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Abstract

We present several algorithms for selecting the kth smallest element from a multiset of n
elements in linear time using only a constant amount of additional space. In particular, we
show that 8.8256n + o(n) comparisons are sufficient to perform the selection if all elements
are distinct, 9.3884n + o(n) comparisons are sufficient if elements can appear at most a
constant number of times, and 10.8696n comparisons are sufficient in the general case.
We also present an application of our implicit selection algorithms in the maintenance of
implicitly represented k-d trees, and give insertion and deletions algorithms that run in

O(nlogn) time in the worst case.
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Chapter 1

Introduction

Space . ..the final frontier. — The beginning of Star Trek

1.1 Motivation

The selection problem is: determine the kth smallest element of a multiset of n elements,
given the values of k and the n elements. Interest in the selection problem can be traced
back to the design of tennis tournaments. In 1883, Lewis Carroll [6] published an article
decrying the unfair method by which the second best player was selected; any of the players
who lost to the best player may be second best. Around 1930, Hugo Steinhaus posed the
question of finding the minimum number of tennis matches required to find the first and
second best players. In 1932, J. Schreier [22] showed that n + [logn] — 2 comparisons
are sufficient; his method uses one knockout tournament to find the winner, and finds
the second best player by holding another knockout tournament among all players who
lost to the winner. S. S. Kislitsyn [13] generalized Schreier’s method to any rank k by
essentially using the first kth stages of a tree selection sort; Kislitsyn’s method requires
n — k + Y% 2[log(n — ¢)] comparisons. Hadian and Sobel [10] devised a method that
requires only n—k+ (k—1)[log(n — k+2)| comparisons. They hold a knockout tournament
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of n — k + 2 players and successively eliminate the k — 1 players who are “too good” to be

the kth best.

Blum et al. [5] devised a method that requires linear time in the worst case. Their
method does not use knockout tournaments at all; we will describe their algorithm in
~ detail in the next chapter. They devised two algorithms; the best requires at most 5.4305n
comparisons in the worst case. Schénhage et al. [21] devised an algorithm for finding the
median in a number of comparisons asymptotic to 3n. Floyd and Rivest 8] devised an
algorithm for selecting the kth smallest element that has an expected running time of

n + min(n, n — k) + O(n'/2).

We define a new problem, the implicit selection problem, in which we want to find the
kth smallest of n elements using only a constant amount of additional space. Hoare [12]
devised an O(n) expected time selection algorithm which can easily modified to solve the
implicit selection problem in O(n) expected time. We will present several algorithms that

solve the implicit selection problem in O(n) time in the worst case.

For our model of computation we assume a comparison-based arithmetic RAM. We will
assume that comparisons have three outcomes (<, =, and >) and that arithmetic operations

are only allowed for manipulating indices.

One motivation for the solution of the implicit selection problem comes from the update
algorithms for implicitly represented k-d trees. k-d trees were first introduced by Bentley
[4]. (See also Bentley [3].) Lee and Wong [14] analyzed the worst-case performance of range
queries and partial range queries in k-d trees. Silva-Filho [23] analyzed the average case
performance of range queries in balanced k-d trees. We will defer a formal discussion of k-d

trees until Chapter 5, only giving examples of k-d trees in this chapter.

In a one-dimensional binary search tree, hereafter abbreviated as a 1-d tree, we perform
searches by comparing the desired key with the key of the root, and searching either the left
subtree or right subtree of the root if the keys are not equal. To construct a 1-d tree from a

set of elements, we take some element p as the root, and divide the remaining elements into
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(9,A)

(8,V)

Figure 1.1: Examples of k-d trees

two subsets, based on the value of p’s key. We store these two subsets as two subtrees rooted
at p’s children. We continue splitting subsets in this manner until each subset contains at

most one element.

k-d trees are a natural k-dimensional generalization of 1-d trees. Figure 1.1 shows some
examples of 2-dimensional k-d trees, hereafter referred to as 2-d trees. In a k-d tree, we
cycle through the keys when performing searches, rather than using only the first key. For
example, to find (6,P) in the first tree of Figure 1.1, we compare 6 to the first key of the
root. Since 6 > 5, we search the right subtree. We then compare P to the second key of
node c¢. Since P < S, we move left. We then compare 6 to the first key of node e. Since
6 < 7, we move left again. We then find that (6,P) is in node g, and we are done. See

Figure 1.2.

We can construct a k-d tree from a set of elements as follows. We take some element p
as the root and divide the remaining elements into two subsets based on p’s first key. These
two subsets are stored as two subtrees rooted as p’s children. In both subsets we again take
an element and divide each subset with respect to the second key. At the next level we
divide with respect to the third key and so forth. After dividing with respect to the kth

key, we use the first key again.
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Figure 1.2: Searching for (6,P)

An implicit data structure is a data structure in which all elements are stored in the
leftmost positions of a semi-infinite one-dimensional array, such that only a constant number
of pointers need be kept. No distinction is made between a pointer and an integer index
in the range [0, n], where n is the number of elements. Implicit data structures were first
explicitly studied by Munro and Suwanda [19]. Two simple examples of implicit data

structures are sorted lists and heaps.

Various implicit data structures have been devised since implicit data structures were
first studied, but most are only one-dimensional. Munro [17] devised a static implicit data
structure based on k-d trees. Van Leeuwen and Wood [25] devised an implicit d-dimensional
dynamic data structure that can solve complementary range queries in constant time plus
the time required to report the answers. Munro [18] devised another static implicit data

structure that can solve partial match queries in polylogarithmic time.

A left-complete binary tree is a binary tree in which all leaves appear on two adjacent
levels and are as far to the left as possible. We can easily represent a left-complete k-d
tree implicitly by storing the nodes of the tree in breadth-first order. Figure 1.3 gives an

example of this mapping.
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(6,A)
(4.Q) (7,W)

@D) eI B)6L )62
(® 16) (3 6.

1 2 3 4 5 6 7 8 9
(6’A) (4’Q) (7,W) (2)D) (37T) (S,L) (Q,Z) (I;G) (S’B) tete

Figure 1.3: Representing a k-d tree implicitly

This representation is basically static. If no restrictions are placed on the balance of
the k-d tree, then insertions can be performed in a straightforward manner. We simply
perform an exact match query on the k-d tree and insert the node where the query fails;
this is analogous to insertions in a 1-d tree. However, this method is clearly inadequate to

maintain left-completeness for our implicit representation.

To perform updates, we dynamize our data structure by exploiting our construction
algorithm for implicit left-complete k-d trees. Bentley [1] was the first to propose a scheme
for transforming a static data structure into a semidynamic data structure. Van Leeuwen
and Wood [24] introduced the term “dynamization” and gave a method for transforming
static structures to fully dynamic structures. Bentley [2] and Overmars [20] have suggested

various other dynamization schemes.

One method of maintaining left-completeness is to insert the node using the above
method and then reconstruct the smallest subtree necessary to guarantee left-completeness.
Suppose we want to insert the element (0,C) into the 2-d tree depicted in Figure 1.3. See

Figure 1.4. Consider the root z of the subtree we have to rebuild. We clearly have to rebuild
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Rebuild at node 2 (6,A)

(4.Q) (7,W)
(47 (2,D) (5) (3,T) @® 6L (1) e2)
(8) (1,G) (9) (5.B)
S0

Figure 1.4: Inserting into a left-complete k-d tree

a subtree rooted at an ancestor of the inserted node. The subtree must also be rooted at
an ancestor of the next free space, indicated by the square leaf, since this position must be
occupied in a left-complete tree of 10 nodes. Thus, a candidate for z is the lowest common

ancestor of the inserted node and the next free space.

To reconstruct this subtree, we want to select the fourth smallest element of the subtree
with respect to the second key, so that three elements will fall in the left subtree and
two elements will fall in the right subtree. In general, for any node z we will select the
(nz + 1)th element, where ny, is the number of nodes in the left subtree of z, with respect
to the appropriate key. We can always determine n; since the shape of a left-complete
subtree is solely dependent on the number of elements n in the data structure. Allowing
the insertion algorithm to use more than a constant amount of additional space defeats the
purpose of using an implicit data structure, so we do not want the selection algorithm to
use more than a constant amount of extra storage. This provides one motivation for the
implicit selection problem. The construction of interval *heaps provides another motivation;

see [25].
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In chapter 5, we will discuss the insertion and deletion algorithms for our data structure

in detail.

1.2 Summary

In chapter 2, we discuss two algorithms for solving the implicit selection problem for distinct
elements. We describe how constant additional space can be achieved, and give a simple
algorithm that requires 27.38462n + o(n) comparisons. We then optimize this to obtain an
algorithm that requires 14.8n + o(n) comparisons. We also show that the number of data

movements required by our algorithms is O(n).

In chapter 3, we discuss solution of the implicit selection problem for arbitrary elements.
We describe new problems introduced by the possibility of repetitions and the solutions to
these problems. We then give an algorithm that requires %n ~~ 38.5385n comparisons and
optimize it to obtain an algorithm that requires %n a2 29.5077Tn comparisons. We again

show that the number of data movements required by our algorithms is O(n).

In chapter 4, we discuss some improvements to our algorithms that allow us to reduce
the number of comparisons to 8.8256n+o(n) for distinct elements and 10.8696n for arbitrary

elements. The number of data movements required by these algorithms is again shown to

be O(n).

In chapter 5, we give an application of implicit selection in the maintenance of implicit
k-d trees. We give an algorithm to implicitly solve any intersection query, and we analyze
the worst-case time, the amortized worst-case time, and the expected time of our insertion

and deletion algorithms.

Finally, in chapter 6, we give some conclusions and discuss some open problems.



Chapter 2

Implicit Selection for Distinct

Elements

2.1 The Blum-Floyd-Pratt-Rivest-Tarjan algorithm

In the selection problem, we want to select the kth smallest of n elements. The implicit
selection problem is similar except that we are restricted to using only constant additional
space. There are two variants of this problem: we can require that the n elements be

distinct, or we can place no restriction on the elements.

In this chapter, we will discuss an algorithm that performs implicit selections in linear
time but requires that all elements be distinct. The next chapter discusses an implicit

selection algorithm that places no such restriction.

Blum et al. devised two selection algorithms that require 8(n) time in the worst case.
They devised a simple, “slow” algorithm that requires 19.3n comparisons and a complicated,

“fast” algorithm that requires 5.4305n comparisons.

Our new selection algorithms are based on the slow Blum-Floyd-Pratt-Rivest-Tarjan

algorithm, hereafter referred to as the BFPRT algorithm, and so we will discuss its op-
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eration. Let ¢ be some constant, where ¢ > 5. Let #S denote the size of a multiset S.

Then the BFPRT algorithm computes the kth smallest element of a multiset S is as follows:

function BFPRT-SELECT(S,k)

1. Arrange S into |n/c| lists of c elements, and sort each list.

2. Let T be the set of medians from each of the lists. Compute m =

BFPRT-SELECT(T, [£]).

3. Let S<, S—, and S5 be the sets of elements less than, equal to, and greater than m,

respectively.

