isEmpty()) accept Full;
return(elem);
}; // remove
}; // BoundedBuffer

process Producer {
Producer (BoundedBuffer buf) {
for (...) {
item = ... // produce item
buf.insert(item);

12

}
} // Producer
} // Producer

process Consumer {
Consumer (BoundedBuffer buf) {
for (...) {
item = buf.remove();
// consume item
}
} // Consumer
} // Consumer

main() {
BoundedBuffer buf; // create a communication buffer
Producer Prodi(buf), Prod2(buf); // create producers
Consumer Cons (buf); // create consumer

} // main // wait for process completion

13

7. Appendix B — Disk Scheduler

The following example illustrates a fully implemented disk scheduler using the Ada style (out-
of-line) concurrency extensions to C++. It demonstrates two facilities that are not available in
Ada. First, suspension of an accept body without unblocking the caller, and second, request-queue
variables. The disk scheduling algorithm used in the example is the elevator algorithm which
services all the requests in one direction and then reverses direction. A linked list is used to store
incoming requests while the disk is busy servicing a particular request. (Ada can only support
arrays (families) of entries which is expensive in both search time and storage utilization.) The list
is maintained in sorted order by cylinder number and there is a pointer which scans backward and
forward through the list. New requests can be added both before and after the scan pointer while
the disk is busy. If new requests are added before the scan pointer in the direction of travel, they
will be serviced on that scan.

To prevent deadlocks between the disk and server, the disk calls the server to get the next
request that it will service. This call does two things: it passes to the server the status of the just
completed disk request which is then returned from server to client, and it returns the information
for the next disk operation. To prevent the server from having to make a local copy of each caller’s
request information when it cannot be serviced immediately, another request queue is introduced.
When accepted, the code for this queue copies the parameter values from the caller’s parameters
to local variables in the server and then suspends on the request queue CurrentReq. Hence, the
server only has a single copy of the request that is currently being serviced by the disk. The cost
is the retrieval of the values from the caller’s stack.

enum logical { FALSE = O, TRUE = 1 };
typedef char Buffer[50]; // dummy data buffer

enum IOStatus { INITIAL, COMPLETE, ERROR, EOF };

class IORequest {
public:
int cylinder;
int sector;
BufferAddress *bufadr;
}; // IORequest

process Disk {
logical Alive;
I0OStatus status;
I0Request WorkRequest;
protected:
main(Server &);
public:
Disk(Server &server) : main(server) {};
}; // Disk

Disk: :main(Server &server) {
Alive = TRUE;

14

status = INITIAL;

for (;Alive;) {
WorkRequest = server.WorkRequest(status);
status = COMPLETE;
} // for
} // Disk

process Server; // forward declaration

class WaitingRequest : public Sequable {
public:
int cylinder;
I0Status (Server::requestqueue req) (I0Request);
}; // WaitingRequest

declare(Sequence, WaitingRequest); // generic doubly linked list

process Server {
Sequence(WaitingRequest) Requests; // list of client requests
WaitingRequest *Current;
logical Alive, DiskInUse, Direction;
IORequest CurrentWork;
I0Status CurrentStatus;

I0Status (requestqueue ServeRequest) (IORequest &) ;
I0Status (requestqueue CurrentRequest) (IORequest &) ;
I0Request (&requestqueue DiskWaiting) (I0Status);
protected:
main();
public:
entry IORequest WorkRequest(IOStatus);
entry I0Status DiskRequest(IORequest &);
entry void Die();
}: // Server

Server: :main() {
Disk disk(*this); // start the disk

Alive = DiskInUse = Direction = TRUE;

for (;Alive;) {

select { // in order of importance
accept Die; // request from system
accept WorkRequest; // request from disk
accept DiskRequest; // request from clients
} // select

15

} // for
} // Server

I0Request Server : :WorkRequest(IOStatus status) {
if (status !'= INITIAL) { // 1st time is a special case
CurrentStatus = status;
accept CurrentRequest; // reply to waiting client
// advance to the next disk request in the current direction
WaitingRequest *temp = Current;
Current = Direction ? Requests.succ(Current): Requests.pred(Current);
Requests . remove(temp); // remove just processed request
delete temp;
if (Current == 0) { // reverse direction ?
Direction = !Direction;
Current = Direction ? Requests.head(): Requests.tail();
Y // it
} // if

