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ABSTRACT

This thesis addresses the problem of analyzing asynchronous
sequential circuits. Our first contribution is a unified mathematical
framework which enables us to derive a theory applicable to gate cir-
cuits, as well as to the more modern MOS circuits. We then study the
behavior of asynchronous circuits using the abstract framework
together with several different delay and race models.

The first race model developed is the ‘“‘extended multiple winner”
(XMW) model in which each logic component has an arbitrary finite
delay. For this model we prove that the set of state variables used to
analyze a circuit can be reduced to a minimal set of feedback vari-
ables, without any loss of state transition and hazard information.
(This contrasts sharply with previously known models.) Secondly, we
prove that ternary simulation (which is very efficient) yields the same
results as the XMW analysis (which is intractable).

The XMW model is closely related to delay-independent circuits,
i.e. to circuits that operate correctly, no matter what the component
delays are. Using the XMW theory, it is shown that the class of
delay-independent circuits is quite small, and that many common
sequential behaviors cannot be realized delay-independently. The
main reason for this is the unrealistic assumption that component
delays can be arbitrary.

To overcome the limitations of the XMW model, we derive two
race models that are more realistic. The ‘“almost-equal-delay” model
makes the somewhat idealized assumption that all component delays
are approximately equal. The ‘“‘extended bounded-delay” model
assumes that each delay is bounded by a lower and an upper limit.
These intuitive notions are formalized, and practical algorithms are
developed for race analyses using these models.

Finally, we derive a number of complexity results for the race
analysis problem using different delay models.

(iii )



Acknowledgements

First and foremost I would like to express my sincere thanks to my supervisor,
mentor, and (I hope I may say) friend, Dr. John Brzozowski. In fact, I cannot give
John a higher rating as supervisor. I hope I will be able to use this experience of
how supervision should be done the day I will supervise my own students.

The readers of my thesis, Dr. Randy Bryant, Dr. Farhad Mavaddat, Dr. Derick
Wood, and Dr. Dan Younger should also be thanked for their prompt and careful
reading of the thesis.

I would like to say a special thanks to Sheila Trainor for making this last year so
enjoyable. Also, I would like to thank all the people who have made my stay in
Waterloo a rewarding experience, due to their friendship, in particular Benny Wong,
Michel Devine, Dave Neudoerffer, Mark Leitch, Ian and Ann Davis, and numerous
others.

Finally, I would like to acknowledge the financial support from the Department of
Computer Science, the province of Ontario through an Ontario Graduate
Scholarship, the Institute for Computer Research through a scholarship, and the
National Research Council of Canada under grant A0871.

v)



To my parents

(vii )



Table of Contents

Chapter 1. Introduction ... 1
DN Y (6151 7 1 (o) s H PN 2
1.2. Analysis Problem for Gate Circuits ...........cooiiiiiiiiiiiiiiiiii 3
JRC Y (0 Y G (v 1 O 7
1.4, Previous WOrTK ..o e 9
1.5. Outhine Of TRESIS  ..vuvinenenininiiiii it eeaes 12

Chapter 2. A Unified Framework ... 17
2.1. Graph Model ......cooviiiiiiii e 17
2.2. Application to Gate CIrCUItS ..........oooiiiiiiiiiiiniiiiiiiiii e, 20
2.3, SWItCh-Level CITCUILS  ..uiuiuininininiieeetenieietete e rieteetiaeiase et e eiaasiaenaaaens 23
2.4. Application to MOS Circuits .........cocieiiuiiiiiiiiiiiiiii e 29

Chapter 3. The Extended Multiple Winner Race Model ........................ 31
3.1. XMW Race Model ....ninniii e 32
3.2. Ternary SIMulation .........ccooeiiiiiiiiiiiiiiii e 37
3.3. Reduced NEtWOrKS  ..coviniiiiniiiiiiiiiiiiie e 42
3.4. Output Hazards ........coeniniiiniiiiiii i 50
3.5, SUMMATY  .onininiiiii et as 53

Chapter 4. Delay-Independent Networks ..................coiiiiin, 55
4.1, INtrodUCHION  ...ouviniiiiiiii i 55
4.2. Delay-Independence ...........oooeiiiiiiiiiiiiiiiiii e 57
4.3. Behavioral Model ..........ccooiiiiiiiiiii 58
4.4. Composite Network Function ...........ccocviiiiiiiiiiiiiiiiiiiiiiiiiineenes 62
4.5. Fundamental Properties of Delay-Independent Circuits .............coeeveinennenen. 65
4.6. Alternative Notions of Delay-Independence ............cccoiiiiiiiiiiiiiiiiiiininnnn, 71
4.7. CONCIUSIONS  o.eninininiieieitie ettt ea e eaaaas 73

Chapter 5. The Almost Equal Delay Race Model ................................ 75
5.1. Binary Almost-Equal-Delay Model ............coovviiiiiiiiiiiiii, 76
5.2. Stepwise AED Model .......cooiiiiiiiiiiiiii 79
5.3. RACE UNIS  1.uvuinininitiiiei ettt e e e e e e e e aeaas 85
5.4. TAED AIOrithm ......cocoiiiiiiitiiiiii e 88
5.5. Correspondence between AED Model and TAED Algorithm ...................... 92
5.6. DISCUSSION  1.ouiuininininititiiet ittt ettt e et ee it aeeseastetasraenseeaans 97

Chapter 6. The Extended Bounded Delay Race Model .......................... 99
6.1. INtrodUCtion  ....eovieiiiiiiiii s 99



6.2. Extended Inertial Delay Model ........ccoooiiiiiiii 101

6.3. Bounded Delay Race Model .........ccoooiiiiiniiiiii 107
6.4. Ternary Bounded Delay Algorithm ...........coooiiiii 120
6.5. Correspondence between XBD Model and TBD Algorithm  ...................oe. 126
Chapter 7. The Complexity of Race Analysis ................. 135
7.1. Stable-State Reachability Problem ............coooiiiiiiiiiiii 135
7.2. Limited Reachability Problem ..........cooiiiiiiiiiii 155
Chapter 8. Conclusions and Future Research .................nn 163
8.1. Analysis Problem ...........oiiiiiiiiiiiiii 163
8.2. Verification Problem ......cccoiiiiiiiiiiiiiiiiiiiiii 164
8.3. Design ProbIem .......coouuiiiiiiiiiiiiiiii i 166
Appendix A. Switch-Level Models ..................ccc 167
A.1. Static Excitation FUNCHONS .....oevvirieiiiniiiiiiiiiiiiieieieeee e 167
A.2. Dynamic Excitation FUnCtions .............ccooooiiiiiiii 177
REFEI@IICES ..enovnitineiteie et et et e et et ettt e e e e e et et e b e s s s e s e e e eaaneas 183

(x)



1.1.
1.2.
1.3.
1.4.

1.5.
1.6.
1.7.
1.8.
2.1.
2.2.

2.3.
2.4
2.5.
2.6.
2.7.
3.1.
3.2.
3.3.
3.4.
3.5.

3.6.
3.7.

3.8.
3.9.
3.10.
3.11.
4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

4.8.
4.9.

List of Figures

(7 e L S o0 P TR 4
Unit delay analysis of circuit Cp. ...o.oviiiiiiiiiiii e 5
Race analysis of C; according to the GMW model. .........coooiiiiiiiinne. 5
(033 7o 11 A 0 Y L LETTRP ST TPy 6
MOS transistor symbols: (a) N-transistor; (b) P-transistor. ..................... 7
CMOS NOR ALE. ottt et e 7
CMOS circuit realizing the function AB'. .......cooiiiiiiiiiiii 8
Huffman model for asynchronous gate circuits. .............oooooiiiiiiiin 9
Ternary OR, AND, and complement. ............ooiiiiiiiiiiiiiiiin.. 18
N EEWOTK Nfe ttetntteeete ettt e e et e et ettt ettt abtabatee e 19
GAte CITCUIL Gp.  erneteeeiniitt ittt e et e ettt steeeees 21
INEEWOTK N ontentettte ittt et et et e ettt e st e 21
GAe CITCUIT G3.  eeneeenietii ettt e et et et ateee e 22
(a) CMOS circuit Cy; (b) corresponding S-graph Sz. ....ooooiviniiininieennnn. 25
Networks Ng and Ng. ..ooueenuiiuiiniianteataeetete ettt 30
A 2034 S0 T T 32
XMW analysis of network Nj. ....ooiiiiiiiiiii 32
XMW analysis of DetWOrK Nj. .ovviiiiiiiiiii 35
Ternary simulation of Ny: (a) Algorithm A; (b) Algorithm B. ................ 41
Ternary simulation of N,: (a) Algorithm A; (b) Algorithm B. ................ 41
Removal of vertex q’s dependency on VEItEX P. .ooovvvviieeiinnnnnniniiiieen... 43
N EEWOTK N . cntttenitte ettt ittt e e e et e et ettt e 47
Analyses of Ni: (a) XMW; (b) ternary simulation. ..........c.cooveiininninns 47
Analyses of N,: (a) XMW; (b) ternary simulation. ..........cooeviiiiiiinnnene. 48
N EEWOTK 3. oeniiiittteeeee ettt ettt eee e e e e s ettt e eeaaaaaaaas 48
INEEWOTK N3 onenitenetetett e eietetea e ettt ettt e e e s e et et na s 49
GALE CITCUIL G werrtenneennt ettt ettt e e ie et ettt etee e 56
Gate CITCUIL Gp.  eieeieeiii ettt et et e e aaes 56
GALE CITCUIT G3.  wennveeeneeennteiit ettt ettt et ettt aaaees 56
GALE CITCUIL G wennreeenneente ittt ettt e et e et e e eaaeeas 60
N EEWOTK e oeenneentte et et ettt et e et aa bt e et e st eaaeeas 60
N EtWOTK N . oottt e ettt ettt e e e e ettt aeees 61
FDAM M; corresponding to network Nj. .........ccooiiiiiiiiiiiiiii.., 61
(a) Original network; (b) combinational network; (c) composite network. . 62
FDAM'’s for a network with only one input. ... 66

(xi)



4.10.

5.1.

5.2.
5.3.

5.4.

5.5.
5.6.

5.7.

5.8.
5.9.

5.10.
5.11.
5.12.
5.13.

6.1.

6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.

6.9.

6.10.
6.11.
6.12.
6.13.

7.1.
7.2.
7.3.

7.4.
7.5.

7.6.
7.7.
7.8.
7.9.

7.10.
7.11.

Gate NEtWOTK Gs.  veeennneeiit ittt e ettt a e 70
(0330 S 0 P TR 76
Illustrating the “AED” idea: (a) possible transition; (b) timing diagram. .. 76
INEEWOTK N oottt ettt ettt ettt et e et e et e ittt as e e aaees 78
Race analysis of N, according to the AED method. ..............coiiiiinns 78
Relation R derived from p of Fig. 5.4, ... oo 81
AED analysis of netwWork N3, ....ooooiiiiiiiiiiiiiii 82
Stepwise AED analysis Of Np. ..ooeivininiiiiiiiii 86
Deterministic finite state machine corresponding to Fig. 5.7. ................. 86
(a) Circuit Cg; (D) CIrcuit Cs. oovvvrniiiiniiiii e 89
Analysis of N,: (a) TAED; (b) stepwise AED model. ............ooininnns 91
INEEWOTK NG onneenneentenneint et ete et et e et ettt ettt e be et 96
Stepwise AED analysis of Ng. ....ooveniniiniiiiiii 96
(a) TAED analysis of Ng; (b) Lu.b.of the stepwise AED analysis. ........... 96
GALE CITCUIT G. weenreenteentet ettt e et et ettt iba e e 100
Delay ElEMENt. ..o.uoiniiniiitiite ittt e 102
Typical waveforms for FBPD model (A=1). ........ooooiiiiiiin. 102
Typical waveforms for FBID model (A=1). .........cooiiiiiiiin, 103
Two possible waveforms according to BID model (1<A(7)<2). ............ 104
A possible waveform according to XID model (1<A()<2). .....ooennnnnn. 106
Two possible waveforms according to XID model (1<A(1)<2). ............ 106
NEEWOTK N eutiteeeete ittt ettt et e e te e st te e ettt et baeeees 109
Two possible XBD race SEQUENCES. ..veuveruernnrueenteuiieeiieitaiteaiieanees 110
TBD analysis Of Np. .ooiniiiiiiiiiii e 123
Gate CITCUIL G3.  werneeenieiitiit ittt ettt 123
Network N corresponding to Gs.  .o.veeiiniiiiiiiiiiiieiiiiiii s 123
TBD analysis Of N3. ..co.oiiiiiiiiiiiiiiii 123
A D flip-flop with completion and reset signals. ..................oo. 138
Construction for a variable x. ........oiiiiiiiii 139
Construction fOr mE{(J). eeerertetiiiiiiiii i 139
Construction for E{(¥) VE(F):  eerreiiiiiii i 140
Construction for Ix[E{(x,¥)]-  coeerrii i 140
Complete CONSITUCHION.  ..uiuuintintititenteee ettt eees 140
Critical race generating CIrCUIt. ........coeeiieiiiiiiiiiiiiiiiiiiin, 147
GMW analysis of the critical race generating circuit. ................oooe. 147
(O T T L 10 O A 7P T 149
Circuit fOr mE1(X). woreneene et 149
Circuit for E{(X) AEa(X).  crenriniiniitii e 149



7.12.

7.13.
7.14.
7.15.
7.16.
7.17.
Al

A2,
A.3.
A.4.

Circuit for E{(X) VEy(X). crrriiiiiiiiiiiiiiii e 149

CompPlete CITCUIT. ..ottt e e e e e aaeaaanas 152
Complexity of the SSR problem for different race models. .................. 154
CONSETUCHON OF N. . .vtinitinit et e e e e e e e e e e e 158
ComPlete CITCUIL.  ..utiintiiiiit it e e e aaaaaaaaans 159
Complexity of the LR problem for different race models. ................... 161
(a) CMOS circuit Cy; (b) corresponding S-graph S;. ..., 168
CMOS CITCUIt Sy, oitiiiiiiaa ettt ettt et enas 173
CMOS CITCUIL S50 teiitiiittte ettt ettt e e eeeaeaes 175
CMOS CITCUIE g oettiiiiie et iie et ettt e e ettt eae e e eeaa e e et senanenas 177

(xiii)



List of Propositions

Proposition 2.1. ....... e et e e, eereaeens 25
Proposition 3.1. ...............l. e N e e 32
Proposition 3.2. ............... et et e e ... 35
Proposition 3.3. ...l TN N e ceerreenenn. 38
Proposition 3.4. ....... e e e e, veeen. 38
Proposition 3.5. ................ et BN e e, 45
Proposition 3.6. ......... e, N N e .. 46
Proposition 3.7. .............. . B, e evenienenn, 52
Proposition 4.1. ....... TN e e e 63
Proposition 4.2. .............. e e e ceee. 64
Proposition 5.1. ... N et rerrenenieeen.. 83
Proposition 5.2. .......... e et e, cerreeene.. 83
Proposition 5.3. ............. et et ... 84
Proposition 6.1. ... e N e 112
Proposition 6.2. ..., RN et e 112
Proposition 6.3. .................. N e e 113
Proposition 6.4. ................ eeens ettt e, cerrereneeae. 114

(xv)



Lemma 3.1.
Lemma 3.2.
Lemma 4.1.
Lemma 4.2.
Lemma 4.3.
Lemma 4.4.
Lemma 5.1.
Lemma 6.1.
Lemma 6.2.
Lemma 6.3.
Lemma 6.4.

List of Lemmas

(xvii



List of Theorems

Theorem 3.1.
Theorem 3.2.
Theorem 3.3.
Theorem 3.4.
Theorem 3.5.
Theorem 3.6.
Theorem 4.1.
Theorem 4.2.
Theorem 4.3.
Theorem 5.1.
Theorem 5.2. ....cccovvennen. erereeaiaes ettt iiieeeeiieeeaieaaan e

e 92
Theorem 6.1. ...... e e e e et e ... 126

Theorem 7.1. ................ e eereeeieeaaas et eeeiieeeeeiieeeiieaaaan erreaeeens ceee.. 136
Theorem 7.2. ........ TRt e eeeireeeiieeeas ettt eeiirereeeaiaaaas eeeeeaes 143
Theorem 7.3. .............. e eeeeeeieeeeiiaaeaas e eieieeeiaeeeaaas erereeeeaaan ... 144
Theorem 7.4. ................ et eeieeeeiiaeeeaas et aeereiieeiiieeeeeeaas eeeaeeeaan . 144
Theorem 7.5. ...... U et eiateeiaeeieeiieeiaeaaas eeeenaaean ceeee.. 146
Theorem 7.6. .......... e, ettt eieeae e iiaaaaas . . 146
Theorem 7.7. .oooiiiiiiiiiiiiiinenee. ettt eeeiaeaeeieeeeeeiaeeeeeeeaaiaes eeeaaan ceeee.. 147
Theorem 7.8. ..ooviiviinnnnnn... et eeeeeiaeeaieeeiaeaanaans e, veeeene... 155
Theorem 7.9. ...... e iieeeieeaiaaa, ettt eiteeeieeeaieeeeeneeaaaa e rreeeaiaaaa. 156
Theorem 7.10. ............... e, e, e, eeeeneeen 157
Theorem 7.11.  ..oiiiiiiiiiiiiiiiieeeens et eeeaeeeetaeeeiiieeeiiaeeeiaiaaaas eeraaaaaaan 160

(xix)



Chapter I

Introduction

Switching theory makes use of mathematical models and techniques to handle
problems associated with the design of digital circuits. The theory originated in the
late 1930s, and Shannon [52] is usually considered to be its father. Digital circuits
can be divided into combinational circuits and sequential circuits. The output of a
combinational circuit is completely determined by the current input (possibly after a
short delay), whereas the output of a sequential circuit depends also on previous
input signals. Combinational circuits are well understood and will not be discussed

any further in this thesis.

The class of sequential circuits is often divided into synchronous circuits and
asynchronous circuits. In the former, the inputs to the circuit are allowed to change
only when a global clock signal is inactive, and the circuit is essentially disabled.
The clock signals are also used to ‘““mask’ the delays in wires and gates. Together,
these restrictions make the analysis and design of synchronous circuits straightfor-

ward, and standard methods can be applied.

Circuits that are designed to operate without a synchronizing clock are called
asynchronous’. The theory of asynchronous circuits is much less developed than the
theory of synchronous circuits; this thesis is a study of certain aspects of asynchro-

nous circuits.

+ This definition is not very precise, but suffices for the present.



2 Carl-Johan Seger

In this chapter, we first give some motivation for studying asynchronous cir-
cuits. We then describe the general problems that will be studied, and give a brief
overview of previous work. Finally, the contents of the remaining chapters of the

thesis are briefly outlined.

1.1. Motivationt

There are several reasons for studying asynchronous circuits. The first is the
simple fact that asynchronous operation cannot be avoided. One example of such a
situation is interfacing external signals with a digital system. Such signals are usually
unrelated to the internal system clock; hence one has to use some kind of asynchro-
nous circuit that reacts whenever these signals arrive. Note that the function of this
asynchronous circuit may be simply to delay the input signal until the system clock

signal arrives.

The second reason for studying asynchronous circuits is the fact that every syn-
chronous circuit should be viewed as asynchronous if a more accurate model is
needed. In synchronous circuits, the common assumption is that all signals are
stable when the global clock signal is ‘‘active”. Furthermore, the clock signal is
assumed to reach all parts of the system at the same time. These assumptions are
not always valid and are often violated in large VLSI chips. This is due to the fact
that the delays in the wires on a chip can be significant, even if the length of the
wire is only a fraction of the size of a typical chip. Hence, one needs to study the
behavior of the circuit under the assumption that the clock signal is just another

input signal that may be delayed.

The third reason is speed. Since the basic philosophy of asynchronous design is
to let each unit run independently, i.e. at its own maximum speed, it should be pos-
sible to build very fast asynchronous systems. For example, many circuits have a
delay that strongly depends on the data being processed. In a synchronous design,
the global clock frequency must be low enough to handle the worst-case delay.

Because of this, the circuit will be idle quite often. On the other hand, in an

t+ This section is based largely on my M.Math thesis [49]; the reader is referred there for
further details.
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asynchronous design the circuit can send a completion signal when it has finished
and thus be faster on the average. However, the issue is not that simple. Although
asynchronous circuits are intended to work independently, some means of synchroni-
zation must be provided when data must be transferred between different units.
This is usually solved by some kind of hand-shaking protocol; unfortunately, this
adds to the delay and the complexity of the circuit. It is not clear whether the
theoretically possible speed gain promised by asynchronous design can be achieved in

practice, and this problem needs to be studied further.

The fourth reason is the lack of an adequate theory of asynchronous circuits.
Today, asynchronous circuits are rarely used; the main reason for this is probably the
fact that they are not well understood. In this thesis, we will show that the previ-
ously available theories are not realistic, and we will develop a theory that can -

explain the behavior of asynchronous circuits more accurately.

Finally, as argued above, the problem area is underdeveloped and contains
many challenging and interesting problems for a theoretician. This, in itself, could
serve as a motivation. However, the problems studied are also of significant practi-
cal importance. In particular, the difficulty and high cost of designing VLSI circuits
imply that “ad hoc” methods for designing and verifying circuits are no longer ade-

quate, and that more precise and formal methods are required.

1.2. Analysis Problem for Gate Circuits

There are three major problems that need to be addressed when studying
switching circuits. The first is to analyze a circuit, i.e. to determine its behavior.
The second is to verify that a given circuit behaves according to some given specifica-
tion. The third is to design a circuit that realizes some given specification. The
problem of analyzing a circuit is the fundamental problem that must be solved first,
because the other two rely on it. Hence, this thesis will focus on the analysis prob-
lem. However, it is hoped that the insight this will give us will improve our under-

standing of the other two problems.



4 Carl-Johan Seger

The problem of analyzing an asynchronous circuit is now introduced by means
of some examples, and some terminology is defined. Consider the gate circuit C; of
Fig. 1.1.' The circuit consists of an inverter, a two-input AND gate, and a two-input
OR gate. The Boolean functions COMPLEMENT, AND, and OR will be denoted
by ', concatenation, and +, respectively. Thus the behavior of this circuit is
governed by the following equations:

Yi=x', Ya=xy, Yz=x+s,
where, for each gate, y; denotes the present output of gate i, and Y;, called the exci-
tation of gate i, gives the value of the Boolean function computed by gate i. When
y;=Y; the gate has no tendency to change, and we say that it is stable. If y;#Y;,
then the gate is unstable and the output y; tries to change to ¥;. However, this
change does not take place instantaneously since there is always some delay in the
gate. Furthermore, the change does not always happen because it is possible that an
earlier change in some other gate may cause Y; to become equal to y;. This
corresponds to the fact that the delay associated with gate i is inertial, in the sense
that short periods of instability are tolerated without any change. Now suppose the
circuit of Fig. 1.1 is started with x=0 and y=(y1,¥2,y3)=(1,0,0), which is a stable
state. What happens when x is changed to 1? Such questions constitute the basic

problem in analyzing asynchronous circuits and will be the main problem discussed

e e

in this thesis.

—9

Figure 1.1. Circuit Cy.

+ Note that many examples in this thesis are chosen for their simplicity and not necessarily
their usefulness.
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Any state in which more than one gate is unstable at the same time is called a
race. The outcome of a race depends on the delays in the circuit. If the delays were
known exactly, it would be straightforward to compute the behavior of a circuit after
an input change. However, the delays of two components of the same type are nor-
mally slightly different, and even the delay of a single component is not always con-
stant. For example, the delay can change due to aging or temperature changes. In
order to analyze the behavior of a circuit, so called race models have been developed.
In a race model a class of circuits rather than a single circuit is analyzed. This class
of circuits corresponds to all circuits with the same topology, but with different
delays. Hence in a race model it is quite possible to have several successor states
from any given starting state. It is important though to remember that the physical
circuit can be in at most one state at any given time, and can have only one possible
successor state (depending on the current delays). Hence, the race models are nor-
mally somewhat pessimistic, trying to take into account all possible delay distribu-

tions.

There are several theories which predict the outcome of a race. Typically the
predicted outcome depends very much on the model used. Commercial simulators
like SILOS [53] or MOSSIM [6] usually use the “unit delay”” (UD) model, in which
all gates are assumed to have exactly equal delays. In the state x=1, y=100 (com-
mas and parentheses omitted from (1,0,0) for simplicity) gates 1 and 2 are unstable,
and will both change. Consequently, the next state is 010. Now gates 2 and 3 are
unstable, and state 001 is reached. This state is stable. In summary, the unit delay
model predicts that the final outcome of this transition is the stable state 001; see

Fig. 1.2, where unstable gates are indicated by underlining.