4. If k < #8S<, then return BFPRT-SELECT(S<,k). If #S< < k < #S< + #8S—, then
return m. Otherwise, return BFPRT-SELECT(S, ,k — #S< — #5=).

end BFPRT-SELECT

Clearly this algorithm requires O(n) space since it requires O(n) time. Hence it is space-
optimal using the usual definition of space cost. However, Blum et al. did not consider the

implicit selection problem and did not pursue a method for implementing the algorithm

using O(1) additional storage.

2.2 Achieving constant space

There are four factors that contribute to the storage requirements of the BFPRT algorithm,

the last three being due to the recursion:

1. Recopying space
2. Saving arguments—endpoints

3. Saving arguments—k
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4. Implementing recursive calls

We will show in turn how each of these costs can be reduced to a constant.

Saving function values may also appear to contribute to the storage requirements of
the BFPRT algorithm, but function values never have to be saved. This is because in
the BFPRT algorithm, the result of the first recursive call in step 2 is discarded before the

second recursive call in step 4, which implies that function values never exist simultaneously.

2.2.1 Recopying space

Although step 2 of the BFPRT algorithm may appear to require the recopying of O(n)
elements, it can be implemented without using any recopying, so that it requires O(logn)
additional space for the recursion. One method of avoiding recopying is to ensure that

selections are only performed on contiguous sequences of elements.

This can be achieved as follows. In step 1 of the algorithm, we scatter the elements
of the lists such that list ¢, for 1 < ¢ < 2, consists of the elements in the locations ¢, % +
,22 +4,...,(c—1)2 +{. This guarantees that after sorting each list, the medians fall into
a contiguous block occupying locations [%J 2 +1 through [§]2. To partition S into S,
S—, and S, as required in step 4, we use a modified quicksort partition algorithm [11] to

ensure that each set occupies a contiguous block.

Therefore, no elements have to be recopied into a separate array, and only the recursion
contributes to the additional space cost. We will restate the BFPRT algorithm in terms of

an input array A, lower and upper bounds / and u, and a rank k.

function RSELECT(A,l,u,k)

1. Arrange A[l...u] into “'C—Hi scattered lists of size c, and sort each list.

2. Find m = RSELECT(A,1 + | 52| 2,1+ [£]2 — 1, [#35HL)).
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3. Partition A[l .. .u] so that there are positions !’, u' such that every element in A[l...I'—
1] is less than z, every element in A[l'...u'] is equal to z, and every element in

A[u' 4+ 1...y] is greater than z.

4. If k < I' — I, then return RSELECT(A,,I' — 1,k). fl' -l < k < u' — 1+ 1, then
return m. Otherwise, return RSELECT(A, v’ + 1,u,k— (v' + 1 - 1)).

end RSELECT

Note that in step 1 we only need to find the median of each list of size c; sorting is of no

additional benefit. Thus we can replace the sorting in step 1 by the Hadian-Sobel median

finding algorithm.

2.2.2 Saving arguments—endpoints

RSELECT requires that we be able to retrieve the endpoints of previously processed lists,
and there can be O(logn) such lists. We cannot recover the endpoints of previous lists by
knowledge of the endpoints of the currently processed list alone, so we need to store the
endpoints of previous lists in some way without using too much additional space. Because
we are only permitted to use constant additional space, our only option is to implicitly

encode the endpoints of the current list in the input array.

There is a surprisingly simple method for preserving the current range bounds. Our
method is inspired by the encoding method used by Durian’s stackless quicksort [7], but our
scheme bears no resemblance to Durian’s scheme. The basic idea of the method is as follows.
Let o be some list in an array A, that is, let « be some set of contiguous elements of A, and
let left, and right, denote the left and right bounds of a. Let 3 be a proper sublist of , and
let 7y be a proper sublist of 8, that is, left, < leftg < left, and right,, < rightg < right,. See
Figure 2.1. Let aypin and amgez be the minimum and maximum elements of a, respectively.
If amin € B and ame; & B, then the assumption of element distinctness guarantees that

Amin < Pmin and Qmaz > Pmaz- Suppose Alleftg — 1] = amin, Alrightg + 1] = amaz,
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< IB o B
|amin| l,@min | |ﬂmaz‘ |amaz|

—
o .-

A

Figure 2.1: The encoding method

™ e

e —

< ﬂmaz > ,Bmaz

Figure 2.2: The invariants of the encoding method

Alleft, — 1] = Bmin, and A[right, + 1] = Bmaz. Notice that any element positioned between
Bmaz and oyngz must be a member of B and is thus less than B,,4,. Therefore a search for
the first element to the right of fnaz = A[right., + 1] that is greater than B, will suffice
to find amaez = A[rightg + 1], and thus from right., we can find rightg. Refer to Figure 2.2.
leftg can be found from left, in a similar manner. If we are currently processing a list c,
and we want to process a sublist B of «, then we store the endpoints of a by placing amir

in the left end of B (i.e. Allefts — 1]) and cmaz in the right end of 8 (i.e. A[rights + 1]).

It should be clear that we can extend the above scheme indefinitely. Figure 2.3 shows
how the endpoint markers are positioned with several nested lists. Figure 2.4 shows the

inequalities that hold with several nested lists.

We can formalize the above scheme and prove its correctness as follows. We will use L;

and R; to denote the left and right bounds of list ¢, and [ to denote the number of lists.

Theorem 2.1 Suppose we have an array A and indices Ly, Ls,...,L;, Ry, Ry, ..., R such
that:

(i) Li<Ly<---<Li< R < Ri_1 <+ < Ry (The lists are nested.)
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- 8 -

-— § —
|am.',.l l Bmin | |’7min I I'Ymaz | |ﬂma:| |amaz|
- v
o

Figure 2.3: Encoding nested lists

|7mazl Iﬂmazl |a""‘"’|
6 - L ] L J L ) L J
<Tmaz >TUmaz <Pmaz > Pmaz

LR

Figure 2.4: The invariants for encoding nested lists
(i) Vi,V5,(A[s] = Alj] => ¢ = j) (All elements are distinct.)

(iii) Vi,Vj 3 L; < j < Ry, A[L; — 1] < A[j] < A[R; + 1] (Each list is surrounded by two

elements that are strictly less than and greater than all of the elements in the list.)

(iv) Vi <1,(A[Li+1 — 1] = ming,<k<r,{A[k]}) A (A[Ri+1 + 1] = maxp,<k<r,{A[k]}) (The

elements surrounding list { + 1 are the minimum and mazimum elements of list i.)
Then
() Vi<l,Vj2 Li =1< 5 < Liy1— 1,(Alf] < A[Liy1 - 1] <= j = L — 1)

(I) Vi<l,Vjd> Riya+1<j< Ri+1,(AlJ] > A[Rij1+ 1] <= j=Ri +1)

(1) If 3Liy1, Rit1 D Ly < Liyy < Riy1 < Ry, then we can rearrange some elements in
the set {A[L),. .., A[Ri]} such that conditions (i) through (iv) are satisfied for indices
Li,...,Li41,Ry,..., Ri41.
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Proof:

(I) Let ¢ and j be arbitrary integers such that ¢ <l and Ly — 1 < 7 < Liy; — 1. Tt is

sufficient to show

1. 5= Li — 1 => A[j] < A[Liy1 — 1]
Condition (i) implies L; < L;+1 < R;, which implies that L; < L;1; — 1 < R;.
But condition (iii) implies that A[j] = A[L; — 1] < A[L;+1 — 1].

2. 7> Li — 1= A[j] > A[Liy1 — 1]
Condition (iv) implies that A[L;1; — 1] =ming,<x<gr,{A[k]}. But from the def-
inition of min we know that Vj > L; < j < R;, A[j] > A[Li+1 — 1]. Condi-
tion (i) implies that Vj > L; < j < Liy1, A[j] > A[Li4+1 — 1]; this implies that
V5D Li —1<5< Liys — 1, Alf]> A[Li1 — 1].

Since ¢ and j are arbitrary, Vi < |,Vj > L;<j<R;, A[j]<A[Lit1—-1] <= j=L; - 1.
Note that condition (ii), the assumption of element distinctness, is not necessary to

prove (I) and (II).
(I) The proof of (II) is analogous to the proof of (I).

(III) Let L' and R' be the indices of the minimum and maximum elements of {A[L{],.. .,
A[R]}, respectively. We will show that conditions (i) through (iv) are satisfied if we
swap A[Li41 — 1] & A[L'] and A[R41 + 1] & A[R'].

Since Ly,..., L, Ry,..., Ry are not affected and L; < Lj+1 < Rj4+1 < R; by hypothesis,
condition (i) must hold. Also, swapping elements cannot affect element distinctness,

so condition (ii) is satisfied.

Note that condition (iii) held for list bounds Ly,..., L, Ry,..., R; and that swapping
elements in {A[Li],..., A[R]} does not affect the validity of condition (iii) for the
above list bounds. Thus to show condition (iii) holds for Ly,..., Li;1, Ry, ..., Ri+1,

it is sufficient to show that V5 > Lj41 < 5 < Rip1, A[Li41 — 1] < Alj] < A[Ri41 +
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1]. But A[Lj4; — 1] and A[R;4y + 1] are the minimum and maximum elements of
{A[Li],..., A[Ri]}, respectively, so V5 > Lj+1 <j< Riy1, A[Li41— 1< A[j] < A[Ri+1+
1]. But condition (ii) guarantees that no elements in different positions are equal,
implying that V5 > Lj41 <j < Ri+1, A[Li+1 — 1] < A[j] < A[Ri41 + 1]. Thus condition
(iii) holds.

Condition (iv) also held for list bounds Ly,..., L;, Ry,..., R, and swapping elements
in {A[L],...,A[Ri]} also does not affect the validity of condition (iv). Thus to show
that condition (iv) holds for Ly,..., Li41, Ry,. .., Ri41, it is sufficient to show that
A[Lj41 — 1] = ming,<k<r,{A[k]} and A[Ri41 — 1] = maxr,<k<r, {A[k]}. But the

exchanges that we performed guarantee this. Thus condition (iv) holds.

The significance of (I) is that we can always find L; from L;;, for all 1 < [ by searching
for the first element to the left of L;;; that is smaller than L;;;. Similarly, (II) implies that
we can always find R; from R;4; for all ¢+ < l. The significance of (III) is that our proposed
scheme can be continued more or less indefinitely. This proves the validity of our proposed

scheme for encoding list bounds.

2.2.3 Saving arguments—k

Another problem is that we have to implicitly encode the rank k that we are selecting. This
need only be done for the first recursive call of the BFPRT algorithm, that is, in step 2,
since the second recursive call in step 4 is the last action taken by the BFPRT algorithm.

Encoding k is straightforward if all elements are distinct; we can use a binary encoding
scheme. If a list « is of size n, then since 1 < k < n, we can encode k in the relative order
of the first 2[logn] elements of a. We use a pair of elements to encode each bit of k: we

place the pair in ascending order to indicate a O and in descending order to indicate a 1.
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Figure 2.5: Encoding k

This always allows us to recover the stored bit since no two elements are equal. Note that

we always use 2[log n]| elements to encode k; leading zero bits are kept.

k has to be encoded only during step 2 of the BFPRT algorithm, and only the middle
n/c elements can be reordered in step 2. Thus, if 2[logn] < |%31|2 — 1, then the elements
used to encode k cannot be affected. Clearly the above inequality is satisfied for all n > 64,
and we can sort the elements if n < 64. Also note that once we recover the endpoints of a
list o, the size of « is sufficient to determine the elements used to encode k, and so we can

always recover k.

