Efficient Implementation
of
Subsequential Transducers

Garrick G. Trowsdale

Research Report CS-88-20
May 1988

Faculty

of

Mathematics

University of Waterloo
Waterloo, Ontario, Canada
N2L 3Gi1

Efficient Implementation
of
Subsequential Transducers

Garrick G. Trowsdale

Research Report CS-88-20
May 1988

Efficient Implementation of Subsequential Transducers
by

Garrick Gavin Trowsdale

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, 1988

© Garrick G. Trowsdale 1988

Abstract

Efficient Implementation of Subsequential Transducers

Ideally, software tools such as programming languages, database manage-
ment systems, and parser generators should provide for high level specifica-
tion and efficient solution of a particular class of problems; however, many
systems meet only one of these criteria. INR is a program for specifying
and optimizing finite automata, but not directly for their implementation.
This thesis describes INRC, a program for compiling subsequential transduc-
ers computed by INR. Together, INR and INRC represent an efficient high

level problem solving tool.

(ii)

Acknowledgements

I have been very fortunate to write this thesis under the supervision of
Howard Johnson, who suggested a particularly interesting topic, and who
has provided encouragement and many ideas. Investigating strategies for
the implementation of subsequential transducers has allowed me to pursue
my interest in compilation issues and to achieve results in a reasonable

amount of time.

Gaston Gonnet and Jose Icaza shared the research they had done on
implementation of transducers, answering many questions, and providing
valuable suggestions. The crucial idea of using dynamic programming,
described in Chapter 3, belongs to them. Tim Bray, Gord Cormack, and
Amar Sanmugasunderam all spent time discussing compile time and execu-
tion time performance issues; many of their ideas have been incorporated

directly.

I thank Gaston Gonnet and Gord Cormack for taking time to read

drafts and provide valuable comments.

Finally, I thank NSERC for the generous provision of scholarship funds.

(iii)

Contents

Introduction

1.1 MOIVALION .ttt et
1.2 Previous WOrk ..o
1.3 INRC — A Transducer Compilerccooooiiiiiiiiiiiiiiii..
1.4 Implementationscoooeeeiiiiiiiiiiiiiiiiiiiiiii e eaaaans
1.5 Thesis Outlineccoiiiiiiiiiiiii e

Subsequential Functions

2.1 Alphabets, Languages, and Machinesooooeiii....
2.2 Disjoint UNIONS «oiunnueetietttiiiiaiaiaiiiieetaaaaaaeaeeeeeaaeaaaannnns
2.3 Regular Languages and Finite Automata
2.4 Rational Relations and Rational Transducers
2.5 Subsequential Functions and Subsequential Transducers
2.6 Important Results ...
Input State Transition Function Optimization
S 00 S\ 0] #: 15 1) o KR
3.2 Problem Definitionccoiiiiiiiiiiiiiiiii i
3.3 Related WOrk oo
3.4 Incorporating Probabilityo
3.5 Optimality .o.eoineiiiiiiii
3.6 Model of Computationccceiueiiiiiiiiiiiiiiiiiiiiiiiiiieaa..
3.7 Execution Cost Functionccccciiiiiiiiiiiiiiiiiiiiieiie...
3.8 Dynamic Programmingccoiiiiiiiiiiiiiiiiiiiiiii
3.9 Non-Terminal Casescceoeeeiiiniiiiiiiiiiiiiiiiiiiiiiiiieaineen.
3.9.1 Binary SpLts ..coinneiiiiiiii i
3.9.2 Ternary SPLits ..occvvviniiiiiiiiiiiiiii i

10
11
15
24

3.10 Terminal Casesuueeiiiiiiii i et
3.11 Computational CompleXityccceiiiiiiiiiiiiiiiiiiiiiiiiiiinn...
Span Dependent Branch Optimization
0 T\ 0 1 4 1o) o
4.2 ASSUMPLIONS .uetinntitiit ittt it eeeeaeeaans
4.3 Problem Definitionccooiiiiiiiiiiiiiiiiii e
4.4 Basic Algorithms ...
4.5 Algorithm EXtensionsccooooiiiiiiiiiiiiiiiiiii i,
4.5.1 Incorporating More sdi Formatsooo...
4.5.2 Incorporating Jump TablescoooooiiiiiiL.
Global Optimization
5.1 Register Allocationcoiiiiiiiiiiiiiiiiiiiiiiiii i
5.2 Code Factoringcoiiuiiiiiiiiiiiii i
VAX - Unix Implementation
6.1 System Interfaceccooiiiiiiiiiiii
[SPZN 54755 1 1) 1) o -
6.3 Code Generationooeeeiiuiiiitiiiiiiieiiiiiieeiaiaaaaaaaanns
6.4 Branch Optimizationccciiiiiiiiiiiiiiiiiiii i,
6.5 Performanceoocooiieiimiiii i
6.5.1 Compile Timeccccoiiiiiiiiiiiiiiiiiiiii i
6.5.2 Execution Timeccccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiaann.
IBM/370 - CMS Implementation
7.1 System Interfacecoooiiiiiiiiiiii
7.2 Addressabilitycoocoiiiiiiiiiii
7.3 Code Generationceeeueeeeriieeiaieiiiiiiiie e teeeeaanans
AT 25 < 11 1) (o) o T PN
7.5 Branch Optimization ...
7.6 PerfOrmanCeeeeeieii it

58
59
61
61
62
63
64
65

69
70
70

72
72
74
76
76
78
82
85

8 Conclusions

A Transducer Grammars
A.1 Soundex Transducer

..

(vi)

List of Figures

1.1
2.1

2.2
2.3
2.4

2.5
2.6

2.7
3.1
3.2
3.3

4.1
4.2
6.1
6.2
6.3
6.4
6.5
6.6
7.1
7.2
7.3

Problem solving steps using INR and INRC 5
Ts1 subsequential transducer for f(a%) —b* i >0 17
T, subsequential transducer for f(a%) —b° i >0ccoeeo.... 18
T3 subsequential transducer for f(a®) — b’ i >0 ...cooeiriii.... 21
T3 transducer To.oiniiniiiiiiii i e 23
Result of applying steps 1 and 2t0 7Tcccoviiiiiiiiiiiiiiiiiiia., 24
Ty, transducer equivalent to 7oooiiiiiiiiiiiiiiiiii e, 24
Proof of Lemma 2.6.4 ... oo 26
Example of §-diagram ...t 32
Sample terminal case used by dynamic programming algorithm 37
Example of Py .ooooniiinii 39
VAX formats for the ILC instruction bhi 1blcceeeeinin..... 60
IBM/370 formats for the ILC instruction bhi 1bl 60
Simple run-time organization of a compiled transducer 73
Sophisticated run-time organization of a compiled transducer 76
Functional description of Soundex codecocoooiiiil, 79
InrCopy transducCercoioiiiiiiiiiiiiiiiiii e 82
ChrCopy C Programc..eeeueeieeiitiiet e e eaaaaaaaaannns 83
BIKCopy C Programc.coviuieiiniiiiiiiii et aaaeanns 83
IBM/370 long branch format ... 91
Addressability within a transducer state code segment 92
Branching between transducer statesoo 93

(vii)

List of Tables

3.1
3.2

4.1
5.1
6.1
6.2
7.1

Machine instructions in model M ...t 41
Relationship of | X, |and problem size 44
Branch optimization provided by common assemblers 58
Global register allocationccoioiiiiiiiiiiiiiiiiiii i 70
VAX reaches relative to sdi locationccoiiiiiiiiiL. 77
VAX reaches relative to updated-PC location 78
CMS execution time resultscoocoiiiiiiiiiiiiiiiie 95

(viii)

Chapter 1

Introduction

1.1. Motivation

Efficiency is the strongest reason for using a low level programming
language over a high level one; but even when performance suffers, high
level languages are often chosen since they provide benefits such as under-
standability, maintainability, and portability. We want to specify what is to
be done rather than how it is to be done. For instance, using the PROLOG
programming language [SS86], complex algorithms may be written trivially,
but efficiency remains an issue; nonetheless, work on the definition and con-
struction of PROLOG machines demonstrates the value of high level specifi-

cation of problems and their solutions.

A triumph of Computing Theory is LR parser generator theory and
practice. LALR parser generators, such as YACC [Joh75], accept a simple
specification of a language L and generate an efficient parser for L. Such a
parser is a pushdown automaton which is “run” interpretively with an input
string, producing a parse tree for the input. More specifically, the parser is
a simple interpreter which parses input strings according to a parsing table
prepared by the parser generator. This parsing table is a representation of a

pushdown automaton for the language to be parsed.

2

INR is similar to a parser generator in the sense that it accepts a high
level specification of a finite automaton and produces a representation suit-
able for interpretation or compilation; regular expressions and generalized
rational expressions are used to denote automata in INR [Joh87a]. Two
tape automata, called rransducers, are one class of automata computed by
INR, and are very useful for transforming text. The transformation speci-
fied by a transducer is a transduction. The application of a transduction to
input text produces transformed output text; transduction application is

analogous to LR parsing.

Instances where transduction is useful include ad-hoc transformation of
large quantities of text and repeated application of a fixed transformation to
small quantities of text. An example of a large body of text is the New
Oxford English Dictionary; “one time’ transformations can be extremely
time consuming. An example of a fixed transformation is the Soundex cod-
ing scheme, which is used in reservation systems, and which is applied fre-

quently to customer surnames. In both cases, efficiency is clearly important.

There are two fundamental approaches to the application of a transduc-
tion to an input string. The first is to run a transducer for the transduction
interpretively, and the second is to compile it into a non-interpretive pro-
gram which then applies the transduction to its input. INRC is a compiler
for a strict sub-class of finite transductions, namely subsequential functions.
The motivation behind INRC is to complement INR’s high level specifica-

tion capabilities and automaton optimization with efficient implementation.

1.2. Previous Work

The programs developed at the University of Waterloo which form the con-

text in which INRC was developed are listed below.

INR e J. H. Johnson
- computes finite automata

Isim e J. H. Johnson and F. W. Tompa
- applies general non-deterministic transductions
- interpretive
- provides error recovery mechanisms

gsml e J. H. Johnson
- applies only subsequential transductions
- interpretive

mscan e G. H. Gonnet and J. I. Icaza

- compiles general non-deterministic transducers into
C language programs

- provides error recovery mechanisms
Johnson wrote INR in conjunction with the development of string similarity
models, which includes analysis of the expressive power of rational relations,
and subsequential functions in particular [Joh83]. The Isim and gsm1 pro-
grams read a transducer and input text, transforming the input text using the
transducer to produce output text. Kazman utilizes INR and Isim to aug-
ment the structural information of the New Oxford English Dictionary as
one step in its computerization [Kaz86]. The gsm1 program applies only

subsequential transductions, and realizes a ten-fold speed increase over Isim.

The work of Gonnet and Icaza on efficient implementation of general
non-deterministic two tape automata led to the mscan program. Their
approach is to generate C language programs which implement the states of

an automaton directly. By permitting non-determinism, mechanisms for

4

trying different paths through the machine are necessary. This problem is
complicated further by cycles, which necessitate limits on how far alternative
paths are followed. Moreover, retreating from an incorrect path involves
undoing the operations performed on the two tapes during the exploration.
In addition to these types of problems, many compiler restrictions were
encountered, such as program and subroutine size, switch statement size,
and long jump code generation errors. Despite these difficulties, compiled

automata run significantly faster than they can be interpreted.

1.3. INRC — A Transducer Compiler

Informally, a subsequential transducer is a deterministic finite automaton
(DFA) with output; using a computationally convenient characterization, a
subsequential transducer has input and output states. Input states, which
cause one input symbol to be read, are analogous to non-final states in a
DFA; output states simply cause one output symbol to be written. INRC is

a compiler for subsequential transducers computed by INR.

Problem solving using INR and INRC is illustrated in Figure 1.1. The
design goals of INRC include the following:

e transducer modularity

— INRC generates user callable transducers, but a standard driver is
included by default, yielding executable programs

— transducers support assembler and C language calling conventions
e highly efficient transducer object code

e practical transducer compile time complexity

1. Formulate the problem as a transduction.
2. Convert to INR syntax / semantics.
3. Iterate to obtain a subsequential transduction:

Initial
INR
formulation

INR

\\
subsequential? modify transducer
saved INR
save transducer
transducer

4. Compile the saved transducer using INRC:

| !
saved INR INRC :' executable :
transducer transducer
R,)

5. Execute the transducer:

| |
1 executable 1

Input , transducer i Output \
.

Figure 1.1: Problem solving steps using INR and INRC

False

In order to achieve the goal of highly efficient transducer object code,
two “layers’’ of optimization are performed. The first layer of optimization
is performed by INR’s automaton state minimization. The second layer,
performed by INRC, includes transducer input state optimization and span
dependent branch optimization. Transducer input state optimization is
essentially the same as case statement optimization for high level languages;
output states are so simple that they provide little opportunity for optimiza-
tion. Span dependent branch optimization is very important since a large

number of the instructions executed by a transducer are branch instructions.

1.4. Implementations

INRC is fully operational on two computer systems: a VAX 8650 running
4.3 BSD Unix, and an IBM 4341 running VM/CMS. The New Oxford
English Dictionary project at the University of Waterloo has successfully
used INR and INRC to perform tag transduction and invoke index construc-
tion routines for the entire text (470 megabytes) of the New Oxford English

Dictionary.

1.5. Thesis Outline

The expressive power and computability of the sub-class of rational relations
which may be computed by subsequential transducers is the subject of
Chapter 2. Optimization techniques employed in INRC are detailed in
Chapters 3 through 5. Results obtained with the VAX and IBM implemen-

tations are presented in Chapters 6 and 7.

Chapter 2

Subsequential Functions

The most powerful transducers are rational transducers, which characterize
rational relations. Removing the non-determinism of rational transducers
leads to subsequential transducers, which characterize subsequential func-
tions. Machine models for rational and subsequential transducers are for-
mally defined, followed by important results which make the computation of
subsequential transducers practical. Chapter 3 relies heavily on the final

characterization of subsequential transducers presented.

2.1. Alphabets, Languages, and Machines
Definition: An alphabet is a finite, non-empty set of atomic symbols.

Definition: A string over an alphabet Y is the catenation of a finite sequence

of symbols from 3:; the empty string, denoted ¢, contains no symbols.

Definition: £* contains all strings over X; ¥* is called the universal

language.

Definition: A language L over an alphabet X is a set of strings which satisfies
LCX.

Definition: A language relation R over alphabets ¥ and A is a set of string
pairs which satisfies R C X" X A”.