In contrast to this, the General Multiple Winner (GMW) model [17] permits
the possibility of unequal delays. In fact, the model assumes that delays are unk-
nown, arbitrary, but finite; furthermore, they can also vary in time. The GMW
model assumes that any nonempty subset of the set of unstable gates can change in
any race. In Fig. 1.3 we show the GMW analysis of circuit C;. If gate 1 is faster
then gate 2 in state 100, then state 000 may be reached. This is also a stable state,
and represents a likely outcome. This shows that the UD model is inaccurate. In

fact, the only justification for the use of the UD model appears to be its simplicity.
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Figure 1.3. Race analysis of C; according to the GMW model.

On the other hand, the GMW model is often too ‘‘pessimistic’’ as we show below.
Consider the circuit of Fig. 1.4 starting in the stable state x=0, y=1010100,
and let x change to 1. It is reasonable to assume that ys will change to 0 before y,

changes to 1, and that the only likely final outcome is the stable state 0101000.
However, the GMW model will allow the possibility that y, changes before ys and
that the state 0101001 is also reachable. In other words, the GMW model allows
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Figure 1.4. Circuit C,.

the delay of inverter 5 to be larger than the sum of the delays of inverters 1 to 4 —

a very pessimistic prediction.

The simple examples above illustrate the difficulty of the analysis problem. The
study of realistic race models and practical algorithms for performing the analysis

according to these models are the major topics of this thesis.

1.3. MOS Circuits

In the race analysis given in the previous section, we considered gate circuits.
Gate-based models do not always apply to MOS circuits which are widely used at
present. We will focus our discussion on CMOS circuits, as CMOS technology is
emerging as the dominant technology for VLSI design. For a more thorough treat-
ment of CMOS circuits, the reader is referred to [59].

A CMOS circuit consists of transistors of two types: n-channel enhancement
mode transistors and p-channel enhancement mode transistors (N-transistors and
P-transistors for short). An N-transistor, whose symbol is shown in Fig. 1.5(a),
works roughly like a switch between terminals a and b which is closed if the voltage
on the ‘“‘gate” terminal is high, and open if it is low. A P-transistor, shown in Fig.
1.5(b), works dually, i.e. it is closed when the voltage on the gate terminal is low

and open when it is high.

Consider the circuit of Fig. 1.6. If A=1or B =1 (or both), then Z is connected
to ground, i.e. the output voltage is low. The only time Z is connected to the power
supply, i.e. the output voltage is high, is when both A and B are 0. Hence, the cir-
cuit is a NOR gate, i.e. Z=(A +B)'. This circuit is very easy to analyze. However,
consider the circuit of Fig. 1.7; here it is far from clear what function is realized.

With some work one can show that, if the inputs A and B are binary, the output is
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Figure 1.5. MOS transistor symbols: (a) N-transistor; (b) P-transistor.
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Figure 1.6. CMOS NOR gate.

Z=AB'. These types of complicated circuits are quite common in MOS VLSI
design. Furthermore, MOS technology allows the designer to use several other
“tricks”’. For example, pre-charging of wires is often used: A wire is first charged
to a high voltage level and then isolated. The wire has capacitance associated with
it; therefore it will “remember” the high voltage for quite some time, unless it
becomes connected to ground. In order to explain these very subtle phenomena
properly, the so called switch-level models [6, 19, 30] have been developed. In such
models it appears necessary to include a third value X in order to capture output vol-
tages that are neither 0 nor 1. In switch-level models it is possible to define ‘“‘excita-
tion functions” analogous to those in gate circuits. Once the excitation functions
have been obtained, race analysis must be performed, as described in the previous

section. We will return to these problems in Chapter II.
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Figure 1.7. CMOS circuit realizing the function AB’.

1.4. Previous Work'

The theory of asynchronous circuits had its beginning in the 1950’s with the
work of Huffman [32], and Muller and Bartky [40, 45]. Huffman used what we will
call the feedback-delay model where a set of feedback variables represents the state of
a circuit. These variables correspond to a set of wires with the property that cutting
them would break all of the loops in the circuit. With this set of state variables,
Huffman used a binary race model to analyze state transitions. Muller and Bartky
used what we will call the gate-delay model, where the outputs of all the gates consti-
tute the state variables, and a binary model is used to analyze races. Huffman’s race
analysis is rather informal, whereas Muller’s is formally defined. Both models use
what has been later called the general multiple winner (GMW) model, in the sense
that the delays are arbitrary and any nonempty subset of the set of unstable gates is
allowed to change. However, in the Huffman model only the feedback wires are
assumed to have delays: i.e. the gates are assumed to be ideal and delay-free. The
Huffman model is often depicted as in Fig. 1.8. Usually, the minimum number of
feedback variables is much smaller than the number of gates. Consequently, the

feedback variable model has been, and continues to be, quite widely used.

+ The reader is referred to [49, chapter II] for a more detailed treatment.
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Figure 1.8. Huffman model for asynchronous gate circuits.

While the feedback-delay model gives the correct stable states, the state transi-
tions predicted by this model are not always correct. These observations were made
quite early [32, 39], and various types of hazards were then used in an attempt to
explain these discrepancies. For a detailed discussion of this approach the reader is
referred to the book by Unger [57] and to Chapter 2 in [49]. Roughly speaking, one
first obtains a flow table using the feedback variables. The rows of the flow table
correspond to those states that are stable for some input; the columns correspond to
the input n-tuples. The entry in row i, column j is the stable state that the circuit
eventually reaches if it is started in state i and the input j is applied and held con-
stant; otherwise, the table entry is undefined. The undefined condition arises if
more than one stable state can be reached (a ‘““critical”’ race), or if the circuit enters
an oscillation. The stable entries (i.e. entries where the next state is the same as the
present state) are correct, but one has to perform a series of corrections to the
unstable entries if certain hazards are present — not a very attractive theory. An
even stronger reason for not using such a theory is Langdon’s example [34], which
demonstrates that different sets of feedback variables may lead to different flow
tables, and these differences cannot be accounted for by any known hazards. Thus

the feedback variable approach is not entirely correct.

In view of these difficulties with the feedback variable approach, a return to
Muller’s gate-delay model, using gate outputs as state variables, seemed necessary.
This approach was advocated, for example, by Langdon [34], but still with binary

race models. Precise mathematical formulations of such race models were developed
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by Brzozowski and Yoeli [15-17]. In particular, they formalized the GMW race

model. We will return to binary race models shortly.

In the mid-1960’s, ternary models were introduced for the analysis of races and
hazards in asynchronous gate circuits [26, 62]. In particular, Eichelberger proposed
a ternary simulation of a circuit using a third value, X, denoting an intermediate or
unknown signal. His method can be used to predict state transitions and detect
static hazards (a gate is said to have a static hazard for an input transition if its out-
put has the same value before and after the transition but may momentarily change
during the transition). Since the algorithm is quite efficient, it has been widely
used [5, 33]. Unfortunately, some discrepancies were noted between the results
predicted by ternary simulation and those predicted by the binary analysis [3, 17].
Again it seemed that the theories did not quite fit. A detailed discussion of these
problems was presented by Brzozowski and Yoeli [17], who also conjectured that the
theories would fit if one used not only gate outputs but also wire signals as state vari-
ables — the gate- and wire-delay model. This conjecture was finally proved by Brzo-
zowski and Seger [12]. Thus a fit has been found between ternary simulation of a
circuit using the gate-delay model and the binary GMW analysis of the gate- and

wire-delay model. The proof of this result is quite involved.

Another approach to detect races and hazards, that has been advocated by some
authors [1, 27], is the use of multiple-valued logic. Here, ‘‘multiple’” means sub-
stantially more than three. The basic idea is to introduce specific values for 0 chang-
ing to 1, 1 changing to 0, static 1-hazards, static 0-hazards, etc. It is straightforward
to derive the extended gate functions for simple AND, OR and inverter circuits in
this multiple valued logic. Unfortunately, it is not clear whether this extra complex-
ity really gives more information than a ternary model. Furthermore, it is not clear -
how to apply these ideas to switch-level models. For a more detailed discussion of

these approaches, the reader is referred to [49, chapter 2].

In the last decade, digital circuit technology has undergone tremendous changes
and MOS circuits have become widespread as a result of the VLSI revolution. In
some ways these circuits resemble relay contact circuits more than gate circuits, and

it has been recognized that theories based on gates are not adequate for some aspects



12 Carl-Johan Seger

of MOS circuits. To remedy this, switch-level models like Bryant’s [6] have been
developed. Bryant [5] adapted Eichelberger’s ternary simulation algorithm to
switch-level MOS models, but justified the use of this technique only by examples.
Lengauer and Niher [35] defined a sort of race analysis model for MOS circuits
which uses the three values 0, 1, and X, and proved that this race model corresponds
exactly to ternary simulation, thus providing a mathematical justification for its use.
At this point it appeared that the theory of MOS circuits was diverging from that of
gate circuits, and that the latter would cease to have much significance. However,
this thesis shows that this is not the case. In fact, we will present a theory of asyn-

chronous circuits that handles both gate models and MOS switch-level models.

1.5. Outline of Thesis

In Chapter II we describe a very general framework for studying asynchronous
circuits; this framework is used throughout the remainder of the thesis. A circuit is
modeled as a directed labeled graph. There is a ternary (three-valued) excitation
function associated with each vertex; thus each vertex is assumed to have a delay.
The values used are the usual 0 and 1, but, in addition to these, a third value X is
introduced to denote an intermediate or undefined value. A vertex with indegree 0
is an input vertex with the excitation function equal to the value of the input vari-
able. Vertices with indegree >1 are called function vertices. For gate circuits, the
excitation function for a function vertex is the ternary extension of the Boolean func-
tion realized by the corresponding gate. For switch-level circuits, we describe several
different approaches for computing the excitation functions; these represent different
design philosophies for CMOS and NMOS circuits. These switch-level models prop-
erly handle pre-charged logic, charge sharing, and other very subtle properties of
modern CMOS and NMOS designs. The main advantages of this framework are
mathematical precision, simplicity, and generality which allow us to develop a theory

that is applicable to gate circuits as well as to MOS switch-level circuits.

In Chapter III the behavior of a circuit is studied when the delays in each vertex
of the network are arbitrary, but finite. A new race model, called the extended mul-
tiple winner (XMW) model, is defined. This race model can be used to analyze the

behavior of a circuit under such a delay assumption. A novel feature of the XMW
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model is that, if a vertex currently has the value 0 and its excitation function has the
value 1, the vertex can change not only to 1, but also to X. This captures the fact
that changes can be relatively slow, and that a gate or an internal node in a MOS cir-
cuit can take on an undefined value for a non-negligible period of time during a

transition from 0 to 1 or from 1 to 0.

The XMW model is computationally intractable, since it may require exponen-
tial time in the worst case. However, we show that the ternary simulation algo-
rithm, suggested by Eichelberger [26], can be used to obtain essentially the same
information in time polynomial in the number of vertices. In [13, 49] a similar
result was proved that related ternary simulation to a binary race analysis of a gate
circuit in which both the gates and the wires can have arbitrary, but finite, delays.
The proof of this result was quite involved. In contrast to this, the proof relating ter-

nary simulation and XMW analysis is simpler and much more natural.

As mentioned earlier, a common method of analyzing asynchronous circuits is
to use a feedback-delay model. Unfortunately, in classical binary race models this is
not always correct. In fact, there exist examples in which analyses using different
sets of feedback lines yield completely different results. (Note that this is true even
if all known types of hazards are taken into account.) In contrast to this, the use of
feedback variables can be fully justified in the XMW model, as is shown in the last

part of Chapter ITI. This solves a long-standing open problem.

The XMW model captures many of the ideas in so called speed-independent
[45] or delay-independent circuit design. The underlying idea of delay-independence
is to design circuits in such a way that they operate correctly, no matter what the
internal delays are. With the arrival of VLSI circuits, this design philosophy has
been advocated by many authors [23, 25, 37, 43]. One of the reasons for this is
that the problem of distributing a high-frequency clock signal over a large VLSI chip
is quite difficult to solve. However, using the theory developed for the XMW model
together with the main result of [13, 49], it is shown that the class of circuits that can
be realized using delay-independent design is very small. For example, in Chapter
IV of the thesis, it is shown that it is not possible to construct a ‘‘divide-by-two’’ cir-

cuit in delay-independent fashion: i.e. it is not possible to design a delay-
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independent circuit with one input and one output such that the output changes with
half the frequency of the input. Recently, Ebergen [25] showed that a very large
class of circuits (including divide-by-two circuits) could be realized in a delay-
independent design if a small set of basic ‘‘building blocks’’ could be designed
delay-independently. Unfortunately, our characterization of the class of delay-

independent circuits shows that such building blocks do not exist.

The reason that there do not exist delay-independent designs for many functions
is the “‘pessimism’’ of the assumption of delay-independence. In particular, it is not
very realistic to assume that delays can be arbitrarily large. This points out the need
for more realistic race models. Two such models are the topics of Chapters V and
VI respectively. In the first model, called the almost-equal-delay (AED) model, the
delay A(z) of a vertex is assumed to be in the interval A +¢, where ¢ is much smaller
than A. The AED model (partly because of historical reasons, partly because of the
underlying assumptions) is a binary model, and thus is tailored primarily towards
gate circuits. Such a model is appropriate when a circuit is built of gates which are
very similar. The AED model, as described in this thesis and in [51], is an exten-
sion of the almost-equal-delay model, originally suggested by Brzozowski and
Yoeli [16]. As with most race models, using the model directly to analyze the
behavior of a circuit is computationally intractable. However, it is shown in Chapter
V that there also exists a practical simulation algorithm, called the TAED algorithm,
that is closely related to the AED model. In fact, the TAED algorithm is as effi-
cient as the commonly used ‘‘unit delay”’ model that most commercial simulators

use.

The AED model is somewhat “optimistic’’, not capturing timing problems that
are quite likely to occur. This is perhaps not too surprising since the AED model is
more closely related to the unit delay model than to the XMW model. It may not be
very realistic to assume that all delays are roughly the same; for example, an inverter

is almost certainly much faster than a complex gate.

In Chapter VI we first develop a realistic delay model, called the extended iner-
tial delay (XID) model. In this model the sizes of the delays are bounded by lower

and upper limits. For example, an inverter in the circuit can have its delay bounded
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by Sns<A(f)<7ns, whereas the delay in a NAND gate may be bounded by
6ns<A(z)<10ns. In the remaining part of the chapter, we develop a race model,
called the extended bounded delay (XBD) race model, that can be used to predict
the behavior of the circuit. In fact, we prove that the XBD race model captures the
behavior exactly, if one assumes that each component consists of an ideal (delay-

free) device connected in series with an extended inertial delay.

The XBD race model is continuous, and thus computationally intractable.
However, there is also an efficient algorithm, called the ternary bounded delay
(TBD) algorithm; we show that the results of this algorithm summarize the behavior

of a circuit according to the XBD race model exactly.

In Chapter VII, we study the general complexity of the race analysis problem.
For example, the stable state reachability (SSR) problem is quite a natural question:
If a circuit is started in some stable state and some input values are changed, will it
eventually end up in a unique new stable state? For the XMW model and the GMW
model (with both gate and wire delays), this problem is solvable in polynomial time.
However, for most other race models, the problem is shown to be intractable. In
practice the situation is much better though, since if a circuit has not reached a
stable state within some relatively short period of time, one may assume that it con-

tains some design flaw that should be corrected.

Finally, in Chapter VIII we summarize the main contributions of the thesis and
discuss different areas of future research. In particular, the problem of verifying the

correctness of an asynchronous circuit is discussed.



Chapter II

A Unified Framework

In this chapter we introduce a general framework for studying asynchronous cir-
cuits'. This framework is useful for describing gate circuits as well as MOS switch-
level circuits. In the first section, the framework is defined formally. Some con-
cepts that will be used throughout the remainder of the thesis are also defined. In
the second half of the chapter, we show how this framework can be used to model

gate circuits and switch-level circuits.

2.1. Graph Model

A rather general concept of a network is introduced in this section. We will use

the convention that x, y, and z denote vectors of state variables, whereas x;, y;, and z;

denote single components of the corresponding vectors. Similarly, a, b, ¢, and d
denote particular constant vectors of state variable values, and ga;, b;, ¢;, and d;

denote their components.

Let B={0, 1} be the set of the two usual binary values, and let T={0,1,X}. The

symbol X will be used to denote an unknown or intermediate value.

A network N is a finite directed labeled graph N = <V ,E,x,y,Y>, where

+ Part of this work will appear in [14].

17
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V={1,...,m} is a set of vertices!,
E C VXV is a set of edges,

x = (x1,...,%,), n<m, is a vector of input variables taking values from T,
y = (1,.-., ¥m) is @ vector of vertex variables taking values from T,
Y =(Yy,...,Y,) is a vector of ternary excitation functions.

Vertices 1,...,n are all of indegree O, and are called input vertices. Vertices
n+1,...,m are function vertices and are all of indegree >1. The excitation function of

an input vertex j is the function Y;: T— T defined simply as Y;=x;. For a function
vertex j the excitation function is a ternary function Y j:Td’—>T, where d; denotes
the indegree of vertex j. An edge (i,j) EE shows that Y; is a function of y;. Thus,
for a function vertex, Y; depends only on some subset of {yi,...,y,}. The ordered

pair (x,y), x€T", yeT™, is called the rotal state of N. For notational convenience,

we will treat an excitation function Y; as a function of the total state of N, i.e. we
will write Y;(x,y)*. The vertex variable y; is interpreted as the present state of a ver-
tex, whereas the excitation function Y;(x,y) computes the value to which the vertex is
trying to change, when the present input is x and the present state is y.

In the examples throughout the thesis we use the three ternary functions defined

in Fig. 2.1. In fact, these functions are natural ternary extensions of their Boolean

counterparts: OR, AND, and complement. More will be said about this later.

+ [0 X 1 10 X 1 a |0 X 1

0]0 X 1 0)j]0 0 O a'll x 0
X 1 X110 X X

1 1 1 1 1 (0 x 1

Figure 2.1. Ternary OR, AND, and complement.

+ To avoid possible confusion we use the term vertex (not node) in the general network
graph, reserving the term node to MOS circuits and related graphs.

t Strictly speaking we should write Y;((x,y)), but the angle brackets are omitted to im-
prove readability.
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To illustrate the definition of a network consider Fig. 2.2, where the excitation
functions are:

Yix,y)=x1 Yo(x,¥)=x, Yi(x,y)=01+ys)  Yalx,y)= (Oot+ys).

Figure 2.2. Network N;.

Define the partial order C on T as follows: ¢;C¢; for all ;€ 7, 0CX, and 1CX.
The partial order is extended to 7", r>1, in the obvious way: sC¢ iff s;C¢; for
1<j<r. Also, the partial order is extended to ordered pairs in the natural way:
(a,b)C{c,d) iff aCc and bCd. Fors,t €T", r>1, we write s C¢ when sC¢ and s#z.
The least upper bound, denoted /.u.b., on the partial order C is defined as usual.

¢

Intuitively, X is used to denote an ‘“unknown” or ‘‘intermediate’ value. Thus

s Ct indicates that s has less ‘“‘uncertainty’’ (more binary values) than ¢.

The following fundamental assumption is made about the excitation function of

any network N:
{(a,b) C(c,d) implies Y(a,b) CY(c,d).

This is a monotonicity property of the excitation function that is consistent with our
use of the value X. Basically, if the total state is more uncertain, the excitation can-

not become less uncertain.

If y;=Y;(x,y) then vertex i is stable; otherwise it is unstable. A given total state

(x,y) is stable if each vertex is stable. A network will remain in a stable total state
indefinitely, unless the input changes, in which case the state becomes unstable. If
there are two or more vertices that are unstable in a total state, we say that there is a

race. In general, there may be several possible successor states for a given unstable
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state. This set of possible successor states depends on the race model used, as ela-
borated in Chapters III, V and VI

The following definitions will be used throughout the thesis. For any a € 7" and

beT™, define U(a,b) to be the set of unstable vertices in b, i.e.
U(a,b) = {j:1<j<m, and b; % Y;(a,b)}.
Similarly, let B(b) denote the set of vertices that have binary values in (a, b), i.e.
B(b) ={j:1<j<m, and b; €B}.

Finally, let BE(a,b) denote the set of vertices that have binary excitations in the total

state (a, b), i.e.

BE(a,b) = {j:1<j<m, and Y;(a,b) €B}.

2.2. Application to Gate Circuits

It is shown in this section how gate circuits can be analyzed using the frame-
work established in the previous section. The correspondence between a gate circuit

and the graph model is very natural, as described below.

Given a gate circuit with n external inputs, the graph N is formed in the follow-
ing way: There is an input vertex for each input variable to the gate circuit and a
function vertex for every gate. There is an edge between vertex i and vertex j iff
the gate j has at least one of its inputs connected to the output of gate i if i >n, or to

input x; if i <n. Note that there may be more than one wire from the output of gate

i to gate j in a circuit, whereas in N we have at most one edge from i to j. This will
affect the function associated with each vertex. Given any Boolean function

f : B" — B the ternary extension f of f is defined as follows. For any ze 7",
f(z) = Lu.b.{f(z):z€B", zC1z}.

The ternary extensions of OR, AND and complement functions were shown in Fig.
2.1.
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Two steps have to be carried out to compute the ternary function associated
with the function vertex i. First, the ternary extension of the original Boolean gate

function must be computed. Second, the input variables are identified with the out-

put vertex feeding them.

To illustrate the above procedure, consider the gate circuit G, of Fig. 2.3.
Using the procedure outlined above one can easily derive the abstract network N, of

Fig. 2.4, with the excitation functions:

Yie,y)=x1 Y3, ¥)=ypo  Ys(r,y)=0s+¥)  Yi(x,y)=yws  Yo(x,¥)= 7+ y10)
Yo(x,y)=x Yax,¥)=yoio Ye(x,y)=0a+ys)  Ys(x,y)=y2s Yio(x,y) = (s + o)’

Y3 ; Y1

Figure 2.4. Network N,.
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A more complicated situation for deriving the excitation function is demon-

strated in the following example. Consider the gate circuit G; of Fig. 2.5 consisting

of a 2-input XOR (exclusive OR) gate, with both inputs fed by a single inverter.
The ternary extension of the XOR gate is ¢d+cd’, where ¢ and d denote the two
inputs. Identifying the inputs and simplifying according to the ternary algebra gives
the excitation functions:

Yi(x,y)=x  Yolx,y)=y1  Ya(x,y)=y2y

Note that the last excitation function is not identical to 0.
[: ngj > y3
X1

Figure 2.5. Gate circuit Gs.

In classical race models, the basic assumption is that gates can only be in the
states 0 and 1, and that transitions from 0 to 1 or from 1 to O are instantaneous.
However, it is reasonable to assume that a transition takes a nonnegligible amount
of time, and may go through an intermediate voltage. Some gates with inputs con-
nected to a vertex with an intermediate voltage may interpret this voltage as a 1,
whereas others may interpret it as 0. The X value and the monotonicity requirement

of Y together capture this uncertainty.

In the model above we associated vertices (and therefore delays) with the gates
only. However, if the delays in the wires need to be taken into account, one simply
adds ‘‘delay” vertices in the abstract network. A delay vertex is a vertex with inde-

gree 1, outdegree 1, and with the identity function as its excitation function.
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2.3. Switch-Level Circuits

Switch-level models are frequently used for simulating MOS VLSI circuits. In
switch-level models, each transistor is viewed as a switch that can be turned on or off
by the signal on the gate of the transistor. The first formal switch-level model was
introduced by Bryant [6] for general MOS circuits. Specializations of such models to
CMOS circuits were described in [19]. In this section we show how the models
of [6] and [19] can be adapted to our framework. The notation is modeled
after [19].

An S-graph (S for switch) is a finite, undirected, labeled graph with:
1)  Supply nodes shown as black dots and labeled by 0 or 1.
2) Internal nodes shown as white dots.

3) Key nodes, which are special internal nodes, each of which is labeled by a dif-

ferent key letter Qy,..., Q.
4) Input letters Ay,...,A,.

5) Edges, each of which is labeled with a symbol of the form Q¥ or Qf, where Q is
either an input letter or a key letter. Each key letter appears as some edge
label.

The edges represent the transistors in the circuit, whereas the nodes represent
the connection points. A superscript P on an edge label indicates that the transistor

is P-type; a superscript N denotes an N-type transistor.

A (ternary) input-key state is an assignment of 0, 1, or X to each input letter and
to each key letter. Similarly, a fotal state of an S-graph is an assignment of 0, 1, or
X to each input letter and to each internal node. A path in the graph is a sequence
of nodes in which consecutive nodes are connected by at least one transistor and no
internal node in the sequence is a supply node. (The reason for this last condition
will be explained later.) Note that we allow the first or the last node in a path to be a
supply node. A path in the graph consisting of only P-transistors is called a P-path.
An N-path is defined similarly. A path is said to be definite if the values of the gates

of all the P-transistors in the path are 0, and the values of the gates of all
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N-transistors in the path are 1. A path is said to be indefinite if it is not definite, and
the values of the gates of all the P-transistors in the path are either 0 or X, and the

values of the gates of all the N-transistors in the path are either 1 or X.