Figure 2.5 shows how the elements of a list are rearranged to encode [/, u, and k.

2.2.4 Implementing recursive calls

We can use a stackless iterative routine that conceptually performs a postorder traversal of
the recursion tree of RSELECT. Moving left or right in the recursion tree corresponds to
solving the recursive calls of RSELECT. Moving up the recursion tree is possible because

of our encoding and recovery schemes.

However, once we solve a selection subproblem, we need some means of distinguishing
whether the subproblem corresponds to step 2 or step 4 of RSELECT because we need to
determine whether we are going up from a left or right child of the recursion tree. We can
distinguish between the subproblems by comparing the endpoints of the lists that we have
returned from and are currently processing. Suppose that we have returned from processing

a list B to processing a list a. If we have just solved the first subproblem, then 8 is the
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middle n/c elements of a. If we have solved the second subproblem, then we require that

either leftg = left, + 1 or rightg = right, — 1.

2.3 The new algorithm

2.3.1 The algorithm

There are still one complication that we have not discussed. Because of the manner in
which our encoding scheme works, we have to deal with the special cases of selecting the
minimum and the maximum separately. This is because cunin and ay,,; are used to encode
the bounds of the list & when processing a sublist 8 of . Handling the cases of selecting

the minimum and maximum is straightforward.

Our algorithm can be described as follows. Let ng be some sufficiently large constant.

function DistinctISELECT(A,l,u,k)

1. (Initialization.)
Set lp «— I and ug « u.
2. (Handle special cases.)
If £ =1, then set z «+ min(A,!, u) and go to 6.
If k=u—1+1, then set z +— max(A4,!,u) and go to 6.
If u—1 < ng, then sort A[l...u], set z — A[l + k — 1], and go to 6.

3. (Solve the first subproblem.)
Find minimum and maximum of A[l...u], and swap them with A[l] and A[u], respec-
tively.

4. Arrange A[l +1...u — 1] into | 2=4=1| scattered lists of size ¢, and place the median

of each list in the middle of the list.
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5. Let I', u' be the endpoints of the list of medians. Encode [ and u by swapping A[l] <
A[l' — 1], Alu] & A[v' + 1]. Encode k in the relative order of A[l 4+ 1...14 2|log(u —
D|+2]. Setl —l'u—u, ke [5'—_—%'—"'—1] Go to 2.

6. (The termination condition.)

If | =1y and u = ug, then return z.

7. (The recovery step.)
Set I' + I, u' «— u. Recover [ and u as follows. Find the index ¢ of the first element
to the left of A[l' — 1] that is less than A[l' — 1]. If no such ¢ exists, then set | « lo;
otherwise, set [ < ¢+ 1. Find the index j of the first element to the right of A[u' + 1]
that is greater than A[u' + 1]. If no such j exists, then set u « uo; otherwise, set
u+—j—1.

8. (Returned from second subproblem, so the current subproblem is finished.)

Ifl=1'—-1or u=u'+1, then go to 6.

9. (Returned from first subproblem—solve the second subproblem.)

Recover k. Swap A[l' — 1] & A[l], Aluv' + 1] & Alu].

10. Partition A[l +1...u — 1] so that there is a position p such that A[p| = z, everything
in A[l+1...p—1]is less than z, and everything in A[p+1...u— 1] is greater than z.

11. f k=p— 1+ 1, then go to 6.
Fk<p-—I ,thenset!' —l+1,u —p—1, k—k—-1.
Ifk>p—1I1+1,thensetl' —p+1,u' —u—-1,k—k—-1-(p—1).
Encode ! and u by swapping A[l] & A[l' — 1], A[u] & A[u' +1]. Set | — ', u — u'.
Go to 2.

end DistinctISELECT
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2.3.2 Correctness

To show the correctness of DistinctISELECT, we will show that it emulates a slightly mod-
ified version of RSELECT. More specifically, we consider a modified version of RSELECT
where we precede the first step by a step O that handles special cases as in step 2 of Dis-
tinctISELECT. We will refer to this modified version of RSELECT as RSELECT?2.

We claim that DistinctISELECT performs an postorder traversal of the recursion tree
of RSELECT?2; that rearrangement in DistinctISELECT is identical to that of RSELECT?2;
that I, u, and k are properly set on entry to subproblems; that !, u, and k are correctly
recovered; and that the output z is propagated correctly. Step 0 of RSELECT?2 is identical to
step 1 of DistinctISELECT, so step O is obviously correctly emulated. Step 1 of RSELECT2
only rearranges the elements. The emulation of step 2 of RSELECTZ2 depends only on the
correctness of the assignment and recovery of I, u, and k and the correct propagation of z.
Step 3 also only rearranges elements. Step 4 depends on the correctness of the assignment
of I, u, and k; the recovery of I and u; and the correct propagation of z. Thus the validity

of our claims implies the correctness of the emulation.

First, notice in the recursion tree, if a node has any children then it has a left child.
Hence to traverse the recursion tree using the operations move left, move right, and move

up, we can do the following.

(I) Move left until we reach a leaf.

(IT) If we are at the root, then quit. Otherwise, move up. If we have moved up from a
right child, then go to (II). If we have moved up from a left child, then move right
and go to (I).

Steps 2-5 of DistinctISELECT move left in the recursion tree until a leaf is reached. Steps
6 and 7 move upward, quitting if we are at the root. Step 8 goes to step 6 if we move
up from a right child, and steps 9-11 move right and go to step 2 if we move up from a

left child. Thus steps 2-5 correspond to (I) and steps 6-11 correspond to (II). Note that
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from the previous section we know that our method of determining the child which we have

moved up from is correct.

Clearly steps 4 and 10 of our algorithm are identical to steps 1 and 3 of RSELECT2,
respectively; thus the rearrangement performed by DistinctISELECT is correct.

Clearly steps 5 and 11 correctly set [, u, and k on entry to the first and second sub-
problems, respectively. Also note that our encoding of ! and u satisfy Theorem 2.1 and our

encoding of k is valid from Section 2.2.3.

By Theorem 2.1, the linear searches performed in step 7 are sufficient to find ! and u.
Also, k is recovered only during the first subproblem, and our method of recovering k is

valid from Section 2.2.3. Thus I, u, and k are recovered correctly.

Finally, step 2 of DistinctISELECT finds a value of z and goes up the recursion tree
immediately if we are selecting the maximum or minimum or if u — [ is sufficiently small.
This corresponds to step 0 of RSELECT2. After returning from a first subproblem, we use
z in step 10 and discard it before solving the second subproblem, which is identical to the
use of function outputs in steps 3 and 4 of RSELECT2. When returning from a second
subproblem, we propagate z upward, corresponding to how step 4 of RSELECT2 returns

the function value of its second recursive call.

2.3.3 Analysis

We derive a recurrence relation to measure the cost of DistinctISELECT independently of
the cost measure. Consider how the recursion tree is traversed in our algorithm. Each
node of the tree corresponds to a subproblem of the algorithm. We can associate the cost
of preparing and recovering from an instance z with the edge (z, parent(z)), and we can
associate the cost of solving a leaf instance r with the leaf itself. We let the cost of an
internal node y be the sum of the costs of all edges and leaves in the subtree rooted at y, so
that the cost of the root of the recursion tree is the total cost of the algorithm. Note that the

cost of an internal node is just the sum of the costs of its children and the edges between
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it and its children. Hence we can write the cost of DistinctISELECT as the recurrence

relation
T(n) = T(s1(n)) + T(s2(n)) + frp(n) + frr(n) + f2,0(n) + f2,r(n)

where s1(n) is the size of the list of subproblem 1, s2(n) is the size of the list of subproblem
2, fip(n) is the cost of preparing for subproblem ¢, and f; ,(n) is the cost of recovering from
subproblem :. If we are measuring the total cost of all operations of DistinctISELECT,
then s1(n) = 2, s3(n) < (1 — [£]/2¢)n, and for all 4, f;,(n) is O(n) and f;,.(n) is O(n).
Clearly for ¢ > 5, there exists a constant d < 1 such that s;(n) + s3(n) < dn, which implies
T(n) is O(n).

We now count the number of comparisons more carefully, using the above recurrence
relation for T'(n). We let ¢ = 29; this is the optimal value of ¢. Then s;(n) = 75 and s3(n) <

gsn To set up the first subproblem, we need to find the maximum and minimum, requiring

gn comparisons; find medians of "292 lists of size 29, requiring about Z 29n comparisons using
Hadian and Sobel’s selection algorithm [10]; encode ! and u, requiring no comparisons;
and encode k, requiring 2[logn] comparisons. Thus f1,(n) = 3n + 2n + 2[log n]

227y + 2[logn]. To recover I, u, and k, we need fi,(n) = n — s1(n) + 2[logn] = Bn +
2[log n] comparisons. To set up the second subproblem, we need to partition the elements,
requiring n comparisons, and encode [ and u, requiring no comparisons, so that f ,(n) = n.
To recover from the second subproblem, we need to find I and u, requiring n — s2(n)

comparisons. Thus the number of comparisons required is

C(n) = Clgg ) +C(s2(n)) + f1p(n) + fr,r(n) + f2p(n) + f2,r(n)

= ( ) + C(s2(n)) + ggn + 4[log n] — s2(n)

Since C(n) > n, C(s2(n)) — s2(n) is maximized by setting s;(n) as large as possible.

Thus we have the recurrence relation

C(n) = ( )+C( )+ n+4[logn]
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We can show by induction that C(n) < 3%8n + o(n) < 27.38463n + o(n). The basis for
the induction is that we can select from n < 64 elements by sorting; our encoding schemes
for I, u, and k are guaranteed to work when n > 64. Note that the choice of the induction
basis corresponds to the choice of the constant ng used by DistinctISELECT. To minimize

the o(n) term, ng should be set to 108

We also count the number of data movements performed by DistinctISELECT. To set
up the first subproblem, we need 6 data movements to move the minimum and maxi-
mum elements, %n movements to move the medians, 6 movements to encode ! and u, and
6[log n] movements to encode k. Recovering from the first subproblem requires no data
movements. To set up the second subproblem, we need 6 movements to move the minimum
and maximum, %n movements to partition the elements, and 6 movements to again move
the minimum and maximum. Recovering from the second subproblem requires no data

movements. Thus the number of data movements required is

")+§3+§3+6rlogn] +24

M(n) = M(5) + M(Gr i

By induction, we can show that M(n) < 3n + o(n) < 7.15385n + o(n). The basis for
the induction is that we can sort the elements when n < 64 using an auxiliary array of

pointers.

2.4 Optimizations

We can make a one-endpoint version of our algorithm in that we can fix the left bound of
any processed list to be the left end of the input array, so that only the right bound can
vary. To see how this is possible, first notice that we can make the set of medians in step 2
occupy a contiguous block starting at location 1 by moving the median of each scattered list
to the first location of the list. Second, we consider steps 4 and 5 to be discarding elements
rather than partitioning elements, and we always keep retained elements at the left end of

the current list. Then only one endpoint has to be encoded. We can use an asymmetric
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Figure 2.6: Using one endpoint

version of the bound-encoding scheme presented earlier, but we can make a much more

efficient algorithm by encoding u using the relative order of elements. Refer to Figure 2.6.