From the theory of languages over a single alphabet, we may say that
deterministic finite automata and non-deterministic pushdown automata
accept or recognize regular and context free languages. The distinction
between a language L and an instance of a machine model that recognizes L
is important: the behaviour of a machine M is the language accepted by M.
Thus, the behaviour of a deterministic finite automaton is a regular language
and the behaviour of a non-deterministic pushdown automaton is a context
free language. Similarly, the behaviour of a transducer is a language rela-
tion. Formally, a transducer may be viewed as an acceptor of string pairs,
but in practice, a transducer is viewed as a traditional program which reads

input and writes it as output after transformation.

Definition: The behaviour of a machine M, denoted |M |, is the language

(relation) it accepts.

Definition: The family of all languages recognizable by instances of the

machine model M is denoted Ly,.

2.2. Disjoint Unions

In the definitions of transducers that follow, the disjoint union of input and
output alphabets is used to represent symbols from both alphabets as sym-
bols of single alphabet. Disjoint union is defined operationally rather than

by the properties it must satisfy, since this is what we need.

Definition: The disjoint union of two finite sets A and B is
AUB=(0}xA)U({1}xB)

with the two partial projection functions

ma((0a)={ ¢ Haca
)] otherwise
mp((1Lb) =1 & MDEB
9] otherwise

Any equivalent formalism which has the same behaviour may be considered
A U B. For instance, If ¥ is an input alphabet and A is an output alphabet,
INR forms the disjoint union ¥ U A as ({0.} X) U ({ 1.} X A) with
m2(0.a) = a
mA(l.a) = a
where a tuple (0.,a) is abbreviated as 0.a. Another example is Algol68
united modes, which require the use of a conformity clause to access alter-
nate mode values: the conformity clause selects and applies the appropriate

projection function.

In order to define the behaviour of transducers whose alphabet is

3 U A, we define two total “string’’ projection functions

Iy : (U A ->%°
I, : (S U A —A

Let a denote any element of ¥ U A. By adding € to the range of ny and

Ta, they may be made total.

: a if (@) =a
(@) = - ‘
€ otherwise
T, * a if WA(d) =qa
ma(a) = 1 .
€ otherwise

Now IIy. and II, may be defined in terms of 7L and 7% as follows:

. . . T . T . T .
g (ajay - - -a,) = m5(ag) mg(ag) - mg(ay,)

. . . T . T . T .
a(ajay - - - ay) = mpa(ay) malaz) -+ walay,)

10

For instance, using INR’s disjoint union,

II5(0.a 1.6 1.c 0.b) = ab
IMo(0.a 1.b 1.c 0.b) = bc

2.3. Regular Languages and Finite Automata

The well known deterministic finite automaton model is defined here to give

the flavour of the transducer definitions to follow.

Definition: A language L C >* is a regular language if there exists a deter-

ministic finite automaton whose behaviour is L.

Definition: A deterministic finite automaton (DFA) is a 5-tuple:

<z ’Q ’s ’F ’5 >
where
Y is an alphabet
(0] is a finite set of states
s €Q is the start state
F CQ is a set of final states
) is a transition function
and
§: QXX —=Q

The behaviour of a DFA M is

|M |={x|x € and 3 a path from s to f €F such that the
catenation of transition labels is x }

A DFA whose behaviour is { a’b |i >0 } is pictured below.

11

S O

2.4. Rational Relations and Rational Transducers

Definition: a language relation R C X° X A" is a rational relation if there

exists a rational transducer whose behaviour is R.

Three equivalent machine models of rational transducers are presented. The
first corresponds most closely with how one might think of a transducer; it is
also convenient for proving properties. The second model is an intermediate
between the first and third models. And, the third model is the most com-

putationally convenient—it is the model used by INR.

Definition: A rational transducer (Tgq) is a 6-tuple:
<E’A’Q »S ’F aE>
where

by is an input alphabet
A is an output alphabet
0 is a finite set of states
s €0 is the start state

F C Q is a set of final states

E is a finite transition relation

and
ECOXYI XA XQ

A transition (gq,u,v,q,) is pictured thus:

ulv
q
@ input label / output label >@

12

The behaviour of a Ty rational transducer T is

|T |={(u,v)|u €S*, v €A*, and 3 a path from s to f €F such
that the catenation of the input labels is #, and the
catenation of the output labels is v }

We may restrict the transition relation so that transition labels contain at
most one alphabet symbol without reducing the size of the family of

languages recognized.

Definition: A rational transducer (Ty,) is a 6-tuple:

<29A)Q S ’F ,E>

where

by is an input alphabet

A is an output alphabet

Q is a finite set of states

s €0 is the start state

F CQ is a set of final states

E is a finite transition relation
and

ECQOXXEX{XQU
O X{efXAXQU
0 X{eX{e} X0

This means that each label specifies either one input symbol, one output

symbol, or a e-transition. The behaviour of a T, is defined the same way as

for a Tpy.
Lemma 2.4.1: LTRI = LTR2
(Lt,, & L7,) Any Tg; is also a Tg;.

(Lt,, &Lt,,) Let T;=<X,AQ4,5,F,E;> be a Tg;. We define an

equivalent Tpy Tp = <X,A,0,,s,F ,E;> by constructing O, and E, from Qg

13

and E;. Initially, define 0, = Q¢ and set E, = &J; then, for each transition

in El

ulns.um/vlo'ovn
@ @

add to E, the set of transitions

uyl e Up | € elv €/ v,

| J
m+n—1 new states (mn > 0)

and add { ¢; 1,9; 2, - - - 9i myn1 } t0 Q3. The transition

@ €/ e ,@

is added to E, without any new states in Q,. By construction, |T; |C| T, |.

Note that all “new” states in Q, are non-final states; thus, any path from s
to f €F in T, including a new state ¢ must contain the complete path
between the two states in Q1 whose transition label in E; caused ¢ ’s addition
to Q,. Now suppose that (u,v) €|T,[; then there is a corresponding path
py=s'-f €F in T,. But there is a path p;y =s---f €F in T; obtained by
deleting all new states from p,. Finally, (u,v) €|T;| since we choose the

transitions in E; that gave rise to the new states deleted from p,. |

The final model is derived from Tx,s by renaming transition labels. A
bijection is defined between semantically equivalent Tk, and Tg3 transition

labels; thus, the models are trivially equivalent. Transition labels of a Tg3

14

are elements of the disjoint union of the input and output alphabets and {¢},

enabling us to view a Tg3 as a non-deterministic finite automaton over a spe-

cial alphabet.

Definition: A rational transducer (Tg3) is a 6-tuple:

<Z’A;Q » ,F ’E>

Y is an input alphabet
A is an output alphabet
0 is a finite set of states
s €EQ is the start state

F CQ is a set of final states

E is a finite transition relation

and
ECOX(EUAU{PXQ

The behaviour of a T3 rational transducer T is defined as

|T |={(u,v)|u €%, v €A", and 3 a path from s to f €F such
that if L is the catenation of the transition labels,
then IIg(L) is u, and IIo(L) is v }

Lemma 2.4.2: Ly, = Lr,,

A bijection between Tg, and Tg3 transition labels is given below. L
Tg, transition Tr3 transition
(q19a’6>QZ) (CIl’O-a aCIZ)
(Q1,6,b,QZ) (qlal-b’qZ)

(Q1,€,€,Q2) (CI1,€,C]2)

15

2.5. Subsequential Functions and Subsequential Transducers

Definition: A function f : ¥° — A" is a subsequential function if there exists a

subsequential transducer whose behaviour is f.

As with rational transducers, three equivalent machine models of subse-
quential transducers are presented. The first is the mathematical model used
by Berstel [Ber79]. The second model corresponds to deterministic general-
ized sequential machines (DGSMs) with endmarkers [Gin66]. The third
model is computationally convenient, and is the one used by INR. In the
same way that it is sometimes more convenient to use non-deterministic fin-
ite automata instead of deterministic finite automata in proving properties
about regular languages, it is sometimes more convenient to use Berstel’s
model rather than the computational model when proving properties about

subsequential functions.

Definition: A subsequential transducer (Tgq) is a 7-tuple:

<Z ,A’Q) 95 >>\,P>
where
Y is an input alphabet
A is an output alphabet
[0 is a finite set of states
s €0 s the start state
) is a finite transition function
A is a finite output function
p is a finite final output function
and
6:0 XY —=Q " o label
specity transition labels
AN:Q XD —A* peetly

16

p:Q — A" specifies final states
The input and output functions § and X are defined over the same domain:
6(q,a) is defined & A(q,a) is defined

Note that 6, A, and p are not necessarily total functions. A Tg; starts in

state s and makes transitions using ¢ like a DFA; while input is read using
6, output is written using \. When the input is exhausted, the machine is in
some state g. If p(q) is defined, the final output p(q) is written; otherwise,
the machine hangs in state g. Together, 6 and X serve to define transition
labels €Q X £ X A* X @, and p serves to designate final states by where it

is defined since a Tgy has no final state set. Thus, the behaviour of a Tgq
subsequential transducer T is

|T |={(u,v)|u €Z", v €A*, and I a path from s to f such that
p(f) is defined and 1) the catenation of input labels
is u, and 2) the catenation of output labels and p(f)
isv}

A Tgq subsequential transducer is shown in Figure 2.1.

An alternative to the final output function p is to terminate each input
string with a readable endmarker symbol —| € 3, and add a single final state

with no outgoing transitions.

Definition: A subsequential transducer (Tg;) is a 7-tuple:

<2U{—4}’A9Q >)f>6 >>\>
where

2 is an input alphabet

A is an output alphabet

0 is a finite set of states

s €Q is the start state
f €0 is the unique final state
) is a finite transition function

17

S0P M

>
I

p =

alb

ale

{a}
b}

{1,2}
1

(1l,a) — 2
2,a) — 1
(1,a) — b
2,a) — ¢

1 — €

Figure 2.1: T subsequential transducer for f(a%) — b i >0

A is a finite output function

and

610 X (EU{HD =02,

The input and output functions 6 and \ are defined over the same domain;

all endmarker (—) transitions lead to the final state; and the final state may

have no outgoing transitions:

6(g,a) is defined & \(g,a) is defined

5(g,NEQ—{f}Vq€EQ

§(f,a) is undefined V a € (SU{—})

Note that §, A\, and p are not necessarily total functions. The behaviour of a

T, subsequential transducer T is

18

|T |={(,v)|u €X*,v €A”, and 3 a path from s to f such that
the catenation of input labels is «—|, and the cate-
nation of output labels is v }

A Tg, subsequential transducer is shown in Figure 2.2.

Y = {a}

A = {b}

0 = {1,2,3}

s = 1

f = 3

6 = (Q,a) —2
1, —3
2,a) —1

A = (l,a) —b
(I, —e
2,a) — ¢

Figure 2.2: T, subsequential transducer for f(a?) — b i >0

Lemma 2.5.1: Ly, = Lt
Ly, & Lr,) Let Ty =<X,A01,5,0,A,p> be a Tgy. We define an
equivalent Ty T = <X U{—},A,0,,5,f,0 , 7> as follows:

0, = Q1U{f}

19

02
A2

§1U {(g,—) — f | p(q) is defined }
MU {(g,—) = xlplg) —=x}

(Lt, ©Lr,) Let Ty = <SU{},A,02,5,f,6, 0> be a Tg;. We define an

equivalent Tg; T1 = <X,A,0Q1,5,0 ,71,p> as follows:

01 = 0O—A{r}

69 = b6—{(qg,—) = f|6209) —>r}
Moo= M —{(@,—) —=x|Xg) —>x}
p = {q—x|6q,) —f and My(g,—) —x}

The third and final model restricts transition labels to elements of the

disjoint union of the input and output alphabets.

Definition: A subsequential transducer (Tg3) is a 6-tuple:

<EU{__|},A)Q) ’f)6>

where
by is an input alphabet
A is an output alphabet
0 is a finite set of states

s €Q s the start state
f €0 is the unique final state
) is a finite transition function

and
f:0X(EUu{Hdpu i -

The final state may have no outgoing transitions:
6(f,a) is undefined V a € (ZU{H})

The state set may be partitioned into input states and output states:
0=0;UQoU{f}

All transitions from an input state must specify input symbols, and there

must be only one transition from an output state, which specifies an output

20

symbol:

V g €Q; :6(q,a) is defined & Ilx(a) is defined
V g €Qp :6(q,a) is defined & Il5(a) is defined
VY g €Qp : §(q,a) defined and 6(q,b) defined = a = b

The behaviour of a Tg3 subsequential transducer T is

|T |={(u,v)| u €X*, v €A", and I a path from s to f such that
if L is the catenation of transition labels, then
(L) is u— and I (L) is v }

A Tg3 subsequential transducer is shown in Figure 2.3.

O.a
0.
®
X o= Aa}
A = {b}
Q = {132,374}
s = 1
f = 4
6 = 1,0.a) —2
(10.—) — 4
(2,1.6) —3
(3,0.a) —1

Figure 2.3: Tg3 subsequential transducer for f (@®) —b' i >0

21

Lemma 2.5.2: Ly, = Lt

Lz, S Lz,) let Ty = <VU{},A,07,5,f,02,20> be a Tgy. We define an
equivalent Tg3 T3 = <XU{H},A,Q3,s,f,83> by constructing Q3 and 65 from
Q,, 64, and X,. Initially, define Q3 = Q, and set §3 undefined everywhere;

| then, for each transition in 75 (65(q;,u) = q; and X(q;,u) = v1- v,)

u/l vy v,
@ -@)

add to 3 the set of transitions

n—1 new states
where mg(u) =u, ma(v;) =v; for 1 <i <n, and add {¢;1,9i2,- - - »i,n-1 }
to Q3. By construction, |T,|C|T3|. Since all “new” states in Q5 are non-

final and have one ingoing and one outgoing transition, any path from s to f

in T3 including a new state ¢ must contain the complete path between the two
states in O, whose transition label specified by §, and X\, caused ¢ ’s addition
to Q3. Now suppose that (u,v) €|T3|; then there is a corresponding path
p3 =s---f in T3. But thereis a path p, = s - f in T, obtained by deleting

all new states from p3. By the construction of T3, (u,v) €| T |.

(L, & L1,,) Suppose that T is a Tg3. The procedure for constructing an

equivalent Ty, transducer from T consists of the following steps:

22

1. Partition the states of T into input and output states.

Transition labels from input states specify symbols in ¥ U {—}, and
transition labels from output states specify symbols in A; the final state

is special since it has no outgoing transitions.

