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Abstract

This thesis examines a tree automata approach to tree matching problems. This approach is
motivated by the finite automata approach which has been very successful in designing string
matching algorithms. In particular, we show how the KMP algorithm can be generalized to
give tree matching algorithms which preprocess the pattern tree. We also define structures
for trees which are analogous to suffix tries and DAWGs for strings and show how they can
be used for tree pattern matching. Additionally, we explore some other approaches to tree

matching problems.
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Chapter 1

The Tree Matching Problem

1.1 Motivation

During the execution of equational and logic programs, subexpressions are replaced accord-
ing to a set of replacement rules. The first step in such a replacement system is to find
an appropriate subexpression of an expression which matches the left hand side of some
replacement rule. Since expressions, or terms, are usually represented as term trees, this
reduces to finding the occurrences of a given left hand side, or pattern tree, in the given ex-
pression, or text tree. In other words, this is a tree pattern matching problem. Furthermore,
this is the specific problem we tackle in this thesis. Hoffmann and O’Donnell show in [13]
how tree replacements may be used in automatically generated interpreters for nonprocedu-
ral programming languages. The elimination of redundant operations in code optimization
in compiler design and the recognition of common subexpressions in simplifying algebraic
expressions both involve tree pattern matching; see [3,20]. Tree pattern matching can also
be used in context searching in tree structures, abstract data type specification and im-
plementation [12], automatic theorem proving [17], and hierarchically structured databases

applications.

In some applications, text trees have their subtrees replaced, so these trees change as
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a result of the replacement; in other applications, text trees are essentially static. In this

thesis, tree pattern matching is carried out on static text trees.

1.2 Overview of Previous Work

Karp, Miller and Rosenberg pioneered the investigation of the tree pattern matching prob-
lem in [15]. They designed a number of algorithms for the problem, and many of their ideas

have been used in more recent algorithms.

Overmars and van Leeuwen presented in [22] a top-down algorithm (their best algorithm)
for pattern matching in lexicographic trees. The idea underlying the algorithm is that
finding a pattern in a text is equivalent to finding all its root-to-leaf paths as some substrings
of root-to-leaf paths of the text tree such that all these substrings start at the same node of
the text tree. The algorithm finds all occurrences of the root-to-leaf paths of the pattern in
the text using a strategy similar to that of the KMP [18] and Aho-Corasick (2] algorithms;
it records these occurrences in counters associated with the nodes of the text where these

paths occur.

Hoffmann and O’Donnell thoroughly investigated the problem of matching term trees
in [14]. They developed algorithms for both bottom-up and top-down approaches. Their
top-down algorithm is essentially the same as the one in [22]. The basic operation of their
bottom-up algorithm is that of a frontier-to-root tree automaton, which is described in
Chapter 2. A number of people have modified their bottom-up algorithm to reduce the
time and space complexity of its preprocessing phase; among them, Chase in [8] described

a way of generating compressed tables.

Lang, Schimmler and Schmeck in [21] presented an algorithm for matching tree patterns
sublinear on the average. The pattern and text trees in their algorithm are represented as
ordered lists of left paths, which are the longest suffixes of root-to-leaf paths, where every

node, except for the leaves, occurs in the same left path as its leftmost son. For example,
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Figure 1.1: Example of a binary tree

the set of left paths of the tree in Figure 1.1 is {abd,e,caf,d,f}!. They used a combined
approach of Boyer-Moore [6,18] and Aho-Corasick [2] for matching left paths and used the
same counting technique found in the top-down algorithms of [22] and [14] to decide if the

pattern occurs at a node in the text.

Steyaert and Flajolet did a mathematical analysis of the naive algorithm for tree pattern
matching in [26]. They have shown that the expected time complexity of the naive algorithm
is linear in the total size of the pattern tree and the text tree, although its worst time

complexity is quadratic.

Kojima described in [19] a linear algorithm for matching a complete binary pattern tree
in a binary text tree. The algorithm starts by checking if the pattern occurs at the root of
the text, and when a mismatch is found, it splits the text tree into maximal subtrees such
that it is possible for the pattern to match each subtree at its root. The algorithm proceeds
recursively as if each new subtree is another text tree. This idea is analogous to sliding the

pattern string along the text string in the KMP algorithm of [18].

Ramesh and Ramakrishnan in [23] and [24] explored a new approach to the problem.

!The trees in this thesis are drawn using the macros described in [7].
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The text and pattern trees are represented as euler strings, which preserve the structure
of the trees, and tree matching is then reduced to string matching with multiple patterns,
for which the Aho-Corasick algorithm [2] is used. The euler string of a tree is obtained by
traversing the tree in the order of “root — 1st subtree — root — -+ — root — last subtree
— root” and listing the labels of the nodes as they are encountered. For example, the euler
string of the tree in Figure 1.1 is “abdbebacafadacfca”. The basis of their algorithm is that

two term trees are equivalent if and only if their euler strings are equal.

1.3 Overview of the Thesis

The aim of this thesis is two-fold.

First, we use an automata-theoretic approach to provide a coherent and consistent
framework for the study of tree pattern matching algorithms. This approach was successful
for designing some well-known string matching algorithms such as the Knuth-Morris-Pratt
algorithm [18]. It not only suggests a method of obtaining efficient algorithms, but it also
provides a common framework within which to describe such algorithms. The automata-
theoretic approach is implicit in much of the work on tree pattern matching algorithms,
but it has never been the driving force. In chapter 3, we show that some well-known tree

matching algorithms follow naturally from this approach.

Second, we explore “analogy” as an approach to give tree pattern matching algorithms
from string matching algorithms. For example, in string matching, we can preprocess either
the pattern or the text. This leads to the KMP and Boyer-Moore algorithms [18,6] in the
former case, and to the DAWG and suffix trie approach in the latter case. All tree matching
algorithms that have been considered up until now preprocess the pattern tree. We consider
original methods for preprocessing text trees in Chapter 4, and these lead to the definitions
of structures for trees analogous to suffix tries and DAWGs for strings. We also give new

tree matching algorithms which make use of these structures.
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Another analogy is based on the directions in which the texts and the patterns are
scanned. For strings, the KMP and the Boyer-Moore algorithms scan the pattern in dif-
ferent directions, the former from left to right and the latter from right to left, while both
algorithms move the pattern across the text from left to right. In the first section of Chap-

ter 5, we will discuss how analogous tree matching algorithms may be designed.

There are other approaches to tree matching problems than those mentioned above.
The second section of Chapter 5 suggests an approach based on transforming the original
tree matching problem to a similar problem involving trees of smaller sizes by partitioning

the pattern tree and the text tree.

Chapter 2 introduces the definitions and conventions used in subsequent chapters. The
concluding chapter, Chapter 6, examines ways of solving tree matching problems involving
patterns that are more general than the ones considered in earlier chapters, and we end the

thesis by stating some conclusions and posing some open problems.



Chapter 2

Definitions and Conventions

2.1 Trees and Tree Matching Problems

2.1.1 Term Trees

Let ¥ be a set of symbols; X is called an alphabet if each o € T has a unique degree v(o)
which is a nonnegative integer. Informally, a term tree over an alphabet X is a rooted,
ordered tree whose nodes are labeled with elements in X; a node with label o in a term tree

has exactly v (o) children.
Given an alphabet T, define v(Z)=max{v(0) | 0 € T}, %y={0 € = | v(s) = ¢} and
¥,={c € £ | v(s) > 0}. A term tree over the alphabet (£;U Xo) is called a binary tree,

and a term tree over the alphabet (Z; UXp) is called a unary tree. The set of all term trees

over ¥ is denoted by Tg.

There is a natural one-to-one correspondence between the elements in the set of term
trees over & and the elements in the set of -terms. X-terms and the corresponding term

trees are formally defined as follows.

Definition 2.1 Let S be an alphabet and v be the corresponding degree function.
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1. Ifo € T and v(0) = 0, then o is a B-term; the corresponding term tree consists of a

single node labeled o which is the root of the tree.

2. Ifo €X and v(o) = q > 0, then o(t1,t2,...,t;) is a B-term provided each of the t;s
is a X-term; the root of the corresponding term tree is labeled o and the i-th child of

the root is the root of the term tree corresponding to t;.

3. Nothing else is a X-term or a term tree over .

For example, let © be {a,b,c,d,e, f}, where v(a) = v(b) = v(c) = 2 and v(d) = v(e) =
v(f) = 0; then, the tree of Figure 1.1 is a term tree over X, and the corresponding X-term

is a(b(d, €), c(a(f, d), f))- An edge joins every internal node in a tree to each of its children.

Let T be a term tree. The set of all nodes in T is denoted by N(T). | N(T) | is called
the size of T, which can also be written as | T |. The root of T is denoted by root(T').

Let v be a node in T. The label of v is denoted by I(v). v is an external node (or a
leaf) if v(I(v)) = O; otherwise, it is an internal node. The set of all leaves of T is called the
frontier of T and denoted by F(T); the set of all internal nodes of T is denoted by I(T).

If u is the i-th child of v, written as u=child(v,1), then v is called the parent of u,
written as v=parent(u). Define a°(v) = v and o’ (v)=parent(a‘~1(v)) for ¢ > 0; if u = a*(v),
then u is called the i-th ancestor of v and v is called the i-th descendant of u. Note that a
node is both an ancestor and a descendant of itself. A node v is called a proper descendant
of a node u if u = a*(v), for some ¢ > 0. Two nodes are cousins of each other if neither of
them is an ancestor of another. The set of all descendants of a node u, {v | v = a*(v) for
some nonnegative integer 1}, forms a subtree of T rooted at u. Note that every subtree of
a term tree is itself a term tree. Define depth(v) to be k if root(T) = a® (v). The height of
T, denoted by height(T), is defined to be max{depth(v) | v € T}. A term tree is perfect if

all its leaves have the same depth.

To illustrate the above definitions, let T' denote the term tree of Figure 1.1. Then, we

have N(T) = {1,2,3,4,5,6,7,8,9}, | T |= 9, root(T) = 1, F(T) = {4, 5,8,9,7}, I(T) =
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{1,2,3,6,}, I(1) = I(6) = a, 2 = child(1,1), parent(2) = parent(3) = 1, 1 = a%(5),
depth(5) = depth(6) = 2, height(T') = 3, the set of nodes {3,6,7,8,9} forms a subtree rooted

at 3, and nodes 2 and 7 are cousins of each other.

Given a term tree T over ¥ and a node v in T, an rn-path (standing for “root-to-node
path”) of v consists of all ancestors of v, that is, rn-path(v)={u | u = a*(v) for some i > 0}.
Let A and o denote the empty string and the concatenation operation respectively. The
rn-string (standing for “root-to-node string”) of v is defined as:

. A if v = root(T)
rn-string(v) =
rn-string(parent(v)) o (I(parent(v)),) if v = child(parent(v), 1)
Given the tree of Figure 1.1, rn-path(8)={1,3,6,8} and rn-string(8)=(a,2)(c,1)(a,1). If v is
a leaf of P, the root-to-node path (string) of v is also called a root-to-leaf path (string).

In this thesis, defining a term tree is equivalent to defining the label function /, the child
function, the father function and the root of the tree. In the drawings of trees, circles are
used to represent nodes. Node identifiers are inside the circles, labels are to the left, and
states of the nodes assigned by tree automata (described later in this chapter) are to the

right.

2.1.2 Patterns and Tree Matching Problems

A pattern tree with respect to the trees in Ty is a term tree over £ U {®} such that all
internal nodes of the tree are labeled with elements in ¥ and all leaves are labeled with
the special symbol ®, called “the don’t-care symbol”, which is not an element of 3. We
denote the set of all such pattern trees by Pg. Trees in Ty are said to be text trees of trees
in Pg. The pattern tree with only one node, which must be labeled by ®, is called a trivial
pattern; otherwise, the pattern tree has at least two nodes and is nontrivial. An example
of a nontrivial pattern is given in Figure 3.2. Note that every subtree of a pattern tree is

itself a pattern tree.
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Definition 2.2 (Root-Match) Let P be in Py with root p and T be in Tx with root t.
e Ifl(p) = ®, then P root-matches T

e Ifl(p) # ®, i.e. P consists of more than one node, then P root-matches T if [(p) =
(t) and the subtree of P rooted at child(p,t) root-matches the subtree of T rooted at
child(t,s) for all i, 1 < i < v(l(p)).