If we are processing a list & and want to process a sublist g of «, then we preserve the
upper bound of a by encoding it in the relative order of elements starting from A[right s+ 1].
We can encode k similarly. We know how many bits to expect in the encoding of right, and
k, since right, < c- rightg and k < right,. Encoding right, and k requires only O(logn)
elements, so we clearly have enough elements to encode this information if n is sufficiently
large. Furthermore, we can distinguish between the first and second subproblems by noting
that righty, = c - rightg if B corresponds to the first subproblem of o, and right, < 4 rightg

if B corresponds to the second subproblem of «, and ¢ > 5.

We can describe this optimized algorithm as follows. Let ng be some sufficiently large

constant.

function OptDistinctISELECT(A,u,k)

1. (Initialization.)

Set ug «— u.
2. (Handle special cases.)

If u < ng, then sort A[l...u], set z — A[k], and go to 5.
3. (Solve the first subproblem.)

Arrange A[l...u] into | %] scattered lists of size ¢, and place the median of each list

in the front of the list.
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10.

. Assume the list of medians occupies A[1...u']. Encode u in the relative order of A[u'+

1...u'+2[logcu']], and encode k in the relative order of A[u'+ 1+ 2[logeu']...u' +
4[logcu']]. Set u — u', k — [“?'] Go to 2.

. (The termination condition.)

If u = ug, then return z.

(The recovery step.)

Set u' < u and recover u by from the relative order of A[u' +1...u' + 2[logcu']].

(Returned from second subproblem, so the current subproblem is finished.)

If u < 4v/, then go to 5.

(Returned from first subproblem—solve the second subproblem.)

Recover k from the relative order of A[u' + 1+ 2[logcu']...u' + 4[log cu']].

. Partition A[l1...u] so that there is a position p such that A[p] = z, everything in

A[l...p — 1] is less than z, and everything in A[p+1...u — 1] is greater than z.

If k= p, then go to 5.

If £ < p, then set u' «— p — 1.

If k > p, then reverse A[l...u] and set v' —u—p, k — k —p.

Encode u in the relative order of A[u' +1...u' + 2[logcu']]. Set u + u'. Go to 1.

end OptDistinctISELECT

The correctness of OptDistinctISELECT can be shown in the same manner as our pre-

vious correctness proof. It should be clear that OptDistinctISELECT performs a postorder

traversal of the recursion tree of RSELECT and that the output z is propagated properly.

It is not difficult to see that the rearrangement performed in steps 3, 4, 9, and 10 of our

algorithm will make the subproblems solved by OptDistinctISELECT correspond exactly to

the subproblems solved by RSELECT; that is, the elements associated with a subproblem

of OptDistinctISELECT are the same as the elements associated with the corresponding

subproblem of RSELECT. Furthermore, it is straightforward to show u and k are correctly
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set on subproblem entry. Lastly, it is straightforward to show that u and k are correctly
recovered, since all elements are distinct and the number of pairs used to encode u and k is

a function of the size of the current subproblem.

We analyze the comparisons required by OptDistinctISELECT under the assumption
that ¢ = 13, which is the optimal value of ¢. Setting up the first subproblem now takes
only %—g—n + 4[logn] comparisons; recovering from the first subproblem takes only 4[logn]
comparisons; setting up the second subproblem requires only n+ 2[log n] comparisons; and

recovering from the second subproblem requires only 2{logn| comparisons. Thus we have

the recurrence relation
n 19 37
C(n) = C(ﬁ) + C(Eén) +tEtt 10[log n]

We can straightforwardly show by induction that C(n) < 14.8n + o(n). For the basis of
the induction we sort the elements when n < 64; our encoding schemes for u and k are

guaranteed to work when n > 64.

Therefore, only 14.8n + o(n) comparisons are required to solve the implicit selection
problem with distinct elements. Notice that this is faster than the slow BFPRT algorithm!
However, if step 1 of RSELECT is modified to perform selections rather than sorting, then
RSELECT can be shown to require 14.8n comparisons. We can also show that the number of

data movements required by OptDistinctISELECT is O(n) as we did for DistinctISELECT.



Chapter 3

Implicit selection

3.1 New problems and their solutions

In this chapter we consider the implicit selection of the kth smallest of n arbitrary elements,
that is, repetitions are allowed. We show how we can alter the algorithm of the previous

chapter to solve this more general problem.

We saw in the last chapter that there are four potential sources of problems: avoiding
recopying, saving endpoints, saving k, and implementing recursive calls. We can still avoid
recopying using the technique presented in chapter 2. However, our technique for preserving
k obviously fails since it relies on the relative order of pairs of elements. Our technique for
preserving endpoints also fails, but for subtler reasons. Our ability to emulate recursive calls
depends on our ability to recover endpoints, and so our technique for emulating recursive

calls also fails.

The reason our endpoint encoding scheme fails is because we cannot properly nest lists
using the encoding method described in the previous chapter. In Figure 3.1, note that
we cannot recover rights while we are processing v, because ama, happens to fall before
position rightg + 1. The problem is that am.z € 8, and our encoding scheme requires that

for any list 8, Vz € 8, A[leftg — 1] < z < A[rightg + 1].

26
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Figure 3.1: How the encoding scheme fails
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Figure 3.2: The corrected encoding scheme

The solution to this is straightforward. If we have a ﬁst « and a sublist 8 of «, then
to ensure that an, € § and am.: & B, we find all elements equal to ayi, and e, and
place them in contiguous blocks at the left and right ends of the list a; we then restrict 8 to
being a sublist of the elements whose values are strictly between oy, and cymqz. Figure 3.2
shows an example of the corrected encoding scheme. Theorem 2.1 implies the correctness
of this scheme, since all invariants are satisfied except for element distinctness, and element
distinctness is not necessary in the proof of the correctness of the endpoint recovery scheme.

Thus our outward linear searches will suffice to find previous endpoints.

Before we proceed further, we need to introduce some new notation. We will denote
the multiset of all elements equal to z by z—. We will denote the ith smallest distinct
element of a list a by o; that is, a; = amin and o = (@ — ;;11 a=;j)min for ¢ > 1. We
will denote the sth largest distinct element of & by agz—i+1 for ¢ > 1; that is, amez—i =

(a — O=maz — ;—:11 a:maz—i)maz-

To encode a rank k in a list o, we can no longer depend on the relative order of 2log #a
elements. Note, however, that we can use a unary encoding scheme to encode k. Each

value k corresponds to the position left, + k — 1, and that we can encode k by placing an
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Figure 3.3: Encoding k

identifiable element in this position. To indicate k we can use az. Since as may occur many
times, we find all occurrences of a2 and place them in a contiguous block beside the =m;sn
block. Let & denote o — Qt=ypin — @=2 — C=maz, that is, the sublist of o where all occurrences
of amin, @2, and Q. have been removed. We encode k by swapping the rightmost a2
with the element in position left, +1 — 1. If this position is not in &, then the result of the

selection is immediate.

We now need to select only from &. Unfortunately, during the solution of the first
subproblem of «, our algorithm rearranges the middle £ + 2 elements of &, and so ay
cannot be stored there. However, we can map this region to the first n/c + 2 elements of &,
and we can maintain an extra bit to determine whether a3 has been relocated. To store this
extra bit, we use the relative order of two blocks. We find all occurrences of a3 and a4 and
place them beside o, and az. & will then be o — a=pin — @=2 — @=3 — @=4 — A=yaz. We
then use the relative order of blocks a=2 and a-g to store the extra bit, and the rightmost

element of a—4 to indicate k. See Figure 3.3.

To recover k, we skip over the leftmost block and determine the relative order of the
next two blocks, which must be =2 and a-3. Then we find the rightmost occurrence of the
minimum of the remainder of the list; this must be a4. From this position and the relative

order of a—2 and a-3, we can recover k.

If we have returned from processing a list 8 to processing a list &, then we can determine
whether 8 corresponds to the first or second subproblem of o by comparing lefts and rightg

with lefts and rights. If B consists of the middle n/c elements of &, then we have returned
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from the first subproblem. If lefty = lefts or rightg = rights, then we have returned from

the second subproblem.

3.2 An implicit selection algorithm

3.2.1 The algorithm

Our algorithm can be described as follows. Let ng be some sufficiently large constant.

function ISELECT(A,l,u,k)

1. (Initialization.)

Set lg — I, ug «— u.

2. (Handle special cases.)

If u—1 < ng, then sort A[l...u],set z — A[l + k — 1], and go to 9.

3. (Solve the first subproblem.)
Let o denote A[l...u|. Find and move all occurrences of am;n, az, as, and as to
contiguous blocks at the left end of a and all occurrences of a,,; to the right end of
a. If at any time we detect that there are fewer than 6 distinct elements, then set

z+ A[ll+k—1] and go to 9.
4. Let I, 4 be the endpoints of the list & = a — a—min — @=2 — @=3 — @=4 — A=paz. If
I+k—1<lorl+k—1>4,then set z«— All+k—1] and go to 9.

5. Arrange A[l... ] into [9—_—5"1] scattered lists of size ¢, and place the median of each
list in the middle of the list.

6. Let I', v’ be the endpoints of the list of medians. Encode ! and u by swapping A[l] <
A[l' — 1], Alu] & Afu' +1].
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7. Encode k as follows. fl+k—1<l'—1lorl+k—1>u +1, then swap Al + k —

10.

11.

12.

13.

14.

15.

1] & A[i — 1]. Otherwise, invert the relative order of blocks a—; and a-3, and swap

All + (I + k= 1)] & A[l — 1]. (Note that A[l — 1] contains c.)

.Set l —U'u— v and k [9—'—'%"2] Go to 2.

(The termination condition.)

If | = ly or u = ug, then return z.

(The recovery step.)

Set I' — I, u' «— u. Recover ! and u as follows. Find the index ¢ of the first element
to the left of A[l' — 1] that is less than A[l' — 1]. If no such 1 exists, then set [ < lo;
otherwise, set | « 1+ 1. Find the index j of the first element to the right of A[u' + 1]
that is greater than A[u' + 1]. If no such j exists, then set u < ug; otherwise, set
ue—g—1.

Swap A[l' — 1] « A[l], A[v' + 1] < A[u]. Find [ by skipping the first 3 blocks of
All...u]. Find 4 by skipping the block at the right end of A[l...u].

(Returned from second subproblem, so the current subproblem is finished.)
KI'=1or v =1, then go to 9.

(Returned from first subproblem—solve the second subproblem.)

Find the rightmost occurrence A[m| and second rightmost occurrence A[i], if any,
of the minimum element of A[f...4]. I min(A[l...4]) occurs only once, then set
[ — [+ 1; otherwise, set [ —1+2. If a—; and a—3 are in ascending order, then set
k — m — I + 1; otherwise, set k «— m — [ +1' — I. Swap A[m] — A[l — 1].

Partition A[l . . . ] so that there are positions p and ¢ such that everything in Afp. . .q]
is equal to z, everything in A[i ...p—1] is less than z, and everything in Alg+1...4]
is greater than z.