Following [6], we define a channel-connected subgraph to be a subgraph S of the
S-graph such that there is at least one path between any two internal nodes in S.

Except for the supply nodes, the channel-connected subgraphs are disjoint.

A property of CMOS circuits that many switch-level models fail to capture is
the fact that a P-transistor conducts a 1-signal well, but a 0-signal rather poorly.
Similarly, an N-transistor conducts a 0 well, and a 1 poorly. For this reason, we
must distinguish between P- and N-paths'. We do this by introducing three different
path functions. However, before describing these functions, we make the following
notational assumption. Assume that the nodes in the S-graph are numbered as fol-
lows: The ground node (the supply node labeled 0) is numbered 0, the power supply
node (the supply node labeled 1) is numbered 1, and the remaining internal nodes
are numbered 2,3,.... For a channel-connected subgraph S and any two nodes i and
j in S the three path functions are defined as follows: First, if i=j, let

pi =n; =1t; =1. Otherwise, let

1 if there is a definite P-path from i to j
p;j = 1 X if there is no definite P-path but there is an indefinite P-path from i to j
0 if there is no definite or indefinite P-path from i to j

1 if there is a definite N-path from i to j
if there is no definite N-path but there is an indefinite N-path from i to j
if there is no definite or indefinite N-path from i to j

3
I
© X

and

+ We say that an N-path (P-path) to 0 (1) is “good”, whereas a P-path (N-path) or a
mixed P- and N-path to O (1) is “bad”.
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1 if there is a definite path from i to j
t; = | X if there is no definite path but there is an indefinite path from / to j
0 if there is no definite or indefinite path from i to j.

(Note that certain types of paths, e.g. “self-dependent” paths [19], may be disre-

garded to model the circuit behavior more accurately.)

The path functions can be computed in a number of different ways. One possi-
bility is to enumerate all possible paths and then identify their types. However, a
more efficient method is to use a ‘‘signal flow graph” approach, similar to the pro-
cedure for finding a regular expression from a finite automaton [11]. This approach
can be viewed as solving a set of linear equations with a somewhat modified version
of Gaussian elimination. For more details, the reader is referred to [8, 9] where this

approach is analyzed for different graphs and is applied to switch-level simulation.

Consider the CMOS circuit C4 of Fig. 2.6(a). The corresponding S-graph is

shown in Fig. 2.6(b). (The input and key node naming convention has been ignored

in order to simplify the notation.) Note that C, consists of two channel-connected
subgraphs. For the internal node a, it is easy to verify that, p,; = t,; = A, n, = 0,
Mo = t,o=A, and p,g = 0. Using the ternary OR, AND and complement defined in
Section 2.1, we find the path functions for node c:
pai=Q'B ng=0 fe1 = Pe1+AB’
Pco=10 noo=Q+AB  t=n,+Q'B.
In general, ;; must always be of the form p;;+ f;; for some function f;;. The same

holds for ;.

Let Y; denote the node excitation function of the internal node i. There are

several ways to use the ternary path functions to compute this function. However,

before we describe these models, we prove the following proposition for use later.

Proposition 2.1 If a7 and b €T then

a+(a+b)X = a+b'X.
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Figure 2.6. (a) CMOS circuit Cy; (b) corresponding S-graph S,.

Proof: There are three cases. If a=1 both the LHS and the RHS are 1, since
1+0=1+1=14+X=1. Secondly, if a =X, both the LHS and the RHS are X, since the
second terms in the LHS and the RHS can only contribute an X or a 0, and
X +X =X+0=X. Finally, if a=0 then the LHS is equal to 0+ (0+b)'X = b'X,
which is equal to the RHS. u

There are two distinct approaches to defining the excitation function for a node:
we can either use a static approach or a dynamic approach. In the static approach
the channel-connected subgraph is viewed as a ‘‘super gate’’, with inputs and out-
puts. The inputs are the values of the gates of the transistors of the subgraph,
whereas the internal nodes are the outputs. The excitation function for a node gives
the value that the node eventually would take if the input signals were frozen at their
current values. (The excitation function in these models is often called the steady-
state response.) This approach implies that potential races inside the channel-
connected network are completely ignored. On the other hand, in a dynamic
approach the excitation function of a node depends almost entirely on the values of
its direct neighbor nodes and on the transistors connecting the node with its direct
neighbors. Hence, in a dynamic approach, races inside the channel-connected net-

work are taken into account.
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Virtually all switch-level models suggested in the literature, e.g. [6, 30, 46, 56],
have used the static approach. Sundblad and Svensson [55] are the only authors that
have considered a dynamic approach, as far as we are aware. In this section we will
limit our discussion to some typical excitation models using the static approach.
However, in Appendix A, we describe several families of excitation functions

derived using both static and dynamic approaches.

The excitation models defined below use the same basic concept: the node exci-

tation function ¥; will always be of the form o; + (0;+z;)'X. Intuitively, o; denotes the
conditions under which Y; should be 1, and z; gives the conditions under which Y;
should be 0. In view of Proposition 2.1, we will immediately simplify these expres-
sions to the form o; + z/X. The first two models are:

Model 1:  ¥; = pustio + (miotin) ¥

Model 2:  ¥; = tiytio + (tiothy)' X

Model 1, introduced in [19], yields a binary output iff there is a definite P(N)-
path to 1(0) and no path whatsoever to 0(1). Furthermore, whenever there is a
“fight”, i.e. both a path to 1 and a path to 0, whenever there is only a bad path to O
or 1, or whenever the node is isolated, i.e. there is no path to 1 and no path to 0, the
node excitation is X. This is a very restrictive model and captures stringent design
rules for combinational static CMOS circuits. The second model is more traditional
and corresponds to a special case of the model in [6]. Here there is no distinction at
all between P- and N-transistors, so we have Y =1 (0) iff there is some definite path
to 1 (0) but no path to 0 (1).

Consider again the CMOS circuit C4 of Fig. 2.6. Using the path functions

derived earlier for node a, it is easy to verify that both models yield the node excita-

tion function Y,=A'. A more complicated example is node c. Model 1 and 2 yield

the following node excitation functions:
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Model 1: Y, = peitco + (neote1) X =
= Q'B'(Q+AB+Q'B) +((Q+AB)(Q'B' + AB"))'X =
=..=Q'B +(Q'A"+AB")X
Model 2: Y. = t.qtio+ (tote1) X =
— (Q'B'+AB')(Q+AB +BQ') +((Q +AB + BQ')(Q'B' +AB') X =
=..=Q'B +(A'QQ' +AB")X.
Note that a substantial amount of reduction has been performed above in order to
get the final expressions. However, all simplifications consist of sequences of simple
steps, and can be carried out by a program. Also, even if the cost of doing the sim-
plification is substantial,! this is a preprocessing step which is done only once. The
efficiency gained in the simulation phase should justify the preprocessing. For-
tunately, many channel-connected subgraphs are quite small, making a brute force
approach feasible. Furthermore, it is certainly not necessary to find the minimum-

sized formulae.

The above node excitation functions fail to capture the fact that there is a cer-
tain amount of capacitance in MOS circuits. In particular, the key nodes can have
some capacitance associated with them; hence there is a certain amount of
“memory” in each key node. The case when there is only one key node in every
channel-connected subgraph can be handled in a straightforward way. The basic
assumption is that a 1 (0) stored on a key node can only determine the excitation of
that node, if the node is completely isolated from 0 (1). One can verify that the fol-
lowing models do take this into account.

Model 1™: ;= (i + yi)tio + ((mio+ ¥i Jti1) ¥

Model 2%:  Y; = (ti1+y)tio + ((tio+ ¥/ i)' X
For example, using model 1, we get Y to be 1 if there is a good path to 1 and no
path to 0, or if the previous value was 1 and there is no path to 0. A dual situation
holds for Y =0.

+ The simplification problem is well known to be NP-hard.
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Consider again the CMOS circuit C4 of Fig. 2.6. Using model 1¥ and assuming

that node c is a key node, we get the node excitation functions for nodes a and c:

Yo = Par+Ya)tao + ((Mao+ Ya)ta1) X =
= (A +5)A + (A +y.)A") )X =
=...=A
Y. = @e1+Ye)teo + ((neo+ye ) X =
(Q'B"+y:)(Q+AB +Q'B) + (((Q+AB)+y.)(Q'B'+AB') )X =
=..=Q'B +(Q'A'y. +AB")X

In the above discussion only the key nodes were assumed to have memory. Further-

more, it was assumed that all key nodes have the same ‘‘size””. A common tech-
nique in MOS circuits is the use of pre-charged lines. In such circuits, certain nodes
are designed with a substantially higher capacitance. This can be modeled as if these
nodes had ‘‘greater size’’ than normal nodes. Furthermore, transistors may have
different ‘‘strengths’ (conductances). We will not derive node excitation functions
for such cases here, but the interested reader is referred to Appendix A and to
Bryant’s work [8, 9]. Here it suffices to say that, using the MOSSIM model [6] and
the procedure described in [8, 9], one can derive ternary functions for the node exci-
tations. Using this approach, not only CMOS, but also NMOS circuits can be han-
dled.

2.4. Application to MOS Circuits

It is shown in this section how all the different switch-level models described in
the previous sections can be handled within the framework established earlier.
There is one input vertex for every input letter in the S-graph. Furthermore, there is
one function vertex for each internal node in the S-graph. The excitation function
associated with a function vertex is simply one of the node excitation functions
described in Section 2.3. (It is easy to verify that all node excitation functions of
Section 2.3 satisfy the monotonicity property of Section 2.1.) There is an edge
between vertex i and vertex j if the excitation function of vertex j depends on the

input letter A; if i <n, or on the key node y; if i >n.
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For example, consider the CMOS circuit C4 of Fig. 2.6. The corresponding net-
work Ns5, when the node excitation model 1 is used, is shown in Fig. 2.7. The exci-

tation functions are:

Yi=A, V,=B, Ys=y{, Y4=y, (3 +y193+ X), Ys=y2¥3 + (01y3 + y1y2 )X

Figure 2.7. Networks N5 and Ng.

On the other hand, if the node excitation function 1¥ is used, we get the network Ng

of Fig. 2.7(b), with excitation functions:
Yi=A, Y,=B, Y3=yi, Y4=y, (3 +Y1y3+X), Ys=233 + (1¥3¥s5+ Y2 )X

In the model above, only the input letters and the internal nodes have state vari-
ables associated with them. There are several natural ways to modify this model.
First, we can associate a state variable with each internal node and with each transis-
tor. The excitation function for a transistor is trivial: for an N-transistor i, con-
trolled by node y;, the excitation is ¥;=y;; similarly, for a P-transistor i, controlled
by y;, Yi=y;. On the other hand, for many types of circuits and excitation models,
it is sufficient to associate state variables with the input letters and the key nodes —

sometimes a substantial saving.

In summary, MOS switch-level models fit very nicely into the general frame-

work introduced in Section 2.1.



Chapter III

The Extended Multiple Winner Race Model

In this chapter we study the behavior of a network when the relative sizes of the
delays in the network can be arbitrarily large, though finite!. For such a delay
model we define a race model, called the extended multiple winner (XMW) model,
that can be used to analyze the behavior of the network when the network is started
in some stable total state and the input changes. The XMW model is computation-
ally intractable since it may involve an amount of work exponential in the number of
state variables. However, in this chapter we show that the result of ternary simula-
tion, as suggested by Eichelberger in 1965, exactly summarizes the XMW analysis.
Hence, the behavior of a network under the above delay assumption can be com-
puted very efficiently. Finally, we show that in the XMW model it is possible to
reduce the number of state variables to the input vertices and a feedback vertex set
and the analysis is still correct. This is a result that sharply contrasts with the classi-
cal race models in which analyses based on feedback variables are not always

correct.

t+ Part of this work will appear in [14].

31
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3.1. XMW Race Model

There are three basic ideas behind the XMW model. First, it is assumed that
the input remains fixed after each change to give the network a chance to ‘‘stabil-
ize’’. This corresponds to the fundamental-mode operation assumption of [39].
Second, the past history is completely ignored in the sense that all unstable vertices
have the same chance of ‘“winning’’ a race no matter when they entered the race.
Third, any unstable vertex with a binary present value may take on the intermediate

value X.

More formally, the XMW relation R, on the set 7™ defines the set of successors
for any total state (a,b), acT", beT™, as follows. If b is stable, i.e. if U(a,b)=(,
then the only possible successor is b, i.e. bR, b. Otherwise, let bR, b, for any b such
that:

1) bsb, and
2)  bie{b;,Yi(a,b),l.u.b.{b;,Y(a,b)}} 1<i<m.
No other pairs are related by R,.

To illustrate the above definition, consider the network N; of Fig. 3.1 with exci-
tation functions given by:
Yite,y)=x1  Yo(x,y)=x, Y3(x,y)=01+ys)  Yalx,y)= (2+s)
Assume that the network is started in the stable state (d,b)=(00,0010) and that the
input changes to a=10. In Fig. 3.2 we show the XMW analysis for this transition.
(Only those states that are reachable from 0010 are shown.) Unstable states are
shown subscripted; the subscript denotes the value of the excitation function for that

vertex. For example, 0;010 indicates that vertices 2, 3 and 4 are stable and that ver-

tex 1 is unstable with an excitation of 1.

The following proposition about the XMW relation is used later and can be

easily verified.

Proposition 3.1 If b,c € 7" and bR, c, then c Cl.u.b.{b,Y(a,b)}.

For any input vector a € 7" and any state b € 7™, define the set cycl(R,,b) to be

the set of total states of N that appear in cycles reachable from b in the relation R,.



Race Analysis in Asynchronous Circuits 33

Figure 3.1. Network N;.
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1001 < 100X; «——10XyX «=—X;0X X

Figure 3.2. XMW analysis of network N;.
Note that each stable state reachable from b is in cycl(R,,»). Formally,
cycl(R,,b) = {c€T™ : bR,c and c R c},

where R, is the transitive closure of R,, and R, is the reflexive and transitive closure

of R,.
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The concept of a transient cycle is introduced in order to capture the fact that
delays cannot be infinite. This concept is very similar to the definition of a transient
cycle in the GMW model [17] (which will also be considered later), except for one
important difference. The basic idea is to call a cycle transient if there is some ver-
tex that is unstable in all the states of the cycle and has the same value in all these
states. However, this definition is slightly too restrictive as the following example
shows. Suppose we have a cycle like 0; Xg — 19X; — 0; X etc. Note that the vertex
with the value X is unstable in all the states and has the same value in all the states.
However, since the excitation of that vertex oscillates between 0 and 1 it is reason-
able to assume that such a cycle can persist indefinitely. Because of this, the defini-
tion of a transient cycle in the XMW model is somewhat more complicated than the

corresponding idea in the GMW model.

A cycle is called transient if there exists a vertex v which is unstable in all of the
states in the cycle, has the same value in all these states, and either that value is
binary or the excitation of v is the same in all these states. If a cycle is not transient,

it is called nontransient. Let
out(R,,b) = {c ecycl(R,,b) : c appears in a nontransient cycle }

The set out(R,,b) is the outcome of the XMW analysis of the behavior of N when

started in total state b, in the sense that it consists of all the states N can be in, under

nontransient conditions.

To illustrate the concepts above consider Fig. 3.2. There is only one cyclic
state, namely 1001. Since this state is stable, the cycle is nontransient. Thus

out(Ry19,0010) = {1001}. A more complicated example is provided by the network N,
specified by the following excitation functions:

Yi=x; Y=01+ys)  Ya=01t+x).
Let {a,b)=(1,100) be the initial stable state and let the new input be a =0. The states

reachable from 100 are shown in Fig. 3.3. There are the following cycles:
[000, 011], [0X0, 01X], [00X, 0x1], [010], [0XX], [001]

None of these cycles are transient, and hence the outcome is



Race Analysis in Asynchronous Circuits 35

out(Rg, 100) = {000, 001,010, 011, 0X0, 00X, 01X, 0X1, 0XX}.

To illustrate the concept of a transient cycle, consider the network with the exci-
tation functions:
Yi=x; Yo=y Yi=(Opws).
One easily verifies that the cycle [111,110] is transient, when the network is started

in the stable state x; =0, y =011 and x; is changed to 1.

The reader should note that out(R,,b)# ¢j. This follows from the fact that the

sequence of states obtained by changing all unstable vertices to their excitations in
every state of the sequence must eventually lead to a cycle. This cycle of states must

be nontransient by definition, and thus all such states appear in out(R,, b).

The following property of the XMW relation will be used later. Assume the
binary input vectors d and a differ in at least two components, and that g is a binary

input vector ‘‘between” d and a (i.e. that g; is either equal to d; or a; for j=1,...,n,

but @d#d and a#a). If a network N is started in the stable total state (d, b), and the
input is first changed to 4@ and then later to a, the proposition states that the outcome
after this second change is contained in the outcome obtained when the input is

changed immediately from 4 to a. More formally:

Proposition 3.2 Let d, a, a €¢B" be three input vectors such that a=#d, a=a, and

aCl.u.b.{d,a}. Furthermore, assume that (a, b) is a stable total state of N. Then
{d: d eout(R,, c), where ¢ eout(R&,b)} C out(R,,b).
Proof: We prove the following stronger version of the claim:
{d: dcout(R,,c), where bR;c} C out(R,,b).
Proposition 3.2 then follows directly from the fact that out(R;,b) C{c:bR; c}.

The proof consists of two steps. First we show that if bR]c, then bR,c.

Second we show that if bR, ¢, then out(R,,c) Cout(R,,b). Together, these give that
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Figure 3.3. XMW analysis of network N,.
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{d:decout(R,,c), where bR} c} C {d: d cout(R,,c), where bR, c} C out(R,,b)

establishing the claim.

The first property follows from the following observations. First, since (d,b) is a

stable total state of N, we can conclude that (by,...,b,)=d. Furthermore, by the
definition of 4, 4; is either equal to d; or a;. Hence, it follows that U(a,b) C U(a,b)
and that Y;(a,b)=Y;(a,b) for all jeU(d,b). Since only unstable vertices can change
according to the XMW relation, it is easy to prove by induction on k that: if bRYd
then bRXd, U(a,d)CU(a,d) and that Y;(a,d)=Y;(a,d) for all jeU(d,d). We leave

the details of the proof to the reader.

The second property, i.e. that if bR;c then out(R,,c)Cout(R,,b), follows

immediately from the definition of out. u

The XMW model permits us to predict the outcome after any input change
under very general assumptions about delays in a network. In fact each vertex may
have an arbitrary finite inertial delay. The model, though conceptually simple and
relatively natural, is computationally intractable; in the worst case, the graph of the

relation R, may have O(3™) vertices. Fortunately, there exists an efficient algorithm

computing essentially the same information, as described in the next section.

3.2. Ternary Simulation

A ternary simulation of binary networks has been proposed by Eichel-
berger [26]. Algorithms A and B described below are an adaptation of his work.
Let N be a network, d 7™ be an input vector, and b€ T™ be such that (d,b) is a
stable total state. Furthermore, let a € 7" be a new input vector and a=l.u.b.{d,a}.
Algorithm A is defined by:



38 Carl-Johan Seger

Algorithm A

h:=0;

y:=b;

repeat
h:=h+1;
fori=1tom

yt=Yi(@,y"™);
until y*=y*1;

In the following we will use A (B) to denote the name of the algorithm, and A

(B) to denote the length of the sequence of states produced by Algorithm A (B).

Proposition 3.3 Algorithm A produces a finite sequence y°,y',...,y* of states, where
A <m, and y**1Oy" for 0<h <A.

Proof: We first prove by induction on & that y**'Jy”, for 2 >0. The basis, h=0, fol-
lows because (i) b=Y(d,b), by the stability requirement, (ii) (a,b)2(d,b), by the
definition of lLu.b., and (iii) y'=Y(a,y?)=Y(a,b)2Y(4,b)=b =y, by the monotoni-
city of Y. Assuming that y**'3y”*, it follows by the monotonicity of Y that
y**2=Y(a,y**)3Y(a,y*)=y"*!, and the induction goes through. In each step either
y*+13y* or the algorithm terminates. At least one new vertex becomes X if y*+'Jy";
therefore A <m. |

Algorithm B is defined next:

Algorithm B
h:=0;
2%=y*;
repeat
h:=h+1;
fori=1tom
zih= Yi(a> zh_l);
until 2"=2"1;

Proposition 3.4 Algorithm B produces a finite sequence 2°,2',...,2% of states, where

B <m, and Z**'C#" for 0<h<B.

Proof: The proof is dual to the proof of Proposition 3.3, with C replaced by 3, etc. B
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The following results are an adaptation of the work of Lengauer and
Naher [35]. They used a somewhat different model, but the main ideas are the

same. The notation R} denotes the composition of i copies of R, for h>1, and RQis
the identity relation.

Theorem 3.1 The result y* of Algorithm A is the least upper bound of all the states

reachable from the initial state b in the XMW transition relation, i.e.
yA = Lub.{ceT™:bR;c}.

Proof: We claim that y"R,y"*! for 0<h<A. Note that there is a vertex variable y;
for each input variable x;, i=1,...,n. In Algorithm A, if y?#y/, for some 1<i <n,
then d; % a;. Thus, in the XMW model, vertex i is unstable and can change to X. It
therefore follows that y°R,y!. For A >0, the first n components of the state can be -

held fixed at the value a. Then, forn+1<j<m
Y;t+1 = Yj(a’ yh)= Yj(a, yh)‘
Thus y*R, y**! as claimed.

Since y?=b, we have that bR, y* and so y* Clu.b.{c€T™:bR,c}. To prove the
converse, i.e. that y*Jlu.b.{ceT™:bR,c}, we show the following claim by induc-

tion on h: y* Jl.u.b.{ceT™: bR} c} for all R >0.

Basis:

h=0. Trivially true since y* Jy’=b.

Induction hypothesis:
Assume that y* JLu.b.{ceT™: bR}c} for some h >0.

Induction step:
Assume ceT™, and bR!1c. There must exist a state d€T™ such that bR}d
and dR,c. By the induction hypothesis y*Jd. Furthermore, dR,c implies
cClu.b.{d,Y(a,d)}, by Proposition 3.1. Since Y is monotone and y* =Y(a,y*),
it follows that
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¢ Club.{d,Y(a,d)} CLub.{d,Y(a,d)} C Lub.{y*, Y(a,y*)} = y*.
Thus the induction goes through and the claim follows. u
As above, let 2%,z!,..., 2% denote the intermediate values produced by Algorithm
B.
Theorem 3.2 The result zZ2 of Algorithm B is the least upper bound of all the non-
transient cyclic states reachable from b in the XMW transition relation, i.e.

2% = lL.u.b. out(R,,b).

Proof: Since y°=b, y°R,y*, 2°=y*, and z°R;2®, we have that bR, z%. Also (a,7”) is
a stable total state; hence 2P cout(R,,b) and 28 Cl.u.b. out(R,,b). To prove that
22 Jl.u.b. out(R,,b) we show that z* JL.u.b. out(R,,b) for h >0, by induction on .

Basis:
h=0. Since 2z°=y*, y*=lub.{ceT™:bR;c} (by Theorem 3.1), and

out(R,,b) C{c €T™: bR, c}, the result follows immediately.

Induction hypothesis:
Assume z"3Jl.u.b. out(R,,b) for some h >0.

Induction step:

Let ¢ be an arbitrary state in out(R,,b). By the induction hypothesis z* Jc¢ and,
by the monotonicity of Y, Y(a,z*)3Y(a,c). Furthermore, since 2 =Y(a,z"),

we have
2*13Y(a,c). (i)
Now consider any binary value in z**!, say z/*'=a€B. By (i) it follows
that Y;(a,c)=c. Since c is arbitrary, it follows that

Yi(a,c)=o forall cecout(R,,b),

i.e. the excitation of vertex j is o in all the states in out(R,,b). We claim that
this implies that ¢;= o for all ¢ €out(R,,b). To show this, suppose there exists a

¢ eout(R,,b), such that é;=p#a. Consider any nontransient cycle in out(R,,b)
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containing é. Since the excitation is the same in all states in out(R,, b), it follows

that vertex j cannot have the value g in all the states in the cycle (otherwise the
cycle would be transient). Suppose it changes to 4 in the state ¢ in the cycle. If
~=a, vertex j would be stable from here on, and could never change back to 3.
Hence, y#a. Altogether, both g8 and v can only have values in {o',X}. Since

the excitation is « in all states in out(R,,b), the only possible transition is from

B=d to y=X. However, there cannot be any transition between a state in
which vertex j is X and a state in which it is o', since such a transition would

violate the definition of R,. Hence such a cycle in out(R,,b) containing ¢ does
not exist, and we can conclude that ¢;=a for all c €out(R,,b). In summary, we

have shown that for any binary value « in z*+!, the corresponding vertex will

have the same value o in all the states in out(R,,b). Therefore the induction

step goes through and the claim follows. u

Note that the graph of R, may contain cycles with the following property: The

value of vertex j is €B in all states of the cycle, but the excitation has the value o
in some states of the cycle and X in the remaining states. Such cycles are transient
according to the definition in Section 3.1. However, it is easy to verify that
Theorem 3.2 still holds if the definition of transient is changed in such a way that

these cycles belong to out(R,, b).