Definition 2.3 (Match) A pattern tree P matches (or occurs in) a text tree T at a node

v in T if P root-matches the subtree of T rooted at v.
For example, the pattern tree corresponding to the X-term a(®,®) matches the text tree
of Figure 1.1 at nodes 1 and 6.

In this thesis, we will consider two kinds of tree matching problems.

Problem 1 Given a text tree T and a pattern tree P, finds all nodes in T at which P

matches T.

Problem 2 Given a text tree T and a pattern tree P, determine if there is a node v in T

at which P matches T.
Most of this thesis deals with Problem 1, except for part of Chapter 4 which deals with
Problem 2.

Unless otherwise noted, all pattern trees in this thesis are assumed to be nontrivial.
We will see in Chapter 6 how to solve pattern matching problems for patterns with non-®

leaves.

Analogous to the tree matching problems, we will also encounter two string matching

problems in this thesis.

Problem 3 Given a text string t and a pattern string p, find all occurrences of p in t.

Problem 4 Given a text string t and a pattern string p, determine if there is an occurrence

of pint.
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2.2 Tree Automata

To solve the tree pattern matching problems defined in the previous section, a special class
of tree automata, called internal tree automata, will be used. Internal tree automata differ
from general tree automata in that the latter read labels on all nodes of the input tree while
the former only reads the labels on the internal nodes of the input tree. Since only internal
tree automata will be considered in this thesis, we will omit the word “internal” when we

refer to such automata.

2.2.1 Tree Automata as Recognizers

We first define the two basic kinds of tree automata, root-to-frontier automata and frontier-
to-root automata, and then introduce some of their variants which are more useful for our

purposes.

Both the root-to-frontier and frontier-to-root tree automata operate on an input tree
by scanning it synchronously level by level. During this process, an automaton assigns
a state to each node in the input tree. (A deterministic finite string automaton acts in a
similar fashion where the input may be considered to be a unary tree.) Obviously, a root-to-
frontier automaton scans an input tree from the root to the frontier, and a frontier-to-root

automaton does the reverse.

The state of a node v is also written as state(v). The tree formed by relabeling the

nodes of the input tree with their respective states is called a state tree.

Given an alphabet ¥, we use Iy to denote the set of term trees whose internal nodes
are labeled with elements in . Note that a tree automaton only reads symbols of nonzero
degrees.

Root-to-Frontier Automaton

Definition 2.4 A (deterministic) root-to-frontier automaton A (RFA) with input alphabet
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3 consists of a finite set S of states, a transition function M : L x S — u',:(fl)s k an initial

state so € S and a set of final states F C S.
A takes as its input a term tree in Iy and inductively assigns states to the nodes of the

input tree as follows:

1. The state of the root is assigned to be sg.

2. Given that the state of an internal node v is s and that the label of v is o, the states
of the children of v are M(o,s); that is, state(child(v,i)) is the i-th component of
M(o,8), for 1 <i <v(X).

The input tree is accepted if the states of its leaves are all final states.
Example 2.1 Suppose that 4 is an RFA with start state sg and that part of its transition

function M is

M(a’ 30) = (81’ 32), M(a’ 32) = (31)30)’ M(b, 30) = (82’32)a
M(b,sl) = (82,80), M(b, 82) = (31,31).

Scanning the tree of Figure 2.1 with 4 produces the state tree of Figure 2.2.

Frontier-to-Root Automaton

Definition 2.5 A (deterministic) frontier-to-root automaton B (FRA) with input alphabet
Y consists of S,80,M and F, which are as in Definition 2.4 except that the function M
is from U:_(__El) (= x S*) to S. The states are assigned to the nodes of an input tree in Is

inductively as follows:

1. The states of the leaves are all sg.

2. Given that a node v is labeled o and that s; is the state of child(v,i), for 1 <i < v(X),

the state of v is M(0, 81, -+, 8,(x))-
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Figure 2.2: A state tree generated by an RFA

12
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Figure 2.3: A state tree generated by an FRA

An input tree is accepted if the state of its root is a final state.

Example 2.2 Suppose that B is an FRA with start state sp and that part of its transition
function M is
M(a’ 8o, 80) =81, M(a; 82, 81) = 81, M(b> S0, s0) = 81,

M(b, 8, 81) = 82.

Scanning the tree of Figure 2.1 with B produces the state tree of Figure 2.3.

2.2.2 Variations of Tree Automata

The algorithms in the following two chapters will make use of the basic operations of the
tree automata just defined. However, in order to solve the tree matching problem efficiently,
these algorithms construct tree automata whose operations deviate slightly from the ones

defined above. We consider the following two variations of tree automata.
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e A tree automaton with output is a tree automaton which also produces output when
processing! the nodes of the input tree, where the output produced depends on the
state of the node being processed. For example, a pattern matching tree automaton
may report a match whenever a final state is assigned to a node. Most of the tree

automata we will see in this thesis are with output.

e A writing tree automaton is a tree automaton which also assigns values to the variables
associated with the nodes of its input tree. For example, in order to determine all
nodes which have i-th descendants, a writing tree automaton marks the ¢-th ancestor

of every node it processes.

2.2.3 Implementing Tree Automata

Definition 2.6 Given a term tree T, a fringe of T is any subset of N(T') such that all

nodes in the subset are cousins® of each other.

A tree automaton is a parallel machine; during its operation, the nodes it is processing
always form a fringe of its input tree. But given a tree automaton, the state of each node
of its input tree is uniquely determined. It is in this sense that we claim that the operation
of a tree automaton can be simulated by a sequential process. We now give sequential

algorithms which implement the two basic kinds of tree automata.

Algorithm 2.1 Given a root-to-frontier tree automaton A consisting of S, so, M and F,

if T is an input tree of A, this algorithm simulates the operation of A scanningT.

1. The state of root(T) is assigned so.
2. Invoke the procedure RF(root(T)), which is defined in Figure 2.4.

3. If the states of the leaves of T are all final, then T is accepted; otherwise, T is rejected.
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procedure RF(v:node);
var t: integer;
begin
if ((v € I(T)) and (state(v) = s)) then
begin
(state(child(v, 1)), - -,state(child(v,v(I(v))))) « M(I(v), s);
for ¢ from 1 to v(I(v)) step 1 do
RF(child(v,1));
end;

end.

Figure 2.4: The procedure RF used in simulating an RFA

Algorithm 2.2 Given a frontier-to-root tree automaton B consisting of S, so, M and F,

and an input tree T, this algorithm simulates the operation of B scanning T .

1. Invoke the procedure FR(root(T)), which is defined Figure 2.5.

2. If the state of root(T) is final, then T is accepted; otherwise, T is rejected.

Note that both Algorithms 2.1 and 2.2 traverse the input tree.

2.3 Model of Computation

The time complexities of the algorithms we will examine are based on the number of oper-

ations of the RAM model of computation described in [4].

Processing a node means assigning a state to the node.

2Recall that two nodes are cousins if neither is an ancestor of the other.
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procedure FR(v:node);
var 1: integer;
begin
if (v e F(T)) then
state(v) — so;
else
begin
for i from 1 to v(I(v)) step 1 do
FR(child(v, ¢));
state(v) «— M(1(v),state(child(v,1)),: - - ,state(child(v, »(I(v)))));
end;

end.

Figure 2.5: The procedure FR used in simulating an FRA

16
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For a tree matching algorithm, we consider two types of operations: simple assignments
and node comparisons. A node comparison involves determining the label of a node or
comparing the labels of two nodes. A simple assignment is an assignment statement in
which the right hand side is a constant or a variable. In every algorithm we will discuss,
there are at least as many simple assignments as node comparisons, so the complexity of the
algorithm depends entirely on the number of simple assignments. In some algorithms, the
number of simple assignments and the number of node comparisons are not linearly related;

in such cases we will also give the complexity based on the number of node comparisons.

The complexity of a tree matching algorithm is usually expressed as a function of the
sizes of the text tree and the pattern tree. However, occasionally it is expressed as a function
of other attributes of the trees as well as their sizes; for example, the complexity may depend
on how balanced the trees are. This is done to indicate that the algorithom is more efficient
when these attributes are taken into account; for example, Algorithm 3.1 runs in linear time
for perfect pattern trees, although its time complexity for general pattern trees is quadratic
in the sizes of the pattern and the text. The sizes of the alphabets over which the term

trees are defined are treated as constants.

Tree matching algorithms have been designed for different representations of trees. Some
assume that the trees involved cannot be changed, while others allow modification to the
trees. Some represent trees using child and parent pointers, others represent them implicitly
in arrays, and still others use special tree representations to suit their algorithms. Hence,
care must be taken when we compare two tree pattern matching algorithms to ensure a
“fair” comparison. In this thesis, all trees are given as doubly linked structures using child

and parent pointers.



Chapter 3

Preprocessing Pattern Trees

For string matching, there are basically two classes of algorithms: one class preprocesses
the pattern, and the other preprocesses the text. For tree matching, we may also either
preprocess the pattern or preprocess the text.! When the text tree is unstable or when
the pattern tree is to be matched with many text trees, preprocessing the pattern is more
appropriate. For example, in some term rewriting systems, the text tree often changes
due to the replacements of the left hand sides of the replacement rules by their right hand
sides. In this setting, the patterns are used to match many different text trees; hence, it
is desirable to preprocess the pattern rather than to preprocess the text. In this chapter,
the pattern trees are preprocessed to give appropriate tree automata that process the text
trees. Here, the underlying ideas of the KMP algorithm for string pattern matching are

applied to tree pattern matching resulting in some well-known tree matching algorithms.

3.1 The KMP Algorithm

Knuth, Morris and Pratt [18] designed the first linear time algorithm that finds all occur-

rences of a given pattern string within a given text string. Their algorithm constructs a

How to design algorithms which preprocess both the pattern and the text is an open problem.

18



CHAPTER 3. PREPROCESSING PATTERN TREES 19

(deterministic) finite automaton based on the pattern, with conditional A-transitions, which
is used to scan the text. The states of the automaton correspond to the positions in the pat-
tern, from 1 to the length of the pattern?, and 0, which is the initial state of the automaton.
These states keep track of the maximal prefixes of the pattern which have been matched in
scanning the text, and the automaton reports a match when it reaches the state standing for
the last position of the pattern. The transition function M of the automaton has three kinds
of transitions. The first kind corresponds to that when the character at position ¢+ 1 of the
pattern matches the current text character o, M(0,7) = ¢ + 1 is a transition. The second
kind contains only transitions of the form M(o,0) = 0, for every symbol o which is different
from the first symbol of the string. The third kind are conditional A-transitions, that are
taken only if transitions of the first two kinds cannot be taken; each such A-transition is
defined as M(A,1) = nezt(s), where A denotes the empty string and next(s) is either the
greatest j less than 1 such that pattern[l,...,j] = pattern[i —5+1,..., %] and pattern[{ 4 1]
# pattern[s + 1] or zero if no such j exists. The automaton can be constructed in time
proportional to the length of the pattern, and scanning the text takes time proportional
to the length of the text. Hence, the string pattern matching problem is solved in time

proportional to the total length of the pattern and the text.

Example 3.1 Consider the pattern string s = ababc and the text string ¢ = babcacabababec.
The state set of the KMP automaton is {0,1,2,3,4,5}, where 0 is the initial state. The

transitions of the automaton are:
M(a,0)=1, M(b,1) =2, M(a,2) =3, M(b,3) =4,
M(c,4)=5, M(# a,0) =0, M(\1)=0, M(A,2)=0,
M(A,3)=0, M) 4)=2, M(A,5)=0.

Figure 3.1 shows the state diagram of this automaton. The result of scanning the text string

t with this automaton is shown below.