DiskInUse = FALSE;
if (!Requests.isEmpty()) { // any clients waiting ?
DiskInUse = TRUE;

accept Current->req; // get work from waiting client
// the global variable CurrentWork is assigned the current request
return(CurrentWork) ; // return work for disk
} else {
suspend DiskWaiting; // wait for client to arrive
Y /7 if

} // WorkRequest

I0Status Server: :DiskRequest(IORequest &req) {
if (DiskInUse) {
// insert into list by ascending order of cylinder number
for (WaitingRequest *1p = Requests.head();
1p != O && 1p->cylinder < req.cylinder;
1p = Requests.succ(1lp));
WaitingRequest *np = new WaitingRequest;
np->cylinder = req.cylinder;
np->req.Rtn = &Server::ServeRequest;
if (Requests.isEmpty()) Current = np; // 1st client, so set Current
Requests.insert(np, 1p);
suspend np->req; // suspend until request is to be serviced
} else {
DiskInUse = TRUE;
CurrentWork = req;
accept DiskWaiting;
suspend CurrentRequest;

} // if

16

} // DiskRequest

void Server::Die () {
Alive = FALSE;
} // Die

I0Status Server: : ServeRequest (I0Request req) {
CurrentWork = req;
suspend CurrentRequest;

} // ServeRequest

I0Status Server: : CurrentRequest (IORequest req) {
return(CurrentStatus) ;
} // CurrentRequest

I0Request Server: :DiskWaiting(IOStatus status) {
return(CurrentWork) ;
} // DiskWaiting

process Client {
protected:
main(Server &, IORequest &);
public:
Client(Server &server, IORequest &req) : main(server, req) {};
} // Client

Client::main(Server &server, IORequest &req) {
I0Status status;

status = server.DiskRequest(req);
} // Client

const int NoOfTests = 10;

I0Request test[NoOfTests] = { { 20, 0, O },
{99,0,0} { 0,0,01}, {15, 0, 01},
{3,0,0} { 4,0,01} {16, 0,01},
{80,0,0} {8,0,0} { 2,0,01}1};

main() {

Server server; // start the disk server
Client *p[NoOfTests];
int i;

for (i = 0; i < NoOfTests; i += 1) {
pl[il = new Client(server, test[i]); // start the clients
} // for

17

for (i = 0; i < NoOfTests; i += 1) {

delete p[il; // wait for completion of the clients
} // for
Server.Die() ; // terminate the disk server
} // main

18

c R' Computer Resources International A/S

MAY 26 1989
University of Waterloo 1989-05-22
Department of Computer Science
Waterloo, Ontario N2L 3Gl
Canada
Our ref. Your ref. Project

Dear Sirs,

Please send us the reports indicated srRxkhexakkacrkhed
BOPYXBEXYRHXXXRRRXXXAXIRX below.

Thanking you in advance, we remain

Yours sincerely,
Computer Resources International A/S

Anne Marie Larsen

Cs=-88-31
Cs-88-25
Cs-88-30

Reports wante

Volker Hisken Kopernikusstr. 16

Lehrstuhl fir Betriebssysteme . D-5100 Aachen

RWTH Aachen West—Cerma.ny

Prof. Dr. D. Haupt bitnet: huesken@dacth01.bitnet
P. A. Buhr
Dept. of Computer Science
University of Waterloo

Waterloo, Ontario

Canada, N2L 3G1

Aachen, 12. April 1989

Dear Mr. Buhr,

I just read your very interesting article on "Adding Concurrency to a Statically Type-Safe
Object-Oriented Programming Language” SIGPLAN NOTICES April 1989. One of your
references is the Research Report CS-88-30 ”Concurrency in C+4+” , which you ho-
pefully could send me to the above address. We are working in the same area of parallelizing
C++ and we have finished a first attempt, which has a different granularity than your model.
This work is written in German so I don’t know whether this is of interest to you.