The results of this section will now be illustrated by examples. The ternary
simulations corresponding to the XMW analyses of Figs. 3.2 and 3.3 are shown in
Figs. 3.4 and 3.5 respectively. Note that, in both cases, y* is equal to the Lu.b. of
all reachable states, and 2z is equal to the lLu.b. of the outcome of the XMW

analysis.
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y' = 0010 2’ = X0OXX

y! = X010 b = 10XX

y2 = X0X0 22 = 100X
(a) (b)

Figure 3.4. Ternary simulation of Ny: (a) Algorithm A; (b) Algorithm B.

y’ = 100 20 = XXX
y! = X00 ! = OXX =128
y2 = XXX =yA

(2) (b)

Figure 3.5. Ternary simulation of N,: (a) Algorithm A; (b) Algorithm B.

3.3. Reduced Networks

It is proved in this section that the XMW and ternary analyses can be applied to
a much smaller network and still give the same amount of race information. It is
first shown how to transform a network so that the dependence of a vertex on

another vertex can be removed in certain cases.

Let N=<V,E,x,y,Y> be any network. Assume that (p,q)€E, p>n, p#gq, and
that (p,p)¢E, i.e. that g is a function vertex whose excitation function depends on
the value of another vertex p, where p is a function vertex and does not have a self-
loop. Now, let N be the network: N=(V,E,x,y,Y), where
E=EU{(i,q):(G,p)EE} — {(p,q)}. Also, Y;(x,y)=Y;(x,y) for all jzq and
Yq(x,y)=Yq(x,(yl,...,yp_l,Yp(x,y),yp_,,l,...,ym)). The transformation is performed to
remove the dependence of vertex ¢ on the value of vertex p. Note that only edges

from function vertices can be removed.

A typical transformation to remove vertex ¢’s dependence on the value of ver-
tex p is shown in Fig. 3.6, i.e. we want to remove the *-marked edge. Assume that

in N we have ¥, = (va¥pyg) and Y, =y,y.y,. Therefore vertex g depends on vertex p



Race Analysis in Asynchronous Circuits 43

(hence the edge from p to g). Moreover, vertex p does not have a self-loop and is

also a function vertex. In this case we get 7q=y,,yc(yay,,yq)', which can be simplified
to ¥, =Yays¥e + YoYsYe + Yo¥cy,- Note that, since the composition is performed for ter-
nary functions, the term y,y,y. in Yq cannot be removed. Note also that the vertex g

gets a self-loop by this transformation.

2|

N

Figure 3.6. Removal of vertex ¢’s dependency on vertex p.

We now prove, by a series of lemmas, that the ternary simulation yields identi-
cal results for N and N. Assume N and N are started in the stable total state (d,b)
and that the input changes to a. Let a=lu.b.{d,a}. Now, let io,il,...,iz and
y%, ¥%,...,y* be the results of Algorithm A for N and N respectively.

Lemma 3.1 The result y* of Algorithm A for network N is equal to the result ?X of
Algorithm A for network N.

Proof:

First, if the excitation of vertex p never differs from the state of vertex p, the
lemma holds trivially. Otherwise, assume that the excitation of vertex p differs from
the state of vertex p for the first time at step r, r >0. From the definition and the
monotonicity of Algorithm A, we can conclude that

b .f .
. p 1L I<r .
Y@a,y) = {x if i>r, (i)

and that
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i bp if i<7‘+1 ..
Yo = |x if i>rel. (if)

Clearly y' =¥ for 0<i<r. This together with (i) and the monotonicity of Algo-
rithm A implies that

—_ i i bp if i<r
Yp(a’y)=Yp(aay)= X if i>r. (111)

From (ii), and (iii) it follows that
¥, CY,(a,§) Cy, ™ fori>0. (iv)

We now prove by induction on k that y* C §* C y**!, for all 2 >0. By the mono-

tonicity of Algorithm A, the claim in the lemma then follows immediately.

Basis:
h=0. Since N and N are started in the same state, y°=3°. By the monotonicity

of Algorithm A, it follows that y’Cy!, and the claim is true for the basis.

Induction hypothesis:
Assume that y* C §* C y**!, for some h >0.

Induction step:
By the monotonicity of Y, the definition of Algorithm A, and the induction
hypothesis we have for i % g:

yi = v,(a,y*) C Yi(a,¥") = Yi(a,¥") = 7 C Yi(a, y**!) = yi*2.

Finally, since y*CY,(a, ") Cy/+!, by (iv), it follows that

h+1

yq = Yq(a’(YIh’--"y;—l;y:;y:-f-l’”-ayz))

CY,(a, (s 571, Yo (3, 7). §hs1se e, Ti)) = Yo

h+1 h+l S h+l h+l h+1 h+2
C Yq(a’ (Y1+ ’---,Yp;’-l’yp-'- ,ypil’--~,ym+ )) = yq+ .

Hence, y"*'C7* Cy**2 and the induction step goes through. u
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In a similar way one can verify the following ‘“dual’”’ version of Lemma 3.1.

Lemma 3.2 The result zZ2 of Algorithm B for network N is equal to the result 2 of
Algorithm B for network N.

Note that the above procedure can be repeated. A network N obtained by car-
rying out the reduction procedure some number of times and then removing all ver-
tices with outdegree 0 will be called a reduced network. Furthermore, a network
obtained by carrying out the reduction procedure as far as possible will be called a
completely reduced network. Note that, in general, the completely reduced network
is not unique. Note also that in a completely reduced network all function vertices
have self-loops. For the remaining part of this section the following definition will
be needed: A set of vertices F is called a feedback vertex set for a directed graph G
iff removing the vertices in F and all their incident edges gives an acyclic graph.

The following proposition is easily verified.

Proposition 3.5 If N is a reduced version of N, then the function vertices of N consti-

tute a feedback vertex set of the original network N.

Proof: The reduction process can be viewed as a two step process. First, as many
edges as possible are removed by using the above reduction procedure. Second,
when no more edges can be removed, all vertices with outdegree 0 are removed,
yielding the network N. It is sufficient to show that, for any cycle in N, at least one
function vertex of the cycle will remain in N. This follows trivially from the fact that
removing an edge in a cycle using the reduction procedure will only shorten the
cycle. Eventually, one of the vertices of the cycle will have a self-loop and no
further reduction can be made. Since a vertex with a self-loop has outdegree >1 it
will not be removed. Hence, it follows that at least one function vertex of every

cycle of N remains in N, thus forming a feedback vertex set. L

The converse, i.e. that, for any feedback vertex set F of N, one can find a
reduced network N such that the set of function vertices is identical to F is treated in

the following proposition.
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Proposition 3.6 Given any feedback vertex set F for a network N, there exists a

reduced network N such that the set of function vertices of N is equal to F.

Proof: The proof constructs the reduced network ‘‘around’ the given vertices in F.
The idea is to remove edges leading into the vertices in F. More formally, we define

a sequence of reduced networks N™ recursively as follows:

Basis:
N°=N.

Induction step:
Given N”, such that F is a proper subset of the function vertices of N*, find an
edge satisfying the following conditions: i) (i, ) €E*, ii) i¢F, and iii) j€F.
Remove edge (i,j) using the procedure described above. If vertex i now has

]Vh+1

outdegree 0, remove it too. Let be the network so obtained.

The crucial observation for this algorithm is that the set of vertices in N* that have
self-loops is a subset of F. This follows from the fact that all vertices of N that have
self-loops must be in F (otherwise F would not be a feedback vertex set) and that the
application of the reduction procedure can only cause a vertex in F to get a self-loop.
From this it is easy to see that we will eventually get some N* such that the set of

function vertices in N* is equal to F. u

We are now ready to state and prove the main result of this section. For simpli-
city, a reduced version of N will be called a feedback vertex model of N. The
theorem states essentially that an XMW analysis of a feedback vertex model of N is
sufficient, i.e. that it is not necessary to include all the vertices of N in a race
analysis. This is a result that contrasts radically with the ‘‘classical’’ binary race
models, where a feedback variable analysis (even if augmented with a hazard

analysis) is not always correct (for example see Langdon [34]).

Theorem 3.3 The lL.u.b. of the outcome of an XMW analysis of a feedback vertex
model N of a network N is consistent with the Lu.b. of the outcome of an XMW
analysis of N, in the sense that both analyses produce the same values for the feed-

back vertices.
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Proof: By Theorem 3.2 it follows that ternary simulation can be used instead of the
XMW analysis, since the result of ternary simulation corresponds exactly to the
l.u.b. of the outcome of the XMW analysis. Furthermore, Lemmas 3.1 and 3.2
together show that ternary simulation yields the same result for N and N, when only
one edge has been removed. It now follows, by induction on the number of times
the reduction process is carried out, that ternary analysis yields identical results for N
and N, where N is the reduced network. (Clearly, the removal of vertices with out-
degree 0 does not change the result of ternary simulation.) Finally, by Proposition
3.6, we know that, given a feedback vertex set, we can construct a reduced network

with exactly that set as the set of function vertices. u

In order to analyze a network as fast as possible it would appear desirable to
have the smallest number of vertices in the reduced network. It is well known [28]
that the problem of finding a minimal feedback vertex set is NP-complete; hence the
best we can hope for (assuming P % NP) is an approximation algorithm. However, it
is not necessarily optimal to find a minimal feedback vertex set and reduce the net-
work down to this set. It is not difficult to find examples in which the cost of ternary
simulation of a reduced network is higher than the cost of ternary simulation of the
original network. The opposite is also possible. For example, the new excitation
functions can be sometimes drastically simplified, leading to a reduced network that
is substantially more efficient to simulate than the original network. (Modeling a
combinational static CMOS circuit in a switch-level model is a good example of the
latter case.) Hence, the questions of whether to reduce a network or not, and how
much reduction should be done, must unfortunately be decided according to some

heuristic. (The answer will also depend heavily on implementation details.)

The ideas above will now be illustrated by examples. Consider network N; of
Fig. 3.1. A possible feedback vertex set is {3}. Using the approach described above
we get the reduced network N; of Fig. 3.7 with excitation functions:

Yi=x; Yo=x, Yi=(1+02+y3))"
Figure 3.8 shows both the XMW analysis and the ternary simulation for the same

transition as was analyzed in Fig. 3.2, i.e. with (4@, 5)=(00,001) and new input a = 10.
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Figure 3.7. Network Ni.

0,01 001 XOX
{ {
1010 <"_'X101X xX01 10X
100 «=—— 10Xy =—— X;0X X0xX 100

O 5.0

Figure 3.8. Analyses of Ny: (a) XMW; (b) ternary simulation.

(a)

Next consider network N, of Section 3.1. The set {2} constitutes a feedback ver-

tex set of the network N,. Reducing N, yields network N, with excitation functions:
Yi=x Yy= 01+ 01+32))'-

Figure 3.9 shows the XMW analysis and the ternary simulation for the same transi-

tion as was analyzed in Fig. 3.3, i.e. with (d,b)=(1,10) and new input a =0.

The next example shows that a further reduction, below a minimal feedback
vertex set, may be possible in some cases. Consider network N3 of Fig. 3.10 with
excitation functions:

Yi=xy Ya=y1 Yi=yi Ya=ys+yyatyds  Ys=Yat)s

If the edge (2,4) is removed, we get N3 with excitation functions:
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1,0 10 XX
00 <—— Xq0x 0 olx
O / \ : O
0X -<=—— XX X X
O O
(a) (b)

Figure 3.9. Analyses of N,: (a) XMW; (b) ternary simulation.

0*8 9'

Figure 3.10. Network N;.

Yi=xy Yo=y1 Ti=y1 Yai=ywstyvstyv Ys=yatys
Furthermore, if the edge (3, 4) is also removed, we get N5 with excitation functions:
Vi=xy Yo=y  Ya=y  Ye=yprtypatyvs  Ys=Yatds
It is easy to see that we cannot remove any other edges, and that vertices 4 and 5
constitute a minimal feedback vertex set. However, Y, can be simplified to Yi=y1.

Here the edge (4,4), indicating that the excitation of vertex 4 depends on the value
of vertex 4, can simply be erased. Note that vertex 4 did depend on its own value in
the original network. After the edge (4,4) has been erased, the edge (4,5) can also
be removed. If we then remove the vertices with outdegree 0, we obtain network

IV3, shown in Fig. 3.11, with excitation functions:

j;1=x1 Ys=)‘1+)’5
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o—o"8

Figure 3.11. Network N;.

Reductions below a minimal feedback vertex set, such as the one described
above, may be possible because some of the excitation functions may become degen-
erate. On the other hand, the feedback vertex set reflects only the structure of the
graph. It can be easily verified that the reduction which uses functional degeneracies
to remove self-loops is also valid, in the sense of Theorem 3.3. Unfortunately, the
problem of determining whether a ternary function depends on a particular variable
is NP-complete in general. (This can be verified by transformation from Boolean

satisfiability).

3.4. OQutput Hazards

In the previous sections we were concerned only with the nontransient behavior
of a given network. We concentrated on the detection of critical races and oscilla-
tions, but did not consider hazards explicitly. In fact, an XMW analysis does take
into account implicitly all possible hazards associated with the vertex variables, when
determining the nontransient outcome of a transition. Thus, if one is only interested
in the nontransient behavior of a network, it is sufficient to find the outcome using
the XMW analysis, or preferably the equivalent ternary simulation, and no further
analysis is required. However, the network being analyzed is often a part of a larger
system. In such cases, some subset of the vertices may be ‘‘visible” to the rest of the
system. We will call such vertices output vertices. When output vertices are present,
there is a new problem. Consider, for example, an output vertex that has the value
0 initially, and also in all the states of our(R,,b). It is quite possible that the vertex
has the value 1 or X in some of the transient states during the transition. Such short
pulses must be detected, since they may cause unwanted state changes in the rest of
the system controlled by this output vertex. In this section we formally define the
notion of output hazards, and also give methods for detecting them. We also show

that the same information may be obtained from a reduced network.
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Assume that a network N is started in the stable total state (d,b) and that the
input changes to a. We say that there is a static I-hazard on an output vertex i for

the transition d — a iff b;=1, ¢;=1 for every state ¢ cout(R,,b), and there exists a

state d such that bR, d and d; #1. A static 0-hazard is defined similarly.

The following theorem shows how the results of ternary simulation can be used

to detect static output hazards [26, 62].

Theorem 3.4 Assume network N is started in the stable total state (4, b) and the input
changes to a. Let y* be the result of Algorithm A and z° be the result of Algorithm
B. Then output vertex i has a static 1(0)-hazard iff b; = zP =1(0) and y/ = X.

Proof: Suppose there is a static output hazard on output vertex i. Without loss of

generality, assume it is a static 1-hazard. Then b;=1, and ¢;=1 for all states ¢ in
out(R,,b). Also, there must exists a state d, reachable from b, such that ;1.
Since 28 =l.u.b.(out(R,,b)), by Theorem 3.2, it follows that z’=1. Furthermore,
since bRyd and d;%1, we must have lub.{¢:bRse}=X. However

y* =lu.b.{e :bR; e}, by Theorem 3.1; hence y =X, and the claim follows.

Conversely, assume, without loss of generality, that zP=b;=1 and that yf=X.
By Theorem 3.2 it follows that ¢; =1 for any state ¢ in out(R,,b)). By Theorem 3.1,
there must exist a state d reachable from b, such that d; = 1; otherwise y# would be 1.

Hence the claim goes through and the theorem holds. u

In connection with static hazards, one may ask whether all timing problems can
be detected by an XMW analysis of a network. In particular, can wire delays, i.e.
delays associated with the edges, create new timing problems? One can account for
wire delays in our model by simply inserting a ‘“‘delay vertex” in each edge; the exci-
tation function of such a vertex is the identity function. It is easily verified that the
network with wire delays yields the same results. First, by Theorem 3.4, ternary
simulation can be used instead of an XMW analysis for the detection of static
hazards. Furthermore, by Lemmas 3.1 and 3.2 in Section 3.3, the dependence on a
function vertex without a self-loop can be removed without affecting the ternary

simulation. In particular, the dependence on a delay vertex can be so removed. By
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induction on the number of wire delays in the network, it follows that a network
without wire delays has the same static output hazards as a network with any number

of wire delays added.

As shown in Section 3.3, it is sometimes advantageous to reduce the original
network to a feedback vertex network. However, the reduction described in Section
3.3 does not take care of output vertices. There are two solutions to this problem.
The first alternative is to change the reduction procedure in such a way that output
vertices are never removed. Unfortunately, this may lead to a substantially larger
network. The other alternative is to perform the analysis on a feedback vertex
model, and then recreate the output values and transitions using the results obtained
from the feedback vertex model. We are going to focus on this second alternative.
Note however that the first alternative can be viewed as a special case of the second
approach (the reduction is simply not carried out as far as possible and the output

functions are trivial).

In the following discussion, we will assume that N is a reduced version of some
network N. Without loss of generality assume that vertices n+1 to n+o are output
vertices in N. The idea is to add a set of output functions, Oy,...,0,, to the feedback
vertex network. In general, function O; is a function from T™ to T, and is computed
as follows:

O0; =5

while O; depends on any y; such that kgV do
replace every occurrence of y, in O; with Yj

Since V is a feedback vertex set, the procedure is guaranteed to halt with an output
function that depends only on input vertices and feedback vertices. (As usual, the

final function O; can be simplified using the laws of the ternary algebra.) The follow-

ing result, stating that the values of the feedback variables uniquely determine the

output values, is easily verified.
Proposition 3.7 Assume (a,b) is a stable total state in N. Let (a,b) be the
corresponding stable total state in N. Then the value of output vertex i, i.e. b,,;, is

equal to 0i(a,b).
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Proof: This follows from the fact that (a,b) is a stable total state, i.e. b;=Y;(a,b),

and from the construction of O;. L

Proposition 3.7 together with Theorem 3.4 gives us the following method of
analyzing a network N. First, reduce the network as much as desirable to N. Also,
compute the output functions. Use ternary simulation to get the two state vectors &
and z2. Evaluate the output functions for b, y* and z®. The results are interpreted
as in Theorems 3.2 and 3.4. Hence, both the outcomes of the transitions and poten-

tial static output hazards are correctly computed.

3.5. Summary

It is interesting to compare the results of the previous sections with earlier
results concerning gate circuits. The classical transition model, used when no
assumptions are made about the delays in the circuit, is the General Multiple Winner
(GMW) model [17]. The GMW transition relation is very similar to the XMW rela-
tion, except that all the states are assumed to be binary. Otherwise, the two models
are identical, i.e. any nonempty subset of the unstable gates can change to their

excitation values.

Let N denote the network obtained from a network N by adding a delay element

in every wire. We have the following result for gate circuits.

Theorem 3.5 The following analysis techniques are all equivalent for gate circuits

from the point of view of nontransient state behavior and static output hazards:
1. GMW analysis of N.

2. XMW analysis of (a) N, (b) N, and (c) N, any feedback vertex model of
N.

3. Ternary simulation of (a) N, (b) N, and (c) N.

Proof: The equivalence of 3(a), 3(b), and 1 for computing the nontransient behavior
was shown in [12, Theorem 1]. Furthermore, by arguments similar to those in
Theorem 3.4, it is easy to show that this equivalence also holds for detecting static

hazards. (This was not shown in [12], but all the necessary results are there.) The
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equivalence between 3b and 3c follows from Theorem 3.3. Also, by Theorems 3.1,
3.2 and 3.4, we immediately have the equivalence of 2a and 3a, 2b and 3b, and 2c
and 3c. |

For switch-level models we can also summarize the results of this chapter. Let
N denote the network obtained when both the internal nodes as well as the transistors
are assumed to have delays. Similarly, let N denote a reduced version of N. The

following results hold for switch-level circuits:

Theorem 3.6 The following analysis techniques are all equivalent for switch-level cir-
cuits, using any one of the node excitation models described in Chapter 2, Section 3,
from the point of view of nontransient state behavior and static output hazards:

1. XMW analysis of: (a) N, (b) N, and (c) N.

2.  Ternary simulation of: (a) N, (b) N, and (c) N.

Proof: The equivalence of XMW analysis and ternary simulation of the same net-
work follows from Theorems 3.1, 3.2 and 3.4. Hence, we will only discuss the
equivalence of the different networks for ternary simulation. Since no function ver-
tex representing a transistor in N can have a self loop, Lemmas 3.1 and 3.2 apply.
Hence, without affecting the ternary simulation, we can remove all the transistor
function vertices, yielding network N. This, together with Theorem 3.4, demon-
strates the equivalence of the ternary simulations of N and N. Using the same argu-

ments, it follows that ternary simulations of N and N are equivalent. u



Chapter IV

Delay-Independent Networks

The XMW model allows us to study the behavior of a circuit when the delays
are completely unknown. This leads naturally to the .concept of delay-independence.
The basic idea of delay-independence is to design circuits in such a way that they
operate correctly, no matter what the internal delays are. In this chapter we formal-
ize this intuitive idea and, using the theory developed in Chapter III, derive some
very stringent conditions for a behavior to be realizable by a delay-independent

design. In fact, we show that the class of delay-independent circuits is quite small.

4.1. Introduction

The ideas to be discussed will be introduced by means of some examples. To
make the examples manageable, we will use gate circuits and will analyze the transi-
tions according to the GMW race model. However, in the theory we develop later,
we will be using the framework defined in Chapter II and the XMW model of
Chapter III.

Consider the gate circuit G; of Fig. 4.1, started in the stable total state x=0,

y=011. Itis easy to verify that, if the input changes to x =1, the circuit will eventu-
ally end up in the new stable state y=101. Since this state is the only nontransient
state reachable no matter what the gate delays are, we say that the transition is

delay-independent. On the other hand, consider the gate circuit G, of Fig. 4.2. If

this circuit is started in the stable state x=0, y=100 and the input changes to 1, the

circuit can end up in either the state 000 or 001 depending on the relative sizes of

55
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the delays in gates 1 and 2. In fact, gates 1 and 2 both become unstable after the
input changes, i.e. these two gates are involved in a race. If gate 1 changes first,
the outcome is 000; if gate 2 is faster, state 001 can also be reached. Since the non-
transient outcome of this transition depends on the internal delays in the circuit, the

transition is not delay-independent.

X
) > }
Figure 4.1. Gate circuit G;.
X Y2

—®

{>C N =

Figure 4.2. Gate circuit G,.

It is important to note that the classification of transitions according to delay-
independence is very sensitive to the race model chosen and the delay assumptions
made. Consider, for example, the gate circuit G3 of Fig. 4.3. Assume the circuit is
started in the stable state x=0, y=1000 and that the input changes to x=1. It is
easy to verify that this transition is delay-independent if only the gates have delays
associated with them. However, if the wire between the first inverter (gate 1) and
the AND gate (gate 3) also has a delay, the transition is no longer delay-
independent, since the circuit can then end up in either the state y=0100 or the
state y=0101. The latter state can be reached when the wire delay between gates 1

and 3 exceeds the delay of gate 2.

The first study of delay-independent circuits was done by Muller and Bartky in
the late 1950’s [40, 45]. They assumed that only the gates have delays associated

with them, that all transitions are instantaneous, and that the circuits do not have
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X {>c * ¥3 y
o ‘

Figure 4.3. Gate circuit Gs.

any inputs. Using these assumptions, they developed a theory for such delay-
independent circuits. For more details, the reader is referred to [40, Chapter 10]
which contains a thorough treatment of this theory. One of the main differences
between Muller and Bartky’s work and ours is the fact that they developed a theory
for circuits that do not have any input signals, whereas we are interested in the

response of a circuit to a sequence of input changes.

One of the problems with delay-independent design is the difficulty of verifying
that a given circuit really is delay-independent. For many delay models, the prob-
lem of determining the behavior of a circuit is NP-hard [35, 46] or even PSPACE-
complete! and thus intractable for anything but trivial circuits. Fortunately, there do
exist reasonably realistic race and delay models in which the outcome of a transition
can be determined in polynomial time. The XMW model together with ternary
simulation is such a model. In the next section we formally define the notion of

delay-independence based on this race model.

4.2. Delay-Independence

The XMW model, as described in Chapter III, permits us to predict the out-
come of any input change under very general assumptions about delays in a network.
In fact, each vertex may have an arbitrary finite inertial delay. It is natural to
define the concept of delay-independence in terms of a network’s behavior according
to an XMW analysis.