2. Accumulate output ‘‘strings’ and attach them to the immediately

preceding input state.

Each sequence of consecutive output states is finite and does not form a

cycle since a Tg3 subsequential transducer is deterministic and must read

the — symbol. Thus, output symbols specified by each consecutive
sequence of output states may be catenated to form a finite length out-
put string. The T, transducer states correspond to the Tg3 input states,
and the Ty, transition labels are constructed from each T3 input transi-
tion, and the immediately following output string. A small problem

arises when the Tg3 transducer performs output before reading any

input, which leads to the next step.
3. Deal with “leading output” if present.

Output states preceding the first input state may only occur if the start
state is an output state; furthermore, there may be at most one sequence
of leading output states. It is not sufficient to move a leading output
string to the subsequent input state if that state has any cycles involving

output; thus, extra states must be introduced to solve this problem.

Consider the Tg3 transducer T, Figure 2.4, whose behaviour is

|T |={a' — leadb’, b’ — leadc? }

23

and where

(EU{H}) U A) is formed as { { 0.} X (ZU{—H) JU {{1.} X A}

Figure 2.4: T¢3 transducer T

Applying steps 1 and 2 leads to the transducer shown in Figure 2.5.

b/ cc

O ?/lead% /e O

alb
Figure 2.5: Result of applying steps 1 and 2 to T

24

And finally, step 3 yields the equivalent T, transducer shown in Figure 2.6.

b/ cc

e b [/ leadcc

alb

Figure 2.6: T, transducer equivalent to T

2.6. Important Results

In addition to rational relations, we may consider the language class of
rational functions; similarly, in addition to subsequential functions, we may

consider finite functions:

Liational = rational relations: R C X X A"

Lpairen = rational relations that are also functions: F : &% — A"
Lsybsequential = Subsequential functions: f : &% — A"

Liinite = finite functions: f : &% — A"

These language classes are related by the following hierarchy:

LF inite - LSubsequential - LRatF cn - LRational

For each langauge class, membership in a more restricted class is.decidable;

25

furthermore, a machine belonging to a more restricted class can be com-
puted from a machine belonging to a more general class providing that

membership in both classes holds.

Theorem 2.6.1: LF inite - LSubsequential'

Proof : Suppose f :X" — A" is finite. Then f is a language relation
L = {(u;,;)|1 <i <n }such that y; = u; = i = j. Therefore, we can con-
struct a trie for the domain of L. A Tg; subsequential transducer whose

behaviour is L is constructed from the trie:

T = <E,A’Q »8 ,6)>\,p>

is the alphabet of the domain {u; |1 <i <n }
is the alphabet of the range {v; |1 <i <n }

b
A
Q contains one state for each node in the trie
s is the root of the trie

) is defined from the trie

A has value € for all 0 X ¥ combinations in the trie
p s { (g;,v;) | ¢; is the terminal node for u; }

Theorem 2.6.2: LF inite # LSubsequential'

Proof : The function f(a’) — b’ for i >0 is subsequential, but not finite. ™

Theorem 2.6.3: LSubsequential - LRathn'

Proof : Without loss of generality, we may assume that any subsequential

transducer is a Tg3 subsequential transducer. But a Tg3 subsequential trans-
ducer is also a Tg3 rational transducer. Furthermore, every subsequential

transducer’s behaviour is a function. |

26

Lemma 2.6.4: The function

f(ai) — { ai if 7 is even

€ otherwise

is a rational function.

Proof : A Tgq rational transducer T such that |T |= f is given in Figure 2.7.

aa | aa

O

€/ €

aa | €

Figure 2.7: Proof of Lemma 2.6.4

Lemma 2.6.5: The function

f(a') = { a' if i is even

€ otherwise

is not a subsequential function.

Proof : Assume that there exists a Tgy subsequential transducer T whose

behaviour is f. Let k be the maximum number of symbols in the defined

27

range values of X and p. After reading a%tl , T must have written ¢; if not,
and the input string is a®*1, then |T |# . If the input string is a®*2, then

2t+2

T must write a®*2. But T cannot write a if k <t + 1 since it may make

only one more A-transition and write a p-output string. u

The significance of the following theorems is that the expressive power
of subsequential functions is not as great as the expressive power of rational
relations. Some desirable transductions are rational but not subsequential.
For instance, suppose that we would like to extract all dictionary entries that
are ‘“‘interesting’’, where an arbitrary proportion of an entry must be exam-
ined to determine if it is interesting—this represents a non-subsequential
transduction. Functions like this, and the function of Lemmas 2.6.4
and 2.6.5, are ‘“inherently non-deterministic”’ since a deterministic trans-
ducer would need to examine, and either remember or count, an arbitrarily

large number of input symbols.

Theorem 2.6.6: LSubsequential - LRatF cn-

Proof : Theorem 2.6.3 and Lemmas 2.6.4 and 2.6.5. u

Theorem 2.6.7: Lg,pcn T Lpational-

Proof : Every rational function is also a rational relation; but all relations are

not functions. u

The next two theorems ensure that a subsequential transducer may be

computed if one exists.

Theorem 2.6.5 (Choffrut): It is decidable if the behaviour of a rational trans-

ducer is a subsequential function [Ber79].

28

Theorem 2.6.6 (Choffrut): There is an algorithm for computing an equivalent
subsequential transducer from a rational transducer whose behaviour is a

subsequential function [Cho77].

Chapter 3

Input State Transition Function
Optimization

The first major opportunity for optimization is presented by transducer input
states. Input states correspond to non-final states of a deterministic automa-
ton; equivalently, input states are traditional case statements provided by
high level languages. Furthermore, the case selector is of type character,
limiting the number of alternatives to roughly 28. The restricted nature of

input state transition functions permits highly specialized optimization.

3.1. Notation
We will augment the definitions of Chapter 2 by making the following
assumptions:

e the input alphabet 3 contains the special endmarker symbol —

e the input alphabet X is totally ordered

With these assumptions, a subsequential transducer T is a 6-tuple:

T = <ZDA’Q ’s’f76>

where
) is an ordered input alphabet { ay,a5, ... ,a5 |=— }
A is an output alphabet
[0 is a finite set of states

s €Q is the start state

29

30

f €0 is the unique final state
) is a finite transition function

and
0: 0 X (XZUA —Q
The final state may have no outgoing transitions:
6(f,a) is undefined V a €X
The state set may be partitioned into input states and output states:
Q=0/UQoU{f}
All transitions from an input state must specify input symbols, and there
must be only one transition from an output state, which specifies an output
symbol:
VY g €Q; :0(q,a) is defined & llx(a) is defined

Y q €Qp : 6(q,a) is defined « Il (a) is defined
Y q €Qp : 6(q,a) defined and 6(g,b) defined = a = b

It will be convenient to define the completion, T, of a subsequential trans-
ducer T = <¥,A,Q,s,f,0> as follows:
Tc = <E’A7Qcasafa6c>

where
Q°=0U{0}
6¢ (q,a) = { 6 (q,a) if 6 (g,a) €Q
0 otherwise

Note that § is only augmented for input states. We will say that 7° hangs
when it enters the ‘“dead state’” 2 during its computation; that is, 7° cannot
hang because the transition function is undefined. Without loss of general-

ity, any subsequential transducer T is complete.

31

In order to discuss the transition function for a particular input state ¢,
we define the function

b8 —0
which satisfies

b4(a)=06(q,a) Vack
The idea of the following 0-diagram is to emphasize the sequences of con-

secutive input symbols which share the same target state.

91 q2 T dn
aiay- - all all+1all+2 Tt al1+lz | [e alz | |
ll 12 ln

It describes pictorially the function 6, : ¥ — Q for some state g, which

satisfies

bg@)=q1 €[]
0g(a;) =q2 i €[h+1,h4+]]

. n—1
5q(ai)=qn ie[zli"'l’lzl]
i=1
The {¢; } represent states in @, and the {I; } are positive integers. Fig-
ure 3.1 provides a concrete example. In order to describe §, over a res-

tricted domain D C ¥, the notation § g will be used to mean

gi 9j
Iai,lai,Z"'ai,l,- | | 4j,19j2" " "4j1]
l; lj

And, the first and last symbols within a segment will be denoted

First (i) = a;1
Last (i) = a;

32

let ¥ = {a,b,c,d,e }and let part of the transducer T be

b

then, ¢, would be pictured thus:

g1 0 q
|ab | cd | e |
2 2 1

Figure 3.1: Example of §-diagram

Thus, the §-diagram above covers the range of symbols

First(i), ... ,Last(j) = a; 1,aj,

3.2. Problem Definition

The fundamental local optimization problem is the generation of intermedi-

ate level code which implements the transition function §, for an input state

g of a subsequential transducer T. Suppose that the current input symbol is

a; then the generated code must find the state gy such that §,(a) = qo.

Action appropriate when the machine hangs must be taken in the case that

64(a) =. A deliberate distinction between intermediate level code and

assembly level code has been made in order to yield a computationally prac-
tical problem. That is, it is not practical to attempt to compute an optimal
assembly level code sequence for reasons which will be described in the sec-

tion on optimality.

33

A common implementation of the case statement construct, such as the
switchon command in BCPL, consists of two logical components [Sal81].
The first is the generation of a sequence of labelled case actions which
correspond to the statements to be executed for the case labels, and which is
preceded by an unconditional branch to case selection. The second, case
selection, is a segment of code that determines which case label the selector
matches and transfers control to the appropriate case action. This ordering is
natural for one-pass compilers, such as for Pascal, and is the method used by

the Unix C compiler.

Implementing an input state transition function may then be viewed as
implementing a case statement where each case action is an unconditional
branch to a state in the transducer. Therefore, case actions may be
integrated with case selection, and thus case selection as defined above is an

alternative problem statement.

3.3. Related Work

Recent compiler texts devote little attention to the topic of code generation
for case statements [TS85, BBGC86, ASU86]. The most extensive treatment
is presented in Compilers: Principles, Techniques, and Tools [ASU86], which
suggests the use of one of the following techniques:

e generation of a static linear search

e construction of a (case label, case action address) table at compile time
with a dynamic linear search

e construction of a hash table of case action addresses at compile time

e implementation of traditional jump tables

34

However, a method for combining techniques is not discussed, and the cri-
teria for the choice of technique are vague. Efficient implementation of case
statements has been addressed in a series of papers in Software — Practice

and Experience.

The first in the series provides a comprehensive list of potentially useful
techniques [Sal81], namely:
e jump tables
e static linear searches
e static tree searches (usually binary)
e tabular searches (static table with dynamic linear, binary, hash, etc.
search)
Machine independent space and time complexity formulae are proposed for
the first three of these, and formulae dependent on the Burroughs
B6700/7700 architecture are given for all four, utilizing a special ‘“linear
search’” machine instruction for the tabular technique. Plots of these func-
tions lead to the exclusion of the linear and tabular search strategies in the
Pascal compiler considered. In conclusion, either a jump table or a tree
search is used to implement any particular case statement with the following
simple selection criteria: use a jump table unless a tree search requires less

space.

An important extension is to combine jump table and tree search tech-
niques in implementing a single case statement [HMS82]. Although not
rigorously defined, their notion of a “cluster’” is a sorted sequence of case

labels L, = 3,0, . . . ,l, = Lg such that

35

n

~ 1
Ly—L, +1

Implementing a case statement involves constructing a binary tree search to
distinguish amongst clusters (leaves), and generating jump tables for clusters.
The algorithm for choosing when and how to split a range of case labels and
introduce a new node in the comparison tree is heuristic, but the authors

have found it effective in practice.

Bernstein expands on the idea of using more than one technique in
implementing a single case statement, and further parameterizes the selec-
tion algorithm [Ber85]. The notion of clustering is used more precisely and
is defined in terms of case density which, for a sorted sequence of case labels
L,=1U,l,...,l, =Ly, is

n
Ly—L, +1

casedensity(ly - - -1,) =

In addition to jump tables and binary tree searches, linear searches are also
incorporated. The initial nodes of the binary search tree serve to distinguish
amongst clusters whose case density meets a minimum parameter value
(MinCaseDensity). Bernstein contends that finding the smallest set(s) of
clusters which meet the requirement is NP-complete, and thus a heuristic is
used to find the set of clusters. Two additional parameters (MinForJump-
Table and MinForBinSearch) control the application of jump tables and
binary searches respectively; each specifies the minimum case label range
size for which the method is acceptable. Clusters which do not become jump
tables will give rise to additional nodes in the binary search tree or will
become a simple linear search segment. Finally, it is noted that case label

probability data could be used in ordering the searches.

36

Aho and Ullman [AU77] describe a data structure for representing a
lexical analyzer DFA which permits constant time implementation of the
transition function for each state; its objective is to reduce the space required
by a transition matrix, indexed by the current state and input symbol, while
maintaining fast access. The traditional transition matrix method requires a
single two-dimensional array access while the data structure method involves
at least three one-dimensional array accesses plus one or two explicit addi-
tions. Thus, both methods implement the transition function in constant
time. The space savings are realized by exploiting the similarities of dif-
ferent states, and the authors have found the space required by their

representation “little more than the minimum possible”.

The problem of input state transition function optimization has been
addressed directly by Gonnet and Icaza in their work on compiling non-
deterministic two tape automata into C language programs. Their work led
to the mscan program. Their approach involves discovering special terminal
cases and using dynamic programming to construct an optimal binary search
tree whose leaves are instances of terminal cases. An instance of a terminal
case is shown in Figure 3.2. The cost function used in the dynamic pro-
gramming algorithm is a rough approximation and apart from several termi-
nal cases (less than ten), only the binary tree search method is used. How-
ever, the application of dynamic programming makes it feasible to compute

an optimal solution with an accurate cost function.

37

q1 q90 q1
aj " qirA-1 | ai+A | ditA+1" " "4i+A+B |
A 1 B

1f (input symbol = a;,,)

goto qo
else
goto q;

Figure 3.2: Sample terminal case used by dynamic programming algorithm

3.4. Incorporating Probability

The time cost functions used in the algorithms described above assume that
all case label values are equally likely, and are intended to represent average
time for case selection. If a discrete probability function P which reflects

the relative frequencies of { a; } = X in the input stream is available, then it

may be used to more accurately compute expected execution cost of trans-
ducer input states. If English text is being processed, then the standard
alphabet frequency table could be used; or, if the quantity of input is very
large (e.g. a dictionary), P may be determined directly from the input. As

a last resort, P(a;) = 1 /| | will suffice.

This probability function P will be tailored to each input state g by
defining 3, € ¥ and P, as follows.