If p<l—-k+1X<gq,then go to9.

fl—k+1<p,thensetl!' —{,u'—p—1,ke—k—({-1).
Kl—k+1>gq,thensetl' —g+1,u' —d,k—k—-(¢—1-1).
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Encode ! and u by swapping A[l] «» A[l' — 1], Alu] & Afu' +1]. Set | « I', u « u'.
Go to 2.

end ISELECT

We show the correctness of ISELECT in a similar manner to the proof of correctness
of our first algorithm. We show that ISELECT emulates a slightly modified version of
RSELECT. More specifically, we consider a modified version RSELECT3 of RSELECT in
which we precede the first step by a step that finds and moves the blocks a—min, =2, a—3,
0=4, and Q=mqz. It should be clear that ISELECT performs an postorder traversal of the
recursion tree of RSELECTS3, that rearrangement in ISELECT is effectively identical to
that of RSELECTS3, and that the output z is propagated correctly. Hence we only have to

show that I/, u, and k are properly set on entry to subproblems and are properly recovered.

Clearly steps 6 and 15 correctly set /, u, and k for subproblem entry. We thus only have
to show that our recovery scheme is valid. Our encoding of [ and u clearly satisfy conditions
(i), (iii), and (iv) of Theorem 2.1. This implies that the searches performed in step 8 are

sufficient to recover ! and u.

k is indicated by the position of the rightmost occurrence of oy and the relative order
of the blocks a—=3 and a—s. The rightmost occurrence of cy and the relative order of a—,
and a-3 cannot be modified during the solution of the first subproblem, and k need not
be encoded in the second problem. The encoding technique of step 7 and the recovery

technique of step 13 can be shown to be consistent, so our recovery of k is correct.

3.2.2 Analysis

We count the number of comparisons required by the algorithm to select from a list a. Let
n be #a, n; be the number of elements equal to aupiyn, n; be the number of elements equal

to a;, for 1 = 2,3, 4, and ny,,, be the number of elements equal to opaz.
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E<d - - - - - - - - . T <y
(< - - - - -fi<de<y - - - - - - - [g<4y|
L1 -[11fi<af - - fi<afe<y] - - - - - . gy
- - [z - [etufe<y - - - - - - - &<y
M- i<y - - - - - - - - - &<y

Figure 3.4: Finding all occurrences of 1

Clearly we can implicitly find and move all blocks a-3,...,a=4 to the left end of a in
n+ (n—n1)+ (n—n1—n3z)+ (n—ny — nz — ng) = 4n — 3n; — 2ny — ng comparisons.
However, we will describe a method by which a-;,...,a=; can be found and moved to the
left end of « using only '%ln+2:f~=l("‘—f‘,"ﬁ)m comparisons and O(l) storage, for any [. This

way we need only %n + %ng +ng+ %m comparisons to find and move blocks a-i, ..., a—4.

Our method works as follows. Suppose we have moved a=1,...,a=;_1 to the left end
of o, and the remainder of o consists of sorted pairs. Let @ be « — a=1 — - -+ — @=j—1. We
can move all pairs of the form (;,z > o;) to the left end of @ using only "=t —Ti=t
comparisons. We then move all pairs of the form (i, o;) to the left end of the {(oy,z)}
block, which requires at most n; comparisons. Now @ consists of three blocks A = {(a, o)},
B = {(a4,z > o)}, and C = {(z > a4,y > z)}. We can move all elements of B greater
than «o; to the right end of B without using any comparisons, so that @ consists of three
blocks A' = a=;, B' = {(z,y?z)}, and C. We then sort each pair of B' so that @ consists of
the blocks a=; and {(z > o4,y > z)}; this requires at most n;/2 comparisons. Then the left
end of a will contain a;,...,e; and the remainder of o will consist of sorted pairs. Thus

we can repeat this process for a;y;. Figure 3.4 shows how the elements are rearranged if

o = 1.

Note that if there are fewer than [ + 1 distinct elements, then we will find that n; +

+++n; = n for some i < I.
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We count the number of comparisons required by this algorithm as follows. Initially
we must sort each pair of a, requiring n/2 comparisons. To find and move each block a—;
n—n;—-—ni—1

requires —————=1 4 %n.- comparisons. Thus the total number of comparisons used to

find and move all blocks a-y, ..., a-; is

l 1 l i
=1 j=1 =1

NI#

This scheme can easily be extended to find the ! smallest and m largest distinct elements

using only '—'f%'in + 2’+m(—_ﬂ|'—)n comparisons.

When counting the number of comparisons required by ISELECT, we assume ¢ = 29,
which is the optimal value of c. To set up the first subproblem, we need 3n — %nl + Ong +
%ng + 1ng + %nmn comparisons to find and move a—min, a=2, a=3, @=4, and a—mqz; NO
comparisons to find [ and i; ;’%(n — N1 — Nz — N3 — Ng — Nypgez) comparisons to find the
medians of the lists of size 29; no comparisons to encode ! and u; and no comparisons to
encode k. Thus at most l%’n 15689 n; — ;g ng — 15131"3 ggl,m sgnmu comparisons are

required to set up the first subproblem.

To recover from the first subproblem, we require n — Aeona— e R4 Rmez comparisons
to find the preserved bounds; n; +ny+ng comparisons to locate { and determine the relative
order of a—3 and a=3; Nmq, comparisons to locate @; and n—n; —ngs —ng —nmas comparisons

to recover k. Thus n + 35 + 3% + 35 + 34 + 22z comparisons are required to recover

from the first subproblem.

To set up the second subproblem, we need n — n; — nz — ng — ng — Ny, comparisons to
partition &, and no comparisons to encode ! and u. To recover from the second subproblem,
we require n — 83(n) comparisons to recover previous endpoints, n; + ns + ng comparisons

to find I, and n,,,, comparisons to recover .

Clearly C(n) > n, so C(n) is maximized by setting sz(n) to be £3(n — n; — ny — ng —

N4 — Nmaz). Therefore the recurrence relation for the number of comparisons required by
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ISELECT is
n—Nn3—Na—Ng—Ng— Nypaz 43
C(n) = C( 29 )+T(%(n"nl_n2_n3_"4_nma2))
501 62 95 33 95 4

—sg‘ﬂ - '2'5711 - 5"2 - Eﬂs - 5"4 - 2—9'nmaz

Clearly this is maximized when we set ny = ng = ng = ng = nype; = 1, so

-5

n 3 501
29

)+ C’(%g(n -5))+ 8"

C(n) < C(

We can show by induction that C(n) < 53n < 38.5385n. The basis for the induction is
that we sort the elements for n < 32; our encoding schemes for /, u, and k are guaranteed

to work for n > 32.

We can also show that the number of data movements required by ISELECT is O(n).

3.3 Optimizations

3.3.1 The algorithm

As with the selection algorithm for distinct elements, we can optimize this algorithm by
encoding only one endpoint. We rearrange elements such that the left endpoint of any list
is always at the left end of the array, as in the previous chapter. However, we cannot encode
u or k in the relative order of any elements, so we use an asymmetric version of the above

scheme. We use Qmaz;, Omaz—1; ¥maz—2, and Qmaz—3 to encode the upper endpoint and the

rank k.

There is one complication, however. There is no way to distinguish between returning
from the first subproblem and returning from the second problem by examining the size of
the lists. Fortunately, the solution to this is simple. Currently we are using the relative
order of aygz—1 and amaz—2 to determine whether we have displaced the rank indicator

Omaz—3- We can use the relative order of aynez—1, Xmaz—2, @maz—3 to determine whether we
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|amazl |ama:n-4l |<—amam-4-+-ama:n—3 y ¥maz-2) amam—l—"‘-amaz-'l

Figure 3.5: Using one endpoint

have displaced the rank indicator or whether we are returning from the second subproblem;

Wwe use Qimqz—4 as the rank indicator.

If we want to return to a list o from a sublist 8, then we can find the endpoint of o
quickly if we place Qmaz—1, ¥maz—2, and Qmaz—3 next to the endpoint of §. This way, we
can quickly tell if we are returning from a first subproblem or a second subproblem. If we
are returning from a first subproblem, then we know that #o > c#p. If we are returning
from a second subproblem, then we know that #a > ?,-,#ﬂ. This information allows us to

skip a large number of elements when searching for the endpoint of a.

Notice that we only use three of the six possible permutations of a—masz—1, X=maz-2,
and 0'—maz—3; either we are in the first subproblem and the rank indicator is not displaced,
we are in the first subproblem and the rank indicator is displaced, or we are in the second
subproblem. An optimization we can make is to restrict the rank indicator amaz—4 to
at most n/5 positions, and use five permutations of @=maz—1, X=maz—2, and a=maez—3 to
indicate the actual value of k. Figure 3.5 shows how the elements of o are rearranged by

the optimized encoding scheme.

Our optimized algorithm works as follows. Let no be some sufficiently large constant.

function OptISELECT(A,u,k)

1. (Initialization.)

Set ug «— u.

2. (Handle special cases.)
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10.

11.

12.

13.

If u < ng, then sort A[l...u], set z — A[k], and go to 10.

. (Solve the first subproblem.)

Let o denote A[l...u]. Find and move all occurrences of Amaz, Xmaz—1, Amaz—2,
Qmaz—3, and Qmaz—4 to contiguous blocks at the right end of a. If at any time we

detect that there are fewer than 6 distinct elements, then set z < A[k] and go to 10.

Let 4 be the endpoint of the list & = & — @=mez — X=maz—1 — X=maz—2 — X=maz—3 —

Q=maz—4- If k > i, then set z — A[k] and go to 10.

. Arrange A[l...4] into |4/c] scattered lists of size ¢, and place the median of each list

in the front of the list.

Assume the list of medians occupies A[l...v']. Encode u by swapping A[u] « Au' +
1].

. Let u be the endpoint of the list @ — @=mqz. Rotate A[u'+2...%] so that a=manr-s,

O=mar2, and Q=mar1 occupy A[u'+1...u"|, and a=mar4 occupies A[u"...7].

. Encode k as follows. Let k' be k mod [4/5]. Swap A[u" + 1+ k'] & A[u"]. Change

the relative order of blocks a=maz—1, ¥=maz—2, and a=mqz—3 depending on |k/ ]’%-]J .

. Set u + u', and k «— [%]. Go to 2.

(The termination step.)

If u = ug, then return z.

(The recovery step.)

Set u' « u. Find the relative order of the three blocks in A[u'+1...u"]. Recover u by
searching to the right of A[(c — 1)u’+ u"] if we are returning from a first subproblem,
or to the right of A[Wﬁ'ﬂ—_l + u"] if we are returning from a second subproblem. If

no such u < ug exists, then set u — ug.

Swap A[u' + 1] <> A[u]. If we have returned from the second subproblem, then go to
step 10.

(Returned from first subproblem—solve the second subproblem.)
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Let u be the endpoint of & — @=mqz. Find the maximum element A[m] of A[u" +
1...u"+ Els"‘—'i] Recover k from m — u" and the relative order of d—maz—1, ¥=maz—2,

and a=maz—3 .

14. Search left from @ to find the skip over the ayqz—4 block, if any. (Note qunaz—4 =
A[m].) Swap A[m]| to the immediate left of the mqaz—4 block. Then rotate Afu' +

2...4u] to place A=maz—4; -, O=maz in a contiguous block at right end of o. Let @

be the endpoint of @ — @=maez} — *** — A=maz—4-

15. Partition A[l...4] so that there are positions p and ¢ such that everything in Ap...q]
in equal to z, everything in A[1...p] is less than z, and everything in Afg+1...4] is
greater than z.