+ For more details, see Chapter VII.
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A network N, started in a binary stable total state (d,b) and with a new binary

input vector a, is said to be delay-independent with respect to (a,b) if out(R,,b) con-

tains a single binary state.

The reader should note that, by the definition of our, the single state in

out(R,,b) must be a stable state. Note also that the term delay-independence is

defined with respect to a certain starting configuration. We will later extend this

idea to cover the general behavior of a network.

The above definition differs from Muller and Bartky’s original definition of
delay-independence [40] in three ways. First, the underlying race model is some-
what different, in that the XMW model includes an intermediate value X, whereas
their model is a classical binary race model. Second, our definition excludes transi-
tions that can cause the network to enter a nontransient oscillation. We will return
to these differences in Section 4.6. Finally, our network model is different in that
we include inputs to the circuit, whereas Muller and Bartky’s model does not. In
fact, the characterization of the behavior of a delay-independent circuit in response

to a sequence of input changes is the main problem studied in this chapter.

The concept of delay-independence, as defined above, is not very convenient,
since it is defined in terms of an XMW analysis. However, by Theorem 3.2 it is
easy to verify that the following definition of delay-independence is equivalent to
that above. A network N started in the binary stable total state (a,b) and with a nev?
binary input vector a, is said to be delay-independent with respect to (a,b) if the

result of Algorithm B for this change is binary.

4.3. Behavioral Model

In this section we combine the different concepts introduced in the earlier sec-
tions to define an abstract finite-state machine that describes the delay-independent
behavior of a given network. Note that we assume that the network is operated
according to the fundamental-mode assumption, i.e. the network is given sufficient

time to ‘‘settle down’’ after every input change before the input changes again.
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The fundamental-mode, delay-independent, asynchronous machine (FDAM), M,

corresponding to a network N, consists of the following:

1) A finite set Q of internal states. Each state g €Q corresponds to a binary
stable state of N.

2) A finite set £ of input symbols. Each input symbol o €X is a nonempty
subset of {1,...,n} representing the set of input variables being comple-

mented.
3) A finite nonempty set ZC{1,...,m} of output vertices.
4) A mapping 7 (called the transition map of M) of a subset D of O XX to Q.

5) An initial stable state g°€Q.

Furthermore, the transition map must satisfy the following condition: The net-
work N is delay-independent with respect to the state p for the input change ¢
and this transition takes N to the state g iff 7(p,0)=¢. The reader can easily

verify that this condition implies that M is deterministic.

We denote M by the ordered quintuple M=(0,%,Z,7,q°). Note that M may be
incompletely specified, i.e. D CQXE. This means that if, for example, (p,o0)¢D,
then N is not delay-independent with respect to the state p for the input change o.
Hence, a network may be delay-independent only with respect to certain transitions.
The reader should also note that there cannot exist any state p €Q and input symbol
o€ such that 7(p,o)=p, i.e. there cannot be any self loops in a diagram of M.
The reason for this is that each state p €Q represents a stable state of N, and the
state of the network includes the values of the input vertices. Since an input symbol
o represents some input variables being complemented, it follows that if r(p,0)=g¢q,

then p#q.

The definition of M is somewhat redundant, since the input symbol ¢ that takes
the machine from state p to state g can be deduced from the values of the first n
components of p and g. However, the redundancy simplifies the notation and will

be retained.
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In many cases it is appropriate to impose one further restriction on M. As
described in Chapter III, Section 4, it is often important to ensure that the transitions
of a network are free of output hazards. A FDAM M is said to be hazard-free if for
all p,geQ and o €X such that 7(p,0)=gq, there is no hazard on any output vertex

during the transition from p to q.

To illustrate the above definitions, and also to give an example of a nontrivial
delay-independent network, we present the gate circuit G, of Fig. 4.4. Follow-
ing [14], and associating one vertex with each gate, we derive the abstract network
N, of Fig. 4.5, with the excitation functions:

Yi=x Ys=yyy Ys=(i3+Ys) Yo=ys Yo=(07+10)
Ya=x, Ye=yo Ye=0Ou+ys) Ys=yws Yio=(s+¥o)

Y1

Figure 4.5. Network N,.
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In order to simplify the analysis, the reduction procedure described in Chapter 11 is
carried out using the set {5,9} as the feedback vertex set. This yields the reduced
network Nj of Fig. 4.6 with excitation functions:

Yi=x Ys=Owo+ 0105+ +¥s))

Yo=x Yo=(20nOoys+9) +s) + Oys+9)')
(Remember that it was shown in Chapter III that XMW analyses of N4 and N; are

equivalent. We will return to this in Section 4.6.)

Figure 4.6. Network Nj.

Assume that Nj is started in the stable total state (00,0011), i.e. assume that
g°=0011. The FDAM M; corresponding to the network N; is shown in Fig. 4.7.
(To simplify the picture, it is assumed that all vertices of Ni are output vertices.)
Note that no transition caused by a multiple-input change is delay-independent for
this network. It is interesting to note that for any state p in M for which an input
symbol ¢ is allowed, any odd number of ¢’s will take the machine to the same state.
For example, (0011, {1})=1001, 7(1001, {1}) =0001 and 7 (0001, {1}) = 1001. In Section
4.5 we will show that this is no coincidence but a fundamental property of delay-

independent networks.
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{1}

Figure 4.7. FDAM M, corresponding to network Nj.

4.4. Composite Network Function

In this section, we show how to derive a combinational network from a sequen-
tial network in such a way that the two networks yield identical results for ternary
simulation. This transformation will serve as one of our basic tools to derive the
behavior of an arbitrary delay-independent network in Section 4.5. The intuitive
idea can be illustrated as follows. Suppose we are given a network N with m vertices
as in Fig. 4.8(a). Assume the state (d@,b) is a stable total state of N and that the
input changes to a. Normally, using the ternary simulation algorithm described in
Chapter III, Section 2, we start with the state b, and then iteratively compute

“next-states”, y!,y2,...,y*. The next-states are computed as follows:

yi = Y(a’ yi—1)7

where a is the Lu.b.{d,a}. This process is repeated until a stable state y* is reached.
We know that A <m by the monotonicity of Algorithm A. Consider now the follow-
ing alternative approach. Suppose that all edges leaving the m vertices are broken.
We then get a combinational network of the form shown in Fig. 4.8(b). By con-
struction, this combinational network is such that y/*= Yj(x,yi") for 1<j<m. Now,
by connecting m copies of this combinational network in series we get a combina-
tional network of the form shown in Fig. 4.8(c). It is easy to see that, if y” =5 and
x=a, we get y*=yA. The reader can easily verify that the same idea can be applied

for Algorithm B as well. These concepts will be made more precise below.
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X1 —™ X X —-I-+— [- L
BT 3T a1 =
Y n ' —= Y =y W — ¥ Y = — ¥ =™
[L—hm yir | ey oy — —{
: 1 2 m
(a) (b) (©)

Figure 4.8. (a) Original network; (b) combinational network; (c) composite network.

Given a network N, define its composition function F:T"t" 7™ as

F(x,y)=Y™)(x,y), where Y® is defined recursively as follows:

Y (e, Y¢D(x,y)) ifh>1

The following properties of F will be used later.
Proposition 4.1 F(x,y) is monotonic, i.e. (d,b) C (a,b) implies that F(a,b) C F(a,b).
Proof: Assume that (d,b)C(a,b). We prove by induction on h that

Y®(G,b)CTY®(a,b) for h >0. From this it follows immediately that F(a,b)CF(a,b),

and hence that F is monotonic.

Basis:

h =0. Trivially true.

Induction hypothesis:
Assume that Y®(a,b) C Y®)(a,b), for some h >0.

Induction step:
By the definition of Y®*+D it follows that Y*+(d,b)=Y(a,Y*(d,b)), and that
Y&+ (a,b)=Y(a,Y®(a,b)). Since Y®(4,b) CY*(a,b), by the induction
hypothesis, and Y is assumed to be monotonic, we can conclude that
Y(a,Y®(d,b)) CY(a,Y®(a,b)). Hence the induction step goes through and the

proposition follows. n
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Proposition 4.2 If (a,b) is a stable total state of N, then F(a,b)=5b.

Proof: We prove by induction on h that Y®(a,b)=b for h>0. It then follows
immediately that F(a,b)=>b.

Basis:

h =0. Trivially true.

Induction hypothesis:
Assume that Y®)(a,b) = b, for some h >0.

Induction step:
By the definition of Y®*+V it follows that Y*+Y(a,b)=Y(a,¥®(a,b)). Since
Y®)(a,b) = b, by the induction hypothesis, and (a,b) is assumed to be a stable
total state, i.e. Y(a,b)=b, we can conclude that Y#+D(q, b)=b and the induc-

tion step goes through. u

Lemma 4.1 Assume a network N is started in the stable total state (@, b) and that the
input is changed to a. Let y* and z® be the results of Algorithms A and B for this
input change respectively. Furthermore, let a=/l.u.b.{d,a} and let F(x,y) be the
composition function of N. We then have the following properties of F':
(i) F(a,b)=>b (stability)

(ii) F(a,b)=y* (result of Alg. A)

(iii) F(a,y*)=y* (stability)

(iv) F(a,y*)=7 (result of Alg. B)

(v) F(a,Z%)=72% (stability)

Proof: Properties (i), (iii), and (v) follow immediately from Proposition 4.2 and the
definition of Algorithms A and B. For property (ii), let y°,...,y* be the sequence of
states produced by Algorithm A. Note that y°=b and that A <m. We now show, by
induction on h, that Y®)(a,b)=y" for 0<h <A.

Basis:

h=0. Since YO(x,b)=b, and y’=b, the result follows immediately.

Induction hypothesis:
Assume Y*)(a,b)=y" for some h>0.
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Induction step:
By the definition of Y®**D it follows that Y**D(a,b)=Y(a,Y®)(a,b)). Similarly,
by the definition of Algorithm A, it follows that y**'=Y(a,y*). Since
Y®)(a, b) = y*, by the induction hypothesis, we can conclude that

Y®+(a,b) = Y(a, Y®(a, b)) = Y(a,y") = y**L.

Hence the induction step goes through.
From the above we can conclude in particular that Y#)(a,b) = y*. If A=m, then
F(a,b)=Y™)(a,b)=Y*)(a,b)=y* and property (ii) is proved. Otherwise, i.e. if
A <m, it is easy to verify that Y®+D(a, b)=Y®(a,b)=¥Y*)(a,b)=y* for h>A. This
follows simply from the fact that (a,y*) is a stable total state, i.e. that y* =Y(a,y*).
Altogether this establishes property (ii). Using similar arguments, it is easy to verify

property (iv). L

The above lemma is crucial for the proofs in Section 4.5, since it allows us to
use the composite network function F instead of the network N directly. Hence, we
can establish the results using a combinational, rather than sequential, network — a

substantial simplification.

4.5. Fundamental Properties of Delay-Independent Circuits

In this section we derive some general properties that are common to all delay-
independent networks. The following three theorems summarize the main results of

this chapter.

Theorem 4.1 Let N be any network. Let M=(Q,%,Z,r,q"% be the fundamental-
mode, delay-independent, asynchronous machine corresponding to N. If there exist
states p,q and r €Q, and an input symbol o €%, such that 7(p,0)=¢q and 7(q,0)=r,
then 7(r,0)=gq.

In other words, any odd number of changes of the same set of inputs must leave
the network in the same state. An interesting special case occurs when the network
has only one input. From the above theorem it follows that any FDAM, for a net-
work with only one input, can have at most 3 states. Since the value of the input

vertex is part of the state of the network, any such FDAM must have at least 2
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states. Hence, a one-input network can only have an FDAM with 2 or 3 states. In

fact, it is easy to see that the only possible machines are the ones shown in Fig. 4.9.

{1} {1}
{1}
@ 1
{1} {1}
(a) (b)

Figure 4.9. FDAM’s for a network with only one input.

From this we can conclude, for example, that there does not exist a delay-
independent mod-2 counter (a mod-2 counter is a circuit with one input, one output,
and whose output changes with half the frequency of its input signal). In fact, there

does not exist a delay-independent mod-k counter for any k> 1.

The next theorem deals with multiple-input changes, i.e. when more than one

input vertex changes at the same time.

Theorem 4.2 Let N be any network. Let M=(Q,%,Z,7,q% be the fundamental-
mode, delay-independent, asynchronous machine corresponding to N. If there exist

states p,q and r €Q and input symbols ¢ and o4, such that o, is a proper subset of o,

7(p,0)=r, and 7(p,01)=¢q, then 7(qg,0 —0oy)=r.

The theorem states, roughly, that if a multiple-input change is delay-
independent, then the network must end up in the same state if this multiple-input

change is made step by step.

Theorem 4.1 above dealt with the total state of a delay-independent network.
Our last theorem of this section gives conditions on the values of specific output ver-
tices. Since we deal here with outputs, we restrict our attention to hazard-free tran-

sitions.

Theorem 4.3 Let N be any network. Let M=(Q,%,Z,7,q"°) be the hazard-free,
fundamental-mode, delay-independent, asynchronous machine corresponding to N.
Assume vertex j is an output vertex. If there exist states p,q and r €Q, and an input

symbol ¢ €%, such that 7(p,0)=gq, 7(g,0)=r and pj=q;=a€B, thenr;=a.
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From the above and from Theorem 4.1 we can draw the following conclusion.
If an output does not change value for some input change o, then it will not change

for any sequence of o’s.

We prove the above theorems with the aid of a series of lemmas. In fact, we
prove a somewhat stronger result in that we do not restrict our attention to only
binary stable states of N. The following assumptions will be used for Lemmas 4.2,
4.3 and 4.4. Let N be any network operated according to the fundamental-mode
assumption, i.e. the network is given sufficient time to ‘‘settle down’ after every
input change before the input changes again. Let F denote the composite network
function of N as defined in Section 4.4. Furthermore, assume that the input
sequence is given by a® al,a% a%...=d,a,ad,a,..., i.e. that the input is cycled
between the binary input vectors é and a. Assume that (@,b% is a stable total state
of N. Let b*! denote the result of Algorithm A for the transition from the stable
total state (a’, b’) when the input changes to a’*l. Similarly, let b'*! denote the result
of Algorithm B for the same transition. The following lemma is the key lemma to
all subsequent results. It states that if, at some point, a vertex with a binary value

does not react to an input change, it will never react thereafter.

Lemma 4.2 If there exists a k >1 such that bf '=bf*=bF=aeB, then b i=bi=a

for all i > k.
Proof: We prove this by induction on i.

Basis:

i =k. Trivially true by the assumptions in the lemma.

Induction hypothesis:

Assume bi V= pi— o for some i>k.
j j >

Induction step
First note that Lu.b.{a’~!,a'}=lu.b.{a’,a’*}=l.u.b.{d,a}=a. By the monotoni-
city of Algorithm B (Proposition 3.4), it follows that 5"~ 4% and hence, by the
monotonicity of the composite network function (Proposition 4.1), that
Fj(a,b'"1)3F;(a,b’). However, by Lemma 4.1 (iii), F(a,b""*)=5'"! and, in

particular, F;(a,b'~*)=bi~1% which is equal to o by the induction hypothesis.
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Hence, a=Fj(a,b'"")3F;(a,b") and thus F;(a,b’)=0o. Furthermore, by Lemma
4.1 property (ii), it follows that b+!=F(a,b’) and hence bi*'=o. In other
words, the value of vertex j after Algorithm A for the input change @' to a‘t!
will be o. Finally, by the monotonicity of Algorithm B (Proposition 3.4) it fol-
lows immediately that b***13bi*! and therefore that bi*'=a. Hence the induc-

tion step goes through and the lemma follows. u

From Lemma 4.2 we get the following corollary.

Corollary 1 (Monotonicity for change sequences) For all k>1, b¥—1-k Jpk-k+1,

-1,k

Proof: It suffices to show that whenever bf~!* is binary, then b}*+*! has the same

-1,k

value. Suppose bf'*=acB. From the monotonicity of Algorithm A (Proposition

3.3) and the monotonicity of Algorithm B. (Proposition 3.4), it follows that
bfl=bf=a. Hence, bf'=bl'*=bf=aecB and Lemma 4.2 applies. Thus

bi~=bi=q for all i >k and, in particular, b}*+1=q. u

The following two lemmas give conditions on the values of a vertex after an odd
and an even number of input changes respectively. The first lemma states that, if a
vertex has a binary value after one input change, then it will have the same value
after any odd number of input changes. The second lemma is similar, but for an

even number of changes.

Lemma 4.3 If b!= a€B, then b#'=q for all i > 1.

Proof: By induction on i.

Basis:

i =1. Trivially true by the assumption in the lemma.

Induction Hypothesis:

Assume b#~!= o for some i >1.

Induction Step:
Since i >1 and thus 2i—-2>0, the state b*~2%-1 js well defined. By Lemma 4.2,
property (iv), it follows that b%~1=F(a%-1,p%-2%-1) and, in particular, that

bF1=F;(a¥1,p%-2%-1). By the same arguments, b¥*'=F;(a%*!,p%4+)
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However, by Corollary 1 it follows that p%-22-17p2-123p2%2+1  Also, by
21—+ _g and thus (a%1,p%-22-1y(g2i+1 p22i+ly  Thjs,
together with the monotonicity of F (Proposition 4.1), shows that
F(aZi—l’ b2i—2,2i—1)_:_| F(a2i+1’ b2i,2i+l). ThUS, bj2i—1 — Fj(aZi—l’ b2i—2,2i—-l)g

F (a¥+,p¥2+1) = p2+1  and since b '=a, by the induction hypothesis, it fol-

assumption,

lows that b%*+!= o and the induction step goes through. u

Lemma 4.4 If b?=a€B, then b¥= o for all i >1.
Proof: By arguments similar to those in the proof of Lemma 4.3. L

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1: There are two cases to consider. First, if r =p, the result fol-
lows trivially from the fact that M is a deterministic machine. Otherwise, when r#p
we prove the result by contradiction. Assume 7(r,o)=s for some s#g. Then the

state s must differ from the state g in at least one component, say g;#s;. However,

by the definition of M it follows that all the states p, g, r, and s are binary stable

states of N. Since 7(p,0)=gq and g;=o€B, Lemma 4.3 applies, showing that s; must

be equal to «, contradicting the assumption that g;%s;. Hence the result follows. H

Theorem 4.2 follows from a more fundamental property of the XMW race
model.
Proof of Theorem 4.2: Let d = (py,...,Pn), 4= (q1,-.-,4q,), and a = (r,...,r,). It is easy

to verify that d#d, d#a, and that a Cl.u.b.{a,a}. Since p is assumed to be a stable
state of N, it follows that (@, p) must be a stable total state of N, and hence, by Pro-
position 3.2, it follows that:

{d:deout(R,,c), and c€out(R;,p)} C out(R,,p).

Since 7(p,o)=r it follows that out(R,,p)={r}, and similarly, since 7(p,o1)=gq, that
out(R;,p)={q}. Altogether this gives that out(R,,q) C out(R,,p). However, since
out(R,,q)#@ and out(R,,p)={r} it follows that out(R,,q)={r} and thus that

7(q,0—01)=r establishing the theorem. u
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Finally we prove Theorem 4.3.

Proof of Theorem 4.3: There are two cases to consider. First, if r =p, the result fol-
lows trivially. Otherwise, if p #r, consider the output vertex j. Since all transitions
are assumed to be hazard-free, the tranmsition from p to g in particular must be
hazard-free. However, since p;=q;=a€B, Theorem 3.3 applies, showing that the
result of Algorithm A for this transition must be equal to «. Using the same nota-
tion as in Lemmas 4.2, 4.3 and 4.4 above, we can conclude that
pj=bf=bM=b}l=g;=0. Hence Lemma 4.2 applies, establishing that b}=« for all

i>1, and in particular that r;=a. |

Using the above results, it is easy to verify that the following six types of vertex
behavior are the only ones possible for a vertex in a delay-independent network

when the input alternates between the two binary input vectors @ and a:
1) The vertex never reacts.

2) The vertex changes value on the first input change and keeps this value

from then on.
3) The vertex changes value for every input change.

4) The vertex keeps the same value, although there may be a short pulse dur-

ing every input change.

5) The vertex keeps the same value, although there may be a short pulse dur-

ing the first input change.

6) The vertex keeps the same value for the first input change, except that
there may be a short pulse during this transition. For the remaining
changes, the vertex changes value for every input change.

Note that only behaviors 1-3 are normally acceptable for an output vertex.
The gate circuit Gs of Fig. 4.10 contains gates of all the above types if it is

started in the stable total state x=0, y = (y1,...,¥7)=1010100, and the input oscillates

between 1 and 0. In particular, gate 1 is of type 1, gates 2 and 3 are of type 2, gate
4 is of type 5, gate S is of type 3, gate 6 is of type 4, and finally gate 7 is of type 6.
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Figure 4.10. Gate network Gs.

4.6. Alternative Notions of Delay-Independence

In the previous section we derived some general properties of delay-independent
networks. However, we used a rather restricted definition of delay-independence.

In this section, we extend these result to different definitions of delay-independence.

Ternary simulation was the main tool used to prove the results in the previous
section. It is easy to verify that all the results of Section 4.5 (except possibly
Theorem 4.2) carry over to any race and network model that can be shown to
correspond to ternary simulation. In Chapter III two summarizing theorems were
proved for gate circuits and switch-level circuits respectively. These two theorems
allow us to give a number of different definitions of delay-independence, that are all
equivalent in the sense that the results of Section 4.5 hold for each of them. For
example, if we assume that only the feedback lines of a gate circuit can have delays
and that transitions can go through an intermediate value X (i.e. using the XMW
model) we know, by Theorem 3.5, that Theorems 4.1 and 4.3 are still valid.
Hence, even in such a restricted model, where only the feedback lines have delays
and the rest of the circuit is built of ideal (delay-free) components, one cannot con-

struct a delay-independent mod-2 counter.
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One of our basic assumptions in the definition of delay-independence was that
the networks are operated in fundamental mode [39], i.e. input changes occur so
seldom that the networks have time to settle down after each change before the input
changes again. This assumption seems to contradict the basic idea of delay-
independence, since here we implicitly introduce an assumption about the sizes of
the delays in the network. However, since this assumption makes it easier to design
delay-independent networks, and our main results are negative, it follows that if the
fundamental-mode assumption is removed, the class of delay-independent networks
can only become smaller. In fact, suppose that a network behaves correctly for a

change o followed by ¢,, where o1No,= () and o, may occur before the network has

reached a stable state. It is easy to verify that a necessary and sufficient condition

for this is that the multiple-input change ¢, U 0, must be delay-independent.

Another possible change in the definition of delay-independence is to relax the
condition that a network must reach a unique stable state after each input change.
This can be achieved by allowing the network to enter any nontransient oscillation as
a result of an input change. In such a case, one can define a nondeterministic ver-
sion of the sequential fundamental-mode machine of Section 4.3. However, it is not
difficult to show that, for the XMW model, the results of Section 4.5 still hold for
such a model. In particular, one can show that the l.u.b. of all the states reachable
after some sequence of input changes is equal to the result obtained by using ternary
simulation for every input change. Since Lemmas 4.2-4.4 did not require that the
total states of N reached after each input change be binary, the result follows
immediately. Whether this result also holds for the GMW model using gate and

wire delays is still an open question.

Dennis and Patil [22] studied the realizability of delay-independent circuits in
1971, but used a different notion of delay-independence. They introduced special
elements, called generators and absorbers, to model inputs and outputs of a circuit.
The definition of these elements implies that all communication with the outside
world is performed using a handshake protocol. For a circuit consisting of gates,
wires, generators, and absorbers, they essentially performed a GMW analysis.
However, in their model, one is not interested in reaching stable states (in fact such

states are undesirable), but rather non-transient cycles. In the work of Dennis and
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Patil a circuit is said to be live if in each nontransient cycle every gate changes at
least once. Furthermore, a circuit is said to be persistent if in every nontransient
cycle any gate that becomes unstable will have the same excitation until it changes.
Dennis and Patil [22] showed that if both the gates and wires can have arbitrary but
finite delays, then only some very trivial circuit behaviors can be designed with the
live and persistent properties. Unfortunately, the condition that a circuit is live and
persistent is only a sufficient condition for delay-independence [22], and thus the
result is not as strong as one would like. Also, their definition of delay-
independence is so different from ours that it is very difficult to compare their result

with our results.

Finally, it is worth mentioning that the race model used by Muller and Bartky in
their original work on delay-independence was the GMW model, but one in which
only the gates were assumed to have delays. It is not known whether using such a
definition of delay-independence would substantially increase the size of the class of

delay-independent gate networks.