38

Z3q ={a,~|5q(ai)=;éﬂ}

5, =-3,

P(a)/ Y Pa) ifa €Y,
Pq(ai) = a€k,

0 if a; €5,

This implies a simple requirement of P, namely
>, P(a) >0 Y qg€Q

a€x,
Intuitively, the idea of P, is to permit the code which determines that
64(a) = (1 to be arbitrarily expensive. In terms of an optimal binary tree,
the nodes corresponding to the {a; } = fq will be “pushed down” to the

leaves, and will be equally as likely, allowing them to be placed anywhere at

the bottom; see Figure 3.3.

3.5. Optimality

In a traditional optimizing compiler, optimization techniques are applied to
an intermediate code in a separate phase; the effectiveness of the transfor-
mations performed are rarely measured, and the resulting code is not neces-
sarily optimal. Our approach is to generate optimal intermediate level code

(ILC) directly. This is accomplished by

e defining a simple but accurate model of computation M and a
corresponding ILC,

e defining a machine parameterized execution cost (objective) function z,
and

e computing an optimal ILC segment with respect to z under M using
dynamic programming

39

let ¥ ={a,b,c,d,e }, and suppose that P is given by

| a b c d e
1 99 1 99 1

P17 120 20 120 30

if 64, for some input state qq is

QO g Q2 qg Q
la b lcld]e]
1 1 1 1 1

then, ¥, = {b,d }, and P, is given by

| a b c d e
1

1
P 0 =
2 0 2

Figure 3.3: Example of P,

q 0

These points are discussed in more detail below.

It is not feasible to compute optimal machine level code segments due to
the presence of span dependent machine instructions; in particular, the fol-

lowing requirements are contradictory.

1) In order to determine the shortest form of each span dependent instruc-
tion, the relative location and target of every span dependent instruction

must be known.

2) In order to compute the relative location and target of the span depen-
dent instructions for any particular input state ¢, the length of each ILC
instruction (including span dependent instructions) must be known.

This is a requirement of z.

40

3.6. Model of Computation

Because of the restricted kinds of operations needed to implement a trans-
ducer, an appropriate model of computation closely resembles most real
architectures. It is simplified by restricting operand addressing modes to
registers and literals, and one in particular for each instruction; some
operands are implicit — such as the current input symbol, which is always in
a specific register. Table 3.1 contains the instruction set of M, with symbolic
names for time and space cost for instructions used in input state optimiza-

tion.

The choice of instructions is intended to be one-to-one for comparison
and branching; however, span dependence of branch instructions has been
filtered out, so that the problem mentioned above may be avoided. The
remaining instructions are ‘“‘high-level’”’ in the sense that a number of
machine instructions will be needed to implement them. For instance, input
and output buffering may be implemented in any way desired and hidden in

the get and put instructions.

Code generators have been written for the VAX and IBM/370 architec-
tures, and despite their substantial differences, good results were obtained
with both. Implementation of a SUN code generator was planned but not
done, since the SUN architecture is very similar to the VAX architecture.
More detail may be found in Chapters 6 and 7, but the important implica-

tion is that the choice of ILC is a good one.

41

Instruction

Meaning

Time

Space

cmp <i-symbol>

compare input symbol
with <i-symbol> and set
condition code

CT

CS

ubr <label>

unconditional branch to
<label>

UBT

UBS

bxx <label>

conditional branch to
<label>;
xx = lo,le,eq,ne,ge,hi

CBS

jth <base> <size>

jump table header for a

jump table for the range

of input symbols <base>
. <base> + <size>-1

JTT

JTHS

jte <label>

jump table entry target
for input symbol
<base> +d where d is
this jte’s distance from
the closest jth

JTES

get

obtain an input symbol

put < o-symbol>

place the output symbol
<o-symbol> on the out-
put

hng <state>

hung in state <state>

acp

transduction completed
and successful

* Actually, there are two conditional branch time constants, namely:

CBTT = the time for a conditional branch taken, and

CBNT = the time for a conditional branch not taken.

Table 3.1: Machine instructions in model M

42

3.7. Execution Cost Function

Generating fast code on a real machine requires that the execution cost func-
tion z truly reflect the target machine. Exact timing information is usually
unavailable from vendors, and benchmarking is a tricky, error prone pro-
cess. Due to the unpredictable effects of cache memory, instruction pre-
fetch, and memory faults, a good approximation is sought. Our approach to
measuring the cost of a machine instruction is to sum the space occupied by
the instruction (in bytes) and the number of memory accesses it performs.
This is a common approach, and is valid since no ‘“‘expensive’’ instructions
are used — examples of costly instructions include integer division, floating
point, and character string instructions. These instruction cost quantities
correspond to the symbolic constants in Table 3.1, and are calculated for
each target machine. For span dependent instructions, the most common

format is used to calculate space and time constants.

Given an input state g, its transition function ¢, its input alphabet Yig>
and its probability function P,, z is defined as a linear function of the

expected execution cost and machine code size:

z =k Y, Pgla)T(a)+ ky Space
a€y,

where T (a) denotes the time required if the input symbol is a, and Space is

the number of bytes of object code generated; ky and k, are compilation

parameters each with a default value of 1. This function allows large prob-
lems to be solved using solutions to smaller problems. Functions such as

Time X Space and Time X Space?

are examples of functions that cannot be
optimized directly using dynamic programming; however, a linear function

may be used iteratively to optimize these non-linear objective functions.

43

Through experimentation, large changes in k; and k, appear to have little

effect on the ultimate solution found. Practically, the limits of 32-bit integer
arithmetic could be reached easily in the non-linear case; using floating
point arithmetic will solve this problem but was found to slow down the

dynamic programming algorithm significantly.

3.8. Dynamic Programming

A problem is amenable to a dynamic programming solution providing that it
satisfies the Principle of Optimality. Essentially, this permits the combination
of optimum solutions of sub-problems in determining the optimal solutions
of larger sub-problems leading finally to an optimal solution of the original
problem. The problem we wish to solve is similar to finding an optimal
binary search tree; Knuth shows how to solve this problem using dynamic

programming [Knu71, Knu73].

Recall that 6,:% —Q for an input state ¢ may be written as a

d-diagram:
a1 q2 qn
L01,1a1,2' ary | 42,192,200 " Ay, | | An,1%p,2" " " Qn,l,
ll 12 ln

Let each maximal contiguous sequence of input symbols a, - - - ag satisfying
04(a;) = 64(a;) for a<i <j <P be called a segment of the é-diagram.
(Segments are delimited by vertical lines.) The problem size of 6, = 6,4, is

the number of segments, n, in the §-diagram; and in general, the problem

size of § @ is j —i + 1. For an input state ¢, there is no obvious relation-

ship between |, | and the problem size of §,. Consider the examples in

44

Table 3.2.

|3

¢ | | problem size

Table 3.2: Relationship of | £, |and problem size
A crude bracket for the problem size n for an input state g is the following:
1<n<min(2|Z,|+1,|Z])
In the best case, §,(a;) = §,(a;) for 1 <i <j <|¥|with a problem size of
one. In the worst case, §,(a;) # 64(a;41) for 1 <i <|X | with a problem
size of |~ |. When |X, |<|X |/ 2t, we can find a better upper bound. The
idea is to count the maximum number of segments possible. Consider the

following partial §-diagram for | X, | = 4:

Q g QO g Q2 qg O g4 O

I I N I I

There are at most | Yig | — 1 “separating” segments, plus one leading and one

+ Assume | X |is a power of 2.

45
trailing segment. Hence, the problem size is at most 2|X, |+ 1.

The execution cost function z may now be redefined in terms suitable

for dynamic programming. For ¢ q;; We define:

oi,j = {First(i),...,Last(j) }
Wij = > Pgla)
ac€o;;
5i,j = bytes of code to implement ¢ a4
n;,j = time to execute code for é, if inputisa €o; ;

Then, the cost of § . is

zij =k Y, Pgla)n;jla) +kys;;

a e Ui,j
and the cost of 6, is z; ,. The dynamic programming approach involves ter-

minal and non-terminal cases. If a terminal case is detected, a predefined
implementation is used to solve the problem; if no terminal pattern matches,
the problem is divided into sub-problems with code to distinguish between
them. In the strategy used here, non-terminal cases give rise to two sub-
problems distinguished by a single input symbol comparison. (Actually,
there may be a third trivial sub-problem of size one.) Now, a recurrence

relation relating a problem P to its sub-problems L and R is needed.

Suppose that P = z; ; and one (binary) decomposition of P is L = z;

and R = zg,,;. Further, suppose that

ny = time units to reach code for L
ng = time units to reach code for R
sp = Dbytes of code to distinguish L and R

To demonstrate that the Principle of Optimality holds, it is necessary to

show that for any pair of solutions L{ and L, to L, and any particular solu-

tion R* to R

46

Li <L; = P{<P;
where P{ and P, are the solutions to P corresponding to L; and L,. By
definition,

zij=ki >, Pgla)n; j(a) + kys; j

a Eo'i)j
We may express the cost of the solution to P as a function of k, the split
point, as

Zik,j =k; >, Pgyla)(n;x(a) + nL)

a EO','J‘

+ ki Y Pg(a)(Mes1,5(a) + ng)

a €0k,
+ ky(sij + Sp + Ski1,5)

Expanding, and rearranging the terms, the required recurrence is:

k
zij = Zig + Zkg1,j ke Wignp + wiei1,jnr) + kasp

Letting
Y =z 17 + ki Wig e +wey1,;18) + kosp
we have

2=z, + Y

Therefore,
Pi=L{ +7Y
P, =L, +7Y

And clearly, L{ <L, = P{ <P,.

47

3.9. Non-Terminal Cases

Problem decomposition is straight forward: a single input symbol comparison
is made to determine which of two, and sometimes three, execution paths to
follow. These decompositions will be called binary and ternary splits respec-
tively. One sub-problem of a ternary split will always have problem size one
which corresponds to the case where the input symbol is equal to the symbol
against which it is compared. This sub-problem is trivial to solve, and

instances where it is applicable will be described below.

Dobosiewicz argues that optimal binary trees are not optimal under the
comparison based model when search algorithms are implemented in a high
level language [Dob86]. The reason is that the result of a relational operator
is boolean while one of three relationships must be determined. If p and g
are elements of a totally ordered set, such as the ASCII character set, then
p <gq,p =gq,orp >q. Consequently two comparisons are needed at some
nodes of a binary search tree. By generating assembly language programs, it
is possible to distinguish all three cases with a single ‘‘key’” comparison
which sets the condition code. Each subsequent conditional branch tests the
condition code, but this involves only a few bits of the program status word.
In our implementation, a ternary split includes one more conditional branch
than a binary split; moreover, the cost metric is accurate since comparisons

and (conditional) branches are counted separately.

48

3.9.1. Binary Splits

We may decompose P = § g, using a binary split by choosing k such that

i <k < yielding the left sub-problem L =6, and the right sub-problem

R =6, . This may be visualized as follows:
k+1,j
qi o o qk . .. qj
| 4i,19i,2" " " di | | Ak, 19%,2 " " "9l | ! aj14j,2" " 4j1, I
I; Iy L
| L | R |

noting that the ellipses represent omitted segments which are not important
to the split. Sub-problems L and R are always distinguished by comparing
the input symbol with a; ;.

Following the comparison of the input symbol with a; ;, there are two

possible orderings of ILC instructions:

Method M1 Method M2
cmp dgy, cmp ag
ble 1bl bhi 1bl
<R> <L>

1bl: <L> 1bl: <R>

In these ILC code fragments, <L> and <R> denote the ILC code for the two

sub-problems. Recall that the cost function is

k
i =Zik T Zks1,j T ki(Wignp + wig1,jMR) + kasp

zZ
Let us define o < § as follows

a = CT + CBNT
g = CT+ CBIT

49

Then, the two methods may be compared by eliminating common terms:

Method | Cost Component

M1 Bwig + awpyy
M2 aw; i + Bwii1,j

Since a < B, the selection algorithm is

if(wi g Swipt,j)
use M1

else
use M2

This means that a single comparison between w; x and wy; ; is sufficient to

chose the best ILC instruction ordering for a binary split.

3.9.2. Ternary Splits

A ternary decomposition of P =6, is possible for k satisfying i <k <j

when the segment 6, contains a single input symbol:

a @ aj
|ai,1ai,2"'ai,l,~ | | ax1 l | aj1aj2" " 41
I; 1 I;

J

L e ——

The solution to sub-problem M is a branch to state g, thus it is incorporated

into the code which distinguishes the three sub-problems by comparing the

input symbol with ay ;.

Following the comparison of the input symbol with aj 1, there are four

possible orderings of instructions:

50

Method M1 Method M2
cmp ak’l cmp ak’l
blo 1bl bhi 1bl
beq g beq g
<R> <L>

1bl: <L> 1bl: <R>

Method M3 Method M4
cmp ak’l cmp ak,l
beq ¢ beq g
blo 1bl bhi 1bl
<R> <L>

1bl: <L> 1bl: <R>

Note that there is no fragment <M> since it is precisely the instruction
beq gx- The cost function must be rewritten to take account of the sub-

problem M:

k
zij=Zig + Zke1,j T ki Wig—1ML + Wek T + Wi, jR) + kasp

We define oo < 8 <~y as follows

a = CT+ CBTT
B CT + CBNT + CBNT
y CT + CBNT + CBTT

Eliminating the common terms we have:

Method Cost Component
M1 oaw; g1+ YWrx + Bwiy1,j
M2 Bwig—1 + YWek + OWiy1,
M3 YW; k-1 + awg i + BWii1,)
M4 Bwig-1 + awg g + YWry1,j

Unfortunately, selecting the best method is more complex than for binary
splits. ~ Analysis of all orderings of the three weights (e.g.

Wi k-1 S Wik Swiyy,;) leads to the following selection algorithm.

51

if(w; g1 Swiit,j)
lf (wk,k S Wi,k—-l) use M2

ehf(Wk+1,j S wk,k) use M3

elif((o — B (Wi x — Wig—1) < (B — &)(Wry1,j — Wi k)) use M2
else use M3
else
if (Wk,k S wk+1,j) use M1
Cllf(wi,k—l S wk,k) use M4

elif((o — B) Wi — Wi1,j) < (B — @)W g—1 — Wi k)) use M1
else use M4

Experimentation suggests that evaluating the cost of ternary splits is an inef-
ficient use of time since they are rarely chosen but require an expensive

selection algorithm.