2The length of a string s is the number of symbols in s and is denoted by | s |.
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Figure 3.1: The state diagram of Example 3.1

positions: 0 1 2 4 5 6 7 8 9 10 11 12 13 14

text: b a c acadbad a b ¢ c
01 23 4 3 4 5

0 2 0

[

3

b
states: 0 0 1 2 O

0

Hence, a match is found to start at position 9 and to end at position 13.

3.2 Generalizing the KMP Algorithm for Trees

The KMP algorithm constructs a finite automaton based on the pattern string to scan
the text string. We can do something similar for tree pattern matching, but we have two
different kinds of tree automata to consider, namely, frontier-to-root automata and root-
to-frontier automata. A generalization of the KMP algorithm thus immediately gives us
two tree pattern matching algorithms, namely, a bottom-up algorithm and a top-down

algorithm, which are also described in [14] and [22].



CHAPTER 3. PREPROCESSING PATTERN TREES 21
We now compare these three algorithms and the corresponding automata,

o When a string is scanned by a finite automaton, the state of the automaton after
reading the current character depends on the prefix of the input string ending at the
current position. In the operation of a frontier-to-root automaton, the state of a node
in the input tree depends on its descendents, which form the subtree rooted at the
node. In the operation of a root-to-frontier automaton, the state of a node depends

on its ancestors, which are in the root-to-node path of the node.

e The states of the finite automaton of the KMP algorithm keep track of the maximal
prefixes of the pattern string which have been matched. The state of a node assigned
by the frontier-to-root automaton of the bottom-up algorithm keeps track of all sub-
trees of the pattern tree which root-match the subtree rooted at that node. The state
of a node assigned by the root-to-frontier automaton of the top-down algorithm keeps
track of the maximum (in terms of its length) of all prefixes of root-to-leaf strings of
the pattern tree which are equal to some suffixes of the root-to-node string ending at

that node.

Note that two different pattern trees with the same number of nodes may match a text tree
at the same node, while two different pattern strings with the same number of characters
cannot match a text string at the same position. Furthermore, when several pattern strings
match a text string at the same position, all the pattern string must be prefixes of the
longest pattern string, but we can not make analogous claim for general term trees. This
observation partly explains why the automaton in the bottom-up algorithm may have many

more states than the automaton of the top-down algorithm.

The top-down algorithm reports a match at a node v if every root-to-leaf string of the

pattern is equal to some substring of a root-to-leaf string of the text starting at v3. The

3This condition will be formally stated (again) in Chapter 4 as Proposition 4.6
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bottom-up algorithm reports a match at a node v if the largest (in terms of its size) subtree

of the pattern which root-matches the subtree rooted at v is the pattern itself.

In [22] and [14], the top-down algorithm is describes as one which uses a finite automaton.
We will see in the next section that it can also be viewed as an algorithm which uses a root-

to-frontier tree automaton.

3.3 Root-to-Frontier Approach

The top-down algorithm described in this section constructs a root-to-frontier writing au-

tomaton based on the pattern tree which then scans the text tree to find all matches.

3.3.1 The Automaton

Given a pattern tree P € Py, let L be a special symbol denoting a node not in N(P) and, to
simplify the description of the algorithm, we define child(L,¢{)=root(P), for 1 < i < v(XZ).
Define functions h: £4 x N(P) = N(P)u{l} and L : N(P) - N(P) U {L} as follows.

u if u is the node in P with the greatest depth(u) such that
h(o,v) = rn-string(u) is a proper suffix of rn-string(v) and I(u) = o (3.1)

1 if no such u exists

u if u is the leaf of P with the greatest depth(u)
L(v) = such that rn-string(u) is a proper suffix of rn-string(v) (3.2)

1 if no such u exists

The function h acts like the goto function of the Aho-Corasick algorithm [2]; the function

L is used by the writing operation of the tree automaton defined below.

Definition 3.1 Given a pattern tree P € Py with root r, the Path Matching Machine for
P, denoted by PMM(P), is a root-to-frontier writing automaton (with output) with input



CHAPTER 3. PREPROCESSING PATTERN TREES 23

alphabet X, state set N(P), initial state r, the set of final states F(P); its transition
function M is defined as M(o,v) = (91(o,v),- -, 9u(0) (o, v)) where

child(v, 1) ifl(v)=o

for each i,1 <i < v(o). (3.3)
child(h(o,v),1) otherwise

gi(o,v) =
When a text tree is scanned by PMM(P), if the state of a node u in the text is s, the
automaton writes on the text tree according to the following procedure, assuming that there

18 a counter, initialized to 0, associated with every internal node of the text tree:

if s F(P)
increment the counter of the depth(s)-th ancestor of u by 1
endif;
g« s;
while (L(g) #1) do
g — L(q);
increment the counter of the depth(q)-th ancestor of u by 1

endwhile.

Note that the state set of PMM(P) is the set of all nodes in P, and that depth(s) for a
state s is the depth of the node s in P and can be determined together with the depths of
all other nodes in P by a single traversal of P. The counter associated with each internal
node of the text tree keeps track of the number of root-to-leaf strings of the pattern which
have been found to match root-to-leaf strings of that node in the text. If an occurrence of a
root-to-leaf string of the pattern of length 1 is found to end at node v of the text tree, then
the writing operation of the above automaton increments the counter of the i-th ancestor

of v.

It is shown in [22] that the functions h and L can be computed in O(| P |) time. The

computation of the functions h and L is essentially a variation of the preprocessing phase



CHAPTER 3. PREPROCESSING PATTERN TREES 24

of the Aho-Corasick algorithm? [2].
The h-values can be computed level by level by the following equations, for all 0 € 3.
L ifv=r
h(o,v) =4 u if v=child(w,i) and u=child(h(l!(w),w),i) and I (u) =0
h(o,u) if v=child(w,i) and u=child(h(l(w),w),]) and Z(u) # o
When the h-values are known, the L-values can also be computed level by level as follows.
1 fv=r
L(o,v) = u if v=child(w,i) and u=child(h(l(w),w),i) and u € F(P)
L(o,u) if v=child(w,i) and u=child(h(I(w),w),i) and u & F(P)
The transition function M can be computed easily once the function 4 is known. Thus,

M can also be computed in O(| P |) time.

3.3.2 The Matching Procedure

Algorithm 3.1 Given pattern tree P and text tree T', this algorithm fireds all occurrences
of PinT.

1. Construct the automaton PMM(P).

2. Assign a counter to each node of T and initialize them to zero. Scan T with PMM(P)

and perform the appropriate writing operations described in DefiniZion 3.1.

3. Traverse T, checking the value of the counter at every node; if the counter’s value at

a node v is | F(P) |, report a match at v.

Let the suffiz indez of P, denoted by S(P), be the number of levels® on which leaves

occur. [22] and [14] have shown that Algorithm 3.1 can be implemented to perform subtree

4The Aho-Corasick algorithm can be viewed as the KMP algorithm for multiple pattern strings without

A-transitions.

5A node v is on level n if depth(v)=n.
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Figure 3.2: A sample pattern tree

matching in O(| T | xS(P)+ | P |) time. The complexity of this algorithm based on the

number of node comparisons is O(| T | + | P |).

3.3.3 An Example

Let P denote the pattern tree of Figure 3.2 with the corresponding functions child, parent
and depth defined in Table 3.1. The functions in Table 3.2 are used in defining PMM(P).
The result of applying Algorithm 3.1 to a text tree is illustrated in Figure 3.3 and Table 3.3,

and the algorithm reports the matches found at nodes 1 and 3.

3.4 Frontier-to-Root Approach

The bottom-up algorithm described in the section constructs a frontier-to-root automaton

based on the pattern tree which scans the text tree to find all matches.
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child(v,s) | 1 | 2

sl s2 | s3

s2 s4 | sb

s3 s6 | s7

s6 s8 | s9
v: s2 | s3 |s4 | sb|s6 |sT|s8|s9
parent(v): || s1 | s1 [ s2 | s2 | 83 | 83 | s6 | s6
v: sl | s2 | s3 |s4 |sh|s6 |s7|s8|s9
depth(v): | O |1 |1 |2 |2]|2]|2)|3|3

Table 3.1: Functions corresponding to the pattern in Figure 3.2

h(o,v) | s1 [s2 | s3 |s4 | s5 |6 | s7 | s8 | s9
a 1l [sl1]sl{sl|sl|sl|s3]|sl|sl
b ll|lLfLjLr)L]|s2|L|L]|L
v: sl [s2 | s3 |s4 | sb|s6 |s7]|s8]|s9
Lv): | L | L | L] L ]| L] L|L]|s4]|s
g1(o,v) | s1 | s2 |83 |s4 |85 |s6|sT|s8|s9
a 82 [ s2 | s6[s2|s2|s2|s6|s2|s2
b sl |s4|{s2|sl|sl|s8|sl|sl|sl
g2(o,v) | sl |82 |s3 |s4 |85 |s6 |s7|s8|s9
a 83 |83 |s7|s3 |83 |83 |s7|s3|s3
b sl |sh|[sl|sl|sl|s9|sl]|sl]sl

Table 3.2: The functions used by Algorithm 3.1

26
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node: 1/2|3|4|5|6 | 7] therest

counter value: | 505|020 ]2 all0

Table 3.3: Counter values corresponding to the tree in Figure 3.3

bs2 a.s3
cs4 asB bsG as7
sz cs3 a88 cs9 bsG cs7

cs4 cs5 cs2 cs3 cs8 csg

Figure 3.3: State tree resulting from Algorithm 3.1
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3.4.1 The Automaton

Definition 3.2 (Match Set) Given a pattern tree P € Ps, let Sp be the set of all subtrees
of P. A subset Q of Sp is a match-set of P if there exists a tree t in Ty such that every

pattern in Q root-matches t and every pattern in Sp — Q does not root-match t.

In other words, a match-set of P is a set of subtrees of P for which there exists a term
tree t which is root-matched by all subtrees in the set but by no other subtrees of P. In
particular, the set of all subtrees rooted at the leaves of a pattern tree is a match-set since
given any text tree consisting of a single node, all subtrees in the set root-match it but no
other subtrees of the pattern do. Let each subtree of P be represented by its root. Then,
each match-set of P can be represented by a subset of N(P). Let S(P) denote the set of
all match-sets of P, represented by subsets of N(P), and let X(P) (€ S(P)) denote the

match-set consisting of all leaves of P.

Definition 3.3 Given a pattern tree P € Ps rooted at r, the Subtree Matching Machine
P, denoted by SMM(P), is a frontier-to-root automaton with input alphabet X, state set
S(P), initial state X(P), the set of final states {Q | r € Q}, and the transition function
M : U5y x S(P)F) — S(P) defined by:

M(”)Qh'":QV(d)) =
X(P)u{pe€ N(P)|l(p) = o and child(p,) € Q; for 1< < v(o)}.

In principle, given a pattern tree P € Ps, the match-sets of P and the transition function
of SMM(P) may be generated by a closure strategy which starts with the match-set X (P)

and repeatedly applies the following operations for every symbol ¢ in >3 :

Q(s) — X(P)u {pe N(P)|l(p) = o and child(p,7) € Q; for 1 < i < v(0)}.

M(”: Q1+, Qu(a)) — Q(a)



CHAPTER 3. PREPROCESSING PATTERN TREES 29

where the Q;’s, 1 < ¢ < v(0), have already been generated. This generation algorithm
requires O(| S(P) |"®+1 x | P| x | £ |) time, and the table size is O(| S(P) [*®) x | T |).
The value of | S(P) | is bounded from above by 2/7l.

3.4.2 The Matching Procedure
Here is the bottom-up tree matching algorithm.

Algorithm 3.2 Given a pattern tree P and a text tree T, this algorithm finds all occur-

rences of P in T.

1. Construct the automaton SMM(P).

2. Scan T with SMM(P) in such a way that whenever a final state is assigned to a node,

report a match found at that node.

It is clear that the step 2 of Algorithm 3.2 can be accomplished in O(| T |) time. So,
the entire algorithm can be implemented to perform tree pattern matching in O(| T | +
| S(P) |“(®)+1x | P |) time. Its time complexity based on the number of node comparisons

is linear in the total size of the text and the pattern.