4.7. Conclusions

Recently, Ebergen [25] showed that a very large class of networks (including
mod-2 counters) could be realized in a delay-independent design if a small set of
basic ‘‘building blocks” could be designed delay-independently. Unfortunately, the
results of previous sections show that such building blocks do not exist. In fact, we
showed that the class of delay-independent networks is quite small, and that many
useful functions cannot be realized with a completely delay-independent design. One
might argue that this implies that the concept of delay-independence must be aban-
doned. However, one may also interpret the results as showing that the definitions
of delay-independence used in this chapter are too pessimistic — in particular, that
the race models chosen are too pessimistic. It is not very surprising that one cannot
design a network that is guaranteed to work when the ‘‘devil’s advocate” is allowed
to insert arbitrarily many, arbitrarily large delays anywhere in the network. This
points to the need of more realistic race models — models in which delays are
bounded by some lower and upper bounds. One could then define a network to be

delay-insensitive if its behavior is independent of the size of the delays under the
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assumption that the delays are within these bounds. In the next two chapters we

develop two such more realistic race models.



Chapter V

The Almost Equal Delay Race Model

In this chapter we study a race model, called the ‘“Almost-equal-delay” (AED)
modelt. For historical reasons, but also due to the basic assumptions in the model,
the race model is binary. Hence, the model is primarily tailored towards gate cir-
cuits. The AED model was originally suggested by Brzozowski and Yoeli [16]. It
represents an attempt to reduce the pessimism in the GMW model by assuming that
(roughly speaking) no gate delay exceeds the sum of any two gate delays. In this
chapter we define a stepwise AED model and compare it with the original AED
model. We show that the two models are equivalent with respect to their capability
of predicting the outcome of a transition. However, the new stepwise model has the
attractive property of being closely related to a time scale; hence, it is possible to

obtain some timing information from the analysis.

A major difficulty with the AED model is that the number of steps involved to
compute the outcome of a single ‘‘race unit’” can be exponential in the number of
gates. To overcome this, we describe a new ternary algorithm, called the ternary
almost-equal-delay (TAED) algorithm. This is a stepwise algorithm of the same
complexity as the unit-delay method, but one which takes into account possible
races. In fact, we show that the results of the TAED algorithm are closely related to
the results predicted by the stepwise AED model.

+ Part of this work was presented in [5S0]. A more complete version will appear in [51].
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5.1. Binary Almost-Equal-Delay Model

The ‘‘almost-equal-delay” (AED) model was originally defined using the
‘“single-winner” concept for simplicity [15, 16]. In this chapter we consider the
more general ‘“multiple-winner”’ version of the model which is described below.

This generalization is quite straightforward.

»n

DC Y3
N

X

—9

Figure 5.1. Circuit C;.

The basic idea is illustrated in Fig. 5.2. Suppose circuit C; of Fig. 5.1 starts in
state y = (y1,¥2,¥3)=100 at time O with gates 1 and 2 unstable as shown in Fig. 5.2.

Suppose now that gate 2 wins the race at time ¢ and that, as a result of that change
in gate 2, gate 3 becomes unstable. Under the almost-equal-delay assumption, it is
unreasonable to let gate 3 win the new race between gates 1 and 3, since gate 1 has
already been ‘‘waiting’’ for ¢ units of time. The model will remember this fact and
will only permit gate 1 to change in state 110, predicting the next state as 010.
Informally, we can consider that at time 0 a “‘race unit’ has started involving gates 1
and 2. No other gate can “‘enter’ this race unit until all the gates in the original unit
are somehow ‘‘satisfied””. A gate becomes satisfied if it either changes or becomes

stable as a result of some other change. These ideas will be made precise below.

150,0 31 —
2
]
1t
]
1,10 1 >
0= 0 t time
(a) (b)

Figure 5.2. Illustrating the “AED” idea: (a) possible transition; (b) timing diagram.
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In the AED model, a certain amount of previous race history is necessary to
determine the outcome of a race. We therefore define a race state to be an ordered
pair [y,S], where y €B™ denotes a state of the network, and S denotes the set of gates
that are unstable in that state and are candidates to change according to the AED

model, as explained below.

The AED model, as defined in this chapter, is a binary race model. Hence, we
will assume that the excitation functions are the ternary extensions to some Boolean
functions, i.e. we assume that (a,b)eB"™™ implies that Y(a,b)eB™, and that for any
(a,byeT™™ we have Y(a,b)=lu.b.{Y(d,b):(d,b)cB"™ and (d,b)Cla,b)}. We will
return to this in Section 5.6.

Given any state y=(yi,...,yn) Of a network N, and any subset P of the set
{1,...,m}, we define y®) to be the vector obtained from y by complementing all the y; -
such that i is in P. For example, if y=(1,0,0) and P ={2,3} then y®)=(1,1,1).

We now define a set K of race states and a binary relation p on K, for a net-
work started in the stable total state (d,b) and with the input changing to a. The set
K and the relation p are defined inductively as follows:

Basis: [b,U(a,b)]eK.

Induction Step: Given [y, V] €Kk,

1. If V=, then [y,J]p [y, D]
2. If V%, then for each nonempty subset P of V compute
Wp=(V-P)N U(a,y®).
(a) If Wp=g, then [y, U(a,y®)]eKk and
b, V1o by®, U(a,y®)].
(b) If Wp # 5, then ®), wplek and

[y? V] p [y(P)’ WP]
Nothing else is in K or p.
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The set K defined above represents the set of all possible race states reachable
from the initial race state [b,U(a,b)], and the relation p describes the immediate
successor race states. In particular, given [y, V], if V=(J then y is a stable state, and
this is indicated by stating that [y, (] is the only successor of itself. Next, if V = (¥,
it turns out by this definition that V will always represent a subset of the vertices
which are unstable in y. The model now assumes, according to the multiple winner
principle, that the vertices in any nonempty subset P of V may all change and so
state y®) may be reached. The vertices in P are considered to have completed the
race they were involved in. As for the vertices in V—P, one of two things can hap-
pen: Either a vertex y; remains unstable in y®) i.e. i eWp, or the instability of y; is
removed when y changes to y®). In the latter case, igW,. Now if Wp=(, all of
the instabilities have been removed from V, one way or another. Thus we consider
the previous race unit as being completed, and can now start a new one by entering
the race state [y®), U(a,y®)] where each unstable vertex of y®) has an equal chance
of winning. If W, =, then some of the instabilities of V still remain unsatisfied;

these are precisely all the vertices in Wp. These vertices are given preference over

any new instabilities that may have been introduced by the change from y to y®,

We illustrate this definition by the following example. Consider the network N,

of Fig. 5.3, with excitation functions given by
Yi=x Yp=y{ Y3=(p2) Ys=Y3+Ys

Assume N, is started in state =0, b=0100 which is stable. We now let a=1 and

note that U(a,b)={1}. Thus the network starts in the race state [0100,{1}]. The
graph of the relation p is shown in Fig. 5.4, where each edge has a label showing the
vertices that change during the transition corresponding to the edge. (For now,

ignore the * marking on some edges.)

The relation graph shown in Fig. 5.4 describes all the possible states that can be
reached during the transition from the initial state »=0100, when the input changes
from 0 to 1. However, we are normally interested only in the ‘“‘final”’ outcome of
the transition. Thus we will consider only the set of cycles in the relation graph of p.

Note that, by the definition of p, there cannot be any transient cycles in the graph.
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O

Figure 5.3. Network N,.

(Recall that a cycle is said to be transient if there is a vertex that has the same value
and is unstable in all of the states of the cycle [17].) In this example the network
may end up in either one of two possible cycles, namely the stable states 1000 and
1001. Thus the initial race is critical because the final outcome depends on the rela-

tive delays in the network.

For technical reasons which will become clearer later, we mark certain edges by
a * in the graph of p as follows. All edges of the type ([y, ], [y, ]) are marked.
Also, every edge ([y, V], b®, U(®))]) added to p by Rule 2(a), i.e. with Wp=(, is
marked. No other edges are marked. (Note that if an edge is introduced because of
Rule 2(a), that same edge cannot also be generated by Rule 2(b). This follows

because y, V, and y®) uniquely determine W,.) For example, Fig. 5.4 shows all of

the marked edges for the previous example.

5.2. Stepwise AED Model

In this section we introduce a new binary race model, very closely related to the
AED model of Section 5.1. This model, which will be called the stepwise AED
model, has the advantage of showing more clearly certain timing information. Also

the stepwise model will be used later to establish a related ternary model.

To obtain more timing information from p we now define a new relation R
derived from p as described below. Intuitively, one can interpret this relation R in

the following way. Suppose that all the vertices have approximately the same delay,
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[0:100, {1}]

{1}

*

[1 10 01 O, {2> 3}]

{2,3} [11104, {2}]

{2} {2}
[1 0 10 Ob {3, 4}]
{3} {4}
[1000, ] {3,4} [101,1, {3}]
O g
*V *
(1001, ]

Figure 5.4. Race analysis of N, according to the AED method.

§ +e. Then any race unit lasts for approximately § units of time. Thus a transition
between two distinct states related by R represents roughly § units of time. In con-
trast to this, consider the relation p of Fig. 5.4 and the sequence [1100,{2,3}],
[1110,{2}], [1010,{3,4}] where consecutive race states are related by p. Here the
first transition takes about é units of time, whereas the second — only ¢ units of

time, because vertex 2 became unstable in the first state and lagged behind vertex 3

by only a small amount of time.
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Note that the above intuitive explanation is adequate as long as ¢ is much
smaller than §. Note also that the *-marking introduced in Section 5.1 has the fol-
lowing meaning: A transition is marked iff that transition completes a race unit, or it

is a self-loop on a stable state.

Formally, the relation R is defined on a subset Q of the set K of race states as

follows:
Q = {[b,U(a,b)]} U{ly, V] : there is a marked edge into [y, V] in the graph of p}

For [y, V], [, V]1€Q, we define [y, VIR[y, V] iff there exists a path from [y, V] to [¥, V]
in the graph of p, such that only the last edge of the path is marked. Note, in par-
ticular, that [y, gj|R[y, ¢¥] for all the stable states [y, ¢j] in Q.

To illustrate this consider the example of Fig. 5.4. We find
Q = {[0100,{1}], [1100,{2,3}], [1010,{3,4}], [1000, 5], [1001, 3]},

and the reader can verify that R is as shown in Fig. 5.5.

[1 10 01 0) {2’ 3}]

[1 0 1001’ {3> 4}]

]

[1000,5] [1001,]

O O

Figure 5.5. Relation R derived from p of Fig. 5.4.
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{1}

*

[10,0,0, {2,3}]

{3} {3}
[1 10 1 Ol, {2’ 4}]

{2

{4}

(1011, &]

O

*

Figure 5.6. AED analysis of network Nj.

The reader should note that the knowledge of a race state [y, V] alone does not

provide sufficient timing information about race units. Consider the network N3

described by the following equations:

Yi=x Yy=yy3, Ya=y, Y4=)x3
started in the stable state d=0, b=0000 and with the new input a=1. (We use
some strange excitation functions in this network in order to keep the example small;
similar phenomena occur in more realistic larger networks.) In Fig. 5.6 we show the

graph of the relation p for this transition. It is easy to verify that the states
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[0000,{1}], [1000,{2,3}], [1010,{4}], and [1110,{2,4}] are all in Q, and that
[1000,{2,3}]R[1010, {4}] because the change in vertex 3 completes the race unit
started in [1000,{2,3}]. When state [1010,{4}] is reached in this way the instability
of vertex 4 represents a new race unit. However, despite the fact that the states
[1110,{2,4}] and [1010,{4}] are both in Q and [1110,{2,4}],[1010, {4}], they are
not related by R. The reason for this is that the transition from [1110,{2,4}] to
[1010, {4}] does not represent the completion of a ‘‘race unit”’, because vertex 4 is
still unstable, and that condition started in state [1110,{2,4}]. By requiring that the
last edge in the p-path be marked, we make sure that the R relation holds only

between states reachable by complete race units.

We will show that the R relation contains all the ‘‘useful” information of the old
AED relation p. Assume that the network is started in the stable total state (@, b)

and that the new input is a. For convenience, let G, be the directed graph of the
relation p, and Gy be the directed graph of the relation R. Note that G, and Gg

depend not only on the network, but also on the initial state and the input change.

Proposition 5.1 In the graph Gy every race state [y, V]€Q is reachable from the ini-
tial race state [b, U(a,b)].

Proof: First note that, by the definition of p, all race states in G, are reachable from

the initial race state [b,U(a,b)]. Consider [y,V]eQ; either [y, V] is the initial state or
it has a marked edge ([7,V], [y,V]) in G, into it. Obviously, if it is the initial state

there is nothing to prove. Otherwise, study the state [§, V]. Note that [§, V] must be

reachable from [b,U(a,b)] in G,, and hence there must exist a path in G, from

[6,U(a,b)] to [y,V] ending with a marked edge. In this path some other edges
might also be marked, but that will only mean that we can reach [y,V] in G by

going through more than one race state. Hence the claim follows. u
Proposition 5.2 The stable states of G, are the same as the stable states of Gg.

Proof: All stable states of G, are of the form [y, (], with an edge ([y,], [y, D).
Note that this type of edge in G, is always marked and hence will also exist in Gg.

Conversely, every stable state of Gy is a stable state of G, by construction of R. L
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For the next proposition we need a new concept. Given any cycle
L, vY,....,", V7], [y', V] in the graph G,, we call a race state [y’, V'] initiating in this
cycle iff the edge ([y'~!, Vi1, [y*,V']) is marked, where [y°,V?] is interpreted as
[y, V7l
Proposition 5.3 Every simple cycle C in G, of length >2 must contain at least two
distinct initiating states in C.
Proof: For any edge ([y'~!, Vi1, [y, V']) in such a cycle, either the edge is marked
(Case 2(a)), or V' is a proper subset of Vi-! (Case 2(b)). Thus starting from any
race state in C we must reach an initiating state in C in a finite number of steps.
Starting from any initiating state [y, V] in C we eventually must reach another initiat-

ing state [§,V] in C. We argue that these two race states must be different. This is

because the edge leaving [y, V] involves changing at least one variable, say y;, from

V. This variable cannot change again until a new initiating state in C is reached.

Thus y and y differ at least in y;. u

We now wish to show that the cyclic behavior predicted by p is in some sense

preserved in R. For any cycle C of race states in the graph G,, let II(C) be the
sequence of initiating states of C in the same order as in C. The AED model of
Section 5.1 (relation p) and the stepwise model introduced in this section (relation R)
are related by the following result. Assume that the network is started in the stable
total state (d,b) and the input changes to a. Compute p and R starting from this con-
dition.

Theorem 5.1 For every cycle C in the graph G, there exists a cycle II(C) in the graph
Gg. Conversely, for every cycle D in Gy there exists a cycle C in G, such that
D =TI(C). Furthermore, given two corresponding cycles C, in G, and Cy in Gg, and
any variable y;, either y; has the same binary value in all the states of C, and Cy or y;

oscillates (assumes the values 0 and 1) in both C, and Cg.

Proof: Consider a cycle C, in G,. If the length of the cycle is 1, i.e. the state is a

stable state, then the result follows immediately from Proposition 5.2. Hence

assume the length of the cycle is >2. By the definition of an initiating state in a
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cycle and the definition of II(C,), it follows that if [y, V] and [7, V] are any two con-
secutive race states in II(C,), then the path in C, from [y, V] to [y, V] will have only

the last edge marked. Therefore we can conclude that [y, V]R[y,V]. This, together
with Proposition 5.3 shows that II(C,) is a cycle in Gg of length >2.

Conversely, let D be a cycle of Gg. According to the definition of R, for any two
consecutive race states [y, V] and [7, V] in Dy, there must exist a path in the graph G,
from [y, V] to [7, V] with only the last edge marked. Hence there must exist in G, a
cycle C, corresponding to the cycle Dy in Gg, such that II(C,) = Dy.

The final part of Theorem 5.1 follows immediately from the observation that a ver-

tex can change at most once between two initiating states. L

5.3. Race Units

The definition of Q and R as given above can be simplified since it is possible to
avoid using race states. This follows because, in any state [y,V] in Q, the set V is
uniquely determined by y (V=U(a,y)). Below we give a different algorithm for
computing Q and R, where we do not explicitly form the graph of p. The reader can

easily verify that the result is equivalent to the previous definition.
A sequence, (29,59, (z1,8Y),...,(z*, %), k>0, is called a race unit if
i) z%B" is a state of N and §°=U(a, 29),

ii) z/*! is state z' with all the vertices in the set A’ complemented, where

A' is any nonempty subset of §!. Also §*+'=(§'—A?) 0 U(a,z'*t"), and
iii) St=g.
Note that $°>5!'>... 5 §*, where O denotes proper containment.
We compute the set Z and also the relation o on Z inductively as follows:
Algorithm 5.1: Let (a, b) be a stable total state of N and let the input change to a.

Basis:

beZ.
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Induction step:
For every yeZ, if there exists a race unit beginning with (y,U(a,y))
and ending with (z, (), then z€Z and yoz.

Now to obtain Q and R, replace each state yeZ by [y,U(a,y)] in Q, and let
[v,U(a,y)]R [z,U(a,z)] iff yoz. From now on we will be working with Z and o rather
than with Q and R when referring to the stepwise AED model.

To illustrate these ideas, consider network N, of Fig. 5.3, as before started in

the stable state =0, p=0100 and with the new input a=1. Since U(1,0100)= {1},
there is only one possible race unit starting with (0100, {1}): (0100,{1}) (1100, ).
Hence, we add the state 1100 to Z, and add the pair (0100, 1100) to the relation o.
Since U(1,1100)={2,3}, there are only three possible race units starting with
(1100,{2,3}):

1 (1100,{2,3}) (1000,0),
2 (1100,{2,3}) (1110,{2}) (1010, ), and

3 (1100,{2,3}) (1010, ).
Therefore we add the states 1000 and 1010 to Z, and add the pairs (1100, 1000) and
(1100, 1010) to the relation o. It is easy to show that from the state 1000 we can only
go to 1000, and from state 1010 we can end up in 1000 or 1001. From 1001 we
can only reach 1001. In summary, Z= {0100, 1100, 1000, 1010, 1001}, and the relation
o over Z is as illustrated by the graph of Fig. 5.7. Note the correspondence between
Fig. 5.7 and Fig. 5.5.

It is now convenient to interpret Fig. 5.7 as a nondeterministic finite state
machine with initial state 0100, and é§ as its only input letter. After one race unit
(i.e. after roughly § units of time), we reach the state 1100 and after two race units
we may nondeterministically reach the states 1000 or 1010, etc. Let Z%= {b} and let
Z! be the set of states of Z reachable after i steps, i.e. Z'={z:bo'z}. Note that these
sets are the same as the subsets constructed by the subset construction when convert-
ing the nondeterministic finite state machine to a deterministic finite state
machine [31]. In Fig. 5.8 we show the deterministic finite state machine

corresponding to the nondeterministic machine of Fig. 5.7.
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0100
1100
1010

1000 1001

O O

Figure 5.7. Stepwise AED analysis of N,.

{

{0100}

{1100}

/
{1000, 1010}

r
{1000, 1001}

O

Figure 5.8. Deterministic finite state machine corresponding to Fig. 5.7.
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We close this section with a discussion of some of the limitations of the stepwise
AED model. One of the basic assumptions in this model is that delays are only
associated with the vertices, and that delays are inertial in their nature. In many
real circuits these assumptions are justified. However, there is also a danger that the
model may become unrealistic under certain conditions. The model is only accurate
as long as races from different race units do not get ‘““mixed up”. In general, under

the assumption that all vertices have delays A; in the interval [§—¢,§+¢], the follow-

ing condition makes sure that the k™ race unit does not get mixed up with the
(k—1)*:

k(6 —¢) > (k—=1)(6 +¢).

The condition states that the time to complete k changes in the fastest vertices (each
with delay 6 —¢) should be greater then the time required for k—1 slowest vertices
(each with delay & +¢). What can happen, if the above condition is not satisfied, is
that the model may omit certain races that potentially could exist. In summary, a
sufficient condition for the stepwise AED model to be accurate for at least k steps, is
that

€ 1
5 S %_1

For example, if the uncertainty of the delays in the vertices is 10%, the stepwise
AED model is accurate for at least 5 steps. However, the reader should note that
the above condition is only a sufficient condition; in many cases the AED model is

accurate for more than k steps.

5.4. TAED Algorithm

In this section we describe a ternary simulation method which is related to the
stepwise AED model. The underlying idea behind the TAED method, formally
defined below, is to find all of the unstable vertices in a state y, and then determine

which of these unstable vertices must change in this race unit. Consider network Ny
corresponding to the circuit C4 of Fig. 5.9(a) started in the stable state 4=0, b=011

and with the new input a=1. The first step of the TAED algorithm is to calculate
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the l.u.b. of the present state, and the excitation of the network. In this intermedi-
ate state, called ¢ in the algorithm, a vertex will have the value X if it is unstable. In

network N,, vertex 1 is unstable and hence t=X11. In order to determine which of

the unstable vertices must change in the present race unit, the excitations of the

unstable vertices (i.e. the vertices for which ¢;=X) are re-evaluated. However, this

re-evaluation is done assuming ¢ is the total state of the network. If the excitation of
an unstable vertex j is still binary, then, independently of changes in the other
unstable vertices, this vertex has to change before the present race unit can finish.
On the other hand, if the ‘“new’’ excitation of an unstable vertex j is X, then that
instability ‘“depends’” on some vertices that are also unstable. Hence it is possible to
change these other unstable vertices first and thereby remove the instability of vertex
j. In network N, we get Y1(1,X11)=1, so the new state we reach is 111. It is easy
to see that vertex 1 must change in any race unit, since the excitation of the vertex
depends only on the new input value. Hence in the stepwise AED model we can
reach, in one race unit, the state 111. In this state both vertex 2 and vertex 3 are
unstable and hence r=1XX. In network N; we get Y,(1,1XX)=1"=0 and
Y3(1,1xXX) = (1X)' =X, so the new state we reach is 10X. It is easy to see that the
inverter must change in any race unit, since the excitation of the gate depends only
on the new input value. On the other hand, the instability of the NAND gate
depends on the inverter which is unstable; if the inverter changes first, the NAND
gate becomes stable. Hence in the stepwise AED model in the second race unit we
can reach the states 100 or 101. Note that in the next race unit, the NAND gate
will again be ‘‘unstable’” (=X) but when re-evaluated, it will be ‘“‘forced” to the

binary value 0. This is also consistent with the stepwise AED model.

X=¥1 X=n

—— D

(a) (b)

—e

Figure 5.9. (a) Circuit Cy; (b) circuit Cs.
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In the description above, we simplified the re-evaluation of the excitation of the
unstable vertices slightly. As the following example shows, it is not correct to use

the values of ¢ for all vertices. Consider network N5 corresponding to circuit Cs of

Fig. 5.9(b) started in the stable state d=0, b=01 and with the new input a=1.
After one race unit we reach the state 11. In the next race unit we get t=1X, but if
we use that value for the re-evaluation, the TAED model will predict that the state
after one race unit will be 1X. However, the stepwise AED model predicts the state
y=10. The reason for this discrepancy is that, when there is a self-loop, the X that
the vertex depends on, is coming from itself. Hence the only way to remove the ins-
tability of such a vertex is to change its state. The solution to this problem is simply
to use the ‘““old” value for vertex j when re-evaluating vertex j. We will use the
notation ) to denote the vector obtained from ¢ by replacing the j* component by
y;. In network Ns we get Y(a,®")=Y(1,11)=(11)' =0, and hence the TAED model
will correspond to the stepwise AED model. We now formally define the TAED
method.

We define the function next as follows. Let a be the new binary input, and let y

be any ternary state of N. We calculate the successor state of y as shown below.

function next(y e 7") e T™

for j=1to m do -- First calculate the intermediate state ¢
tj = l.u.b(yj, Yj(a,y))
for j=1to m do -- Re-evaluate the excitation
if tj = X then
)7]=Yj(a,t(’)) -- t(")=t1...tj_1yjtj+1...tm
else
Yi=JYi
return(y)

The TAED algorithm consists of repeatedly applying next. Note that this will
either lead to a stable ternary state, or to an oscillation. In this respect, the TAED

method is similar to the unit-delay method used by most commercial simulators.

To illustrate the algorithm, consider network N, of Fig. 5.3 started in the stable

total state (0,0100) and with the new input a=1. The first time we call next we get

the intermediate state: =X 100, and thus the next state y'!=1100. The second time
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we call next we get the following intermediate values:

ty = Llub.{y!,Yi(a,y)y=1lub.{1,a}=Lub.{1,1}=1,

ty = Lu.b.{y;,Ys(a,y)}=Lub.{1,y{}=Lub.{1,0}=X,

t3 = Lu.b.{yd,¥s(a,y)}=Lu.b.{0, (y1y5)} = l.u.b.{0,1} =X, and

ty = Lub.{y},Yo(a,y)r=1u.b.{0, (y3+ys)}=Lu.b.{0,0}=0.
Hence, t=1XX0. In the second step of the algorithm, the vertices with X in the
intermediate state are re-evaluated using the intermediate state, except for the value

of the vertex itself for which we use the ‘“‘old”’ value. For network N, we re-evaluate
vertices 2 and 3, and we get the following values:

¥y = Yola,tM)=y{ =0, and
Yy(a,t®)=(1)=(1X)=X.
Hence, we obtain the new state y=10X0. In Fig. 5.10(a) we give the complete
TAED analysis of network N,.