3.10. Terminal Cases

While we could use binary and ternary splits exclusively, there are certain
cases where it is possible to generate a more efficient solution; these cases
are called terminal cases. Jump tables are also terminal cases, and are con-
sidered for every problem of size greater than one. Since there is only one
instruction sequence for implementing a jump table, there is no selection
algorithm and cost evaluation is simple; however, all other terminal cases
(except the most trivial one) involve a selection algorithm with correspond-

ingly complicated cost evaluation.

Terminal cases identified by Gonnet and Icaza are illustrated below;
each pattern §-diagram is shown with its associated C code implementation.
The current input symbol is denoted by §. For reference, we shall assign

names to these cases, beginning with the trivial case, Ty:

52

qi
a;18;2" " 4;
i
goto g;

There are two cases with problem size three, namely T3, and Ts3; T3,

requires that | oy ; | = 1 and that there are two distinct target states:

qi dk q;
L Jaa| |
I; 1 L

1f(0 = a1) goto gx else goto g;

T3y is similar to T3, except that | oy ; | > 1:

qi qdk qi
Ar 19,2 " " A1, | |
l; L >1 lj

1fC a1 <0 && 0 <ay,) goto g else goto g;

Finally, Ts solves a problem of size five when |0;,1,;,1|=|0i,3,43/=1 and
there are only two distinct target states:

q; di+1 qj qi+1 qi

| aii1 | a3 |]
i 1 liya 1 lita

1£C ajy11="0 || 0 = a;43;) goto g;41 else goto g;

Note that for T3,, T3, and Ts, exactly two target states are permitted, and

thus each is implemented as an if-then-else statement. Similarly, each node
in the binary search tree whose leaves are instances of these terminal cases is

implemented as an if-then-else statement. Therefore, every 6, is

implemented as a sequence of nested if statements.

Often the fastest technique, jump tables are an important terminal case

which may be applied to any problem of size greater than one. There is only

one ILC instruction ordering so it is not necessary to compare various

methods like those which arise with the non-terminal cases. For an arbitrary

problem &,

qi qj
aialaiyz o ai,li aj71ajaz o aj9l'
L

li l.

J

the ILC instruction sequence generated is
Jth ai,1,|0i,j|
jte g; (I; times)
jte gj (I; times)
with a cost of

z; j = ky(w; ; JTT) + k, (JTHS + | 0; ; | JTES)

A consequence of this formula is that the representation of ¢, becomes

important from an efficiency point of view — for a problem of size n, | oy, j |is

computed for 1 <i <j <n.

Pattern §-diagrams for the remaining terminal cases we have imple-

mented appear below. Since there are different ILC instruction orderings

possible, implementations are not shown here. As before, the trivial case,

Ttrivial 1S:

54

qi
a;14;2" " 4ai
L.

l

The first of two cases for problems of size three, T3_1_.,, is equivalent to

T3aZ
qi dk q;
L laa| |
l; 1 lj

And the second, T3_1_p,, is similar to T3_;_,, except that there are three

distinct target states:

qi 9k q;
L laa| |
I; 1

The idea of T5 may be generalized to problems of odd size n greater than

three satisfying | oy ;| =1 for k in {i+1,i43,...,i+n—2 }:

qi qdi+1 qi 9i+1 Tt qi+1 qi
I I ai+1,1 I I a;i4+3.1 I | Aitn-2,1 I I
I; 1) 1 1 Dit+n-1

This set of cases will be called T}, (due to the implementation strategy).

Which terminal cases are used and why? Factors to consider include the

following:

e cxecution speed of code generated for terminal cases
e compilation cost incurred by terminal cases

e identification of terminal cases

55

Although a particular terminal case may deliver high execution speed, if it is
expensive to compute, or it is selected infrequently, it is likely not worth
including. One possible strategy for identifying terminal cases is to generate
and test possible code sequences mechanically. Simplicity is also an impor-

tant consideration.

The terminal cases T3_j_pq, T3_1_pe, and Tjjpe,, result in code that is

superior to code resulting from ‘“pure’’ binary splits. However, if sub-

problems of Tj;,., cases are optimally solved with jump tables, binary splits

may be used to decompose the entire problem. Consequently, jump tables

are tried for all problem sizes; binary splits are considered for Ty, cases,

but not for T3_;_,, and T3_q_,, cases.

The number of possible ILC instruction orderings for a problem of size

n which is an instance of Ty, is (n — 1) / 2) !

q; 9i+1 qi 9i+1 T 9i+1 qi
| | ait1,1 I I ai+3,1 | l Aitn-2,1
I 1) 1 1 Titn_1

This may be seen by considering the form of any such order
cmp ar,

beq di+1

cmp @, ,

beq qdi+1
ubr q;

where ay ay,---a,_1,2 is some permutation of a;,17 @;131° " 4i1n_2,1-
Consequently, only the two permutations a;,17@;431° " ai4n—2,1 and

Qiyn—21 Gitn—4,1° " ai41,1 are considered. Evaluating the corresponding

56

costs requires O(n) multiplications and O(n) additions. If we define o < g

as

o = CT + CBNT
B = CT+ CBIT

then the cost of the first permutation is given by

n—1

2
z; ;= k1| 3 (k=DatB)wiion_1,i+20-1
k=1

n—1
n—1 2
+ >)a+UBT) 3 wiy ok ik
k=0
+ & (”;1)(CS + CBS) + UBS

and the second is computed analogously.

3.11. Computational Complexity

Our discussion of dynamic programming as been informal since this is a
straight forward extension to the well known dynamic programming solution
of the optimal binary search tree problem [AHU74]. Brown presents an
overview of computer science applications of dynamic programming with an
intermediate level of formalism [Bro79]; and there are many formal treat-
ments [CC81,DL77,Glu72]. Yao gives the quadrangle inequality condition

for reducing the complexity of dynamic programming solutions [Yao80].

Significant effort was required in order to obtain acceptable performance
from the dynamic programming algorithm. Its complexity is O (n%), but the
leading constant may be reduced; the current version runs approximately 100

times faster than the initial implementation. Large performance

57

improvements were realized through experimentation with the following

issues.

e cost calculations

integer arithmetic is much faster than floating point arithmetic

integer arithmetic requires overflow checking

e matrix accesses

the two-dimensional dynamic programming matrix is implemented
as a one-dimensional array with an efficient mapping (one shift and
one add)

when z; ; is being computed, the address of the corresponding
matrix element is computed and saved to speed up subsequent

acCesses

e representation of ILC labels

ILC labels are encoded as integers instead of strings yielding effi-
cient comparison and copy operations

string operations are slow, and lead to storage management prob-
lems

Although the primary objective is to generate efficient code, the compilation

process must be reasonably efficient to be useful in practice.

Chapter 4

Span Dependent Branch Optimiza-
tion

Although there is still controversy about whether compilers should produce
assembly or relocatable object code, there is general agreement that assem-
bly time is a logical phase during which to perform span dependent branch

optimization. Table 4.1 summarizes the capabilities of three assemblers.

Assembler Type of Branch Optimization
Unix SUN unknown degree of branch optimization
Unix VAX-11 | partial optimization with branch chaining
IBM/370 no branch optimization

Table 4.1: Branch optimization provided by common assemblers
The SUN documentation does not state the extent of branch optimization
performed by its assembler, but the VAX-11 and IBM/370 assemblers defin-
itely do not perform comprehensive branch optimization. Furthermore,
jump tables are not considered span dependent instructions, and thus they
are not optimized in any of these assemblers. Consequently, span dependent

branch optimization was implemented in INRC.

58

59
4.1. Notation

A span dependent instruction (sdi) is one whose machine instruction length

is a function of the proximity of its operand.

Definition: An instruction is said to be span-dependent if 1) the
instruction exists in two forms of differing length, 2) the shorter
form of such an instruction can be used at machine location m only
if that instruction’s operand has an address between m 4 a and
m + b where a and b are fixed (and possibly negative) integer con-
stants, 3) the longer form of such an instruction can always be used
in place of a shorter form [Szy78].

Subsequently, the restriction to two instruction forms will be relaxed to per-

mit sdis with a finite number of forms.

The distance between an instance of an sdi and its operand is the
instruction span. Typically, there are two or three sdi formats, each of which
accommodates a different range of spans. In some cases, a particular sdi
format may be synthesized from primitive branch instructions if no single
instruction exists. The forward reach of an sdi format is the maximum possi-
ble span in the forward direction and the reverse reach is the maximum pos-
sible span in the reverse direction. To simplify the description of the algo-
rithms that follow, the reach of an sdi format will serve to denote its forward
and reverse reaches; any comparison between the reach of an sdi format and
the span of an sdi will take into account the forward and reverse reaches.
Figures 4.1 and 4.2 illustrate sdi formats for the VAX and IBM/370

machines.

60

Short Medium Long
bleq skip bleq skip
bgtr 1bl brw 1pbl jmp 1bl
skilp: sklp:

Figure 4.1: VAX formats for the ILC instruction bhi 1bl

Short Long
BH LBL BNH SKIP
L Rn,=A(LBL)
BR Rn
SKIP DS OH

Figure 4.2: IBM/370 formats for the ILC instruction bhl 1bl

These terms are summarized by the following definitions:

sdi(t,f) = sdi instruction of type t and format f
reach(t,f) = reach of sdi(t,f)
growth(t,f) = size(sdi(t,successor(f))) — size(sdi(t,f))

A good example of the “asymmetry’’ of forward and reverse reaches is pro-
vided by the base and displacement branch instructions of the IBM/370:
using one base register declared to contain the relocatable address b, a
branch instruction operand must have a relocatable address ! satisfying
b <1 <b+4095. That is, the forward and reverse reaches depend on the
location of the branch instruction relative to the location declared to be in

the base register.

In order to avoid confusion in the discussion of jump tables, the term
“jump table element” will be used in the same sense as the term ‘“‘uncondi-
tional branch’”. That is, a jump table element specifies a target location for
a particular value of the case selector; an ILC jte instruction is an instance
of a jump table element. A jump table entry is a displacement, or virtual

address value that is stored in a machine code implementation of jump table.

61

4.2. Assumptions

A fundamental assumption about sdi format reaches is that once an sdi
grows to the long format, it can always reach its target; this assumption can
be violated by a program whose size is nearly equal to the size of the virtual
address space, but this is highly unlikely. An important assumption made in
the section on jump tables is that at most two jump table element formats
are used, and that the longer of the two is a long format (as opposed to

short and medium, for instance).

4.3. Problem Definition

Once the ILC instruction sequence has been generated for a subsequential
transducer, the span dependent branch optimization phase is performed; for
an ILC sequence containing sdis 1 .. n ordered by increasing location, the
problem is to find the shortest possible format for each one. Branch optimi-
zation may only be performed after all ILC has been generated for the rea-

sons described in Section 3.6.

An alternative problem definition is appropriate if branch ‘‘chaining’ is
permitted. For instance, instead of using a synthesized long format, a
branch to another branch sharing the same target could be used. The space
savings are clear, but whether or not there are execution time benefits over
synthesized branch formats is not. An algorithm for finding chains intro-
duces the need for a data structure that contains for each label [a list of all
branch instructions whose target is | [WIWHG75]. For large transducers
(e.g. 10,000 states) this represents a tremendous space requirement; more-
over, finding minimal branch chains appears to be difficult. Consequently,

branch chaining was not implemented.

62

4.4. Basic Algorithms

Two algorithms which compute optimal solutions were considered as the
basis for the INRC implementation. Szymanski gives an O (n?) algorithm
which constructs and traverses a ‘‘branch dependency graph’ (BDG) for
span dependent branches limited to two formats [Szy78]. Fischer and Patter-
son introduce the monotonic priority set (MPS) data structure and apply it to
the branch assembly problem for span dependent branches of finitely many
formats [FP85]. Their algorithm has complexity O (nlogn) but is significantly
more complicated: a set of balanced binary trees must be constructed and

maintained.

Initially, the BDG algorithm was selected for three reasons. First, it is
simpler than the MPS algorithm: the BDG need not be constructed
explicitly—the data structures used in this case are simple lists. Second, the
BDG algorithm is more flexible than the MPS algorithm: if there is insuffi-
cient virtual memory to hold large arrays, sequential files may be used
instead. Third, the BDG algorithm lends itself to extensions (such as per-
mitting more formats) naturally. In practice, performance of the algorithm

implemented in INRC is satisfactory, reinforcing the algorithm choice.

The directed branch dependency graph G = (V,E) for a code segment
containing sdis numbered 1 .. n is defined as follows:

V.={ v |y denotes the i sdi, 1 <i <n }

E = { ;) | the j™ sdi lies between the i** sdi and its target }
Nodes are labeled i:type(i):format(i) where type(i) is the type of sdi i and
span(i) is its current span. Short formats are assigned to all sdis when com-

puting the initial node labels. The significance of an edge v; — v; is that if

format(j) grows from short to long then span(i) increases. Once G is

63

constructed, it is processed using Algorithm 4.1 yielding G’ = (V',E).

while 3 v; such that span(i) > reach (type(i),short) do

grow «— growth(zype(i),short)
V v; such that (v;,v;) €E do

span(j) « span(j) + grow
od
remove v; from G

od
Algorithm 4.1: Szymanski’s BDG algorithm

Each sdi i whose corresponding node v; does appear in V' is assigned its
short format; each sdi j whose corresponding node v; does not appear in V'

is assigned its long format.

4.5. Algorithm Extensions

The BDG algorithm described above is designed to optimize sdis with two
formats, namely short and long. In order to take advantage of VAX sup-
port for branch instructions, it is necessary to extend the branch optimization
algorithm to incorporate an additional intermediate sdi format. Since jump
tables are not directly supported in either the IBM/370 or Motorola/68020
instruction sets, they may be implemented using a table of displacements;
these displacements may be one, two, or four bytes in size. For this reason,
jump tables represent an excellent opportunity for sdi optimization. And
because of the kind of case instructions supported, jump tables are also
excellent candidates for sdi optimization on the VAX. Hence, inclusion of

jump tables is another important extension.