16. If p < k < ¢, then go to 10.

If k < p, then set u' — p— 1.

If k > g, then reverse A[l...4] and set v' —u—g¢q,k—k—gq.

17. Encode u by swapping A[u] < A[u' + 1]. Change the relative order of a—maz—1,
O=maz—2, and Q=mqz—3 to indicate that the second subproblem is being solved. Rotate

Q—maz—1, C=maz—2, 30d G=mqez—3 into the locations starting from A[u’'+2]. Set u — u'.

Go to 2.

end OptISELECT

3.3.2 Correctness

To show correctness of OptISELECT, we prove a theorem showing that the one-endpoint

recovery scheme is correct. Let ! denote the number of lists.
Theorem 3.1 Suppose we have an array A and indices uy,...,u; such that

(1) w < w—1 < -+ < uy (The lists are nested.)
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(i) Vi,Vj < u;, A[j] < A[u; + 1] (To the immediate right of each list i is an element that is

strictly greater than any element in list1.)

(iii) Vi, (Aluir1+1] = mazj<y,{A[j]}) (The element to the right of list i+1 is the mazimum

element of list1.)
ThenVi <l,Vi3uip1+1< 7 <ui+1,(Alj] > Auip1 +1] <= j=u; +1).

This theorem implies that the recovery scheme of an asymmetric version of our endpoint

encoding scheme is valid. The proof of this theorem is similar to the proof of Theorem 2.1.

Clearly OptISELECT performs an postorder traversal of a modified RSELECT that
finds and moves Q=mqaz—4,- - -, ¥=maz- It should also be clear that the rearrangement per-
formed ensures that the subproblems solved by OptISELECT correspond exactly to the
subproblems solved in the modified RSELECT, that u and k are set correctly on subprob-
lem entry, and that z is propagated correctly. We only have to show that u and k are

correctly recovered.

The encoding of u satisfies the conditions of Theorem 3.1, so a linear search suffices to
find u. We can skip elements when recovering u since the BFPRT algorithm guarantees
that if we have returned from processing the first subproblem, then u > cu', and if we have
returned from the second subproblem, then u > (rfm)u' , where u' is the endpoint of

the list we have returned from. Thus the recovery of u is correct.

k is encoded by placing amqz—4 in one of n/5 possible locations and using five permu-
tations of d=maz—3, X=maz—2, and Q=maz—1. The rank indicator c,,.z—4 and the blocks
Q=maz—3; -+ -y ¥=maz—1 cannot be affected during the solution of the first subproblem, and
k need not be encoded during the solution of the second subproblem. It can be shown that
step 13 recovers k in a manner consistent with the encoding of k in step 8, so k is properly

recovered.
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3.3.3 Analysis

To count the number of comparisons used by OptISELECT, we assume ¢ = 29; this is the
optimal value of ¢. Let nyugz—4, ---, Nmaz—1, Nmaz be the sizes of amaz—4, ---, ¥maz—1,

Qnaz, Tespectively.

To set up the first subproblem, we need 3n+ %nmaz—4 +1nmaz-3+ %ﬂmaz—Z +O0npmaz—1—
1 nmaez compari to find s W(n - - - - -
3 Nimaz parisons to IInd Qmaz—4;- - - ;®maz; 39\ — Nmaz — Nmaz—1 — Nmaz—2 — Nmaz-3

Nmaz—4) comparisons to find medians in step 4; none to encode u; and none to encode k.

To recover from the first subproblem, we need naz—38 + Nmaz—2 + Nmaz—1 comparisons
to find the relative order of three blocks; n,,,; comparisons to recover u; (n — nmgz—3 —
Nmaz—2 — Mmaz—1 — Nmaz)/5 comparisons to recover k; npy.;—4 comparisons to skip over

Omaz—4; and no comparisons to rotate a sublist of a.

To set up the second subproblem, we need n comparisons to partition the current list;

and 3 comparisons to encode wu.

To recover from the second subproblem, we need nyq2—8 +Nmaz—2 +Nmaz—1 cOmparisons

to find the relative order of three blocks; and n — 33s5(n) comparisons to recover u.

Thus we have the recurrence relation

C'(n) — C(n_nmaz—l“nmaz—2_nmaz—3_nmaz—4) +C(82(n)) +Bn4 70_n 4 n
29 29 5
(‘_ 29) maz— 4+(——— )nmaz 3+(10 29) maz—2

70 3 70
(" - 2g)nmaz 1+ 10 )nmaz - 632("') +3

where s2(n) < ‘é—g—(n — Nmaz—1 — Nmaz—2 — Nmaz—3 — Nmaz—4)- Clearly C(n) is maximized
when Nypaz—3 = Nmaz—2 = Nmaz—1 = Nmaz = 1. Since C(s2(n)) > s,, C(n) is maximized

when s3(n) is maximized. Also, since C(*——gmez=12) > f—g(n — «++—Nypaz—4), We can show

that C(n) is maximized when n;,;—4 = 1. Thus we have the recurrence relation

70
O(n) < (55 )+C’( n)+4n+ 2t
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By induction, we can show that C(n) < ssf’—é&‘ < 29.5077n, if we sort when n < 32 as

our basis; our encoding schemes for u and k are guaranteed to work for n > 32.

We can also prove that the number of data movements is O(n).



Chapter 4

Improvements

4.1 Improvements

In the previous two chapters, we have presented some implicit selection algorithms based
on the slow BFPRT algorithm. It was suggested [16] that one of the optimizations of the
fast BFPRT algorithm be incorporated into our implicit selection algorithms. In particular,
it was suggested that we sort lists of size ¢ and maintain the invariant that lists of size ¢ be
sorted on entry to any subproblem. This seemingly minor change results in a considerable
number of complications but dramatically reduces the number of comparisons required by

the selection algorithms. In the remainder of this discussion, we will assume c is odd.

The improved algorithms which we will discuss are based on our optimized algorithms;
they use only one endpoint. Our encoding schemes for u and k remain the same, but
we rearrange elements in a completely different manner. In particular, we no longer use
scattered lists. Instead, we use sorted, contiguous lists of size c. We can use sorted,
scattered lists for the case when elements are distinct, but this can be shown to be of no
advantage. Also, sorted, scattered lists do not readily allow us to obtain an efficient general

case algorithm.

41
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We will describe the improvements in detail for only the distinct element case. Our

optimized algorithm consists of seven parts:

. Initialization

—

2. First subproblem preparation—rearrangement

3. First subproblem preparation—encoding u and k
4. First subproblem recovery

5. Second subproblem preparation—rearrangement

6. Second subproblem preparation—encoding u and k

7. Second subproblem recovery

Our encoding and recovery schemes do not change at all, so we will only discuss the initial-

ization and rearrangement steps.

4.1.1 Initialization

Because we require sorted, contiguous lists of size ¢ on entry to any subproblem, we clearly

must include a sorting step during initialization.

4.1.2 Rearrangement—I{first subproblem

In OptDistinctISELECT, we have to find medians and move them to the left end of the

list. Our invariant ensures that we have sorted lists of size ¢, so median finding is trivial.

When moving the medians, note that the leftmost n/c elements will be disturbed. These
n/c elements consist of n/c? medians and 2 — % non-medians. The remaining elements

consist of 2 — % medians and (231)?n non-medians. To move the medians of all lists to
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the leftmost n/c elements, we swap the non-medians of the disturbed elements with the

medians of the remaining elements.

We also have to sort sublists of size ¢ of the list of medians to maintain the invariant.

Note that there is nothing analogous to this step in OptDistinctISELECT.

4.1.3 Rearrangement—second subproblem

When rearranging elements in the second subproblem, we must undo the swapping of the
medians that we performed in the first subproblem. We swap the center elements of the

rightmost 2 — & lists of size ¢ with the non-center elements of the leftmost n/c? lists of size

c
c. It is unlikely that we will obtain the original list because the n/c medians will usually
have been rearranged by the first subproblem. However, if the center of each list of size ¢

were removed, then we know we have sorted lists of size ¢ — 1.

Actually, this is not quite true. O(logn) elements may not be restored properly because
of the binary encoding of u and k. More precisely, pairs of O(log n) elements are rearranged
to encode u and k; when recovering u and k, we rearrange the O(log n) elements to obtain
lists of size ¢ such that each list contains two sorted lists of size % and an element in the
center of the list. The centers of these lists may no longer contain the original contents
of some of the leftmost n/c elements that were displaced during the first subproblem.
Nevertheless, we can swap the center elements of these lists anyway; O(log n) of the leftmost
n/c? elements may then be out of order, but we can sort these O(logn) elements to solve

this problem.

We now have n/c lists of size c; each list of size ¢ consists of two sorted lists of size %31,
and an element in the center that is the median of some list. We want to find the rank of
z and discard elements. To find the rank of z, we first note that = is the median of the list
of medians. We then perform a binary search on the non-medians, that is, we perform a

binary search on each sorted list of size % Note that we do not have to do this for all

the lists. All the elements of at least half of the left lists of size % are less than z, and
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< c >
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> z indicates that all the elements of the list are greater than «
~ z indicates that the list has elements less than and greater than z
< z indicates that all the elements of the list are less than =

Figure 4.1: The improved rearrangement procedure

all the elements of at least half of the right lists of size 9;—1 are greater than z, left and
right being with respect to Figure 4.1. Since we are dealing with sorted lists, these cases
can be recognized in one comparison. Also, we can distinguish a left list from a right list
by analyzing the endpoints of the list. Thus for at least half the lists, we need to perform

only one comparison.

We now want to discard some elements. We relax the discard condition; instead of
discarding all the elements greater than z or all the elements less than z, we discard the
medians greater than = and the lists of size % whose elements are all greater than z, or we
discard the medians less than z and the lists of size 3! whose elements are all less than z,
respectively. We are guaranteed to discard at least Iﬁ%—'ﬁ elements, so this does not worsen
the worst case.

The problem with discarding elements is that we need to know the rank of =z before we
know whether to discard elements greater than x or less than z. To discard the medians
greater than z or the medians less than z, we perform a modified quicksort partition of

e—1

the scattered list of size n/c of medians. To discard lists of size 5=, we rearrange the lists

while scanning them, such that the lists whose elements are all less than = occupy the upper
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positions, the lists whose elements fall on both sides of z occupy the middle positions, and
the lists whose elements are all greater than = occupy the lower positions, upper and lower

being with respect to Figure 4.1.

We now form lists of size ¢ by merging left and right lists of size % and then performing
binary insertions of the retained medians. If the number of retained left and right lists of
size % differ by more than one, then we even out the number of left and right lists by
swapping retained left lists with discarded right lists or vice versa. If there are retained
medians left over after merging lists, we can form additional sorted, contiguous lists of size

¢ from the medians. If we exhaust the retained medians when forming lists of size ¢, then

we can steal elements from a retained list of size %

After forming the lists of size c, all of the retained elements will be in one large contiguous
block in the left or right end of the current list, left and right being with respect to the
one-dimensional representation of the list. If the retained elements fall in the right end,

then we rotate the elements so that the retained elements fall in the left end of the array.