Algorithm 3.2 first appeared in [14] in a very similar setting. The authors also noted
that if a bit string of length height(P) can be associated with every node of the text tree and
if intersections and unions of bit strings can be performed in constant time, Algorithm 3.1
and Algorithm 3.2 can be combined to give an algorithm whose time complexity is O(| T |

+| PJ).

3.4.3 An Example

Let P be the pattern tree of Figure 3.2. The states of SMM(P) are encoded as follows:

so = X(P)={s4,s5,7,8,59}
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ass
bsl a-33
cso a.32 b31 asz
bs1 cso a.so cso bsl cso

Figure 3.4: State tree resulting from Algorithm 3.2

s1 = {s2,86}UX(P)
s2 = {s3}uX(P)
s3 = {s1,83}UX(P)

The set of final states of SMM(P) is {ss}. The transition function of SMM(P) is given in
Table 3.4. The result of applying Algorithm 3.2 to a text tree is illustrated in Figure 3.4;

the algorithm reports the matches found at nodes 1 and 3.
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M(a,Q1,Q2) | so | 51 | s2 | s3
80 80 | 80| 80 | 80
81 82 | 82| 83 | 83
82 S0 | So | S0 | So
83 8 | S0 | so | so
M(b’ Q1, Q2) 80| 81| 82| 83
80 s1 | 81|81 | s
81 s1 | s1|81| 81
82 81|81 81| s
83 sy (81|81 ]|s1

Table 3.4: The transition function used by Algorithm 3.2

31
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Preprocessing Text Trees

For environments in which text strings rarely change but there are many pattern matching
queries, string matching problems can been solved by preprocessing the text string. Position
trees, suffix tries and DAWGs have been used for this purpose; see [4,5]. In this chapter, we
generalize these ideas to tree pattern matching. In particular, the concepts of suffix tries,
compact suffix tries and DAWGs for strings are generalized to give analogous structures for

term trees. Such generalizations have not been examined in the literature.

4.1 Positions in Strings and Trees

We have implicitly used nodes to denote positions in a term tree. We now define positions

of term trees formally together with the analogous notion for strings.

Definition 4.1 A position in a string of length n is an integer between I and n inclusively.

A position is a term tree is a node of the term tree.

Each position in a string corresponds to a unique prefix of the string ending at the

position and to a unique suffix starting at the position. Similarly, each node of a term tree

32
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corresponds to the unique root-to-node path of the node and to a unique subtree rooted at
the node. For a string, both its prefixes and suffixes are also strings. For a term tree, its

subtrees are term trees, but, in general, its root-to-node paths are not.

Every two positions of a string uniquely identify the substring! between them. To make
analogous claims for term trees, we need to define notions for term trees which are analogous

to substring for strings.

Definition 4.2 Given two nodes u and v in a term tree T such that u = a*(v) for some
k > 0, the ad-string (standing for “ancestor-to-descendant string”) from u to v is defined

as:

A fk=0

ad-string(u, v) =
ad-string(u, w) o (I(w),?) if k> 0 and v = cheld(w,1)

The string ad-string(u,v) is said to start at u and end at v.

In other words, the ad-string from u to v is the rn-string of v less its prefix which is the
rn-string of u. Obviously, an rn-string is also an ad-string. In the tree of Figure 4.6, ad-
string(2,10)=(b,2)(a,1). Note that nodes u and v uniquely identify the ad-string from u to

v provided that u is an ancestor of v. Note that an ad-string is a string in (U:(ﬁ)(zk X

{1a2:"',k}))*'

Definition 4.3 Given a node u in a term tree T, and a nonempty subset S of N(T) con-
taining only descendants of u, S is connected at u if u € S and for every node v in S all

nodes between? u and v are alsoin S.

Definition 4.4 A partree (standing for “part of a tree”) rooted at u is defined to be either
the empty set or a subset of N(T') connected at u. (In this case, u is called the root of the
partree.) The empty partree is denoted by p.

1To be formal, given a string s = a1a2 - - - an, a substring of s between ¢ and j is the string aiai41---a;
where 1<i<j<n.

2A node w is between u and v if v = a’(w) and w = a(v), for some 1,5 > 0.
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In other words, a partree rooted at a node u is the subtree rooted at u less zero or more
subtrees rooted at descendants of u. For example, considering the tree of Figure 4.6, each
of the sets {2,4,8}, {2,4,5,11} and the empty set forms a partree rooted at node 2. Note

that a partree is not necessarily a term tree.

The size of a partree is the number of nodes in it. The leaves of a partree are the nodes
which are in the partree but none of whose proper descendants is in the partree. A partree

is uniquely determined by giving its root and all its leaves.

Given a nonempty partree @ rooted at u and a node v in Q, a subpartzee of Q rooted at
v consists of all descendants of v which are in @. The only subpartree of the empty partree

is the empty partree.

Definition 4.5 Let T be a term tree and Q1 and Q2 be two partrees of T rooted at nodes

vy and v, respectively. Q1 and Q2 are said to be equal if one of the following conditions

holds:

1. Q1 and Q3 are both empty partrees;

2. Q1 and Q2 are nonempty, I(vi) = l(vz) and the subpartree rooted at child(vy,s) is
equal to the subpartree rooted at child(vs,1), for 1 <1 < v(l(vy)).

Let us compare the notions of substring, ad-string and partree.

e A substring is connected in the sense that for any two symbols in the substring, all
symbols between them are also in the substring. In this sense, ara ad-string is also

connected. According to Definition 4.3, a partree is connected.

e Given a string s, a term tree T and a nonnegative integer n, let 2 be a position in
s and v be a node in T. If s has a substring of length n starting (or ending) at 1,
the substring is unique; if T has an ad-string of length n ending at v, then it is also
unique; but T may have many partrees of size n rooted at v and may have many

ad-strings starting at v.
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e The maximal substring (in terms of its length) of a string is the string itself. The

maximal partree (in terms of its size) of a term tree is the term tree itself.

Given a string s and a set of positions S of s, there is a unique maximal substring (in
terms of its length) of s which starts at every position in S. We can make a similar claim

for partrees of a term tree, as follows.

Given a term tree T, there is an empty partree rooted at every node of T'. Hence, given
a subset S of N(T), there exist sets of equal partrees where each set contains a partree
rooted at v for every v € S; call these sets parsets of S. We say that a parset of S is

mazimal if there is no parset of S containing partrees of larger size.

Proposition 4.1 Given a term tree T and any nonempty subset S of N(T), there is a
unique mazimal parset. (We will call any partree equal to the partrees contained in this

parset ¢ maximal partree of S.)

Proof: It is obvious that S must have at least one maximal parset. Let R; and R; be two
maximal parsets of S and assume that they are different. Given any two vertices u and v
in S, let partrees P; and @ be in R;, and P; and Q2 be in R; where P, and P, are rooted
at u and Q; and Q2 are rooted at v. Then, the partree P, U P; rooted at u is equal to the
partree Q1 U Q2 rooted at v, so they are also contained in some parset of S. Since R; and
R, are different, P; and P; are not equal, so | PLUP; |>| P; |, ¢ = 1,2. This contradicts
the assumption that P, and P, are contained in maximal parsets of S. Therefore, R; and

R, cannot be different, that is, there is only one maximal parset of S. |

In particular, if S = {v} for some node v in T, the only maximal partree of S is the

subtree of T rooted at v.

There are other notions for trees which correspond to the notion of position for strings.
For example, we can also use fringes introduced in Definition 2.6 as positions in term trees.

We will say more about this in later chapters.
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Figure 4.1: An example of a trie

4.2 Suffix Tries and DAWGSs

4.2.1 Suffix Tries

Let us first review what suffix tries and compact suffix tries are.

Definition 4.6 A trie is a rooted tree with labeled edges.

Recall that an edge (u,v) is in a tree if u=child(v). The label on an edge (u,v) of a trie
is denoted by label(u,v).

Example 4.1 The trie of the set of strings {aba, abb, ac, baa, bacb, bacc, bb} is given in Fig-
ure 4.1. Note that in the drawing of the trie, the labels of the edges are put to the left of

the vertices under them.
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The number of vertices of a trie for strings 81,82, -+, 8p is bounded from above by
(Xl si | +1).

Given a vertex v in a trie I, the string-label of v, written as sl(v), is defined as:

A if v is the root of I
sl(v) =
sl(u) o label(u,v) if there is an edge (u,v)in I

In other words, sl(v) is the string formed by concatenating all labels of the edges on the
path from the root of I to v.

Definition 4.7 A node v in a trie of a set of strings represents the set of strings which

have prefizes equal to sl(v).

Each leaf v of a trie represents the original strings which are equal to sl(v); hence a trie of

m strings has at most m leaves.
Definition 4.8 The suffix trie of a string s is the trie of all suffizes of s.3

Constructing a suffix trie for a string of length n requires O(n?) space and time.

Let I be the suffix trie of a string s, and denote each suffix of s by its starting position.
According to Definition 4.8, each vertex v of I represents the positions (in s) each of which
starts a suffix that has sl(v) as its prefix. Hence, suffix tries of text strings may be used to

solve string matching problems.

A chain in a trie of a set of strings is a maximal sequence of edges and vertices of the

form

< (‘UO, 01), vy, (vla vz), v2,°°°,Vn, (”na vn+1) >

3Note that there is also a slightly different definition which defines the suffix trie of a string s as the trie

of all suffixes of s$.
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where n > 1, each of the vertices vy, vz, -, v, has exactly one outgoing edge and all v;’s

represent the same set of strings. The word of such a chain is the string

label(vo, v1) o label(vy, v3) o - « - o label(vp, Unt1)-

Definition 4.9 The compact trie of a trie I ts obtained by replacing every chain in I by
an edge labeled with the word of the replaced chain.

Definition 4.10 A compact suffix trie of a string s is the compact trie of the suffiz trie of

s.
Proposition 4.2 A compact suffiz trie C of a string of length n has at most 2n—1 vertices.

Sketch of the Proof: C has at most n nonbranching nodes (nodes of degree less than

2), and hence at most n — 1 branching nodes, giving a total of at most 2n — 1 nodes. O

4.2.2 The DAWG

If we only want to recognize all substrings of a given text string, that is, if we want to solve
Problem 2, we can use smaller automata than the suffix trie of the string. The DAWG
(Directed Acyclic Word Graph) of a string is one such automaton?* [5]. The states of a
DAWG correspond to a set of substrings of the text such that no two substrings in the set
end at the same set of positions in the text and every substring of the text is a suffix of
some substring in this set. Each substring in the state set stands for the set of positions in
the text where this substring ends. For example, given the text string abcbe, the substring
bc corresponds to a state in the DAWG of abcbe, and it stands for the positions 3 and 5.
Since the substring ¢ also ends at positions 3 and 5, it is said to be end-equivalent to be,

according to the following definition.

“Blumer et al. [5] also describe a class of even smaller automata.
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Definition 4.11 Let string s be ay ...an(a1,...,an € £). For any nonempty y in T*, the
end-set of y in s is defined by end-sety(y) = {i : y = a;_|y|41..-ai}. In particular, the
end-set of the empty string \ is defined to be end-set,(A) = {0,1,2,...,n}. Two strings =
and y in * are end-equivalent (in s) if end-set,(z) = end-set,(y), and we denote this by
z =, y. We denote by [z], the equivalence class of x with respect to =s. The degenerate

class is the equivalence class of the strings that are not substrings of s.

Given a string s, there is a one-to-one correspondence between the end-sets of s and the
equivalence classes of s with respect to =, such that an end-set E corresponds to an equiv-

alence class [z], if and only if E = end-set,(z).

Definition 4.12 The DAWG for s is a (partial) deterministic finite automaton with in-
put alphabet 3, state set {[z], | = is a substring of s}, initial state [A],, and transitions

{([z]s, a, [za],) | = and za are substrings of s}; all states of the DAWG are final.

The DAWG defined above recognizes the set of all substrings of s. So, it can be used to

scan a given pattern string to check if the pattern occurs in the text string s.