64

4.5.1. Incorporating More sdi Formats

The branch dependency graph G = (V,E) is defined as before, except that
nodes are now labeled i:type(i):format(i):span(i). The difference in is that
the format of each sdi is represented explicitly in its corresponding node
rather than by that node’s presence in or absence from the graph. Algo-

rithm 4.2 shows how G is processed.

while 3 v; such that span(i) > reach (type(i),formar(i)) do

grow «—0
repeat
grow «— grow + growth(zype (i), format(i))
until span (i) < reach(zype(i),format(i))
V v; such that (vj,v;) €E do

span(j) < span(j) + grow
od
od

Algorithm 4.2: Multi-format BDG algorithm

To see that Algorithm 4.2 is correct, suppose that it does not produce
the optimal solution. If it fails, then there exists and sdi I with an assigned
format which is either too short or unnecessarily long. Suppose that I is too
short to reach its target; this is a contradiction since the termination condi-
tion is that no sdi has insufficient reach. Now suppose that I has an
unnecessarily long format. Initially, / has the shortest possible format, and
since format(l) is only changed to the next larger format when span(l) is
greater than reach(type(l),format(I)), the only way format(I) could be too
large is if the subsequent growth of another sdi caused the span of I to
shrink. Szymanski calls an sdi exhibiting the behaviour of I pathological.
But this also leads to a contradiction since the target of all ILC sdis are
labels, and hence the span of every sdi is monotonically increasing as sdis

grow.

65

Suppose next that the maximum number of sdi formats is m, and con-
sider the time complexity of Algorithm 4.2 As mentioned above, the BDG is
not explicitly constructed; both finding a node requiring growth and finding
all parents of a node which has grown are achieved by a brute force sequen-
tial search of a list of all sdis. Thus, each growth requires O (n) time. Since

each node may grow a maximum of m —1 times, the total complexity is
0 ((m—1)n?) or 0 (n?).

4.5.2. Incorporating Jump Tables

In practice, jump tables will be selected frequently during input state transi-
tion function optimization because of their execution speed. A basic pro-
perty of a jump table implementation is that the same number of bytes must
be used to specify each jump table entry—these entries are displacements or
virtual addresses. Thus, the entry size of a jump table determines the reach
of each jump table element. The span of a jump table element e is the dis-
tance between the jump table containing it and e’s target label. For some
jump tables it is not possible to select an entry size which is optimal for all
elements—either some entries will be too small or some will be unnecessarily
large. Consequently, the problem is to select the entry size and ensure the

reach of each element is sufficient.

The most obvious way to solve this problem is to select the minimal
entry size such that the reach of each element is sufficient. However, sup-
pose that the machine architecture provides special instructions for jump
tables with a shorter entry size. How can the reach of individual jump table
elements be increased? Without increasing the entry size, the reach of a

jte instruction may be extended by adding an unconditional long branch

66

whose target is the jte instruction’s original target and which is the new
target of the jte. The Unix C compiler uses this technique in case selection
for every case action in a switch statement, regardless of whether or not it is

necessary.

Consequently, our approach for the VAX is to utilize the special case
instruction and extend the reach of only those jump table elements requiring
it. Jump tables must be implemented without the aid of special instructions
on the IBM/370 and thus entries may be one, two, or four byte displace-
ments or four byte virtual addresses. A potential optimization strategy for
this situation is to begin with two byte displacement entries and grow each
entry to a four byte virtual address upon detection of an element with insuf-
ficient reach. This corresponds to selecting the minimal entry size such that

no extensions are required.

The BDG algorithm may be used to optimize jump tables in addition to
span dependent conditional and unconditional branches provided that the
branch dependency graph G correctly reflects the dependencies introduced

by jump table elements. Recall that G = (V,E) was defined as follows:

V.={ v |y denotes the i” sdi, 1 <i <n }

E = { (v»¥j) | the j* sdi lies between the i sdi and its target }
Sdis, including jte instructions, are numbered sequentially from one by
increasing location, thus the definition of V remains correct; however, the
definition of E must be augmented:

E = { (",v;) | the j* sdi lies between the i* sdi and its target } U

{ i»v)) | the i and j* sdis are elements of the same jump
table, and extension of sdi j increases the span of
sdii }

Branch dependency between any pair of sdis—except two jte instructions

67

from the same jump table—is defined easily because they have different
locations. (Locations refer to the relocatable addresses initially assigned to
sdi instructions.) Whether or not there is a dependency between two jump
table elements from the same jump table depends on the directions of their
respective targets and on how extensions for forward and reverse elements

are implemented.

Suppose that all extensions are implemented by placing the uncondi-
tional branches directly preceding the jump table (leading method). Then

there is an edge (v,,v,) in E due to the jump table element sdis p and g if

and only if the target of sdi p precedes the jump table. Therefore, each
reverse jump table element depends on every other element in the table. By
symmetry, if all extensions are placed following the table (trailing method)

then there is an edge (v,,v,) in E due to the jump table element sdis p and g

if and only if the target of sdi p follows the jump table. A third possibility is
to place reverse element extensions preceding the jump table, and forward
element extensions following it (mixed method). Which method gives rise to
the fewest number of edges? Assuming that jump table of size st has the
same number of forward and reverse elements on average, then the number

of edges introduced by both the leading and trailing methods is

Sz s

A
26-V=%-3

The number of edges introduced by the mixed method is

+ Assume s is even

68

A S2

s
2 | (= - = —
[2 P 1)] 2
It is clear that jump tables give rise to a large number of edges, and that the

three extension methods differ very little.

To summarize, the BDG algorithm remains the same, but the branch
dependency graph is redefined to include each jump table element as an sdi.
The problem size, n, now includes regular branch sdis and all jump table ele-
ment sdis; since the algorithm does not change, it is correct, and its com-

plexity remains O (n2).

Chapter 5

Global Optimization

Traditional optimization techniques such as common subexpression elimina-
tion and dead code elimination are absent from INRC since INR, which
produces the input for INRC, computes optimized automata. For instance,
state minimization ensures that no dead code will be generated and that
equivalent states will be combined. Many other optimizations are unneces-
sary because of the simplicity of the generated code: there are no arithmetic
expressions, variables, or subroutines. The determinism of subsequential
transduction eliminates the need for complex backtracking—a major imple-
mentation issue in non-deterministic transduction. The small set of opera-
tions required is described in Table 3.1 of Section 3.6. There are, however,
important global optimization strategies included in INRC. The most com-
plex global optimization, span dependent branch optimization, is discussed

in Chapter 4; the others are described in the following sections.

69

70

5.1. Register Allocation

In addition to the usual register assignments (e.g. stack pointer, base regis-
ter) which establish addressability or operands and support calling conven-
tions, five global register are allocated (Table 5.1); remaining registers are

only used for subroutine calls.

Name Description

CurlB | Pointer to current position in input buffer
EndIB | Pointer to end of input buffer

CurOB | Pointer to current position in output buffer
EndOB | Pointer to end of output buffer

CurSym | Current input symbol

TmpJT | Work register for jump tables (IBM only)

Table 5.1: Global register allocation
The get and put ILC instructions affect these registers in the expected
way: when a buffer is exhausted, an appropriate I/O routine is called and the

buffer pointer pair is updated.

5.2. Code Factoring

A significant code size reduction was achieved with both the VAX and IBM
implementations by factoring long machine code translations of the ILC
instructions get, put, and hng. The machine instruction sequence com-
mon to all instances of an ILC instruction may be factored out, and invoked
efficiently using only two machine instructions. This technique was included
in the IBM implementation from the outset, but was added to the VAX

implementation later.

Because of the high number of instructions required to accomplish a
subroutine call on the IBM, it would be unreasonable to generate the calling

sequence for each ILC instruction requiring a call. Therefore, the calling

71

sequence is generated only once for each subroutine called; such a call site is
activated by a BAL instruction, and returns control using a BR instruction.

In this case, code factoring is a necessary optimization.

On the other hand, the VAX calling sequence is very short, and gen-
erating multiple in-line subroutine calls is reasonable. Code factoring was
implemented since it yields a reduction in code size, and, although the user
program execution time increases, the elapsed program execution time does
not increase. The VAX instructions used to activate the factored code are

the JSB and RSB instructions.

Chapter 6

VAX - Unix Implementation

6.1. System Interface

There are three distinct categories to consider: the interface between INR
and INRC, the interface between the compiled transducer and the operating
system, and the interface between INRC and its user. Implementation
language choice has a great impact on the first two categories, but less on
the third. The quality of the user interface is a function of the modularity of
the code that INRC produces. The Unix operating system, our development
environment, provides excellent support for the C programming language: it
is efficiently compiled, provides access to system services, and uses simple

subroutine linkage. INR is written in C.

The unit of communication between INR and INRC is an automaton.
Thus INRC’s knowledge of INR data structures may be limited to the auto-
maton data type; sufficiently detailed knowledge is required for automaton
validation and an important extension, action routines, described in Sec-
tion 6.2. However, INR contains a sophisticated memory management
module useful in implementing INRC. Therefore, simple communication
and sharing of library utilities may be achieved by writing INRC in the same
language as INR. For these reasons, and the level of support for C under

Unix, INRC is also written in C.

72

73

In the simplest configuration, the transducer produced by INRC is
invoked by a default driver program which performs input and output file
handling, communicates with the operating system to perform block I/O,

and terminates execution if the transduction fails (Figure 6.1).

Input Driver Output ’

Transducer

Figure 6.1: Simple run-time organization of a compiled transducer
In a more complex configuration, a user may write his own driver—which
may be another application program—in order to control the input and out-
put of the transduction. For example, the contents of memory may be trans-
duced instead of the contents of a disk file. In any configuration, I/O rou-
tines are supplied by the transducer’s caller. Therefore, it is only necessary
for the transducer to communicate with its caller, and this implies that the
transducer must follow the linkage conventions of its caller. For the reasons

listed above, the language chosen for the VAX driver was C.

Providing a good user interface for INRC is simple because of the
modularity of its compiled transducers. By default, a driver is linked with
the transducer to produce an executable program which will transduce the
standard input to the standard output. If, however, this default is unsatis-

factory, the user may provide his own driver. This arrangement is simple

and flexible.

74

6.2. Extensions

Since INRC is meant to be a practical tool, extensions were made to permit
the invocation of action routines during a transduction. The first require-
ment of this extension is that the specification of action routines be made
easily in the framework of INR; and the second is that the changes to INRC
be integrated logically. The New Oxford English Dictionary project has
used transduction with action routines to process the text of the Oxford Dic-

tionary and build index data structures.

Action routines may be invoked at any point during a transduction, and
are supplied with the number of symbols read and the number of symbols
written so far. No other information may be passed to an action routine
during transduction. For example, if input symbols already read are needed
by an action routine, the driver program must maintain an input buffering
scheme through which the desired input symbols may be extracted using the

number of symbols read.

A notational convention is adopted by INRC which allows the specifica-
tion of action routine calls within INR. Action routine calls are denoted by
action tokens in the specification of a transducer; these are special output
symbols that do not correspond to ordinary characters. During transduction,
special output symbols will result in an action routine call rather than a write

symbol operation.

Since the names of action routines are not included in the transducer
definition, it is necessary to associate action tokens with action routines.
This is accomplished as follows. A mapping between action tokens and
small integers is established by INRC during compilation of the transducer;

when transduction begins, an initialization routine is called to store this

75

mapping. During transduction, a master action routine is invoked with an
integer code corresponding to an action token, and, using the mapping

stored, invokes the desired action routine.

A direct consequence of action routines is that there is increased com-
munication between the transducer and its driver. Incorporating action rou-
tines in INRC was extremely helpful in refining the modularity of its com-
piled transducers. In the same way that a default driver is provided, default
initialization and master action routines are provided in the user interface.
Figure 6.2 illustrates the organization of a transducer with user supplied

driver and action routines.

User Action

Action 1

User Driver

Master

Action \

Action n

Transducer

Figure 6.2: Sophisticated run-time organization of a compiled transducer

76

6.3. Code Generation

The VAX code generator produces assembly language output—this leads to
simple code generation and rapid debugging. Generating relocatable object
code is the alternative, but the compile time improvement gained does not
justify the increased complexity. Code generation for the VAX was particu-
larly easy for two reasons. First, operand addressability is unlimited; in par-
ticular, long branches may access the entire address space using program
counter relative addressing. And second, C calling conventions use the
VAX hardware stack: arbitrary calling sequences between the driver, the

transducer, and system services are simple.

6.4. Branch Optimization

To a large extent, span dependent branch optimization may be abstracted
from machine dependent details; it is, however, necessary for the branch
optimization module to have knowledge of the available sdi format sizes and
reaches, and the ability to compute the initial sdi spans. The number of for-
mats and their reaches is localized to a table that is created for each
machine, and computation of initial spans is accomplished through a code
generator function which returns the size of the machine translation of each

ILC instruction.

sdi formats Branch length Code
table reaches Optimizer info. Generator
| e] P

ILC instruction length information could also be represented in a table, but

it is kept within the code generator so that ILC length information will be

77

updated in conjunction with changes to ILC instruction translations.

Unconditional branch instructions are available in three single instruc-
tion formats; conditional branch instructions are also available in three for-

mats, but two of these are synthesized.

Format Unconditional Branch | Conditional Branch
Reaches
short 274+2..274+1 274+2..27 41
medium | 2P +3 . 28542 | 21545 215 44
long —00.. 00 —00.. 00

Table 6.1: VAX reaches relative to sdi location
The VAX provides direct support for jump tables whose elements have a
reach similar to that of the medium branch format. Thus, by extending only
elements requiring it, jump table elements are span dependent instructions

with two formats, namely medium and long.

The BDG algorithm described in Chapter 4 is capable of handling sdis
whose forward and reverse reaches are different, but it is simpler if they are
the same. By calculating instruction format reaches relative to the ‘“updated
program counter’’ location, rather than the location of the sdi instruction,
the forward and reverse reaches differ by only one byte. Moreover, using
the same technique for jump table elements, the forward and reverse reaches
of the medium and long formats are the same as for the corresponding
branch formats. Therefore, it is possible to use the same three format
reaches for every sdi instruction type. The one extra byte of reverse reach
was sacrificed to obtain the symmetric forward and reverse reaches common

to all sdis shown in Table 6.2.

78

Format Sdi Reach
short 274+1..27 -1
medium | -2 +1.. 2% —1

long —00.. 00

Table 6.2: VAX reaches relative to updated-PC location

6.5. Performance

Analysis of INRC may be carried out separately for compile time and execu-
tion time phases. Compile time considerations are computational effort and
transducer size capacity; execution time considerations are speed and object
code size. Good performance at compile time is important in practice but

highly efficient executable code is of paramount importance.

Performance measurements for transducers compiled and executed on a
VAX 8650 are presented. The first transducer realizes the Soundex code.
Soundex encoding is often used in search applications involving surnames;
for instance, airline reservation systems may use Soundex encoding to locate
bookings for customers whose names were transcribed incorrectly. Johnson
summarizes the literature related to the Soundex code, in the context of
string similarity models, and proves that it is a subsequential function
[Joh83]. His functional description is reproduced in Figure 6.3, and one

corresponding INR formulation appears in Appendix A.