Many thanks in a,dv/a.nfe
| PRANRTA
,. ?_‘

V.Hiisken / <

| PHONE CALL
Date /EM ff Time /0 :?__0
TO . Qq.e..t D.Z,W

WHILE YOU WERE OUT

Phone ... (ol) (909'5 ,3

Telephoned [Y Please call]
Called to see you [] Will call again]

Wants to see you [] Returned your call []

/wmyj,

€S-8~ 3o%{W |
Jd

4me
YN/

Operator
031020

PHONE CALL

Date....tAasch...17 Time.. 40

To . Scwe . Sgﬁmﬁicfxey\ls
WHILE YOU WERE OUT

M D}\AL& Desa

of New Sachaf
Phone..... Q0.2 Lele8 2 1573
Telephoned [>4 Please call]

Called to see you [] Will call again]

Wants to see you [] Returned your call []

MESSAGE

= T A /uzflts»v‘\. < S%(?/30
_______ @W*Z

Operator ﬁ)&_

031020 é ,

P.O. BOX 2004, MS 44, OAK RIDGE, TN 37831 visovzme UZUBL1LYS

MARTIN MARIETTA ENERGY SYSTEMS. INC. REMITTANCE STATEMENT (PLEASE NEGOTIATE PROMPTLY) DATE CHECK
PRCEINE st/ | cur orper RS- |MATERIALORSERVICE[rRANSPORTATION| DISCOUNT | DEDUCTION Jeo. *] NET
- "
D2RRY TS .08
M N
v
. 1. Unauthorized Ins. or Value Charge 4. Furnish invoice for transp. and/or 6. Rejected item or 8. Contract retention

DEDUCTION CODE 2. Transportation for your account supporting copy of freight bill unacceptable overage 9. Debit/Credit memo UCN-679C

EXPLANATION: 3. Unauthorized prem. transp. cost 5. Unauthorized price increase 7. Taxes not applicable processed (6 4-88)

Purchase Order No: 02X-HY751V
Issue Date: 11708788

ACTING UNDER U.S. GOUERNMENT CONTRACT DE-AC(5-840R21400 NITH THE U.S D.O.L.

PAGE 1
Seller (U00299) Refer Questions To.
UNIVERSITY OF WATERLOU MT UNDERWOGD
DEPARTMENT OF GEOGRRAFHY MARTIN MARIETTA ENERGY SYSTEMS INC
ISITAH BOWMAN BLDG P. 0. BGX 2008, MS 6286
WATERLOG ONTARIO CANADA N2L3G1 04K RIDGE, TN 37831-6286

(615> §74-0665

- e o s o o e u W o S bt e A e MM VA e Ak S W e e W ML Wos S AW w N e wem Mam e e e WP St i wm e S Sew Mws G sl L Gh% bms San Sw (VW Sut Gwe WA am Wae wer W ves W e e M Sa BeS ww Sen c=3 ww w3 e WY e e sm ww awe
T N N T T T NN N N T T I S N T L NN T N T N N L N T N T N N N N T N N I S I N I I S I N NI AN ST I SRS S w oo

Ship To: Furnish Original Invoire To

MARTIN MARIETTA ENERGY SYSTENMS, INC.
ACCOUNTS PAYABLE

F. ¢ BGX 2004

O0AK RIDGE, TN 37831-200¢

Attention: PO 02X-HY751V

Shipping Point: Shipping Nethod:

Transportation Terns: Payrent Terns: & Ren Att FOB Code:

KX ARRAARERRARARR AR RN AA AR R RRARARRAAAARANNK RARARARARKRAARTENRARA WRRRRINN

* Seller shall shou the Martin Narietta Energy Systens Purchase Order Nunmber and Plant *
* (02R-HY7510 AND) on all Packages, B/L and Freight Bills, and Invoices =

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn Avevek Ltite ANARAR

Furnish the following items in accordance uith Terns and Conditions designated B {06/81) (/S (6/86) Attached
hereto or incorporated herein by reference with specifications and/or drauvings referred to herein and made part hereof

e - own G . WS W o W WS i Wae Wew e W See e e S s e M W M SO S W Y el S WA S G SR W G e W MY M e Sm T W e fmm W o S Sy M W W M Y R Wew o WEe Rn S hol G W w W Wee MR us Wy oW Lew s e emm Te eme

Item Quantity Unit Unit Price Total Price Deliver By

001 1 E4 $2.00 $2.00 12707788
ACCT A3748PA1
Description

C5-88-30 - CONCURRENCY IN ¢ ++. BUKR, P. 5§ ET AL.