All of these steps ensure that we discard at least Egln elements, that the retained
elements are in the left end of the current list, and that the retained elements consist of

sorted, contiguous lists of size c.

4.2 Analysis

We count the number of comparisons required by the above algorithm as follows. We use
the Ford-Johnson algorithm [9] for sorting. We assume ¢ = 43, which is the optimum value

of c.
The cost of the algorithm is
C(n) = Co(n) + C'(n)

where Cp(n) is the cost of initialization and C'(n) is the cost of the main part of the

algorithm. The cost of initialization is simply the cost of sorting lists of size 43; 177
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comparisons are required by the Ford-Johnson algorithm to sort 43 elements, so Cp(n) =

17 n. We can easily derive a recurrence relation for C'(n):

&) = O'(2) + (1 = L2y 1 £y, () + £1 () + r(m) + Far()

where f; ,(n) is the cost of setting up the sth subproblem and f; ,(n) is the cost of recovering

from the ith subproblem, for : =1, 2.

To set up the first subproblem, we have to find the medians of the sorted lists, requiring
no comparisons; sort lists of size ¢ of the list of medians, requiring 14737 - 43 comparisons;
and encode u and k, requiring O(log n) comparisons. Thus % + O(log n) comparisons are

required to set up the first subproblem.

To recover from the first subproblem, we have to recover u and k, requiring O(logn)
comparisons; and correct the ordering of some elements, requiring O(log n) comparisons.

Thus O(logn) comparisons are required.

To set up the second subproblem, we have to search the 22 lists of size "; ; for at least
n/c lists, we need only 1 comparison each; for the other lists, we need at most 2+ |log(%31)]
for the failed comparison and the binary search. We also have to partition the list of medians,
requiring n/c comparisons. We then have to build lists of size c. Discarded elements are
never considered when building the lists, and building a list of size ¢ requires merging two
lists of size 9;—1 and performing a binary insertion into a list of size ¢ — 1. Thus the cost of
building the lists of size c is at most (1 — L"1-"—’1)1; -1l — 1+ |log(c — 1)]]. The total cost of

setting up the second subproblem is thus 43n + ig gn

The cost of recovering from the second subproblem is O(log n).

Thus,
' _ 1y n 11 _ [0/2] 177n 8n 32-47n
C'(n) = C'( )+C((1 )n) + YED 43 + 132 + O(logn)
32n 177n 8n 32-47Tn
_ A c' 8n
= 0(43)+ ( )+ 32 T 13 + YED + O(log n)
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By induction we can show that C'(n) < £3n + o(n). Thus

177 405 759
C(n) = Co(n) +C'(n) < =" + 26" +o(n) = 6" + o(n) < 8.8256n + o(n)

We can also count the number of data movements required by our algorithm; the worst

case number of data movements is O(n).

4.3 The general case algorithm

We can optimize the general case algorithm discussed in chapter 3 in exactly the same way
as described above. This time, however, we do not have the problem of the encoding of
u and k interfering with the relocation of the list of medians. Another change from the
optimized algorithm of chapter 3 is that we now use more than three blocks to distinguish

the first subproblem from the second subproblem.

The analysis of the general case algorithm is similar to the distinct element selection
algorithm. We choose ¢ = 85, which can be shown to be the optimal value of c. How-
ever, we need to find all occurrences of the I largest distinct elements, for some constant
l. Rather than using sorted pairs as we did in chapter 3, we can easily modify our block
selection algorithm to take advantage of the sorted lists of size ¢. In fact, we need only
Lc'l + Cmaz—i+1M"maz—i+1 + * * * + CmazNmaz comparisons to find all occurrences of the ! largest
distinct elements. Another change from the distinct element case is that we have no O(logn)
terms. Instead, we require ﬁﬁ comparisons to recover k after solving the first subprob-

lem.

Note that cmgz—i+1, - -5 Cmaz are not constants and depend on the positions of all
occurrences of the [ largest distinct elements. To simplify the analysis, we want to ensure
that the comparisons required by the algorithm is maximized when ng,az—14+1 = -+ =
Nmaz = 1. Unfortunately, ¢maz—i1+1, - - -» Cmaz can be quite large because each occurrence of

one of the [ largest distinct elements may force a binary insertion to be performed on each
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list of size ¢ — 1. However, if we require that each element has at most a constant number
of occurrences, then cpaz—1+1Mmaz—i1+1 + *** + CmazNmaz 1S at most a constant. If we let
I =7, we can show that the number of comparisons required by our improved algorithm is

220099, | o(n) < 9.38836n + o(n).

For completely arbitrary elements, we let ¢ = 21, and we use four blocks to encode k,
that is, we let I = 6. This way, for each occurrence of one of the six largest distinct elements,
at worst we require 1 comparison to search for the element and 5 comparisons to perform
a binary insertion of the element. We can show that we save more than 6 comparisons per
element because of the reduced size of the subproblems, so the worst case occurs when the
number of occurrences of the six largest distinct elements is minimized. We can then show

that the number of required comparisons is 2—253911 < 10.8696n.

We can also count the number of data movements required. We can prove that O(n)

data movements are used by the general case algorithm in the worst case.



Chapter 5

An application—updating implicit

k-d trees

5.1 Representation

A k-d tree, or multidimensional binary search tree, is a binary tree where each node is a
vector of k keys and is associated with an integer between 0 and k—1 inclusive; this integer is
called the discriminator of the node. We denote the keys of node z by Ko(z),..., Ki—1(z).
The invariant maintained in a k-d tree is that for any node = with a discriminator j, if y
is in the left subtree of z then K;(y) < K;(z), and if y is in the right subtree of z then
K;(y) > K;(z). To handle equality of the keys, Bentley suggested that a superkey S;(z) =
Ki(z)Kjt1(z) -+ Ki—1(z) Ko(z) - - - Kj—1(z) be used consisting of the cyclical concatenation
of all keys starting with K; rather than K alone.

We will choose the discriminator of every node at level [ to be I mod k. We also define
a node y to be j-greater than a node z if S;(y) > S;(z), and to be j-less than z if S;(y) <
Sj(z). It is clear how these definitions can be used to define j-maximum, j-minimum, and

J-median.

49
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Bentley discussed an algorithm for constructing an optimized, balanced k-d tree from a

set of n elements in O(nlogn) time. His algorithm can be described as follows.

function Optimize(set A, discriminator j):pointer p

1. If A is null, return nil.
2. Set p «— j-median of A.

3. Set AL to be the subset of elements of A that are j-less than p, and A to be the

subset of elements of A that are j-greater than p.

4. Set Left(p) < Optimize(AL, (j+1) mod k), and Right(p) «— Optimize(Ag, (5+1) mod
k). Return p.

end Optimize

An implicit data structure is a data structure that is stored in the first n locations
of a semi-infinite one-dimensional array, where n is the number of elements in the data
structure such that only O(1) pointers need be maintained. Integer indices in the range

[0, n] are considered to be equivalent to pointers.

Munro [17] devised a static, implicit representation of k-d trees based on Bentley’s
construction algorithm. He ensures that each subtree t occupies a contiguous set of locations
l...r. The root of t occupies the middle position [‘—"i—"], the left subtree of ¢t occupies the
left half I...[14] — 1, and the right subtree of ¢ occupies the right half [4£] 4+ 1...r.

A left-complete tree is a binary tree of height A in which each leaf is at level h — 2
or h — 1, and if a node in the tree has a right descendant at level h — 1, then all its left
descendants which are leaves are also at level h — 1. We consider the level of the root to be

0 and the height of a tree of 1 node to be 1.

Our data structure is essentially an implicit representation of left-complete k-d trees.

We store such a tree in breadth-first order as in a heap [26], so that the children of a node
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at location ¢ occupy locations 2¢ and 21+ 1. Left-complete k-d trees can be constructed in a
manner similar to Bentley’s Optimize algorithm. Because the shape of a left-complete tree
of n nodes is fixed, we can easily determine the number of nodes ny, in the left subtree of
the root. Rather than selecting the j-median as the root, we select the (nz + 1)th small-
est element with respect to the j-discriminator. We do not need to use recursion; we can
traverse the binary tree in breadth-first order and rebuild at each node. Our construction

algorithm works as follows.

procedure Construct(array A, number of elements n)

J+<0;
1,
r—1;
while | < n do
for ¢ from ! to min(r,n) do
let ny be the number of nodes in the left subtree of Ali];
find m such that A[m] is the (ny + 1)th j-smallest element of the subtree
rooted at Alt];
swap A[f] & A[m];
move the elements that are j-less than A[i] into the left subtree of A[i], and
the elements that are j-greater than A[i] into the right subtree of A[i];
end for;
1« 21
r—2r+1,
J < (7 +1) mod k;

end while;

end Construct
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This construction takes at most O(nlogn) time. Each iteration of the while loop corre-
sponds to a level, so there are at most log n iterations of the while loop. The for loop iterates
through each node z in current level, and each iteration basically performs a selection and
a redistribution. Both of these operations can be done in time proportional to the number
of nodes in the subtree rooted at z. Thus in each iteration of the while loop, the work done
by the for loop is proportional to the number of nodes in the subtrees rooted at any node
in the current level. The nodes in the subtrees rooted at any node in the current level are
simply the nodes at or below the current level, so clearly each iteration of the while loop

requires O(n) time.
In a practical implementation of this construction algorithm, an implicit, O(n) expected

time selection algorithm would be more suitable that our implicit, O(n) worst case selection

algorithm.

5.2 Queries

k-d trees can support various types of queries efficiently. Bentley gave an algorithm capable
of answering any intersection query. An intersection query specifies a region and returns all

elements of the k-d tree that lie in the specified region.

The simplest type of intersection query is an ezact match query, that is, given a vector
of k keys, is it in the k-d tree? Exact match queries can be answered in O(log n) time with

balanced k-d trees, as follows.

function ExactMatch(array A, number of elements n, record p)

¢ < 1; (¢ is the current position.)
J < 0; (J is the current discriminator.)
while 1 < n do

if A[i] = p then return true;
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if p is j-less than Ali]
then set ¢ < 21
else set ¢ +— 21+ 1;
set j «— (7 + 1) mod k;
end while;

return false;

end ExactMatch

In a partial match query, we specify a value for t of k keys, where t < k. If s4,...,58; are
the keys specified and vy, ..., v; are the key values specified, then the result of the query is
{p: K,,(p) = vs; for 1 < ¢ < t}. Bentley showed that partial match queries can be solved

in O(tn!~*/*) time in the worst case.

In a range query, we specify an interval [l;, u;] for each key K;. The set of elements that
we are searching for is {p : I; < K;(p) < u; for 1 < ¢ < k}. Lee and Wong [14] showed
that range queries can be answered in O(kn'~1/¥) time in the worst case. Silva-Filho [23]
showed that range queries still require O(nl‘l/ k) time in the average case for balanced k-d

trees.

In a partial range query, we specify a range of values for t of k keys, where t < k. If
s1,...,8; are the keys specified and [ly,u1],..., [lt, u] are the key intervals specified, then
the result of the query is {p : l;;, < K,,(p) < u,, for 1 <1 < k}. Lee and Wong showed that

partial range queries can be solved in O(tnl'l/ k) time in the worst case.