Y3

b=0100 z°= {0100}
1=x%x100
yi=1100 Z'= {1100}
2=1XX0
2_ 10X0 Z2= {1000, 1010}
1
£=10xX
! |
y*=100X 7%= {1000, 1001}
(a) (b)

Figure 5.10. Analysis of N,: (a) TAED; (b) stepwise AED model.
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It is interesting to note that the Lu.b. of the states reachable after i race units in
the stepwise AED model, corresponds exactly to the outcome of the TAED method
after i steps; see Figs. 5.10(a) and (b). In the next section we explore the relation-

ship between the two models.

5.5. Correspondence between AED Model and TAED Algorithm

In this section we show a partial correspondence between the binary stepwise
AED model and the results of the TAED algorithm described above. The main

result is:

Theorem 5.2 Let (d,b) be a stable total state of N, and let a denote a new input vec-
tor. Let y’ denote the results of the TAED method after i>0 steps starting in y=b.
Then:

y' Jlu.b.(Z"),
where Z' is the set of states reachable in i steps in the stepwise AED model.

Before proving the theorem we will establish Lemma 5.1 below. The following
observation is useful in proving the lemma. If y is the input to next, then 0 1Jy.

Hence, by the monotonicity property of the ternary extension,

Yj(a,t(j));le(a,y). (1

Lemma 5.1 Let ye 7™ and let y be next(y). Then
wCy and woz implies zCy.

Proof: If y;=X, then for any such z we will trivially have y;Jz;. Hence, study the
cases when y;€B. Note that, by the definition of ¢, it follows that y;=X implies

t;=X. Therefore there are only four cases to consider.
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1 2 3 4

yi= o o o X
yi= a a o «a

Here « stands for some binary value (0 or 1), and o' denotes the complement of o.

Case 1:

Case 2:

Case 3:

yj=a, tj=ca, and y;=a.

By the definition of ¢;, t;=a implies that Y;(a,y)=«. Furthermore, by the
definition of ternary extension, we must also have Y;(a,w)=5b for every
wLCy. Since w;Cy;=a, vertex j is stable in any such state w. Conse-

quently, vertex j remains unchanged in any race sequence beginning in

state w. Therefore, if woz, we must have z;=a. By assumption, y;=o and

¥;3z; holds.

yj=oz, tJ=X, and }‘;j=a.
If ;=X then Y;(a,y) is either X or o'. By (1) Yi(a,t9)3Y;(a,y). Thus y;,

as computed by next, must have the value X or o'. But we have assumed

yj=co. Hence this case is impossible.

yj=a, tj=X, and y;=o'.

We first prove that in any state w Cy, vertex j is unstable. Since 7;=X we
know that y; = Yj(a,t(f)). Also, by assumption, y;=o'. Altogether we have
Yi(a,tD)=o'. By (1) we know that Y;(a,t9)1Y;(a,y), so o' =Y;(a,y).
Furthermore, by the definition of ternary extension, it follows that
Yj(a,w)CY;(a,y) when wCy. Hence a'=Yj(a,w) for wCy. Since wCly,
and y;=a, we must have w;=a. Together, this shows that vertex j is

unstable in any state w Cy.
Secondly, we show that for any race sequence starting in state w, vertex

j must change, and therefore for any z such that woz we will have z;=a'.

We prove this by contradiction. Assume there exists a race sequence
[2°,59], [, S1],..., [%,8%] (k>0) with 2°=w, §°=U(a,w), and $*=(y, such

that z}‘ =oa. Since, according to the first part above, vertex j is unstable in
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any state w Cy, we can conclude that k>1. Furthermore, since wCy, and,

by assumption, y;=«, we must have zj°= a«. However, by the definition of a

race sequence it follows that a vertex can change at most once during a race

sequence; since z?=a, and zf is assumed to be a, it follows that zf=a for

p=0,....k. Since t=1Lu.b.(y,Y(a,y)), it follows by the definition of ternary
extension that rJl.u.b.(w,Y(a,w)) for wCy. Furthermore, by the definition
of a race unit, it follows that for j=1,...,m, and p=0,...,k, we have that z}
is either equal to w; or Y;(a,w). We can therefore conclude that
2 Club.(w,Y(a,w)), and hence tJz° for p=0,...,k. This, together with
the fact that z2=a=y, for p=0,...,k shows that tJz? for p=0,...,k. By
the monotonicity of ternary extension Yj(a,tU));le(a,zl’) for p=0,...,k.
Furthermore, since #;=X we have y;=Y;(a,t¥)), and, since y;=0o', by
assumption, it follows that Y;(a,t®)=0a'. Together the above two facts
imply that Y;(a,z?)=<  for p=0,...,k. However, this implies that j is in
U(a,z?) for p=0,...,k contradicting the assumption that S¥*=¢j. Therefore
the assumption must have been false, and we can conclude that all states z,

such that wo z, must have z;=0o'. Hence, y;Jz; holds.

yi=X, t;=X, and y;j=o.

Since t; =X it follows that y; = Yj(a,t(")), and since we assumed y; = o, it fol-
lows that ¥;(a,t9)=a. By (1) we know that Y;(a,:%))2Y,(a,y), so we can
conclude that Y;(a,y)=a. By the definition of ternary extension it follows
that Y;(a,w)=a for any wCy. Study any state weB™, wCy. We have two

cases:

i) wj=ec.

Since w; =« and Y;(a,w) =, we have that vertex j is stable, and, as in
Case 1 above, we can conclude that for any state z such that woz we

have z;=a. Hence, y;Jz; holds.
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(ll) WJ = Ol,.

Since w;=0o' and Y;(a,w)=a we have that vertex j is unstable. Using

similar arguments as in the second part of Case 3 above, we can con-
clude that for any race sequence from the state w, vertex j must

change and thus we have that if wo z, then z;=o. Hence, y;Jz; holds.
We have shown that y;Jz; for all possible cases, and hence that yJz for any state z,

such that wo z, where wCy. u

We are now in position to prove Theorem 5.2.

Proof of Theorem 5.2: We want to show that if y/€B, then Lu.b.{z;:bo'z} =yl. We

will prove this by induction on i.

Basis:

i =0. Trivially true.

Induction hypothesis:
Assume that for all k<i, we have that y* > Lu.b.{z:bo*z}.

Induction step:
We need to show that for any z such that bo't!z, we have y*+'3z. But boi*!z
implies there exists w such that bo'w and woz. By the induction hypothesis

wLCy', and Lemma 5.1 applies. Thus y*+!1z. |

The following example shows that the inequality of the theorem can not be
replaced by equality, i.e. that the TAED model is sometimes overly pessimistic.
Study network Ny of Fig. 5.11, started in the stable total state (0, 0111000 and with
the new input a=1. In Fig. 5.12 we show the binary stepwise AED analysis of the
race and in Fig. 5.13 we show the TAED analysis. Note that the X for vertex 6 in
state y3 is incorrect. The reason for this discrepancy between the ternary simulation
and the binary race analysis is that in the state y?, not all binary states Cy? are reach-
able, and in particular, the state y=1011100 is not reachable from the initial state.
It is this state that causes vertex 6 to be unstable in the ternary simulation, and even-

tually leads to the X in y@. In general, the discrepancy occurs because of the loss of

information in the ternary simulation where we only use the ‘‘average’’ of the states
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reachable. It appears that this pessimism occurs only in pathological examples, and
that for most practical circuits, the ternary and the binary AED analysis correspond
exactly. However, the problem of characterizing the class of networks for which the

two models agree remains open.

D : [\ »
x JI><>y2 jcys }[J ’—D_

Figure 5.11. Network Ng.

0111000

1111000

1010100 1000000 1000100

1001000 1001100

1011000

1010000

O

Figure 5.12. Stepwise AED analysis of Ng.
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y0= 0111000 lub.(Z% = 0111000
1 =Xx111000
yl = 1111000 Lub.(Z% = 1111000
2 = IXXXX00
y2 = 10X%XX00 Lu.b.(Z) = 10xXxXx00
2 = 10XXXX0
y> = 101X0X0 Lu.b.(Z% = 101x000
* = 101X0xX
y* = 101000X lu.b.(Z® = 1010000
(a) (b)

Figure 5.13. (a) TAED analysis of Ng; (b) Lu.b.of the stepwise AED analysis.

5.6. Discussion

In this chapter, we have presented a new ternary simulation algorithm that can
easily replace the unit-delay algorithm in simulators. The algorithm is very closely
related to the binary almost-equal-delay model, and hence is capable of detecting
critical races under the assumption that all delays are approximately, but not exactly,
equal. Computationally, the ternary algorithm is of the same order of complexity as
the unit-delay method (in the worst case it involves only twice as many function

evaluations).

It is possible to extend the AED model to allow changes to go through X in the
same way as was done in the XMW model. One would then obtain an extended
almost-equal-delay (XAED) model. We will not derive such a model here; the for-
mulation of it is left as an exercise for the interested reader!. However, it appears
plausible that the results of an XAED analysis correspond even closer to the results
of the TAED algorithm than the results of an AED analysis. To get a complete
correspondence though, we believe the TAED algorithm has to be modified slightly.

t+ The ideas for this extension are straightforward, but the detailed formulation is rather
lengthy.
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The modification is simply to use the state ¢ instead of @) in the re-evaluation phase.

To see why this appears to be necessary, study network Ns of Fig. 5 .9(b). Note that

the value of the output can change to X in an XAED model, causing the gate to
become stable. However, using the TAED algorithm as described in Section 4
would yield the new value 0. On the other hand, using ¢ instead of %) in the second
half of the TAED algorithm, we get the new value of the gate to be X. We conjec-

ture the following:

Conjecture 5.1 Let (d,b) be a stable total state of N, and let a denote a new input
vector. Let y* denote the results of the (modified) TAED method after i>0 steps
starting in y°=b. Then y' = Lu.b.(Z"), where Z' is the set of states reachable in i
steps in the stepwise XAED model.

If this conjecture is correct, the (modified) TAED algorithm would provide a
practical and accurate method of analyzing a circuit in which the delays are all

approximately equal.



Chapter VI

The Extended Bounded Delay Race Model

In this chapter we first develop a delay model, called the extended inertial delay
(XID) model, that captures the idea that the delay value lies between two bounds.
Furthermore, this model also incorporates the idea that transitions are not instan-
taneous, but can be rather slow and go through the intermediate value X. We also
define a race model that can be used to predict the behavior of a network when each
component of the network is assumed to consist of an ideal (delay-free) device con-
nected in series with such a delay. As far as we are aware, this is the first non-
trivial race model that has been formally proved to correspond to some delay model.
The race model we develop here is called the extended bounded delay (XBD) model
and takes all possible delay values into consideration. This implies that the model is
continuous and thus computationally intractable. However, we show that there also
exists an efficient algorithm, called the ternary bounded delay (TBD) algorithm, that
can be used to obtain essentially the same information as the XBD race model can

provide.

6.1. Introduction

In the previous chapters we showed that the unit delay model is often overly
optimistic and that the XMW model is often overly pessimistic. The AED model
represent one attempt to find an intermediate model, but it may be too optimistic.
What appears to be needed is a model between the AED and the XMW models, i.e.
a model in which the delays cannot be arbitrary, but bounded by some lower and

upper limits. For example, it is often possible to estimate the delay of a gate

99
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reasonably accurately (e.g. 10ns +£20%). It is important to realize that (in a binary
model) it is not sufficient to study only the ‘“worst-case” delays. Consider, for

example, the gate circuit G; of Fig. 6.1. The excitation functions are given by:
Yi=lx=x Yp=x Ys=yi+y, Ya=ys
Ys=ux Ye=y1ys Y7=Ys+¥1

Assume G, is started in the stable state x=0, y=(y;,...,y7)=0111100 and that the

input changes to x=1. Furthermore, assume the delay A(?) in a gate is bounded by
1< A(t)<5. If we only study ‘“worst-case” delays, i.e. if we only consider delays to
be close to 1 or close to 5, it can be verified that the only possible nontransient states
reachable are 1011000, 1010000 and 1011001, i.e. at least one of y; and y; does

not change. However, if we also allow the delays to be anywhere between the

bounds, we can also reach the state 1010001, i.e. a state in which both y, and y,
have changed. This state can be reached if, for example, A;=2.5, As=4.5, and the

remaining delays are equal to 1. In fact, one can verify that this state is reachable

only if 2<A;<4. This can be shown as follows: In order for y, to change, y; must be
0 for at least one time unit. This implies that y, must change from 1 to 0 at least one
time unit before y; changes from 0 to 1. However, the delay in gate 2 is at least one
time unit, and thus A, >2 in order for y, to be able to change. On the other hand, in
order for y,; to change, ys must be 1 for at least one time unit, i.e. y; must change to
1 at least one time unit before ys changes from 1 to 0. However, the maximum
delay in gate 5 is less than 5, and thus A; <4 for y; to change. In summary, a neces-
sary condition for reaching a state in which both y, and y; have changed is that
2<A,<4. Thus a continuous model appears to be needed; we will develop such a

model in this chapter.

The chapter is organized as follows. The extended inertial delay model is the
topic of Section 6.2. Since the model is quite subtle, we develop it by first describing
a series of simpler delay models. In Section 6.3 we define the extended bounded
delay race model and show that this race model exactly captures the behavior of a
network under the assumption that each component of the network consists of an

ideal (delay-free) excitation function connected in series with an extended inertial
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* 1 :)_y_q
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Figure 6.1. Gate circuit Gy.

delay. In Section 6.4 we define the TBD algorithm and in Section 6.5 we prove that
the results obtained from this algorithm exactly summarize all the states the network
can be in according to the XBD race model. Finally, in Section 6.6 we discuss some

implementation considerations.

6.2. Extended Inertial Delay Model

In this section we introduce some mathematical models of delays. The delay
model used in the remaining parts of this chapter, the extended inertial delay model,
is rather complicated. In order to justify it, and to give the reader some intuitive
idea why certain assumptions are made, we develop this delay model step by step
from a very simple model. To simplify our discussion, we will first study the
behavior of a basic ‘‘delay element’’. A real circuit component, like a gate, can
then be modeled as an ideal (delay-free) device (gate) connected in series with such
a delay element. We will first limit our discussion to binary models, but this restric-

tion will be dropped later.

A delay is assumed to be a “‘black box” that has one input and one output (see
Fig. 6.2), and whose input/output behavior is governed by a delay model. To sim-
plify the definitions, assume that in(¢)=out(t)=p for t <0, and that in(¢) has only a
finite number of changes in any finite interval. One simple delay model is the fixed
binary pure delay (FBPD) model. In the FBPD model it is assumed that A(t)=A,
i.e. that the delay does not vary with time, and that our(t)=in(t—A), i.e. that the

output is an exact replica of the input, but shifted A units of time. In Fig. 6.3 we
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show an example of the response of a FBPD to an input signal. Unfortunately, this
simple model is not very realistic since it fails to capture the fact that almost all phy-
sical delays ignore extremely short pulses, i.e. they tend to ‘‘smooth” fast varying

signals.

in(t) At out(t }

Figure 6.2. Delay element.

in(t) _]—| [ [ | | |

Figure 6.3. Typical waveforms for FBPD model (A =1).

The fixed binary inertial delay (FBID) model tries to capture the property men-
tioned above by using the following assumptions. First, the delay A(¢) is assumed to
be constant in time, i.e. A(¢)=A. Second, if out(t) changes from o to &' at time 7,
then we must have had in(t)=o' for 7—A<t<r. Third, if in(r) changes from « to o
at time 7 and out(r)=c, then either in(¢) changes back to o before 7+A or out(r)

changes to o at time 7+A.

Using these assumptions directly, it is straightforward to verify that a given
input/output behavior is consistent with the FBID model. However, to gain a better
understanding of the model, it is useful to compute the output waveform given an
arbitrary input signal waveform. Assume we are given an input waveform with a
finite number of changes. Let 71,72,...,7™ denote the time for the first, second, ...,
M™ change of the input signal. We will henceforth use the convention that all
changes occur at times 7/, i.e. that the input is constant in the interval 7/ <z <7/+.

For convenience define rM*!=c0. As above, we assume that in(¢)=out(t)=p4 for
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t <0. The value of the output of a FBID is defined inductively as follows:

Basis:

out(t)=p for t <71

Inductive step:
Given the value of out(r?) and in(r?) the value of out is defined for the time up

to and including 7/*! as follows:
1) If ri*l_ 77 <A then
out(t) = out(r%) for 7' <t <7+t
2) If 7i*'_7i>A then
out(r') forri<t<ritA

Out(t) = {in(T') for Ti+AStSTi+1

We claim that this definition is equivalent to the original definition of the FBID
model. It is left as an exercise for the reader to verify that this is indeed the case.

In Fig. 6.4 we show how a FBID would react to the same input signal as in Fig. 6.3.

w0 TN U
o) [ | L

| ] Il 1
| ¥ T T

|
0 5 10 15

1 1 1 1 1 | } Il 1 1 ]
T T 1

Figure 6.4. Typical waveforms for FBID model (A=1).

Both models described so far have one undesirable property in common — the
delay is assumed to be exactly known and constant. In real circuits we have two
problems. The first problem is that we normally do not know the exact size of a
delay. The second problem is that delays may not be constant; for example, they
can change due to temperature or aging. Furthermore, the delay of a component
can depend on the previous history of the component. For example, a gate that just

changed from 0 to 1, may have a shorter delay for changing back to 0 than it would
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have had if it had had the value 1 for a long time. In order to model these proper-
ties we will allow delays to vary in time. This is somewhat pessimistic, but we are
more concerned with avoiding false positive than false negative predictions. (A false
positive prediction says that everything is fine, despite the fact that there might exist
a timing problem. A false negative prediction may ‘‘cry wolf”’ even if there are no
problems.) However, we will only allow the delay to vary within some bounds. In

particular, we will henceforth assume that the delay A(¢) is bounded by:
dT<A(t)<DT
where d and D are positive integers and T denotes some basic time unit.

In the (variable) binary inertial delay (BID) model the input/output behavior

must obey the following two rules:

1) If out(t) changes from « to o' at time 7, then we must have had in(r)=q for
1—dT<t<r7.

2) If in(t)=o for 7 <t <7 +DT then there must exist a time 7¢, 7 <7 + DT, such
that out(t)=« for 7°<t <7 +DT.

In Fig. 6.5 we show two possible responses to the input waveform of Fig. 6.3 when
the delay is bounded by 1<A(r)<2.

in(t) | | |‘| | |_| |
out(¢) [ ] | |
o) [ ] |

1 1 1 1
T T T T

|
I
0

Figure 6.5. Two possible waveforms according to BID model (1< A(z) <2).
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In the above delay-models we have assumed that all signals are binary, and that
changes from 0 to 1 or from 1 to 0 are instantaneous. In real circuits this is not very
likely. In order to capture the fact that signals that are changing can go through an
intermediate voltage level we introduce a new value X. By using the partial order C
on the set T=1{0,1,X}, as defined in Chapter II, Section 2, we can model the pro-
perty that a component that sees a changing value (an X) can interpret this signal as
either 0, 1, or X. Using such an approach we define the (variable) extended inertial
delay (XID) model as follows:

1) out(t) can only change from a binary value to X or from X to a binary value.

Hence, the output can never change directly from 0 to 1 or from 1 to 0.

2) a) If out(t) changes from a binary value o to X at some time r then we must
have had in(¢) # o for 7—dT<t<r.
b) If out(t) changes from X to a binary value « at some time 7 then we must
have had in(¢)=a for r—dT<t<r.
3)

a) If in(t)=p€T for 71 <t<7+DT, then there must exist a 7°, 7°<7 + DT,
such that out(¢) =g for 7 <t <7 +DT.

b) If in(t)#aeB for 1 <t<7 +DT, then there must exist a 7¢, 7°<7 + DT,
such that out(¢) # « for 7 <t <7 +DT.

Assumption 1) is made to simplify the model. One could equally well use an
approach similar to the one used in the XMW model, where vertices can changes
both between binary values but also to X. However, such model would make the
extended bounded delay model (to be defined later) even more complex. Since the
above definition of the XID model allows a vertex to stay in the X value for an arbi-
trarily short period of time during a transition from 0 to 1 or from 1 to 0, we feel

that this simplification can be justified.

The reason for restricting rule 3b) to binary values, is that it is quite reasonable
to allow the output to be X when the input is oscillating between 0 and 1 (assuming

each period of 0(1) is strictly less than DT of course).
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In Fig. 6.6 we show a possible response to the same binary input signal as in
Fig. 6.3. However, the response of an XID to a signal containing X’s is more
interesting. Two possible responses to such an input signal are shown in Fig. 6.7.
Note that the XID can both increase and decrease the regions of X’s. (The latter
case can occur, for example, when the delay is smaller changing from 0 to X then

when changing from X to 1.)

in(t) [ | [ [ || |
out (t) ___,—l_—LI N L

3 1 1 1
T T

|
| T T

: I 1
0 5 10 15

Figure 6.6. A possible waveform according to XID model (1< A(r) <2).

in() _— Y n ro- —__
out (t) __rl—L| - L
L

our(t)  ——— [ 1

Figure 6.7. Two possible waveforms according to XID model (1< A(7) <2).
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6.3. Bounded Delay Race Model

In this section we develop a race model, called the extended bounded delay
(XBD) race model, that will be used to analyze the behavior of a network. Later in
this section we will show that the XBD race model exactly captures the behavior of a
network under the assumption that each vertex consists of an ideal (delay-free) exci-

tation function connected in series with an extended inertial delay (XID).

Assume the network N is started in the stable total state (d,b) and the input

changes to a. Assume also that the delay A;(¢) of vertex j, 1<j<m, is bounded by

d;,T<A;(t)<D;T, for some non-negative integers d; and D;.

In the extended bounded delay race model a certain amount of the previous
excitation history is needed. For this reason, define a race state to be the 4-tuple
[v,u,v,t] as follows: The first component, y, is the current state of the network —
consequently y e T™. The second component, u, is a vector of m real numbers and is
used to remember how long an unstable vertex with a binary value has been
unstable. The third component, v, serves a similar purpose, but is used to remember
how long an unstable vertex has had a binary excitation. Finally, the last com-
ponent, ¢, is a real number denoting the time when this state was reached. Note

that, for convenience, the input is assumed to change from 4 to a at time 0.

Let Q denote the set of race states that are reachable according to the extended

bounded delay race model, and let R, denote a binary relation defined on the set Q

denoting the possible successor states. A XBD race sequence is an infinite sequence
of race states, [y°, u®,v0, 10, [y!, ul,vi, 1, .., such that
[y°, u%, 9,1 = [5,(0,...,0),(0,...,0),0] and [y*, u*, v, ] R, [y"*1, uh+l, vi+l 41 for
h>0. One can view a XBD race sequence as a sequence of ‘“‘snapshots” of the net-
work. The network starts in the state [b,(0,...,0),(0,...,0),0] at time 0, and hence
[#,(0,...,0),(0,...,0),0]cQ. Given some state [y,u,v,t] in Q, a possible successor
state is determined as follows. If (a,y) is a stable total state, the network will remain
in this state indefinitely, and thus the state has only itself as successor. Otherwise,
we want to take a new snapshot of the network at time ¢+ 6, for some 6§ >0. How-
ever, there is no point in choosing § too small, since a vertex with a binary value

must be unstable for at least d;T units of time before it can change to X, and an
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unstable vertex must have the same binary excitation for at least d;T units of time

before it can change to this excitation. These conditions imply that § must be

chosen so that there exists at least one unstable vertex j for which u; +§& or v;+4§ is
greater than or equal to d;7. On the other hand, since a vertex cannot be unstable
and have a binary value, or be unstable and have a binary excitation, for D;T units
of time without changing, § must be chosen so that each of u;+é and v;+6 is strictly
smaller than D;T for all unstable vertices j. These two conditions can be summarized

as follows:
min{min{djT—uj, d;T—v;}:j eU(a,y)}gé <min{min{DjT—uj, D;,T—v;}:j eU(a,y)}.