SHIP TO: MARTIN MARIETTA ENERGY SYSTEMS, INC.
MARTHA UNDERWOOD, 4500N, I-103
P. 0. BOX 2008, BETHEL VALLEY ROAD
0AK RIDGE, TN 37831

Y o e G b SNS Sms S e v Y S St Sme vEw S v M e SO Sews em SN M o Sum W Aew s Tum SN e Se bem Wi s G S G0 W mue Ve oW Wms Sw Sem Guh B SN Wer WA e MG Ghw SPW e MEn T e Wew S T oo S sme mm W T un lem W S oee Dew me o ew
R T T T T T T T S T T N S N T I N T S T T T N NN T N S N N T N S R T N T T T N NN SN N NN N TSI NITIISIESI AR e s =

Total Price
‘ §2.00

PRIORITY: DO E-2 This is a rated order caertified 1 Martin Marietta _ o
for national defense use, and Yyou are 1 Enerzy Systems, Inc.
required to follow all the provisions 1 Purchasing Signature

of the Defense Priorities and Alloca- 1
tions Sgstem Regulations (15 CFR 1
Part 350). 5

Purchase Order No: 02X-HY?751V
Issue Date: 11708788

ACTING UNDER U.S. GOVERNHENT CONTRACT DE-RCOS-B40RZ1400 RITH THE U5 D.O.L.

o e ANt W e e e W o N S Sam A Sea m Yiw T e el et Mr Ae M tem W S W S S o s SRU o Mk TR MR Mn AR me M T Ve WM tam s e e Sen e Gem e S M U S e el e S s o S S W e Wme W mew e Sow o S s tem e e v
R T N N T N T T N T S N S T N NI T L I T T T TN T S T N T N TN T TN NSNS TN SN ISR SsST ST sEsESsSs

Last Page 2 of 2

SECOND FOLD HERE—— ==

FIRST FOLD HERE

-

AEROGRAMME

BY AIR MAIL . PAR AVION

- Current: .
e e el B
z {Aer&ri, me

-’Ziw:,-Roﬂage!'

Stamp

Research Report Secretary

Department of Computer Science

University of Waterloo

Waterloo

ONTARIO N2L 3Gl

CANADA

(COUNTRY OF DESTINATION)

Approved by the Australia Post for
acceptance as Aerogramme No. 58

SENDERS NAME AND ADDRESS

SELso b

Electrical Engineering and Computer Science

UNIVERSITY CF NSWCASTLE
NEW SOUTH WALES
AUSTRALIA. 2308

POSTCODE

]

SECOND FOLD HERE

FIRST FOLD HERE

-

THE UNIVERSITY OF NEWCASTLE

NEW SOUTH WALES, 2308
AUSTRALIA.

3 April 1989

Research Report Secretary
Department of Computer Science
University of Waterloo
Waterloo

Ontario N2L 3Gl

CANADA

Dear Sir,

Would you please let us have a copy of the following report:

REPORT

NO. . TITLE , AUTHORS

T \\‘ ’ \\ .- :
CS-88-30 JGoncurrency in C ++ P A Buhr
/ o ; - G J Ditchfield
,,,,,,, P R : C R Zarnke

Thank you.

Yours faithfully, » ;‘_‘?‘ "‘ C&

otcboo-ds ~ \

D. C. Edwards (Mrs)
Secretary
Computer Science

memO /%/O(/ University ofWaterIoo 0

S MW“ e e

99230 ,
Cohiehy sl

@li) The University of Western Ontario

Oy 1. Meldner, Visk: g P,o&)
Department of Computer Science
Middlesex College

London, Canada
N6A 587 Losdsn, Jos 12 39

Loow\d o~ 9\(65—(Se-d e ~ cops % The re)escch

e A S L

79/ a.(s.o "\"C‘uﬂ(e

-5~
CS-88-29 - PORTABLE COMPUTERS AND DISTANCE EDUCATION

ABSTRACT:
Experiments are being conducted at the University of Waterloo with an integrated computer and

communications system for students in distance-education programs. Distance students will be able to use

the data communications capability of the telephone system in conjuction with microcomputers to com-
municate with their teachers on the Waterloo campus and their fellow students.