The second and third transducers were developed to process the entire
tagged text of the Oxford English Dictionary (OED). They will be called
the NoedTag and NoedAct transducers. Rick Kazman gives an explanation
of OED tagging in Structuring the Text of the Oxford English Dictionary
through Finite State Transduction [Kaz86]. The nature of the data and the

New OED transduction is outlined below.

79

1. Remember the first character for later in, say, a variable X.

2. Map the letters according to the following scheme:
b,f,p,v—1
c, g J,k,q,s,x,z—2
d,t —3
1—4
m,n — 5
r—6
a,e,h,i,o,u,w,y —7

3. Wherever a sequence of like digits occur, delete all but the first of
the sequence.

Drop the first digit of the number.
Remove all sevens from the number.

Add three zeros at the end of the number.

N o vk

Take the first three digits of the number with the remembered first
character appended in front.

Figure 6.3: Functional description of Soundex code

The text of the OED is received in electronic form, with structural ele-
ments tagged in SGML style [ISO85]. That is, each structure is delimited by
a pair of tags:

<structure_tag> ... text of structure ... </structure_tag>
Closing tags are formed from opening tags by prepending a slash character;
tags are distinguished syntactically by their enclosing angle brackets, which
cannot appear elsewhere in the text. The data includes many instances of
SGML style ‘“‘tag attributes”. For instance, the tags
<sen status=obs no=13> ... text of sense number 13 ... </sen>

delimit the text of sense number 13, which is obsolete. Since the input data

80

was human generated, it contains a substantial number of tag nesting errors.
The OED contains roughly 35 million tags, which account for approximately

45% of the input data.

The transduction process accomplishes several goals in parallel; the main

ones are:
e Tag Shortening

Tags are unnecessarily verbose, interfering with the readability of the
text; furthermore, since tags account for such a high percentage of the
data, they occupy a large amount of unnecessary space. Thus, tags are

shortened; for example,

<entry> becomes <E>, and <quot> becomes < Q>

e Attribute Promotion

The use of tag attributes is unnecessary, since the structure they describe
may be equivalently described by attribute-free tags alone. For

instance,

< sen status=obs no=13>
becomes

<sen> <st>obs</st><#>13</#>

This greatly simplifies on-line searching and automatic processing of the

text.
e Index Construction

As the transducer encounters opening and closing tags, an index struc-

ture is constructed. It consists of the following three components.

81

1. A ““tag” file which contains pointers to the beginning and end of

each structure in the text.

2. A “descriptive grammar” file which contains productions describing

the nested structures of each tag pair.

3. A “rule” file which maps each pair of pointers is the tag file to the

corresponding production in the descriptive grammar.
e Error Processing

Tag nesting errors are corrected in the index, but not in the text. The
transducer maintains a stack of the tags which have been opened but not
yet closed. When a closing tag is encountered, the matching opening
tag should be on the top of the stack. If the opening tag is not any-
where in the stack, the closing tag is discarded; if the opening tag is on
the stack, but not on the top, each opening tag above it is popped, with

a corresponding closing tag recorded in the index.

Tag shortening and attribute promotion represent the actual transduction,
while index construction and error processing are accomplished through the

use of action routines.

The New OED transducers are good examples since the machines are
quite large, the action routine facility is thoroughly exercised, and the appli-
cation is a real one. A substantial amount of time is spent building the
indices, which occupy approximately half as much space as the dictionary
itself. Both of the New OED transducers perform the same transformations
on tags, but only NoedAct invokes action routines to build index data struc-
tures. The reason for this distinction is to enable measurement of ‘“‘pure’’

transduction speed by comparison of INRC with other programs, and to

82

provide true measurements of dictionary transduction time.

Unix provides three timers for measuring the execution speed of a pro-

gram, namely:

real elapsed clock on the wall time
user time spent executing the user program
system time spent executing system services on behalf of
the user program
When execution performance is being analyzed, these three quantities may
be used to identify programs that are I/O or CPU bound; in addition, system
loading will be reflected by the ratio of real to user times. For comparison

purposes, timing measurements for an INR copy transducer, InrCopy (Fig-
ure 6.4),

SIGMA A\x01\x02 ... \x7f :alph;
IntCopy = SIGMA * :sseq;

Figure 6.4: InrCopy transducer

and two C copy programs, ChrCopy (Figure 6.5), and BlkCopy (Figure 6.6)

are presented.

6.5.1. Compile Time

If all available compilers for a programming language offer poor perfor-
mance, then chances are good that the language will not be used. Ada is a
sophisticated high level language that is extremely difficult to compile—even
implementations of subsets of Ada are slow. Consequently, a basic require-
ment of INRC is that it compile efficiently; furthermore, since complex sub-

sequential transducers have many states and transitions, INRC must be able

83

#include <stdio.h>
int main()
{
int c;
while((¢ = getchar()) != EOF)
putchar(c);
return(0);

Figure 6.5: ChrCopy C program

#include <stdio.h>
int main()

{
int n;
char buffer[8192];

while((n = read(0, buffer, 8192)) > 0)
write(1, buffer, n);

return(0);

Figure 6.6: BlkCopy C program

to compile very large machines. The tables below show compilation times,
broken down into input state optimization and branch optimization phases,

for the Soundex, New OED, and InrCopy transducers.

Input state optimization is performed for each state individually using
the dynamic programming algorithm described in Chapter 3. This algorithm
has complexity O (n®), where n is the problem size of the input state (Sec-
tion 3.8), and since n <|X |, where ¥ is the alphabet of input symbols (e.g.
ASCII), the complexity of optimizing any input state is O(|Z 13).

84

Soundex Transducer

Compile Time (sec)

real user system

States 75 — — —
Transitions 1,270 — — —
Input States 23 10.0 9.7 0.1
Span Dep. Instrs. 1,243 1.2 1.2 0.0
Total Time 12.0 11.5 0.1
Object Bytes 4,684 — — —

NoedTag Transducer Compile Time (sec)

real user system

States 8,029 - —_ -
Transitions 11,464 - - -
Input States 245 58.0 51.1 1.0
Span Dep. Instrs. 6,821 260.9 247.3 2.2
Total Time 372.2 305.6 3.7
Object Bytes 146,647 — — —

NoedAct Transducer Compile Time (sec)

real user system

States 8,222 — — —
Transitions 11,657 — — —
Input States 245 54.5 51.3 0.5
Span Dep. Instrs. 6,835 254.1 248.0 2.0
Total Time 317.5 306.7 3.1
Object Bytes 149,594 — — —

InrCopy Transducer Compile Time (sec)

real user system

States 131 — — —
Transitions 257 — — —
Input States 1 6.8 6.5 0.1
Span Dep. Instrs. 257 0.4 0.3 0.0
Total Time 7.5 7.0 0.2
Object Bytes 2,529 — _ —

85

Therefore, the complexity of the input state optimization phase is linear in
the number of transducer input states. The dynamic programming matrix
requires O(|X |?) space, which is acquired at the start and released at the

end of this phase.

Branch optimization, however, is performed for all span dependent
instructions (sdis) at once using the algorithm described in Chapter 4. This
algorithm has complexity O (n?), where n is the number of sdis present in the
intermediate level code (ILC). The space required for a transducer with |Q |
states and | § | transitions is O (|Q |+]| 6 |); thus, space requirements may be a
problem for large transducers. Although a significant constant factor slow
down will result, the branch optimization algorithm may use files instead of

memory without changing either time or space complexity.

6.5.2. Execution Time

In order to put the execution speeds measured for INRC compiled transduc-
ers into perspective, they are compared with execution speeds of the Isim
and gsm1 programs. These results are considered in light of the nature of
timing statistics provided by the operating system. And finally, the impact

of action routines on the interpretation of timing results is considered.

Both Isim and gsm1 are load and simulate programs. Isim is capable of
applying non-deterministic transductions and thus has elaborate mechanisms
to permit back-tracking. gsm1 applies only subsequential transductions; it
builds a hash table in order to achieve fast transition function lookup. Nei-
ther of these programs permit the incorporation of action routines. Timing
results for the Soundex and New OED transducers appear in the tables

below.

86

Soundex Input Output Execution Time (sec)
bytes bytes real user system
Isim 720,896 491,520 200.1 185.5 1.3
gsml — — 18.4 15.9 0.4
INRC — — 4.0 1.4 0.6
NoedTag Input Output Execution Time (sec)
bytes bytes real user system
Isim 16,201,271 13,580,177 4,265.0 4,006.0 39.4
gsml — - 444.7 396.2 9.8
INRC — — 57.4 42.2 4.7
NoedAct Input Output Execution Time (sec)
bytes bytes real user system
INRC 16,201,271 13,580,177 174.6 | 131.5 | 20.6

Timing results for the InrCopy transducer and C copy programs appear

below.

Copy Bytes Copied Execution Time (sec)
Program real user system
InrCopy 720896 3.5 1.6 0.3
ChrCopy — 3.4 2.2 0.2
BlkCopy — 2.8 0.0 0.2
InrCopy 16,201,271 47.6 36.9 4.0
ChrCopy — 58.6 49.7 4.3
BlkCopy — 30.4 0.0 3.0

Comparison of these timing results indicates that INRC transducers without
action routines run as fast as the ChrCopy C program; the BlkCopy program
beats the competition by a significant 50%. On the basis of user times,
INRC achieves an order of magnitude improvement over gsml, and two
orders of magnitude improvement over Isim; On the basis of real times,
INRC still achieves a five-fold improvement over gsm1. The BlkCopy meas-
urements suggest that INRC transducers are not I/O bound, but experimen-

tation with the VAX code generator suggests otherwise. Increasing the

87

number of instructions executed by compiled transducers increased user but

not real execution time.

Therefore, if pure transduction is performed on files, a five-fold elapsed
time improvement is realized. However, if transduction of memory is per-
formed, a greater improvement will be realized; if transduction of files
involves CPU bound action routine processing, little or no increase in

elapsed transduction time will occur.

Chapter 7

IBM/370 - CMS Implementation

7.1. System Interface

The purpose of the IBM/370 implementation is to demonstrate that the ILC
may be translated effectively on an architecture that is substantially different
from the VAX architecture. Unlike the VAX, the 370 is not a stack
machine. Moreover, it does not provide the rich set of addressing modes,
such as autoincrement and program counter relative, that the VAX does.
Consequently, the primary goal of the IBM implementation is to show that
code generation can be done. The next most important goal is to generate
transducers with the same degree of modularity as those generated for the
VAX.

In any implementation of INRC, the important interface categories are:
the interface between INR and INRC, the interface between the compiled
transducer and the operating system, and the interface between INRC and
its user. However, since CMS is not the development environment, there
are constraints imposed by the initial (VAX) implementation and the exist-
ing implementation of INR on CMS. Since CMS provides a C compiler,
CW1, INR was ported from Unix with minor system dependent changes.

Similarly, INRC was ported from Unix with an IBM/370 code generator.

+ Waterloo C compiler (version 1.31 IBM 370)

88

89

The goal of modularity requires that transducers be compiled as subrou-
tines. This enables the caller to select the input and output of the transduc-

tion, and to handle errors.

CMS Driver Transducer

Since the transducer communicates with its caller, the language in which the
caller is written determines the linkage conventions that the transducer must
follow. In order to provide direct access to system services, the transducer
uses the traditional IBM/370 assembler conventions internally. Therefore,
writing the caller in a language using these conventions would be a logical
choice. Unfortunately, the CW compiler uses its own linkage mechanism.
Writing the driver in assembler simplifies the transducer linkage but compli-
cates I/O whereas writing it in C complicates the transducer linkage but

leaves system dependent I/O to the compiler.

This dilemma was solved by using the Unix driver and writing macros to
permit linkage between C and assembler routines. Specifically, special entry
and exit macros follow the CW linkage conventions for the caller, but pro-
vide the standard S-LINKAGE environment within the assembler subroutine
they enclose; a related call macro enables such an assembler subroutine to
invoke another C routine. These macros work in conjunction by using the C
stack for register save areas and parameter passing to and from C routines.
This arrangement permits arbitrary calling sequences between C and assem-
bler programs. Since these macros require complete knowledge of the Cw

calling conventions, they were difficult to write.

90

The user interface provided under CMS is the same as the one provided
under Unix. By default, a transducer is compiled and linked with a default
driver and default master action routine to produce an executable program
which will transduce the standard input to the standard output. If, however,
these defaults are unsatisfactory, the user may provide his own driver and

action routines.

7.2. Addressability

Base and displacement addressing is the IBM/370’s primary method of
addressing relocatable operands. But because of its limitations, it is not pos-
sible to establish addressability for large program which are not divided into
subroutines. Structured programming methodology demands the decompo-
sition of large programs into modules; however, machine generated pro-
grams that are neither read nor modified may be unstructured for perfor-
mance reasons. Since the programs generated by INRC are so simple, the
use of subroutines does not even make sense; the only reason for artificially
introducing them would be to alleviate base and displacement addressability

problems.

Consider an IBM/370 machine language program of length L with byte
locations numbered 0 .. L. Suppose that a single base register By is declared
to contain the location g ; then the locations lg .. Ip, + 4095 are addressable
using B;. If m base registers By .. B,, are declared such that B; will contain
the location Ig + 4096(i —1) then the locations Ip .. Ip + 4096m are

addressable. since there are 16 general registers, and some must be reserved
for linkage purposes, m < 16. Therefore, it is not possible to establish

addressability for a program whose length L is greater than 216 by using a set

91

of base registers whose contents do not change during execution of the pro-

gram.

In addition to base and displacement addressing, the IBM/370 provides
A type (address) and V type (external symbol) constants which are resolved
at load time. These constants permit the specification of arbitrary locations;
however, they are also relocatable quantities. Branching to an arbitrarily

distant location may be achieved using a load/branch register instruction pair
(Figure 7.1).

L BASEREG, =A (TARGET) ——

BR BASEREG base and

: displacement

LTORG

=A (TARGET) —

: resolved

by loader

TARGET DS OH —

Figure 7.1: IBM/370 long branch format
Note that the load instruction still uses base and displacement addressing to
retrieve the address constant from the literal pool. Thus, there are two
branch formats, namely short and long; short formats are supported directly
by base and displacement branch instructions, and long formats are syn-

thesized as described above.