Bentley gave an algorithm for solving any type of intersection query including those
defined above. His algorithm does not specifically need to know the type of region that it
is searching; instead, it is passed two functions that describe the region. The first function
InRegion is passed a node and returns true if and only if that node is in the desired region.
The second function BoundsIntersectRegion is passed a bounds array and returns true if

and only if the hyperrectangle described by the bounds intersects the desired region. His
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routine also uses a procedure Found to report all nodes found in the region. To facilitate
general region searches, Bentley suggested the use of a bounds array B. The bounds array
B associated with a node p has 2k entries such that for any descendant ¢ of p, B[2j] <
K;(q) < Bl2j +1].

His recursive algorithm works as follows:

procedure RegionSearch(node P, bounds array B)

1. If InRegion(P) then call Found(P).

2. Set By «— B and By « B. Let j be the discriminator of node P. Set BL[25 + 1] «—
K;(P), Br[2j] — K;(P).

3. If Left(P)#nil and BoundsIntersectRegion(BL), then RegionSearch(Left(P),BL).

4. If Right(P)#nil and BoundsIntersectRegion(Br), then RegionSearch(Right(P),Bg).

end RegionSearch

For our structure we can make an implicit emulation of this algorithm that does not
require additional storage for temporary copies of B. To avoid using temporary copies of

B, we encode previous values of B in the k-d tree.

procedure ImplicitRegionSearch(array A)

1. 1« 1.
2. If InRegion(A[]) then call Found(P).

3. (Move down in the tree.)

Let j be the discriminator of node Ali].

If 24 < n then (try to go left)
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swap BI2j +1] o K;(Af]);
if BoundsIntersectRegion(B) then
set 1 «— 21; go to 2
else
swap B[2j + 1] « K;(Al]);
end;
elsif 2¢ + 1 < n then (try to go right)
swap B[2j] « K;(Ali]);
if BoundsIntersectRegion(B) then
set 1 — 2i+1;goto2
else
swap B[2j] « K;(A[i]);
end;

end.

4. (Move up in the tree.)

Set ¢! — 1,1 « [%] If ¢ = O, then return. Otherwise, let 5 be the discriminator of

node A[t].

If ¢ = 2¢' then
swap B[2j + 1] & K;(A[s]);
if 2¢ +1 < n then
swap B(2j] & K;(A[1]);
if BoundsIntersectRegion(B) then
set ¢t «— 21+ 1; go to 2
else
swap B(2j5] & K;(Al]);
end;

end;
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go to 4;

else
swap B[2j] & K;(A[]);
go to 4;

end.

end ImplicitRegionSearch

We claim that this algorithm is a nonrecursive emulation of the recursive RegionSearch
algorithm. First, we claim that the nonrecursive algorithm performs a preorder traversal of
the tree. Step 2 processes the current node. If the current node is not a leaf, then step 3
moves downward, always choosing the left child over the right child if the left child exists.
Step 4 moves up in the tree, and continues moving up if the routine has moved up from a
right child or the routine has moved to a node that has no right child; otherwise the routine
moves to the right and goes downward again. The routine terminates when it tries to move

upward from the root. Clearly this corresponds to a preorder traversal.

Clearly B and ¢ are correctly set when moving downward, and 1 is correctly restored
when moving upward, so we only have to show that B and A are restored correctly when
we move upward through the tree. Suppose we are at node A[i] with discriminator j.
If we want to search the left subtree of A[i], then we encode the current value of B by
swapping B[2j + 1] « K;(A[i]). If we want to search the right subtree, then we swap
B[2j] «+ K;(A[s]). In either case we will always change K;(A[i]). When we travel up to
node ¢ with discriminator j, we know that we must swap K;(A[i]) with an element in B.
If we moved up from a left child, then we know that B[2j + 1] was swapped; if we moved
up from a right child, then B[2j] was swapped. Thus when we travel up to a node, we will
always know how to correctly restore that node and the bounds array B associated with

that node.
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5.3 Updates

To handle updates, we essentially use a degenerate form of a partial rebuilding scheme
suggested by Overmars [20]; our scheme is degenerate in that we have to rebuild part of the

tree after almost every update.

To insert z in a left-complete k-d tree, we perform an exact match query for z. If z is
already present, then the update is redundant. Otherwise, consider the final value of the
index where the search failed. We call this the natural insertion position, because z satisfies
all the invariants of the k-d tree if it is inserted here. We place z in position n + 1 of the
array; we call this the required insertion position. We then find the lowest common ancestor
a of the natural and required insertion positions and reconstruct the subtree rooted at a.
This is equivalent to inserting z at its natural insertion position and relocating it to its

required insertion position, and then rebuilding the subtree rooted at a.

Deletions are handled similarly. To delete z from a left-complete k-d tree, we again
perform an exact match query. If z is not present, the deletion is redundant. Otherwise, we
replace z with the element in position n; the natural deletion position is n, and the required
deletion position is the position of z. We take the lowest common ancestor a of the natural
and required deletion positions and reconstruct the subtree rooted at a. Thus we relocate
the node at position n from its natural deletion position to its required deletion position

and rebuild the subtree rooted at a.

In general, when updating we displace a node from its natural position, where it satisfies
the partial order of the k-d tree, to its required position. We then rebuild the subtree rooted

at the lowest common ancestor of the natural and required update positions.

Clearly our method of handling updates preserves left-completeness. We ensure that
position n + 1 is filled in the case of insertions and position n is cleared in the case of
deletions. Furthermore, the left and right subtrees of any left-complete tree is also left-

complete, and our reconstruction algorithm cannot change the shape of any left-complete
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tree.

We only need to show that our update algorithms satisfy the invariants of the k-d tree.
Suppose z is the natural position of the displaced node, y is the required position of the
node, and LCA(z, y) is the lowest common ancestor of z and y. We claim LCA(z, y) is the
highest node where the invariants fail, so that rebuilding the subtree rooted at LCA(z, y)
will satisfy the invariants of the k-d tree. To see this, note that if z is an ancestor of
LCA(z,y) and z # LCA(z,y), then the z and y must fall in the same subtree of z, and so
the invariants of the k-d tree do not fail at 2. Rebuilding at any descendant of LCA(z,y) is

not sufficient to satisfy the invariants of the k-d tree since the invariants fail at LCA(z, y).

The worst-case update time is clearly ©(nlogn). Our reconstruction routine requires
©(nlog n) time to rebuild n nodes, and at worst we have to rebuild the entire tree. However,
at any time we can make an insertion require {2(n log n) time by ensuring that the required
insertion position and natural insertion position fall on opposite subtrees of the root. This
will make the root the lowest common ancestor, and thus we must reconstruct the entire
tree. We can trivially make deletions require Q2(nlogn) time by deleting the root. Thus
for any sequence of operations, we can make all operations require 8(nlog n) time, and the

amortized worst-case time is 8(nlogn).

Worse yet, the expected update time is also O(nlogn), since for a random insertion
we have a 1 in 2 chance that the required and natural insertion positions fall on opposite
subtrees of the root, and for a random deletion there is also a 1 in 2 chance that the
required and natural deletion positions fall on opposite subtrees of the root. Nevertheless,
our approach is superior to reconstructing the entire tree after every update. We can show
that if the cost of rebuilding n nodes is at most cnlogn, then the expected insertion time

and the expected deletion time is about %cn log n.

For convenience, we define leftmost(s) to be the leftmost node at level 1. Consider a
complete tree of height h with 2#*1 — 1 nodes. There are 2**! possible natural insertion

positions since there are 2*t! external nodes, and the required insertion position is the
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leftmost external node at level h+1. Clearly the ancestors of the required insertion position
are just leftmost(t), for 1+ = 0,..., h. The number of external nodes in the right subtree of
leftmost(?) is 2"%, so the probability that the lowest common ancestor of the required and
natural insertion positions being leftmost() is 2717f. The number of nodes in the subtree

rooted at leftmost(i) is 2"*1~* including the inserted node, so the expected insertion time
is
h . 3 . h 3 3 h 3
Z 2—1—! [C . 2h+1—t log(2h+1—t)] — cz: 2h-—21 log(2h+1—i) S c- 2h log(2h+1) Z 2—2%
i=0 i=0 i=0
> ; 1 2 2
<c-2tlog(2"1) ) 27 ¥ < -2k log(2h+1)(i———1—) =3¢ 2ht1l1og(2"1) = 3o logn
i=0 1
For the case of deletion, consider a left-complete tree of height h + 1 with 2**! nodes.
The ancestors of the required deletion position are again leftmost(s), for ¢ = 0,...,h. The
number of nodes in the right subtree of leftmost(s) is 2"~* — 1, so there are 2"~ natural
deletion positions that result in leftmost(t) being the lowest common ancestor of the natural
and required deletion positions: either the leftmost node itself may be deleted, or any node
in its right subtree may be deleted. The probability of leftmost(s) being the lowest common
ancestor is thus 2~1%. The number of nodes in the subtree rooted at leftmost(s) is 2PT17* —1,
so by a similar analysis to the case of insertion, we find that the expected cost of deletion

s 2
is genlogn.

We can, however, improve the amortized worst-case cost of insertion without worsening
the expected deletion time by batching insertions together. For instance, we can batch logn
insertions together before rebuilding the k-d tree, so that the amortized insertion time will

be O(n). More sophisticated dynamization schemes are possible.

In conclusion, our implementation of k-d trees is extremely storage efficient; our rep-
resentation requires only a constant amount of extra space because it is implicit, and our
update and query algorithms require at most a constant amount of additional space. Also,

our implementation can support many types of queries efficiently, and we have presented



CHAPTER 5. AN APPLICATION—UPDATING IMPLICIT K-D TREES 60

an algorithm for general intersection queries. Finally, the expected update costs of our data

structure are superior to that of continual reconstruction of the entire tree.



Chapter 6

Conclusions

6.1 Conclusions and Open Problems

We have shown that the implicit selection problem can be solved in 8.8256n + o(n) compar-
isons if all elements are distinct, 9.3884n + o(n) comparisons if every element can appear

at most a constant number of times, and 10.8696n comparisons for arbitrary elements.

This naturally leads to the question of whether the implicit selection problem can be
solved in less than 9n comparisons in general. There are various ways to improve the general
case algorithm [15]. One method avoids using blocks to distinguish between the first and
second subproblems by taking advantage of the fact that these blocks are used to encode
only a constant number of bits. Since the maximum depth of the recursion is O(log n), this
information can be stored in a constant number of pointers and does not have to be encoded
in the array on which we are performing a selection. Another method for improving the
general case algorithm is to use a binary encoding scheme for k. This has the complication
of finding unequal pairs of elements, but we can avoid finding and moving blocks used to

encode k and distinguish between the first and second subproblems.

Another method of improving the upper bounds is to emulate faster O(n) worst case se-

lection algorithms, such as the fast BFPRT algorithm or the Schonhage-Paterson-Pippenger
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(SPP) algorithm. The fast BFPRT algorithm requires only 5.4305n comparisons, but does
not appear to be well-suited to being emulated implicitly; however, there may perhaps be an
efficient method of doing so. It is not clear at all how the SPP algorithm can be efficiently

emulated implicitly.

Other open problems lie in the area of lower bounds. Clearly all of the lower bounds on
the selection problem apply to the implicit selection problem. Sharper lower bounds may

be obtainable.
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