This system should also allow distance students to have immediate access to teaching materials such
as lecture notes, laboratory sessions, and assignments, and to many of the computer-based tools and infor-
mation sources which are commonly available to on-campus students. Electronic submission and return
of assignments should also be possible.

With this new ability to use computers and communications, students enrolled in distance education
programmes will have many of the advantages of on-campus students. Microcomputers will not be a sub-
stitute for the teacher, but will act as a useful learning tool and facilitate communication with on-campus

tuche:sandothetdmancestudems,andprowdeaccastomanyottheaecumulatedrmofﬂae
university.

AUTHORS: J.P. Black, D.D. Cowan, V.A. Dyck, S.L. Fenton

C.K. Knapper, T.M. Stepien

C ++ already supports many programming paradigms: procedural programming, data hiding, data
abstraction, and object-oriented programming. All of these are subdivisions (though not necessarily dis-
joint) of the imperative programming style. A paradigm that is not supported by C ++ is multi-process
structuring, where a program is designed as a set of processes that cooperate to solve a problem. This
paper considers several ways to add support for concurrency to C ++. A number of alternative con-
currency models are considered because of the number of programming paradigms available in C ++,
myofwh:cheaﬂdbeadapted towovxdcmuluplepmogses Atypeufemodelwwggmedﬂmnssmi
lar to that in Ada with the extension that a process can respond to requests in arbitrary order making it as
powerful as the send/receive/reply model. As well, the model continues to support object oriented facili-
. ties like subtyping and inheritance.

AUTHORS: P.A. Buhr, G.J. Ditchfield, C.R. Zamke
PRICE: $2.00 « 7
Jof o
MQ}) - b] al

$oé 03¢’
$o00e Ye0e® § % %eee?

EUROPEAN COMPUTER-INDUSTRY
RESEARCH CENTRE GMBH
(FORSCHUNGSZENTRUM)

;-f”é {éé‘ ‘”‘ *0e,

ECRC GMBH - ARABELLASTRASSE 17 - D-8000 MUNCHEN 81 ARABELLASTRASSE 17

' . ;) D-8000 MUNCHEN 81
University of Waterloo = 089/92699-0

Dept. of Computer Science Ext
g 92699-
Attn.: Research Report Secretary Nst.
Waterloo, Ontario N2L 3Gl
5216910 Fax 089/92699-170

CANADA

YOUR REF. YOUR LETTER OF OUR REF. DATE
lhre Zeichen thr Schreiben vom Unsere Zeichen Datum

HG/am 14.Nov.1988

Dear Sirs,
Order of Technical Report

We would like to order one paper copy of the following
technical report; —

el
-~

-‘/ g
- %

£5-88-30
Concurrency in C++

Authors: Buhr, Ditchfield, 2Jarnke

We look forward €o receiving this publication as soon as
possible and thank you in advance for your attention in
this matter.

We knoe that all orders must be prepaid but as we can not
draw a cheque on such a small amount we would like to
suggest to effect payment cash on receipt of goods.

A

Yours faithfully,

Astrid Markl

BANK: DRESDNER BANK MUNCHEN, PROMENADEPLATZ, KTO. 300863000, (BLZ 70080000)
GESCHAFTSFUHRER: DR. HERVE GALLAIRE, DIPL.-KFM. PETER GOTZMANN
SITZ DER GESELLSCHAFT: MUNCHEN, HANDELSREGISTER MUNCHEN HRB 72659

CS-88-33 - ON EFFICIENT ENTREEINGS

ABSTRACT:

A data encoding is a formal model of how a logical data structure is mapped into or represented in
a physical storage structure. Both structures are complete trees in this paper, and we encode the logical
or guest tree in the leaves of the physical or host tree giving a restricted class of encodings called enree-
ings. The cost of an entreeing is the total amount that the edges of the guest tree are stretched or dilated
when they are replaced by shortest paths in the host tree. We are particularly interested in the asymproric
average cost of families of similar entreeings.