Example 4.2 The transitions of the DAWG for the string s = abcbc are:

([Ms, a, [a]s), ([a]s, b, [ab]s), ([abls, c, [abe]s),
(Jabc]s, b, [abed]s), ([abebls, ¢, [abebe]s), ([Als, b, [8]s),
(Mes e, [bels),  ([Bls, 8, [bels), ([be]s, b, [abeb]s).

The end-sets corresponding to the states of this DAWG are:

end-set,()\) = {0,1,2,3,4,5}, end-set,(a) = {1},

end-set,(b) = {2, 4}, end-set,(bc) = {3, 5},
end-set,(ab) = {2}, end-set,(abc) = {3},
end-set,(abcb) = {4}, end-set,(abcbc) = {5}.

The state diagram of this DAWG is given in Figure 4.2.
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Figure 4.2: The DAWG of abcbc
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Theorem 4.3 Given a string s, let C be the compact suffiz trie of s. Each vertex in C
represents exactly one end-set of s, and each nonempty end-set of s is represented by ezactly
one vertez of C. Moreover, C has an edge (u,v), where u represents U and v representsV,

if and only if U DV and there is no end-set W of s such that U DW D V.,

Sketch of the Proof: Let I be the suffix trie of s. Since every vertex in I represents
an end-set of s, every vertex in C also represents an end-set of s. Since every substring
of s is equal to sl(v) for some vertex v in I, all nonempty end-sets of s are represented by
vertices of I. A set represented by a vertex in I is also represented by a vertex in C, and
any two vertices of C represent two different sets of positions, so each nonempty end-set of

s is represented by exactly one vertex in C.

The second part of the theorem follows from Definition 4.10. 0O

Proposition 4.2 and Theorem 4.3 give us the following corollary.
Corollary 4.4 A string of length n has at most 2n — 1 nonempty end-sets.

A string z is a reverse string of a string y, written as ¢ = ¢y, if | z |=| y | and
zli] =yl y| - +1] for1<i<|y].

The following theorem illustrates another connection between compact suffix tries and

DAWGs.

Theorem 4.5 Given a string s, let C be the compact suffiz trie of s™1, and denote the
DAWG of s by D. D can be constructed from C as follows: The states of D are the vertices

of C, and D has a transition (u,a,v) if and only if v represents end-set,— ((s{(u))"1oa).

The proof of the above theorem is based on the definitions of end-sets, DAWGs and compact

suffix tries, and is omitted here.
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Example 4.3 The compact suffix trie of the string (abcbc)~!=cbcba is given in Figure 4.3
where the end-sets are expressed in terms of the positions of abcbc to show the connection

with Figure 4.2.

Blumer et al. [5] describe an algorithm which constructs the DAWG of a given text
string in time linearly proportional to the length of the text string. This algorithm does
not keep track of the end-sets, so it reports only whether a pattern occurs but not where it
occurs. Since the time required to read a pattern string with a DAWG is clearly linear in
the length of the pattern string, the DAWG can be used to determine whether the pattern
occurs in the text in linear time; that is, the DAWG can be used to solve Problem 4 in

linear time.

Note that given a text string ¢t and a pattern string p, the suffix trie and the DAWG
for t~1 can also be used for solving string matching problems involving p and t by scanning

p~! instead of p.

4.3 Generalizations Using Ad-Strings

4.3.1 Overview

Given a term tree T over X, an ad-string of 7" from u to v is an nl-string (standing for
node-to-leaf string) if v is a leaf of T'; a reverse string of an rn-string of v is called an
nr-string (standing for node-to-root string) of v; and a reverse string of an nl-string of v is
called an In-string (standing for leaf-to-node string) of v. Listed below are some structures
which result from generalizing the concepts introduced in the previous section based on

nr-strings, nl-strings, rn-strings and In-strings of T'.

1. The trie for all nr-strings of T is called the nr-trie of T; it can be used to recognize

all substrings of nr-strings of T'.
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Figure 4.3: The compact suffix trie of (abcbc)™!
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2. The trie for all nl-strings of T is called the nl-trie of T'; it can be used to recognize all

substrings of nl-strings of T'.

3. A compact nr-trie of T is the compact trie of the nr-trie of T, and a compact nl-trie

of T is the compact trie of the nl-trie of T'.

4. For any string z in (U:(:i)(z‘.k x {1,2,-+-,k}))*, the rn-set of z in T is defined by
rn-setr(z)={v € N(T) | z is equal to a suffix of an rn-string ending at v}; note
that the rn-sets of T' correspond to the end-sets of the rn-strings of 7. Two strings
z and y in (u‘,;(fl)(z,, x {1,2,---,k}))* are rn-equivalent if rn-setz (z) = rn-setr(y),
and we denote this by z =} y. We denote by [z]} the equivalence class of z with
respect to =5. Then, we can define the DAWG for the rn-strings of T, which we
call the rn-DAWG of T, as a (partial) deterministic automaton with input alphabet
U:_(__El) (Zk x {1,2,-,k}), state set {[z]}: | = is a substring of some rn-string of T'},
initial state [A]}., and transitions {([z]}, 0, [z0]}) |  and zo are substrings of some

rn-strings of T'}. The rn-DAWG of T recognizes all substrings of the rn-strings of T'.

5. For any string z in (U;g)(ﬂk x {1,2,---,k}))*, the In-set of z in T is defined by
In-setr(z)={v € N(T) | z is equal to a suffix of an In-string ending at v}; note
that the In-sets of T correspond to the end-sets of the In-strings of T'. Two strings
z and y in (U:(:i)(zk x {1,2,--+,k}))* are In-equivalent if In-setz(z) = In-setr(y),
and we denote this by z =; y. We denote by [z]} the equivalence class of z with
respect to E'T. Then, we can define the DAWG for the In-strings of T', which we
call the In-DAWG of T, as a (partial) deterministic automaton with input alphabet
U',:(fl) (& x {1,2,--,k}), state set {[z]}: | = is a substring of some In-string of T'},
initial state [A]%, and transitions {([z]%, 0, [zo]}) | = and zo are substrings of some

In-strings of T'}. The In-DAWG of T recognizes all substrings of the In-strings of T'.

Since ad-strings and their reverses are also strings, much of the discussion in the previous
section on suffix tries, compact suffix tries and DAWGs also applies to the structures just

introduced.
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In the following, we compare these structures for a given term tree 7.

1. Since each node v of T gives rise to exactly one nr-string of length depth(v), the sum
of the lengths of all nr-strings of T is
Z depth(v),
vEN(T)
which is an upper bound on the number of edges in the nr-trie of T'. This upper

bound is less than | T |2.

2. Since each leaf of depth d gives rise to exactly d nonempty nl-strings, among which
there is one string of length 1 for each integer 1 from 1 to d, the sum of the lengths of
all nl-strings of T is thus

1
> Edepth(v) (depth(v) + 1),
vEF(T)

which is an upper bound on the number of edges in the nl-trie of T'. This upper bound

is less than | T |3.

3. The compact nr-trie of T has at most (2 | T | —1) vertices, and the compact nl-trie
of T has at most (2(| F(T) | xheight(T)) — 1), which is O(] T' |?), vertices. The proof

of this statement is similar to that of Proposition 4.2.

4. Let C be the compact nr-trie of T'; then each vertex in C represents exactly one rn-
set of T and each nonempty rn-set of T is represented by exactly one vertex in C.
Similarly, if C is the compact nl-trie of T, then each vertex in C' represents exactly
one In-set of T and each nonempty In-set of T is represented by exactly one vertex in

C. The proof of this statement is similar to that of Theorem 4.3.

5. The rn-DAWG of T has O(| T |) states, and the In-DAWG of T has O(| T |?) states.

Proposition 4.6 Given a text tree T, a pattern tree P and a node v inn T, if each of the

root-to-leaf strings of P is equal to a prefix of an nl-string of v, then P 1natches T at v.
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Note that merely recognizing root-to-leaf strings of a pattern tree does not imply that the
pattern occurs in the text; for solving either Problem 1 or Problem 2, we also need to know
where these strings occur in the text in order to determine if the entire pattern occurs in

the text.

Based on Proposition 4.6, we can derive from any of the above structures an algorithm
for tree pattern matching. To illustrate this, we will discuss a tree matching algorithm

based on the nl-trie of a given term tree in the next subsection.

4.3.2 A Root-to-Frontier Automaton Based on Text

We now present an algorithm which preprocesses the text tree to construct a root-to-frontier

automaton which is used to scan pattern trees to solve tree matching problems.

Definition 4.13 Given a term tree T over ¥ and the nl-trie G of T, a (partial) root-to-
frontier automaton based on G, denoted by RN(T), is defined as follows.

1. The states of RN(T) are the vertices of G; the initial state is the root of G, and all
states of RN(T) are final.

2. The transition function M of RN(T) is defined by: M(0,9) = (g1, "+, 9(s)) ¥f and
only if (9o, ¢:) is an edge of G and label(qo, ¢;) = (0,1) for 1 < i < v (X).

We also define a function S from the state set of RN(T') to the power set of N(T) as follows.

1. For each state q of RN(T), which is also a vertez of G, define S(q) to be the set of
nodes of T such that v € S(q) if and only if some nl-string in the set represented by

q starts at v.

Note that if the state of a node v in the input is ¢, the root-to-node string ending at v

equals a prefix of the node-to-leaf string starting at w for every node w in S(g).
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A straightforward algorithm for constructing RN(T') and the associated S-function re-
quires O(| T |*) time and space. The following algorithm uses the root-to-frontier automaton

and its associated S-function so constructed to solve the tree matching problems.

Algorithm 4.1 Given the RN(T) and its associated S-function for a text tree T, this

algorithm finds all occurrences of a pattern tree P in T.

1. Scan P with RN(T).

2. If P is accepted, that is, all leaves of P are reached by RN(T), then compute the set

L = Nyerr){H(q) | g is the state of v},

and report matches found at all nodes in L. (If L is empty, no match is reported. ) If

P is not accepted, there is no match of P in T.

The time complexity of Algorithm 4.1is O(] P | x | T |) since Step 1 of the algorithm
takes O(| P |) time and Step 2 requires O(| P | x | T |) time.

4.4 Generalizations Using Partrees

Since we have defined that a pattern tree has all its leaves labeled with ®, we use a variation

of the partree introduced earlier to generalize the DAWG.

Definition 4.14 Given a term tree T, an internal partree of T rooted at v is defined to be

either the empty set or a subset of I(T) connected at v.

In other words, an internal partree of T is a partree T which contains no leaves of T. For
example, considering the tree of Figure 4.6, each of the sets {2,4},{2,4,5,11} and the empty
set is an internal partree rooted at the node 2.

Since an internal partree is a partree, all the notions defined earlier for partrees also

apply to internal partrees.
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Definition 4.15 Given an internal partree Q of a term tree T', the end-set of Q in T is de-
fined by end-setr(Q) = {v | there is an internal partree rooted at v which is equal to Q}.
In particular, end-setp(u) = N(T). Two internal partrees Q1 and Q2 of T are end-
equivalent, denoted by Q1 =r Q2, if end-setr(Q1) = end-setr(Qz). We denote by Qlr

the equivalence class of Q with respect to =r.

Given a term tree T', there is a one-to-one correspondence between the end-sets of T and
the equivalence classes of T with respect to =7 such that an end-set E corresponds to an
equivalence class [Q]r if and only if E = end-set7(Q). We now define the analog of DAWG
for trees, which we call TDAWG.

Definition 4.16 The TDAWG for a term tree T over X is a (partial) frontier-to-root

automaton with input alphabet X, state set S = {[Q|r | Q is an internal partree of T},

and initial state [p]r. Its transition function M : U:(fl) (Zk x S*) — S is defined by:

M(o,[QilT, -+, [Qu)lr) = {[Qlr | [Q]r contains an internal partree R rooted
at a node v such that l(v) = o and
the subpartree of R rooted at child(v,t) is
in [Qi]T for 1 < i <wv(o)}.

All states of the TDAWG are final.

Note that each state of the TDAWG corresponds to an end-set of T, and vice versa.