Once § has been chosen, the sets C* and C? are computed. C* contains all the ver-
tices that, for this &, are candidates for changing to X, i.e. it contains all vertices

that are binary, unstable, and for which u;+§ is greater than or equal to 4;T. In

other words, a vertex j is in C* if it has had the same binary value and has been

unstable ever since some time # and ¢+ 6 —* >d,T. The set CPB contains all the ver-

tices that, for this §, are candidates for changing from X to a binary value, i.e. all

the vertices that are X, are unstable, and for which v; +é is greater than or equal to
d,T. In other words, a vertex j is in C? if y;=X and it has had the same binary exci-
tation and has been unstable ever since some time # and ¢+ § —t’ >d,;,T. Finally,

some nonempty subset of C*UC? is chosen, the appropriate vertex values are
changed, and u and v are updated accordingly. It is important to note that, if a state
in Q is unstable, it has infinitely many possible successor race states. (On the other

hand, these race states may differ only in the u, v, and ¢ values.)
Now Q and R, are formally defined inductively as follows:

Basis: Let [b,(0,...,0),(0,...,0),0] €Q

Induction step: Given g = [y,u,v,t]€Q:

1) if U(a,y)=, then gR,q.
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2) if U(a,y)# @, then for any § >0 such that
5min£§ <6maxa
where

8 min = min{min{djT—uj, d;T—v;} :jeU(a,y)}
and
§ max = min{ mingD;T—u;, D,T—v;} : j€U(a,y) },

let
C*=U(a,y)NB(y)N{j :u;+ 6 >d,;T} and
CP=U(a, )N {yj=Xn{j:vj+é >d;T}.

Finally, for any P CC*UC2, P %y, let

¢7= W,ﬁ,V,t+5]€Q and ‘IRaq,

where
X if jePNnC*
3 = {¥;(a,y) if jePnC?
Yj otherwise,
_ Jw+6 it jeU(a,y)nBG)NU(a,y)NB()
“i=1o otherwise,
and
_ Jvi+6 ifjeU(a,y)NBE(a,y)nU(a,5)NBE(a,y)
Vi= o otherwise.

To illustrate the above definition, consider network N, of Fig. 6.8 with excita-
tion functions and delay bounds given by:
Yi=1x, Yr=01+y), Ya=01+x)-
1<A1(1) <3 1<85(1)<3 1<A5(1)<3
Assume N, is started in the stable total state (1,(1,0,0)) and the input changes to

x=0. To simplify the notation, the basic time unit, T, is set to 1. Two possible
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Figure 6.8. Network N,.

XBD race sequences are shown in Fig. 6.9. As before, we use the notation Oy (0,
Xg, €etc.) to denote a vertex that currently has the value 0 (0, X, etc.) and whose

excitation is X (1, 0, etc.). Furthermore, the numbers to the left of the arrows

denote the limits for §, and the numbers to the right of the arrows correspond to the
§’s chosen.

[(14,0,0), (0,0,0), (0,0,0), 0] [(14,0,0), (0,0,0), (0,0,0), 0]
1§5<3¢,2 1<6<3 | 1.113
[(Xo, 0x, 05), (0,0,0), (2,0,0), 2] [(Xo,0x,0), (0,0,0), (1.113,0,0), 1.113]
0<5<1 0.5 0<§<1.887 | 1.65
[(0,04,0,), (0,0.5,0.5), (0,0,0), 2.5] [(Xo,X,05), (0,0,1.65), (2.763,0,0), 2.763]
0.5<6<2.5 ¢, 0.5 0<6§ <0.237 \L 0.219
[(0, X4, 05), (0,0,1), (0,0.5,0), 3] [(0, %4, 0,), (0,0,1.869), (0,0,0), 2.982]
0<6<2 1 0<6§<1.131 |1.1
[(0,1,0), (0,0,0), (0,0,0), 4] [(0, 1, Xo), (0,0,0), (0,0,0), 4.082]
O 1<6<3 \p 2.357
[(0, %X, %), (0,0,0), (0,0,0), 6.439]

O

Figure 6.9. Two possible XBD race sequences.
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To illustrate some steps in the computation of the race sequence, consider the
first states in the left XBD race sequence of Fig. 6.9. We start in the stable state
[(14,0,0), (0,0,0), (0,0,0), 0], and it is easy to verify that U(0, 100)={1}. Now, for
all the unstable vertices j (in this case vertex 1 only) we compute the values of

diT—u; and d;T—v;, and find the minimum value. In our case we get

min {d;,T—u;, d;T—v;} = min{1-0, 1-0} = 1, and hence, § must be chosen to be
j €U(0,100)

greater than or equal to 1. In a similar way, 6§ must be chosen strictly smaller than

jetl}r(lg,nIOO){DjT_uj’ D;,T—v;} = min{3-0,3-0} = 3. In our example, we choose § =2.

Once é§ has been chosen, we must determine the set of vertices C* that, for this
choice of &, are candidates for changing to X, and the set C? of vertices that, for this
choice of 6, are candidates for changing from X to a binary value. More specifi-
cally, the vertices in C* are all unstable, all have a binary value, and for all of them
uj+6>d;T. CP is defined similarly. In the present situation C*={1} and C? = (.
Once C* and CB have been computed, we have to choose some nonempty subset of
C*U CB as the set P. Here there is no choice; P must be equal to {1}. Given P and
§ we now proceed as follows. The state of vertex j is changed to X if j is in C*NP,
and to its excitation value if j is in CEnP. For all other vertices, the value is not

changed. In our example, only y; is changed, and it is changed to X. When this is

done, the vectors u and v are updated as follows: If a vertex j was unstable and had
a binary excitation in the previous state and the same situation holds in this new

state, then u; is incremented by §. Otherwise, u; is set to 0. Similarly, a vertex that

was unstable and had a binary excitation in the previous state and in the new state,

gets v; incremented by é; all other vertices get v; set to 0. In our example, vertex 1 is
not binary in the new state and thus #;=0. On the other hand, vertex 1 satisfies all
the conditions for getting v; incremented, and thus ¥;=§ =2. The vertices 2 and 3
were not unstable in the previous race state, and thus i, =#3=v,=v3=0. Hence, one

possible successor state is [(Xg, Ox, 0x), (0,0,0), (2,0,0), 2].

To determine a possible successor state to the state

[(Xg,0x,0x), (0,0,0), (2,0,0), 2], we proceed very much in the same way. First we

establish that U(0, X00)={1,2,3}. We then find that jegx(}irg(m){djT—-uj, d;T—v;} =
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min{1-0,1-2} = -1 and jel%l,rg(m){DjT—uj, D;,T—v;} = min{3-0,3-2} =1. How-

ever, § must be non-negative; thus we get the condition that § must be in the open
interval (0,1). In our example, § is chosen to be 0.5. It is easy to verify that, for
this choice of §, C*= and CZ={1}. Intuitively, although vertices 2 and 3 are
unstable, they have only been unstable since time 2, and since the maximum delay in
vertex 1 must be less than 3, it follows that only vertex 1 will be a candidate for
changing. As above, we get P = {1} and the reader can verify that we reach the state
[(0,04,0y), (0,0.5,0.5), (0,0,0), 2.5].

The following two properties of the XBD race model can be easily verified.
They both deal with the minimum-sized pulse that can occur in a network according
to the XBD race model. The first proposition states that the minimum time a vertex

j can have a binary value is essentially d;T.

Proposition 6.1 Let ~=[y%u%%¢%, [y}, ul,v},¢!],... be an arbitrary XBD race
sequence for network N when N is started in the stable total state (4, b) and the input

changes to a at time 0. If, for some ¢>1, yf'=a€B and yf=X, then t?>d,T and
there exists a [y*,u”,v*,t*] €y such that 19—+° >d;T and y]= o for s <r <q-1.

The second proposition states that the minimum time a vertex can have the
value X and then change back to its previous value is also essentially d,T. Note that
the XBD race model allows a vertex to have the value X for an arbitrarily short

time, provided this occurs during a transition from O to 1 or from 1 to 0.

Proposition 6.2 Let ~v=[y% 4%, [y!,ul,v},7Y],... be an arbitrary XBD race
sequence for network N when N is started in the stable total state (@, ) and the input

changes to a at time 0. If yj‘1=aeB, yi=X, and yf=«a, for g >+, then t9—¢*>d,T.

There are two natural questions to ask when analyzing a transition caused by an
input change:
a)  which state(s) can the network be in at some time ¢, and

b)  will the network eventually end up in a unique stable state?



Race Analysis in Asynchronous Circuits 113

The second question, the ‘‘stable state reachability’’ (SSR) problem is in general
very difficult (see Chapter VII). Hence, we will focus on the first question, i.e.
which states can the network be in at some time ¢. In practice, this question is also
of greater importance than the SSR question, since circuits that have not reached a
stable state after some reasonably short time are probably not very well designed and
need to be modified. Hence, it is usually sufficient to determine whether a circuit

will reach a stable state within time r7T for some fixed (and relatively small) r.

Let T be the set of all XBD race sequences for network N when N is started in
the stable total state (d, b) and the input changes to a at time 0. For 4T, the state of
the network according to this race sequence is denoted y?(¢), and is equal to:

y b fort<0
Y1) = y' ford<t<ttlif U(a,y )= @ or fort' <t if U(a,y )=

The set of possible states the network can be in at time ¢ is called Reach(t) and is

defined as:
Reach(t) = {y :y=y"(t) for some y€rl}

In the above example, it is easy to verify that Reach(t) = {(1,0,0)} for 0<r<1,
that Reach(1) = {(1,0,0), (X,0,0)}, and that Reach(t) = {(1,0,0), (X,0,0), (0,0,0)} for
1<t<2. However, it is very laborious to compute Reach(t) for t >2. We will return

to this in the next section.

In the introduction to this section we promised to show that the behavior of the
network according to the XBD race model is identical to the behavior of the network
when each vertex is assumed to consist of an ideal (delay-free) excitation function
connected in series with an extended inertial delay. We will show this by establish-
ing Lemmas 6.1 and 6.2. However, the following propositions will be needed before

this can be done.
Proposition 6.3 Let (a,b)cT"*™ and (a,c)eT""" be two total states of N such that,
for 1<j<m, b;eB implies ¢;Jb;. Then, for 1<i<m, we have Y;(a,b)€B implies
Yi(a,c)3Y(a,b).
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Proof: By the definition of (a,b) and (a, ¢) there exists a lower bound of {{a, b), (a,c)}
in the partial order C. Let (a,d) denote such a lower bound (it may not be unique).
We now argue by contradiction that the excitation cannot change from a€B to o'.
Assume that Y;(a,b) =a€B and that Y;(a,c) =o' for some i. By the definition of a
lower bound we must have (a,d)C{(a,b), and thus, by the monotonicity of Y, that
Y;(a,d)CY;(a,b)=c. Hence, Y;(a,d)=a. However, by the same arguments, it fol-
lows that (a,d)C(a,c), and thus that Y;(a,d)CY;(a,c)=q', showing that Y;(a,d)=d

— a contradiction. Hence, our assumption must be false and the claim follows. u

Proposition 6.4 states essentially that the value of a vertex and the excitation of
a vertex according to the XBD race model can never change directly from 0 to 1 or

from 1 to O.

Proposition 6.4 Let ~=[y%u%%¢%, [y}, ul,v},¢!],... be an arbitrary XBD race
sequence for network N when N is started in the stable total state (d@,b) and the input
changes to a at time 0. Assume [y*,u"*,v* t*]€~, then

6)) if y*eB, then ul>vh.

(ii)  if yeB, then yf+13yk.

(iii)  if Y;(a,y*) €B, then Y;(a,y**")3Y;(a,y*).

Proof: By induction on A.

Basis:

h=0. Since ul=v?=0 for 1<j<m, claim (i) follows trivially. Furthermore,

since (d,b) is assumed to be a stable total state, and a#d, we must have
L, ut, vl e % u% v, 9. Let C* and CP be defined for [y% 4%1% % and
§=t1—1% If y’=a€B we claim that j¢C®. Assume the contrary, i.e. assume
that jeCP. Since this implies that j ¢ C* and, by assumption, j eB(y?), it follows
that we must have v}]+6 >d;T and u}’+6 <d;T. However, this contradicts the
fact that uj°= vj0=0. Hence our assumption that j €C? must be false. However,
j#C® implies that y!€{a, X} and property (ii) holds for the basis. Finally, pro-
perty (iii) follows from property (ii) and Proposition 6.3.
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Induction hypothesis:

Assume the claim holds for some 4 >0.

Induction step:
Consider [y**1,u?*1 v*+1 (#+1] If U(a,y"*!)= (5, properties (i)-(iii) follow trivi-
ally. Hence, assume that U(a,y*™)# . To verify property (i) we argue by

contradiction. Assume y**'=a€B and that u/*'<v}*!. Consider the value of

vertex j at step h, i.e. yi. By the induction hypothesis, property (ii), y} must be
equal to either o or X.
Case I1: If y'=a, then by the induction hypothesis, property (i), uf>v}.

Since we assumed u*'<v#*! and u!*! is either equal to u+6 or 0 and v/*!

is
either equal to v}+6 or 0, it follows that u!*'=0 and that v/*'=v}+s. How-

ever, this implies that
j ¢ U@, y)nBGMNU(@@,y"*)nBO"
and that
j €U(a,y")NBE(a,y")N U(a,y"*) N BE(a,y"*).

Hence, j¢B(*)nB("*!). However, we assumed that y*=y!*'=a€B; thus we
have a contradiction.

Case 2: yl=X. Since y/*'=0a, we must have Y;(a,y")=c. By the induction
hypothesis, property (iii), it therefore follows that Y;(a,y"*")€{a,X}. If
Yj(a,y*)=0o, then y}*'=Y;(a,y**") and thus j¢ U(a,y"*? and therefore

ubt=y4+1-0, which contradicts our assumption that uf*'<v}*!. Hence,

Y;(a,y"*!) must be equal to X. However, this implies that j&BE(a,y"*1) and

therefore that v/+!

=0. Since u}“’lZO this also leads to a contradiction.

Since we have a contradiction in both cases, it follows that our assumption
that w!*'<v**' must be false and thus that property (i) holds for
[yh+1’ uh+l’ Vh+1, th+1].

If y#*'=aeB we claim that j¢C® and thus that y}**€{a,X}. Assume the
contrary, i.e. that jeCZ. This implies that jgC™ and since, by assumption,

jeB(O"*Y) we must have u?*'4 6 <d,T and v}*'+6 >d,T. However, we showed
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above that y**'=«cB implies that u*!'>v/*! and thus we have a contradiction.

Hence, property (ii) follows.
Finally, property (iii) follows from property (ii) and Proposition 6.3. Hence,
we have verified that properties (i)-(iii) all hold for A+1, and thus the induction

step goes through and the claim follows. n

We are now in a position to state and prove that the input/output behavior of

any vertex in N according to the XBD race model is consistent with the XID model.

Lemma 6.1 Let v=[y%,u° v (%, [y!,ul,vl,¢1],... be an arbitrary XBD race sequence
for network N, when N is started in the stable total state (@, b) and the input changes

to a at time 0. Furthermore, let

a fortr<0
x(1) =g fort >0

and

y fort <0
Y=y for ' <t <e*tlif U(a,y)# @ or for i<t if U(a,y' )=

Then the input/output behavior of every vertex j is consistent with the XID model,

i.e. for each j, Y;(x(¢),y(z))/y;(t) is an acceptable input/output waveform according to

the XID model.

Proof: We need to verify the five conditions for the input/output behavior given in
Section 3. Consider vertex j. First, by Proposition 6.4(ii), it follows immediately

that y;(r) can never change from 0 to 1 or from 1 to 0, and condition 1) is satisfied.

If y;(z) changes from a binary value o to X at some time r, then we must have
yt=a and y!'=Xx for some h>0, i.e. ="+, However, this implies that
ul+6>d;T, i.e. that y;(r) has had a binary value and has been unstable in the
period "*'—d,T<t<"*'. This, together with Proposition 6.4(ii), implies that
yj(t)=a and that Y;(x(t),y(t))#« for r —d;T<t<7 and condition 2a) is satisfied.

Condition 2b) can easily be verified using similar arguments.
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To verify condition 3a) assume that Y;(x(¢),y(z))=8€T for r <t<7+D;T and

that 7 is the smallest value >0 for which this is true. Note that 7 = t* for some h >0.

If y;(7)=p for some 7 such that 7 <7 <r +D,T, then, since the vertex is stable, it fol-
lows immediately that y;(r)=p for 7 <t<7+D;T. Hence, it suffices to show that
such 7 must exist. We argue by contradiction; assume y;(t)»= g for r <t <7 +D;T.
Let f be the largest integer such that tf <1 +D,T. There are two cases to consider: If
B =X then, by Proposition 6.4(ii), y;(t)=a€B for 1 <t<7+D;T. This implies that
vertex j has a binary value and is unstable in the race states k, h+1,...,f, and thus
that wf>t/—7. Since j €U(a,y’) there must exist a successor race state
[+, uf+, v+ 41 different from [y/,u/,v/,#/]. Furthermore, §= F+H¢f must

satisfy § <D,;T—uf. However, by the definition of f, we must have tf*1>r 4+ D,T and
together with the fact that uf>t—7 we have 6 =¢/*'—t/>7 4+ D, T/ >D;T—u],
which is a contradiction. Hence consider the alternative, i.e. that geB. If y;(1)# 8
for r <t <7 +D,T, we must have vf/>¢/—r. Since jeU(a,y’) it follows, by similar

arguments as in previous case, that there is a successor state [+, u/*!,v/*1 /+1] dif-

ferent from [y, uf,v/,+] and this state is such that § = #+! — ¢/ satisfies § <D;T—v{.
However, by the definition of f, it follows that #*'>7 4+ D,T and thus that
§ =t/ -/ >7 +D;T—t/ >D,T—v{, which is a contradiction. Since both cases lead to a

contradiction, our assumption must be false and condition 3a) holds.

Finally, to verify condition 3b) assume that Y;(x(z),y(t))€{X,a’}t for
7 <t<7 +D,T and that 7 is the smallest value >0 for which this is true. Note that
r=t* for some h>0. It is easy to verify that if y;(7)€{X, o'} for some 7 such that
7 <7 <7 +D,T, then y;(t)€{X,a'} for 7 <t <7 +D;T. Hence, it is sufficient to verify
that a vertex cannot keep the value « for this period. Assume the contrary, i.e. that
y(t)=a for r <t<7+D;T. Let f be the largest integer such that #/ <7 +D,T. Note

that vertex j has a binary value and is unstable in the race states k, h+1,...,f, and

thus that uf>#—r. Since jeU(a,y’) there must exist a successor race state
[yf+1, u/ 1,/ +1 ] different from [y/,uf,v/,#]. Furthermore, §=+*'—+/ must
satisfy § <D;T—uf. However, by the definition of f, we must have #*'>r + D,T and
together with the fact that uf>#/—7 we have §=t/*'—t/>7 4+ D;T—t/ >D;T—uf,
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which contradicts the condition that § <DjT-—uf . Hence our assumption must be
false and condition 3b) follows. Since we have verified that all the conditions for the
input/output behavior according to the XID model for an arbitrary vertex j, the

claim of the lemma follows. ||

The converse result is taken care of by Lemma 6.2. Let y(z) denote the state of
network N at time ¢. Assume the input/output behavior of every vertex j is con-
sistent with the XID model, and that the input changes from 4 to a at time 0. Let
79=0 and 71, 72,... denote the time for the first, second, etc. change of the state of
the network. It is trivial to verify that 71>0. Define [y*,u",v*,*], h >0, inductively

as follows:

Basis:
%, u%v0, % = [ (0), (O,...,0), (0,...,0),0].
Inductive step:
Given [y*,u* v*,t*]. If U(a,y*)=( then let [+, uhtl i h ] = R uh, vh .

Otherwise, let

yh+1=y(1'h+1),
[Pty i jeU@NBOMN U@, )N BOM
+1_
=10 otherwise,
VI Lt v if j eU(a,y*)NBE(a,y")n U(a,y"*')n BE(a,y"*")
+1_
Vit =10 otherwise
th+1= Th+1'

Lemma 6.2 [y°, 4%, %, (°] R [y*, u*,v*, ] for all h >0.
Proof: By induction on 4.

Basis:

h =0. Trivially true.

Induction hypothesis:

Assume [y, u®,v0, ()| R [y, u*, v*, t*] for some h >0.
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Induction step:
Consider [y"+,ut*1 vA+l 4+ If U(a,y")=( the claim follows trivially.
Hence, assume U(a,y")# 5. Since, by condition 1) of the XID model, we do
not have any vertex changing directly from 0 to 1 or from 1 to 0, we only need

to verify the following four properties:
i) If y"=aeB and y}*'=X then ¥;(a,y") # « and ul+ ("1 —1")>d;T.
ii) If y*=x and y!*'=caeB then Y;(a,y*)=a and v+ (1 —t")>4;T.
iii) wl+ (' —*)<D;T, for all jeU(a,y").
iv) viy (" —")<D,T, for all jeU(a,y").

If y?=o€B and y/*'=X, i.e. the output of delay j changes from «, a binary
value, to X at time #**!, then, by condition 2a) of the XID model, we must have

had Y;(a,y(t)) # o for l_dT<t <"+, However, this implies that

u;z+ (th"'l _ th) > [th _ (th+1 _ djT)] + (th+1 _ th) - djT,

and property (i) holds.
Similarly, if y*=X and y/*'=o€B then, by condition 2b) of the XID model,

we must have had Y;(a,y(t))=o for "' —d;,T<t<i"**'. However, this implies

that

VEg (o) > [th (o djT)] + (" =My =d,T,

and property (ii) follows.

To verify property (iii) we argue by contradiction. Assume there exist race
states [y*,u® vt %], [P+, uhtl vA+ A+ and a vertex jeU(a,y") such that
ub 4+ ("' —*)>D;T. In other words, that there exists ¢* such that y;(t)=0€B
and Y;(a,y(r)) # o for £ <t <¢"*! and that #*'—#* >D;T. However, this contrad-
icts condition 3b) of the XID model, since Y;(x(z),y(?))# « for ' <t <t +D;T
implies that y; must change at some time 7 such that 7 <t +D,T<t"*!. There-
fore, our assumption must be false and property (iii) follows.

Finally, to verify property (iv) we argue again by contradiction. Hence,
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assume there exist race states [y*,u,v* *], [+, ut*1,vh+1 #+1] and a vertex
jeU(a,y") such that v!4 (**'—¢*)>D,T. In other words, that there exists ¢’
such that Y;(a,y(f))=ca€B and y;(t)#« for <t <" and that **'—¢*>D;T.
However, this contradicts condition 3a) of the XID model, since Y;(x(),y(t)) =«
for ¢ <t<t +D;T implies that y; must change to « at some time 7 such that
T<t'+D;T< t"+1, Hence, our assumption must be false and property (iv) fol-
lows.

Since we have verified properties (i)-(iv), the induction step goes through

and the lemma follows. |

In summary, the XBD race model can be used to predict the outcome of transi-
tions caused by some change of some input variables under the assumption that the
delays are extended inertial and thus bounded by lower and upper limits. The model
is natural and can also be well motivated from real circuit behavior. However, the
race model is computationally intractable; in fact it is continuous. In the next section

we describe an efficient algorithm that computes essentially the same information.

6.4. Ternary Bounded Delay Algorithm

In this section we define an efficient algorithm, called the ternary bounded delay
(TBD) algorithm, for simulating a circuit. We will later show that the results
obtained by applying this method correspond exactly with the outcome predicted by
the XBD race model. The basic idea behind the algorithm is quite simple and can
be summarized in the following two rules:

1) change an unstable vertex to X as soon as allowed by the minimum delay;

2) change a vertex from X to a binary value as late as possible.

These rules appear to be natural. In fact, an algorithm based on similar ideas was
described by Chappell and Yau [20] already in 1971. However, their algorithm was
substantially more complicated than the TBD algorithm. Furthermore, they gave
only a very informal motivation for the correctness of the approach, whereas we will

completely characterize the results obtained from the TBD algorithm.
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In the TBD algorithm it is necessary, once again, to remember a certain
amount of previous excitation history. For this reason, define a tbhd-state to be the
triple (z, U, V). The first component, z, is the current “summarized” state of the net-
work. The second component, U, is a vector of m integer values. For a stable ver-

tex j, U;=0, whereas for an unstable vertex with a binary value, U; denotes the

current ‘‘race unit” the vertex is in. For example, in the starting state every unstable

binary vertex will have U;=1, denoting that the vertex is currently in its first

unstable time slot. Similarly, V is used as U, but here the criterion is that the vertex
is unstable and has a binary excitation. In the TBD algorithm the summarized state
of the network is computed at times T, 2T, 37,.... However, this is a two-step pro-
cess. Given the state (z*~', U*~' V*~!), an intermediate state (", 0" v is first com-
puted. Intuitively, this state is the summarized state the network would be in at time
hT — e for an arbitrarily small e. To compute z*, only the vertices that have to change
to their binary excitation are changed. These vertices are the vertices that have

V}'“1=Dj. Due to these changes, some other vertices may become stable, and these

vertices are removed from U and V respectively.

Once the intermediate tbd-state <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>