Our investigation is a continuation of the study initiated in [6].

AUTHORS: Paul S. Amerins, Ricardo A. Baeza-Yates, Derick Wood
PRICE: $2.00

CS-88-34 - THE SUBSEQUENCE GRAPH OF A TEXT

ABSTRACT:

We define the directed acyclic subsequence graph of a text as the smallest deterministic partial finite
automaton that recognizes all possible subsequences of that text. We define the size of the automaton as
the size of the transition function and not the number of states. We show that it is possible to build this
automaton using O (n log n) time and space for a text of size n. We extend this construction to the case
of multiple strings obtaining a O (n2log n) time and O (n2) space algorithm, where n is the size of the set
of strings. For the later case, we discuss its application to the longest common subsequence problem
improving previous solutions.

AUTHOR: Ricardo A. Baeza-Yates
PRICE: $2.00

—-8—

If you would like to order any reports please forward your order, along with a cheque or international
bank draft payable to the Department of Computer Science, University of Waterloo, Waterloo, Ontario,
N2L 3Gl, to the Research Report Secretary.

Please indicate your current mailing address and if you wish to remain on our mailing list.

MAILING ADDRESS: o7/
WANGQ TNSTITUTE o BosToN U1 VaeS/zy
“7Z 7YNG _ROAD
TYNGSBORD, MA_0877-2097 _[)sA

(C YES, REMATN ON MAILING

e

—

e

NO, DELETE FROM MAILING LIST

Arrse senw 2 (1) 0S—&5-30 Coweoretey o Or

e |
L et /M/”Aj/

NOV 1 1988

Fﬁwnhn@li

%;qnnsdxmn/ﬁana

hicServices

15092

1. Please complete unsh_adod aroas an

: form as appli

2. Distribute copies as foliows: White and
Yellow to Graphic Services. Retain Pink
Coples for your records.

icable.

3. On completion of order the Yeliow copy
will be retumed with the printed
material. .

4. Please direct enquiries, quoting requisi-
tion number and account number, to
extension 3451.

TITLE OR DESCRIPTION"

[’5

- E7- 30

REQUISITIONED:

Il

4

DATE REQULRED

5e ASAP

ACCOUNT NO.

L /2 .élé[c).as. ava

'F?QulsroémaR—PRINT . ‘ PHONE SIGHING AUTHORLT
XA 1l @//S ‘)?/719= L Loy X
MAILING mNAME » DEPT. BLDG. & ROOM NO.

INFO- i [(rs [0 D374

Copyright:

| hereby agree to ass

{ all responsibility and liability for any infringement of copyrights and/or patent rights which may arise from »
the processing of, and reproduction of, any of the materials herein requested. | further agree to indemnify and hold -blameless the

University of Waterloo from any tiabitity which. may arise from said processing or reproducing. | also acknowledge that materials

processed as a result of this requisition are for educational use only.

NUMBER NUMBER NEGATIVES G Qu&&ﬂf{ s PER
OF PAGES /7 OF COPIES /OO IF L M} sl H -
TYPE OF PAPER STOCK (=1 _“ \"'; =] f 1 L '
COVER BRISTOL SUPPLIED . * ’» 3 TS B

aou: I___z_ll:cn PT. :I v D D D —_— l F]LlMi 1 g
PAPER SI . b S senid
E&%xlj [:]aéxu O vxaz O |FL{M‘ ';,»,"“3"“}
PAPER COLOUR ’ . INK o

WHITE D _ [] ecack O_. IFILL{ "» [] |
PRINTING NUMBERING ’ s T L
D 1 sibE____ 3 2 siDES _____ FROM lF lLiMl Sl “‘ |
E}""G/F'"'S“fz"} og/e‘(&ﬂ /f;;,lé?",a.zaé PN 7t

COLLATING STAPLING FUNCHED . PLA 1C RING . 4 i . ‘ .

' P

FOLDING/ CUTTING - T T e
PADDING - SIZE IP MIII : [e

‘Special Instructions

IPIM Tl

i

PLATES

| ?1‘.‘—: T‘i‘\

Fp

I ';1’*0wrsnue seavmes .

<] TaxEs = provineiaL [T FeDERA

	