The TDAWG of T defines the set of term trees {P | the partree I(P) of P is equal
to some partree of T}; in particular, the TDAWG of T recognizes all pattern trees which

match T, so it can be used to check if a pattern tree occurs in T, that is, it can solve

Problem 2.

Example 4.4 Given the term tree T in Figure 4.4, its TDAWG D is defined as follows:

1. The state set of D is {so, s1, 52, 83, 54} Where
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Figure 4.4: The term tree in Example 4.4

8o = [u]r which corresponds to the end-set N(T),

81 = [{3}]r which corresponds to the end-set {3,4,5},

sz = [{1,3}|r which corresponds to the end-set {1,2},

ss = [{2,4,5}|r which corresponds to the end-set {2},

sq4 = [{1,2,3,4,5}|7 which corresponds to the end-set {1}.

2. The transition function M of D is:

M(a, 8o, 30) = 82, M(b)SO) 30) = 81, M(a,82,80) = 84,
M(a: 30)81) = 82, M(a, 81,80) = 83, M(a’ 83, 80) = 84,

M(a,s3,81) = 54, M(a,s1,81) =53, M(a,ss,s1)=s4.

3. The initial state is so, and the set of final states is {so, 51, s2, 53,54 }-

We can also define constructively the analog of compact suffix trie for trees, which we

will call CPDAG (Compact Position Directed Acyclic Graph).
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Definition 4.17 Given a term tree T, the CPDAG of T, denoted by CPDAG(T), is the
directed acyclic graph® defined as follows:

1. For each end-set E of T, create a vertez v of CPDAG(T). We say that v represents
E.

2. Given two vertices u and v in CPDAG(T) which represent U and V respectively,
(u,v) is an edge of CPDAG(T) if U DV and CPDAG(T) does not have a verter w
representing W such that UDW D V.

Notice the similarity between this definition and Theorem 4.3.

We will not define the structure analogous to suffix tries whose compact version is the
CPDAG, because such a definition is rather tedious and it is unclear how this analog of the
suffix trie can help us to solve the tree matching problem. We can also define analogously
a structure similar to a suffix trie based on the euler strings of the subtrees of a given term

tree; how this structure may be used for tree pattern matching is still under investigation.

Constructing the TDAWG for a term tree may be infeasible in general due to the large
number of states and transitions it may have. Since a TDAWG is a frontier-to-root tree
automaton with no unreachable states®, each state of a TDAWG, except the initial state,
must have at least one incoming transition, so the number of transitions of a TDAWG is
at least the number of its states less one. Consider the TDAWG of a given term tree T'.
The number of states in the TDAWG is equal to the number of end-sets of T'. Since each

such end-set of T, except the end-set N(T), is a nonempty subset of 7(7") and there are

SIf the edges of the CPDAG are to be labeled, the label on an edge (u,v), where u represents U and
v represents V', should reflect the difference between the maximal partrees of U less their leaves and the

maximal partrees of V less their leaves.
6 An unreachable state of a tree automaton is a state which can never be reached by the tree automaton

no matter what the input is. If s is a state in a TDAWG representing an end-set E, then s can be reached
when the input to the TDAWG is a term tree whose internal nodes form a partree which is equal to the

partree formed by all the internal nodes of a maximal partree of E.
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2lI(T)| _ 1 nonempty subsets of I(T), an immediate upper bound on the number of states of
the TDAWG is 2/1(T)l, Whether this bound is tight remains open, but there are classes of
text trees for which the number of states of their TDAWGSs grows exponentially with their

sizes, as the following theorem shows.

Theorem 4.7 For every positive even integer n, let a perfect tree of height n +1 be labeled

as follows:"

1. All nodes of depths from 0 to n — 1 are labeled a.
2. Foralli, 1 <i< 2?2, the (i + (i — 1)2"/?)-th node of depth n® is labeled c;
3. All other nodes of depth n are labeled b.

4. All leaves are labeled d.

( |T|+1 )1/2
4

Then, the number of end-sets of T is at least 2 — 2, and so is the number of states

in the TDAWG of T.

Proof: Let S be the set of nodes of depth n/2 in T'; S is {2,3} in Figure 4.5. Given any
nonempty proper subset N of {1,2,---, 2"/2}, let L be a binary tree of height (n/2+1) such
that the nodes of depths from 1 to (n/2 — 1) are labeled a and the nodes of depth n/2 are
labeled b and the leaves are labeled d. Let Ly be the partree of L obtained by removing
all its leaves and all the i-th nodes of depth n/2 for all { € N. Then, for each 1 € N there
is an internal partree, which is equal to Ly, rooted at the i-th node v of depth n/2 in T,
and Ly does not equal to any internal partree of T rooted at any other node of T. Hence,
{i-th node of depth n/2 | i € N} is an end-set of T. So each nonempty proper subset of
S is an end-set of T. For example, {2} and {3} are both end-sets of the tree in Figure 4.5
which are end-set({2,5}) and end-set({3,6}) respectively.

7See Figure 4.5 for an example.

8The i-th node of depth d in T is the i-th node of depth d encountered in a bread th-first traversal of T'.
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Figure 4.5: An example of a binary tree used in Theorem 4.7

Now, | T |=2""2-1,50 | S |= 2n/2 = (]I_|4+_1)1/2. Since there are 2!5| — 2 nonempty
proper subsets of S, there are at least (2(L‘|_T4+ Y2 _ 2) end-sets of T. Hence, the number of
states in the TDAWG of T is at least (204" —2). O

Theorem 4.8 In general, the TDAWG of a term tree T is not the minimal frontier-to-
root automaton, in terms of either the number of states or the number of transitions of the

automaton, which defines {P | the partree I(P) of P is equal to some pariree of T}.

Proof: This theorem is proved by an example as follows:

Let T denote the tree in Figure 4.4. The TDAWG D of T is given in Example 4.4. We
observe that replacing the states s; and sg on the left hand side of the original transition
functions by s3 and s respectively gives back exactly the same set of transitions as before,

so we can combine s; and s3 to give a new frontier-to-root automaton G defined below:

1. The state set of G is {so, 81, 823, S4}. (823 is a new state replacing s, and sgin D.)

2. The transition function M of D is:
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M(a, 80,80) = 823, M(b,SQ, 30) = 83, M(a, S23, 80) = 84,
M(a, 80, 81) = 823, M(a, 81,80) = 823, M(a, 823,31) = 84,

M(a, 51, 1) = 823,

3. The initial state is 89, and the set of final states is {so, s1, 523, 84} -

G defines the same set of binary trees as D. G has fewer states and few transitions than D,
so D is not minimal in terms of either the number of states or the number of transitions.

O

We have seen that the generalization of DAWG to TDAWG for solving tree matching
problems is infeasible in general. In the next section, we will apply the ideas underlying
TDAWGs to solve a special class of tree pattern matching problems, namely, those involving

only perfect pattern trees.

4.5 Frontier-to-Root Automata for Perfect Patterns

We now give an algorithm which constructs a frontier-to-root automaton based on a text
tree that scans perfect binary pattern trees to find all matches of the pattern in the text.

This construction takes time linear in the number of nodes in the text tree.

4.5.1 Equivalence Classes and the PMA

Given a binary tree T and a partree @ rooted at some node v in T, the height of Q is
defined to be the maximum integer ¢ such that the ¢-th descendent of v is in Q. The height
of an empty partree is defined to be —1. The partree Q is perfect if Q contains 2k+1 — 1
nodes where h is the height of Q; in particular, the empty partree is perfect. We denote
by Hr the maximum of the heights of the perfect internal partrees in . We now define a

class of equivalence relations on the nodes of T'.
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Definition 4.18 Two nodes u and v of a binary tree T are said to be k-equivalent if there

are equal perfect internal partrees of height k rooted at u and v; in this case, we write uExv.

Note that Ej’s for k > 0 only apply to internal nodes of T since there is no internal

partree of height greater that -1 rooted at leaves of T'.

Each E} defined above is an equivalence relation. We denote by [v]x the equivalence
class of v with respect to Ei. Also, we denote the set of all equivalence classes of Ej by
Ci(T) and define C(T) to be UT_, Ck(T). Note that the set of equivalence classes defined
here corresponds to a subset of the set of equivalence classes induced by the equivalence
relation “equal” between partrees. In the rest of this section, the word “class” stands for

“equivalence class” induced by the Ey’s.

We now enumerate the classes of a binary tree T in Tg.

e Since [u]_; = [v]_; holds for every two nodes u and v in T, there is only one class

induced by E_; which is N(T).

e The number of internal nodes of T is (| T | —1)/2, and there can be at most | ¥y |

different labels of the internal nodes of T'. So, the number of classes induced by Ejy is

min{(| T | -1)/2,| 22 [}-

e In general, the number of classes induced by Ej, for 0 < k < Hr, is no more than
min{(| T | +1)/2¥! —1,| B2 |2"*~1}, and the summing up the number of nodes

inside every one of these classes is no more than (| T | +1)/2¢*1 — 1.

Hence, the total number of classes is at most
Hrp 1
1+ 3@ ®( T +1) - 1) = (| T | +1)(1 - 27 FT) - - Hp(Hr + 1)
k=0

The first term on the right hand side of this equation is at most | T | since 2H7%1 <| T | +1,

where equality holds only when T is perfect, so the total number of classes of T is no more
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than | T |. The sum of the numbers of elements in all classes of T is at most
Hrp
IT1+> @ ®I(T|+1)-1)=
k=0
|T| (2 -2~ ErtD)) 4 (1 — 2~ Hr+l)) — %HT(HT +3)

which is clearly less than 2 | T |. In other words, both the total number of classes and the

total number of elements they contain are linear in | T |.

Definition 4.19 A Pattern Matching Automaton based on a binary text tree T over X,
denoted as PMA(T), is a (partial) frontier-to-root automaton with input alphabet X3, state
set C(T), initial state [v]-y, for some v € N(T); all states of PMA(T) are final. Its
transition function M : URT 1 (Z3 x Ci(T) X Ci(T) — Ci+1(T)) is defined by:

M(a, [v1]k, [v2]k) = [vs]k+1

if I(vs) = @, vy = child(vs,1) and vy = child(vs, 2), for any k, -1 < k< Hr.

Note that each state of PMA(T) corresponds to a set of nodes at which a perfect pattern

tree may match. An example of a PMA will be given later in this section.

A PMA of a binary tree T is not necessarily a TDAWG of T whose input is restricted
to perfect patterns. The former has at least as many states as the latter. We will discuss
in next subsection how to obtain the latter from to former by combining appropriate states
of the former. As pointed out above, PMA(T) has only a linear (in | T' |) number of states;
furthermore, each state of PMA(T) has at most one incoming transition, so the number of

transitions of PMA(T) is also linear in | T |.
The following theorem helps us to construct the PMA of a binary tree.
Theorem 4.9 Given a binary tree T, every pair of nodes in N (T) are (—1)-equivalent. Two

nodes u and v are k-equivalent, k > 0, if and only if I(u) = I(v) and child(w,%) Ex—1child(v,3),
fori=1,2.
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Proof: There is an empty partree rooted at every node of T, so, by Definition 4.18, any

two nodes in N(T') are (—1)-equivalent.

if: The condition child(u,i)Ex_ychild(v,i), for i = 1,2 implies:

1. There are perfect partrees of height k — 1 rooted at child(u,1), child(w,2), child(v,1)
and child(v,2).

2. The perfect partrees of height k — 1 rooted at child(u,1) and child(v,1) are equal, as
are the ones rooted at child(u,2) and child(v,2).

(1) implies that there are perfect partrees of height k rooted at nodes u and v, and (2)
together with the condition /(u) = I(v) implies that these two partrees are equal. Thus,

uFE}v follows.

only if: If two nodes u and v in T are k-equivalent for some k > 0, the perfect internal
partree U of height k rooted at u is equal to the perfect internal partree V' of height k rooted
at v. This means that I(u) = [(v) and the subpartree of U rooted at child(u,1) is equal to
the subpartree of V rooted at child(v, 1), for f = 1,2. Since these subpartrees are perfect

internal partrees of height (k — 1), it follows that child(u, ¢) Ex—ichild(v, ¢), for i=1,2. O

4.5.2 Constructing the PMA

Given a binary text tree T, let each class be identified by a natural number and let S ()
denote class 1. We construct the classes of T' in the following order: classes induced by
E_;, by Eg, -+, by Eg,, based on Theorem 4.9. To simplify the construction algorithm,
we assume that an additional variable b(v) is associated with each internal node v of T'.

When constructing classes induced by Epy1 (k > —1), b(v) is defined by:

b(v) = max{i | v € (i) and ¢ identifies a class induced by E; where j < k}.
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In the description of the following algorithm, S;(:) denotes a subset of S(7), and S;(¢)
contains all the left children in S(f); the variable c is the number of the next new class, and
the value of I is the smallest of the class numbers of the k-equivalence classes during the

construction of the (k + 1)-equivalence classes.

Algorithm 4.2 Given a binary tree T', this algorithm constructs the k-equivalence classes
for all k, —1 < k < Hr, starting with that of E_;; it also constructs the transition function
M of PMA(T).

1. Define S(1) to be N(T) and initialize b(v) to be 1 for each node v in T. Let I be 1
and ¢ be 2. (k= -1)

2. Repeat this step while Ci(T') is nonempty, that is, while there are nonempty k-equivalence

classes.

(a) To construct the classes of Ery1 from those of Ej, a scheme reminiscent of a

radiz sort is used as follows.

i. Partition each S;(i) so that u and v are in the same subset of Si(1) if and only
if b(child(parent(u),2))=b(child(parent(v,2))> I, implying that the siblings®
of the nodes u and v belong to the same class induced by Ej.

ii. Partition each resulting subset D of Si(1) so that u and v are in the same sub-
set of D if and only if l (parent(u))=l(parent(v)). For each resulting subset
G of D,

o define a new class consisting of all the parents of the nodes in G; identify
this class by c; if it is the first class induced by Ery1, assign c to a variable
i; let v be a node in S(c) and define the transition function value of
M(I(v), b(child(v, 1)), b(child(v, 2))) to be c; increment c by 1.
(b) After constructing the Ejy1-equivalence classes, for each node v in a class of

Ej41 identified by j, change b(v) to j, and change I to be the current value of 1.

9Two different nodes are siblings of each other if they have the same parent.
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The correctness of the above algorithm can be established based on Theorem 4.9.

Proposition 4.10 Algorithm 4.2 can be implemented to run in O(| T |) téme for any binary
tree T.

Proof: At most (| T | +1)/2%*! — 1 nodes are involved in constructing classes of Ej1
from those of Ej, for —1 < k < Hr, and the construction of the class of £_; involves | T' |
nodes. Each node involved in the construction of the classes of Ei;; is processed, during
the construction of Ej41, no more than a constant number of times. Therefore;
Hrp
IT|+ > @®(T|+1)-1)=
k=-1

(| T | +1)(3 — 2~ Hr+D) %HT(HT +5)-2

gives the total number of nodes involved in constructing the equivalence classes for all Ey’s.

Hence, Algorithm 4.2 requires O(| T |) time. O

4.5.3 The Matching Algorithm

We now give an algorithm which uses the PMA of a text tree to solve tree matching

problems.

Algorithm 4.3 Given PMA(T) for a binary tree T € 3 and a perfect binary pattern tree
P € Pg, this algorithm finds all occurrences of P in T.

e Scan P with PMA(T). If the state of root(P) is i, report matches at each node
contained in the set S(i); otherwise, root(P) is not reached by the automaton, and

there is no match of P in T.

Immediately, we obtain:
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Theorem 4.11 Given a tezt tree T and a perfect pattern tree P, after O(| T |) preprocessing
time, Algorithm 4.3 finds all occurrences of P in T in O(| P |) time.

Example 4.5 Let T denote the text tree of Figure 4.6; the states of PMA (T'), with their
corresponding equivalence classes, are listed below:
State 1: S(1) = N(T),
State 2: S(2)={1,3,5,14},
State 3: S(3)={2,4,6,7,10,11},
State 4: S(4) = {3,5},
State 5: S(5) = {1},
State 6: S(6) = {2},
State 7: S(7) = {1}.
The transitions of PMA(T') are defined as follows:
M(a,1,1) = 2,
M(b,1,1) = 3,
M(a,3,2) = 5,
M(a,3,3) = 4,
M(b,3,2) = 6,
M(a,6,4) = T.
The result of applying Algorithm 4.3 to a perfect pattern tree is illustrated in Figure 4.7;

the algorithm reports that a match is found at node 2.

4.5.4 Reducing the PMA

We now define another kind of frontier-to-root automaton for binary trees which is obtained

by reducing a PMA.
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«(®) <(® * b))  <(12) () 21 (5

Figure 4.6: A sample text tree

Figure 4.7: State tree resulting from Algorithm 4.3
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Definition 4.20 The PDAWG for a binary tree T over X is a (partial) frontier-to-root au-
tomaton with input alphabet £, state set S = {[Q|r | Q is a perfect internal partree of p},
and initial state [p|r. Its transition function M : Tz X S X S — S is defined by:

M(o, [Qi]T,[@2]T) = {[Q]r | [Q]r contains a perfect internal partree R rooted at
a node v such that l(v) = o and the subpartree of R

rooted at child(v,i) is in [Qi]r for i = 1,2}.

All states of the PDAWG are final.

In other words, the PDAWG of T is the TDAWG of T without those st ates corresponding

to the end-sets which are not end-sets of perfect internal partrees of T'.

Given a binary tree T, the PMA of T and the value of S(¢) for each state (or class) ¢ of
the PMA as those in Algorithm 4.2, we can construct the PDAWG of T" as follows:

If there are two different states s; and s3 of PMA(T) such that S (s1) = S(s2),
remove sz from the state set of PMA(T) and replace all occurrences of sz in the
transitions of PMA(T) by s;. Continue performing this transformation on the
modified automaton until no such s; and s; can be found in the automaton.
Define the start state to be ¢ such that S(¢) = N(T') and the set of final states

to be its state set.

If the input is restricted to perfect binary trees, the PMA of T and PDAWG of T obtained
by the above procedure defines the same set of perfect binary trees. Furthermore, if we
have kept the S(¢) value of each remaining state ¢, then the PDAWG of T also find all
occurrences of any perfect binary pattern which matches T'. The proof of these statements
is based on the observation that the state set of the PDAWG of T corresponds to a subset

of the set of all end-sets of T. We will not get into the details of this proof here.



CHAPTER 4. PREPROCESSING TEXT TREES 62

Example 4.6 The states of the PDAWG of the tree of Figure 4.6, with their corresponding

end-sets, are listed below:

State 1: S(1) = N(T),

State 2: S(2)={1,3,5,14},
State 3: S(3) = {2,4,6,7,10,11},
State 4: S(4) = {3,5},

State 5: S(5) = {1},

State 6: S(6) = {2}.

The transitions of PMA(T) are defined as follows:

M(a,1,1) = 2,
M(b,1,1) = 3,
M(a,3,2) = 5,
M(a,3,3) = 4,
M(,3,2) = 6.
Scanning the tree of Figure 4.7 gives the same state tree and reports the same match as in

Example 4.5.



Chapter 5

Other Approaches

In this chapter, some other approaches to the tree matching problems are discussed. Our
purpose here is not to describe new algorithms, but rather is to offer new insight into
the tree matching problem and to suggest directions for future research in this area. The
descriptions of the algorithms in this chapter are not given in detail, because they are

included only to illustrate the ideas behind the approaches.

5.1 Sliding the Pattern across the Text

In this section, we explore another analogy to derive algorithms for tree matching from

those for string matching, and we also discuss the difficulties involved.

5.1.1 Overview

We can classify some string matching algorithms according to the directions in which they
slide and scan the pattern string. For strings, sliding the pattern means moving the pattern
across the text so as to compare it with different substrings of the text. For example, the

Boyer-Moore algorithm [6] slides the pattern across to text from left to right and scans the

63
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pattern from right to left, whereas the KMP algorithm both slides and scans the pattern
from left to right. We can call these LR and LL algorithms, where the first letter is the
sliding direction of the pattern and the second letter is the scanning direction of the pattern.
Clearly, for string, the RL and RR algorithms are equivalent to the LR and LL algorithms.
Fro tree pattern matching, a pattern tree can be slid and scanned either top-down or
bottom-up. Hence, by analogy, we have the TB, TT, BT and BB algorithms. In this case,
however, the TB and BT algorithms are not equivalent and neither are the TT and BB

algorithms.

Sliding the pattern tree down the text tree involves splitting the text tree into several
subtrees and sliding the pattern tree up the text tree involves merging subtrees of the text

tree. In the next subsection, we discuss the T'T and TB algorithms.

5.1.2 Splitting the Text Tree
Partrees and Fringes Revisited

Given a term tree T rooted at r, there is a one-to-one correspondence between the partrees
of T rooted at r and the fringes of . We say that a partree Q rooted at r and a fringe L of
T correspond to each other if Q is obtained by deleting all subtrees rooted at the nodes in
L, that is, if @ = N(T) — Uyer{the subtree rooted at v}. In particular, the empty partree
corresponds to the fringe {r}, and the partree containing all nodes of " corresponds to the

fringe @, which is also called the empty fringe.

A partree Q1 is a successor of a partree Q3 if they are rooted at the same node, @; D Q;
and | Q; | — | Q2 |= 1; that is, Q; can be obtained from Q3 by adding one more node which

becomes a leaf of Q. We also say that Q2 is a predecessor of Q.

The Algorithms

We will describe the T'T and TB algorithms in terms of their similarity and their differences.
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We first introduce some new terminologies. Given two nodes u and v in a term tree
such that u = a*(v), for some 7 > 0, the string route(u, v) is defined as:

route(u, v) = A fu=v
route(parent(v)) o+ if v = child(parent(v),1)

Given a text tree T and a pattern tree P, we assume the existence of a function E
from (N(T)x (the set of fringes of P)) to (the set of fringes of T') so that given a node
vin T and a fringe L of P, E(v,L) is the set {u | v = d'(u) for some i > 0 and
route(v, u)=route(root(P),w) for some w € L}. This function may be visualized by placing
the root of P at the node v in T so that E(v, L) is the fringe of T which overlaps the fringe
L of P. The computation of E depends on data structures by which these two trees are
represented. Since we represent the trees using child and parent pointers, we can compute E
by carrying out synchronously a pre-order traversal of P starting at root (_P) and a pre-order
traversal of the subtree of T rooted at v to search for the elements in L so as to determine

the elements in E(v, L).

The underlying principle of the TT algorithm is that each node of the text is only
compared once, so the TT algorithm processes the text in time linear in the size of the
text. Although in the TB algorithm a node of the text may be examined several times,
some nodes of the text may never be examined at all, so the average time complexity may
be sublinear!, although the worst time complexity of the TB algorithm is quadratic in the

sizes of the pattern and the text.

Let T and P be the text tree and the pattern tree, respectively. We first list the

similarities between the TT and TB algorithms:

1. Both algorithms try to match the pattern at the root of the text. A starting fringe,
which is a fringe of P, is provided for the TT algorithm to initiate comparisons. The

initial starting fringe (before splitting the original text tree T) for the TT algorithm

How to prove whether this complexity is or is not sublinear remains open.
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is root(P). (The algorithms differ in how they carry out the comp arisons, that is, in

how they scan the pattern tree.)

2. For both algorithms, define the function New(S), where S is a subset of N(P), to be
the fringe of P corresponding to the minimal partree M which comntains the roots of
all subtrees of P which cannot possibly root-match P, because the nodes in (SN(the
subtree rooted at v € M)) cannot match the corresponding nodes of P when v is to

be matched with the root of P.

3. When the algorithms find a mismatch after having compared a set S of nodes in P
with the text tree, or when they have found a match in which case S = I(P), they
split the text tree into | R | subtrees where R is E((root of the text?),New(S)). Then
they treat the subtree rooted at every node of R as a new text tree and continue the
pattern matching in these new text trees with the same pattern, whose root is to be

matched with the root of each new text tree.
Now, we give the differences between the two algorithms:

1. Given a starting fringe SF of P and the text tree T; with which P is to be root-
matched, let Q be the partree corresponding to E(root(T;),SF). The TT algorithm
extends Q to its successor and compares the label of the additional node u with the
label of the node v in P provided that route(root(T};),u)=route(root(P),v) and that v
is not a leaf of P. If I[(u) = I(v), the TT algorithm adds v to S and continues extending
Q until @ equals the partree formed by I(P), in which case the T'T algorithm reports

an occurrence of the pattern.

2. The TB algorithm compares the nodes of the pattern with those of the text bottom-up
starting with the leaves of the partree formed by I(P), and it does the comparisons
in the reverse order to that used by the TT algorithm. It reports an occurrence of

the pattern when all the nodes in I(P) are matched.

2This text may also be a subtree of T resulting from previous splits of T
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3. For the TT algorithm, the union of the starting fringes for all subtrees resulting from
the same split of the text T} is the fringe corresponding to the partree S rooted at
root(P) which has been matched with a partree rooted at root(T;) prior to the split.
The starting fringe for the new text tree rooted at v corresponds to the subset of F

consisting of all descendants of the node (of P) which has been compared with v.

We do not specify the exact order in which the pattern is to be scanned in the above
description because there are many different possible scanning orders. Omne way to scan
the pattern top-down is by means of a breadth-first traversal. In general, computing the

function New for a given pattern P takes O(2/P) time.

One version of the TT algorithm for matching perfect binary patterns is described in [19)
whose time complexity is linear in the total size of the text tree and the pattern tree. The
scanning order is breadth-first. A version of the TB algorithm for matching perfect pattern

trees is not hard to design where the scanning order is the reverse of the breadth-first order.

Whether the approaches discussed in this section can result in algorithms better than
the ones described in Chapter 3 remains open. The algorithms outlined in this section
play an introductory role to this approach. The main difficulty here is how to reduce
the complexity of preprocessing, which is the calculation of the function New above. One
way of avoiding this difficulty is to design algorithms for restricted classes of pattern trees
which require less preprocessing. The algorithms applied to the class of perfect patterns
are examples of this approach. Tree matching algorithms for more general classes of trees
can be designed following the approaches discussed in this section, but how efficient and

general these algorithms are is a topic for future research.

5.2 Partitioning the Term Tree

A number of proposed algorithms [22,14,21,23] are based on viewing a tree as a set of

strings combined in some way. These algorithms solve the tree matching problems via
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solving the related string matching problems. In this section, we discuss an algorithm

based on partitioning a term tree into a set of partrees.

Our goal is to transform a given tree matching problem into an easier problem by
reducing the original problem to a similar problem involving trees of smaller sizes. We use
the observation that if the root of the pattern is labeled with o, it can only root-match the

nodes in the text that are also labeled with o.

Given T € Ty and P € Ps, let Ip and I denotes the partrees formed by I(P) and I(T),
respectively, and let the roots of both trees be labeled o. (This is not a restriction; if the
root of T is labeled with some other symbol, we, essentially, remove the maximal partree
rooted at the root(T) which does not contain any node labeled with o, and do pattern
matching for each of the remaining subtrees of T', reducing the original problem to several
smaller ones.) We partition Ip into a set of partrees whose roots are all labeled with o and
whose internal nodes®, except the root, are labeled with symbols from 3 — {¢} and whose
leaves either are labeled with o or are leaves of Ip. We denote this set of partrees by Sp.

We can also partition It into a set of partrees in a similar way; we denote this set by S7.

Definition 5.1 Let Q1 and Q2 be two partrees.

1. @, contains Q2 if Q2 is equal to a partree formed by a subset of Q1 which contains

the root of Q1.

2. @1 and Q2 are consistent if there erists a partree which contains both Qi and Q.

The join of a set of partrees is a partree with the minimum number of nodes which contains

all partrees in the set.

We can construct a forest Fr of term trees based on T as follows:

3A node v in a partree Q is an internal node if v and at least one of its children are in Q.
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Each node in the forest corresponds to a partree in S7. Suppose that a new
node v corresponds to a partree Q in S$ and that H is the set of all partrees
in Sp which are contained in Q. Let C be the join of H. Then the degree of v
is equal to the number of leaves of C which are labeled with 0. The label of v
represents Q. Let D be the partree rooted at the root of Q@ where D is equal
to C, and number the leaves of D which are labeled with ¢ in the order they
appear in a preorder traversal of D; then, child(v,i) is the node corresponding

to the partree in SZ rooted at the leaf of D numbered 1.

Finally, we can build a frontier-to-root tree automaton* for term trees, based on the pattern,

that scans trees in Fr to solve the matching problems.

We have just raised a number of new questions:

1. How do we partition a tree into the desired sets of partrees?
2. Given a partree in S§, how do we find the join C' mentioned above?

3. How do we construct the appropriate frontier-to-root automaton for the term trees in

Fr?

The first question is easy to answer: Traverse the tree and collect the nodes labeled with

o, each of which represents the partree rooted at itself.

Answering the second question involves constructing a finite automaton which scans the
partrees in S&; the number of states of such an automaton may be exponential in | Sp |.
The idea behind this construction is to transform each set of pairwise consistent partrees

into a set of strings which are then combined to form a trie.

There are a number of ways to answer the third question. One way is to simulate

such a frontier-to-root automaton for term trees by a finite automaton which is obtained by

4Here we use the original definition of a tree automaton that reads the labels of all nodes, including the

leaves, of its input trees.
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modifying the finite automaton used in answering the second question. In fact, the modified
finite automaton can solve the tree matching problem by scanning the trees in Fr only once.
The algorithm for constructing this automaton is rather complicated, so it is not given in

this thesis.

Preprocessing the pattern to construct the finite automaton takes time and space expo-
nential in the size of the pattern. Processing the text to find all occurrennces of the pattern
in the text takes time linear in the size of the text. So, the entire algorit hm may be imple-
mented to run in time exponential in the size of the pattern and linear in the size of the

text.

One question still remains: Are there ways of partitioning the patterna or the text which

result in more efficient tree matching algorithms?



Chapter 6

Conclusions and Open Problems

6.1 Pattern Matching of Unary Trees

We can view a string as a unary tree without its leaf and, conversely, we can also regard
a unary tree without its leaf as a string; in this case, we say that the string and the unary

tree correspond to each other.

Until now, we have been generalizing string matching algorithms to give tree matching
algorithms. In fact, we can also use tree matching algorithms to solve string matching

problems by treating strings as unary trees.

When applied to tree matching problems involving only unary trees, Algorithm 3.1 is
the Aho-Corasick algorithm [2] for string matching where the strings are scanned from
top to bottom; by replacing each match set by its largest element (the subtree with the
largest number of nodes), Algorithm 3.2 also becomes the Aho-Corasick algorithm, where

the strings are scanned from bottom to top.

Given a unary tree, the nl-trie of the tree is the suffix trie for the corresponding string
read from top to bottom, and the nr-trie of the tree is the suffix trie for the corresponding

string read from bottom to top, and the TDAWG for the tree becomes the DAWG for the

71
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corresponding string read from bottom to top, and the CPDAG (with ap propriate labeling
of its edges) of the tree is the compact suffix trie of the corresponding st ring read from top

to bottom.

6.2 Pattern Matching for Generalized Patterns

Throughout this thesis, all leaves of pattern trees are assumed to be labeled with ®. This

section shows that this restriction on pattern trees is not a serious one.

A generalized pattern tree over an alphabet X is a pattern tree over 3 except that the
leaves of the tree are labeled by symbols from ZoU{®} instead of only the don’t care symbol
®. The definition of “root-match” in Section 2.1 applies to generalized patterns with the

following addition to Definition 2.2:

If each of the pattern and the text consists of exactly one node and the labels

of the two nodes are equal, then the pattern tree root-matches the text tree.

The definition of “match” in Section 2.1 applies to general patterns without any modifica-

tion.

Here are two strategies for solving tree matching problems for a gener alized pattern tree

P, over ¥:

1. Suppose the symbols labeling the leaves of P, are from the set S U {®}, where S is
a subset of Y. Change the degree of each symbol in S to 1. Replace each leaf of
P, labeled with a symbol from S by a pair of parent-child nodes where the parent
is labeled by the symbol labeling the original leaf and the child is labeled with ®.
Similarly, replace each leaf of the text tree labeled with a symbol from S by a pair of
parent-child nodes where the parent is labeled by the symbol labeling the original leaf
and the child is labeled with any symbol of degree 0. Then, any of the algorithms for
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matching ordinary pattern trees may be used on the modified pattern trees and text

trees.

2. If all leaves of P, are labeled with labels in o, then the only nodes in a text at which
P, may possibly occur are those nodes having at least one height ( P,)-th descendent
but no (height(P,) + 1)-th descendent; we will call these nodes carzdidate nodes. The
candidate nodes can be determined in one traversal of the text tree. Then, a straight-
forward procedure may be employed to check if the pattern occurs at each candidate
node. Since no candidate node is an ancestor of another candidate node, this pro-
cedure takes no more node comparisons than the number of nodes in the text tree.
The time complexity of this algorithm is clearly linear in the sizes of the text and the

pattern.

6.3 Conclusions and Open Problems

Most existing algorithms for solving tree matching problems for general term trees consist
of two phases: preprocessing the pattern tree and processing the text tree. For all of these
algorithms, if the second phase takes time linear in the size of the text tree, the first takes
time exponential in the height of the pattern tree; on the other hand, if the first phase takes
time polynomial in the size of the pattern, the second phase takes O(n > h) time, where n

is the size of the text and h is the height of the pattern.

There have been several algorithms for solving tree pattern matching for special classes
of patterns. These algorithms are generally much simpler and more efficient than the ones
designed for general pattern trees. There is a common feature shared by all these special
classes of patterns, namely, within each such class, there is some notion of maximality for
trees, which helps in designing an efficient matching algorithm for the class. For example,
[14] describe one such algorithm which is in fact Algorithm 3.2 restricted to a special class

of pattern trees.
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Tree pattern matching provides a rich source of problems; in this thesis, we have barely
scratched the surface. We only claim in Winston Churchill’s words that “this is the end of

the beginning”. What remains to be done?

First, we have not implemented any of the algorithms discussed here, and we have little
idea how well they would perform in practice. However, we are not alone in this regard;

the literature is rife with unsubstantiated claims.

Second, there are many directions for further investigation. Initially, we were interested

in substructure searching in trees, that is:

Given a pattern tree P and a text tree T', we are to find if there exists a bijection
between N(P) and a subset of N(T') which not only relates the nodes with the
same labels but also preserves the ancestor relation between the nodes, that is,
given any two nodes u and v in P such that u = a&*(v) for some ¢ > 0, if the
bijection maps u to = and v to y, then I(u) = I(z), I(v) = I(y) and = = a’(y) for

some j > 0.

This corresponds to string pattern matching for string patterns of the form a; ®*a;®*- - -®*
am, where the a;’s are letters and ® is the don’t care symbol—the subsequence problem.
Other obvious questions are approximate tree pattern matching, the maximal common

substructure problem, and so on.

We close by stating some more open problems related to tree pattern matching.

1. The concept of “fringe” offers new insight into the understanding of tree structure.
For example, we may define the prefiz of a tree with respect to a given fringe to be the
partree rooted at the root of the tree which corresponds to the fringe. Consequently,
we may define the suffiz of a tree with respect to a given fringe to be the original tree
less the prefix of the tree with respect to the same fringe. Then a notion analogous to

substring may be defined to be the difference between two prefixes of the tree where
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one of the two prefixes includes the other. The questions are: Can we make use of
these concepts to derive efficient tree matching algorithms? Are these concepts more

useful in designing parallel tree matching algorithms?

2. Is there a non-trivial theoretical lower bound for the tree matching problems we have

studied in terms of the sizes of the text and the pattern?

3. Can we obtain more efficient algorithms by preprocessing both the pattern and the

text trees?
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