The solution to the addressing problem is to establish addressability
separately for each transducer state. That is, a base register is declared and

a literal pool is generated for each state so that

e one base register will easily address all of the code for a single state

e all literals referenced within a state will be assembled at the end of the
corresponding code segment

92

By using the same base register in each state, efficient branches between

states are possible. The crucial assembly instructions and assembler direc-

tives for establishing addressability for each state are shown in Figure 7.2.

STATE1

BALR BASEREG, *
DS OH
USING *,BASEREG

<body of state 1>
LTORG

target of short branch
target of long branch
declare base register

generate literal pool

Figure 7.2: Addressability within a transducer state code segment

Figure 7.3 shows that both short and long branches require execution of only

two instructions.

BALR
STATE1 DS
USING

B

L

BR

LTORG

BALR
STATE] DS

USING

L

BR

LTORG

BASEREG, *
OH
*, BASEREG

STATE]-4
BASEREG , =A (STATE])

BASEREG

BASEREG, *
OH
%, BASEREG

BASEREG, =A (STATE1)
BASEREG

short branch to state j

long branch to state j

long branch to state i
(short branch impossible)

Figure 7.3: Branching between transducer states

93

7.3. Code Generation

Like the VAX code generator, the IBM/370 code generator produces assem-
bly language output. The major difference, however, is its extensive use of
macros: there is one macro for each ILC instruction. These ILC macros, in
conjunction with macros that handle communication between C and assem-
bler, represent a virtual machine. Thus, the complexity of code generation
is shifted from the code generator to the set of macros supporting the virtual

machine.

After successful code generation using macros, folding macro processing
into the code generator was considered; it was rejected for the following rea-
sons. The IBM/370 macro processor is very powerful, supporting flexible
macros capable of producing the same instructions that the INRC code gen-
erator would produce. Furthermore, the INRC macros localize complexity
in a format that is more easily understood than the source code of an
equivalent code generator. The drawback of using macros is the additional
assembly time they incur; however, assembly time represents a small fraction
of the time spent in compiling a transducer. Finally, the macros may be

used by driver and action routines written in assembler.

7.4. Extensions

The ability to invoke user subroutines during transduction has been incor-
porated in the CMS implementation in the same way as in the Unix imple-

mentation. Section 6.2 describes the action routine facility in detail.

94

7.5. Branch Optimization

Branch optimization is not performed in the CMS implementation. The rea-
sons for this are two-fold: first, the objective of the CMS implementation is
to demonstrate feasibility; and second, there are significant difficulties posed
by the IBM/370 architecture.

The primary difficulty in implementing span dependent branch optimiza-
tion for the IBM/370 is the peculiar nature of the ‘“‘growth’ from short to
long formats. Specifically, a long branch requires that a nearby literal pool
contain the target (virtual) address, and this address may or may not be in
the appropriate literal pool. Thus, growth involves two components, namely
growth at the branch site, and possible growth of a literal pool. Address
entries in the literal pool must be fullword aligned; therefore, if an entry
must be added, two extra pad bytes may be necessary. Although literal
pools do not perform transfer of control, they are span dependent instruc-
tions (sdis) in the sense that their growth affects genuine sdis. This problem
does not occur with the VAX architecture since PC-relative branch instruc-

tions are self-contained.

Another difficulty is that the forward and reverse reaches of a short for-
mat branch instruction depends on its distance from the current base regis-
ter. Since there may be intervening sdis, the forward and reverse reaches of
a short branch may change as other sdis grow. This behaviour is unlike
PC-relative branches whose forward and reverse reaches are fixed and sym-

metrical.

95

7.6. Performance

Sample measurements of the Soundex transducer, and C copy programs

described in Chapter 6 are presented in Table 7.1.

Soundex Input Output Execution Time
bytes bytes (elapsed sec)
gsml 41884 28531 5.70
INRC - — 2.94
ChrCopy 41884 41884 4.09
BlkCopy — - 2.78

Table 7.1: CMS execution time results
Clearly, I/O is the crucial factor. Since the transducer driver is written in C,
permitting simple input and output redirection, I/O time is much higher than
it would be if it were written in assembler. A simple copy program coded in

assembler yielded a 50% improvement over the BlkCopy C program.

Presently, CMS INRC transducers achieve a two-fold improvement over
gsm1; however, optimization of I/O handling would definitely enhance this

improvement.

Chapter 8

Conclusions

We have detailed optimization techniques used to compile subsequential

transducers; two particularly important sources of optimization are:

e transducer input states—essentially ‘‘case statements”

e machine specific span dependent branch instructions

Transducers compiled by INRC achieve a five-fold improvement in execu-
tion time performance over the closest competitor (gsm1), and appear to be
I/O bound. Moreover, the compilation speed of INRC makes it practical.
The transducer input state optimization techniques described here are

directly applicable to case statement compilation of high level languages.

There are many opportunities to increase the utility of subsequential
transduction as a problem solving tool. These opportunities fall into one of

two categories:

e improvements in the specification of subsequential transducers (INR)
e ecxtensions to the pure model of subsequential transducers (INRC)

Work has already begun in both of these areas.

A lexical analyzer uses the rule that the token which matches the longest
prefix of the remaining input is the desired one. This is a ““disambiguating’’
rule which is natural and obvious, but which is difficult to express in INR.

Johnson describes possible criteria for obtaining meaningful single-valued

96

97

finite transductions from ambiguous (multi-valued) finite transductions
[Joh87b], and has implemented corresponding functions in INR which com-

pute subsequential transducers.

Action routines were added to INRC, enabling subroutine calls during
transduction. At present, only the number of symbols read and written so
far may be passed as parameters; the capability of passing parameters con-
taining symbols from the input string would be very useful. Another exten-
sion is to permit transducers to be invoked and suspended in order to pro-
vide the type of master slave relationship between a parser and a lexical

analyzer.

We have shown that subsequential transducers can be implemented effi-
ciently. The New Oxford English Dictionary transducer, which performs tag
transduction and invokes index construction routines, demonstrates the
effectiveness of INRC: total processing time for 470 megabytes of text is less

than five hours.

Appendix A

Transducer Grammars

98

A.1. Soundex Transducer

Ic
digit

copy
double

lower

mapcode

compress

dropfirst
elimseven
append
truncate

Soundex

{a,b,c,d,e.f,g,h,i,j,k,1,m,n,0,p,q,r,s,t,u,v,W,x,y,2};
{0,1,2,3,4,5,6,7};

(0,0);
(0,0 0);

copier from recognizer
copier which doubles each input symbol

{ ({A)a})a), ({B’b}7b)’ ({C?C},C), ({D’d}’d), ({E’e})e),
({F’f},f)’ ({G7g}7g)’ ({H,h},h), ({I7i}’i)’ ({J’j}7j)’
({K,k},k), ({L,11,1), (M,m},m), ({N,n},n), ({O,0},0),
({P’p}ﬁp), ({Q’q}’q)’ ({R7r},r), ({S)S}’S)’ ({T)t}’t)3
({U,u},0), ({V,v}hv), (W,whw), (X,x},x), ({Y,y}y),
({Z,z},2) 1

{ (b.f,p,v},1), ({e,8,),k,q,8,%,2},2), ({d,},3), (1,4),
({m,n},5), (r,6), ({a,e,h,i,0,u,w,y},7) };

(1+,1) % (2+,2) % (3+,3) % (4+,4) % (5+,5) %
(6+.,6) % (7+,7);

((digit,”) (digit* $copy));
({1,2,3,4,5,6} $copy) | (7,7);

((digit* $copy) [*000°]);

(((digit digit digit) $copy) (digit*,”));

lower* @

((Ic $double) (Ic* $copy)) @
((Ic $copy) mapcode*) @
((Ic $copy) compress) @
((Ic $copy) dropfirst) @
((Ic $copy) elimseven*) @

((Ic $copy) append) @
((Ic $copy) truncate);

References

[AHU74]

[AU77]

[ASUS6]

[BBGCS86]

[Ber85]

[Ber79]

[Bro79]

[Cho77]

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman,
The Design and Analysis of Computer Algorithms, Addison-
Wesley, Reading, Mass., 1974

Alfred V. Aho, and Jeffrey D. Ullman, Principles of Com-
piler Design, Addison-Wesley, Reading, Mass., 1977

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Com-
pilers: Principles, Techniques, and Tools, Addison-Wesley,
Reading, Mass., 1986

William A. Barrett, Rodney M. Bates, David A. Gustafson,
and John D. Couch, Compiler Construction, second edition,
Science Research Associates, Chicago, 1986

R. L. Bernstein, ‘““Short Communication: Producing Good
Code for the Case Statement”, Software — Practice and
Experience, 15:1021-1024, 1985

Jean Berstel, Transductions and Context-Free Languages, B. G.
Teubner, Stuttgart, Germany, 1979

K. Q. Brown, “Dynamic Programming in Computer Sci-
ence”’, Department of Computer Science Report CMU-CS-
79-106, Carnegie-Mellon University, 1979

Christian Choffrut, “Une caractérisation des fonctions
séquentielles et des fonctions sous-séquentielles en tant que
relations rationnelles’, Theoretical Computer Science, 5:325-
338, 1977

100

[CC81]

[Dob86]

[DA77]

[EP8S]

[Gin66]

[Glu72]

[HM82]

[ISO85]

[Joh83]

[Joh87a]

[Joh87b]

101

Leon Cooper, and Mary W. Cooper, Introduction to Dynamic
Programming, Pergamon Press, 1981

W. Dobosiewicz, “Optimal Binary Search Trees”, Interna-
tional Journal of Computer Mathematics, 19:135-151, 1986

Stuary Dreyfus, and Averill Law, The Art and Theory of
Dynamic Programming, Academic Press, 1977

M. J. Fischer, and M. S. Paterson, ‘“Dynamic Monotone
Priorities on Planar Sets’’, 26th Annual Symposium on Founda-
tions of Computer Science, pp 289-292, IEEE Computer
Society, 1985

Seymour Ginsburg, The Mathematical Theory of Context-Free
Languages, McGraw-Hill, New York, 1966

Brian Gluss, An Elementary Introduction to Dynamic Program-
ming: A State Equation Approach, Allyn and Bacon, 1972

J. L. Hennessy, and N. Mendelsohn, ‘“Compilation of the
Pascal Case Statement’, Software — Practice and Experience,
12:879-882, 1982

International Organization for Standardization DIS8879,
“Information processing — text and office systems — Standard
Generalized Markup Language (SGML)”, 1985

J. Howard Johnson, “Formal Models for String Similarity”,
Ph.D. thesis, available as Research Report CS-83-32, Univer-
sity of Waterloo, 1983

J. Howard Johnson, “INR: A Program for Computing Finite
Automata’, Unpublished report, University of Waterloo,
1987

J. Howard Johnson, ‘“Single-Valued Finite Transduction™,
Proceedings of the 14th ICALP — Lecture Notes in Computer
Science, 267:202-211, Springer-Verlag, 1987

[Joh75]

[Kaz86]

[KR78]

[Knu71]

[Knu73]

[Sal81]

[SS86]

[Szy78]

[TS85]

[WIWHG75]

[Yao80]

102

Steven C. Johnson, “Yacc: Yet Another Compiler-
Compiler”’, Technical Report CSTR 32, Murray Hill New
Jersey, 1975

Rick Kazman, “Structuring the Text of the Oxford English
Dictionary through Finite State Transduction”, M. Math
thesis, available as Research Report CS-86-20, University of
Waterloo, 1986

Brian W. Kernighan, and Dennis M. Ritchie, The C Pro-

gramming Language, Prentice-Hall, Englewood Cliffs, New
Jersey, 1978

D. E. Knuth, “Optimum Binary Search Trees’’, Acta Informa-
tica, 1:14-25, 1971

D. E. Knuth, The Art of Computer Programming Vol 3: Search-
ing and Sorting, Addison-Wesley, Reading, Mass., 1973

A. Sale, “The Implementation of Case Statements in Pascal’’,
Software — Practice and Experience, 11:929-942, 1981

L. Sterling, and E. Shapiro, The Art of Prolog, MIT Press,
Cambridge, Mass., 1986

T. G. Szymanski, ‘“Assembling Code for Machines with
Span-Dependent Instructions”, Communications of the ACM,
21:300-308, 1978

Jean-Paul Tremblay, and Paul G. Sorenson, The Theory and
Practice of Compiler Writing, McGraw-Hill, New York, 1985

W. Wulf, R. K. Johnsson, C. B. Weinstock, S. O. Hobbs,
and C. M. Geschke, The Design of an Optimizing Compiler,
American-Elsevier, New York, 1975

F. F. Yao, “Efficient Dynamic Programming Using Qua-
drangle Inequalities”, Proceedings of the Twelfth Annual ACM
Symposium on Theory of Computing, pp 429-435, Los Angeles,

1980

Index

alphabet ...l 7
behaviourcccoiiiiiiiiinn.... 8
case actionoviiiiiiiiinn.. 33
case selectionooiiiil.l. 33

deterministic finite automaton . 10

disjoint unionccoooeen. 8
empty string ... 7
gsml ... 3
ILC i 38,41
INR and INRC ... 5
INR i 2,3
INRC i, 4
language relation 7
language ... 7
Isim ..oooeii 3
INSCAIN eevneeeeennnaaeaaaeaaeeenns 3,36
rational relation 11
rational transducer 11
regular language 10
sdi (span dependent instruction) 59
sdi format ... 59
sdi reach ... 59
sdispancociiiiiiiiiiiiein... 59
sdi — pathological 64
segmentoiiiiiiiiiiiin 43

span dependent instruction (sdi) 59
8 91 1 7 7

103

subsequential function

subsequential transducer

6-diagram

...........................

1. Pl complete unshaded. $.on) T2 Dls(tibuheopiaas follows; White and “3. On completion.of order the Yclloweow 4. ﬂmodlnct ouquidu. quoting requisi-
form as applicable. B Yellow to Graphic Services. Retain Pink . . will be returhed with the printed = tion number and account number, to

. Copl_u for-your records. o . material. . .] ox:ql;!on 3451,

TITLE OR DESCRIPT!ON N . ' X

{“;’*S—za 20 . "_ | I

ACCOUNT NO.

DATE REQUISITIONED

\ﬂuuxe |5 /€7

R UISITIONER RINT

SO ﬁrnﬂ(S - s

MAILING , - NAME s} DE B - - ’ BLDG. & ROOM NO. .
INFO - “ue €7{7~c LS (3-5:*; T D & _5/‘7‘

Copyright‘ 1 hereby agree to assume all responsibllity and liability for any: mtrrngement of copyrlghts and/or patent rights. which may arise trom
. the processing.of, and reproduction of, any of .the’ materials herein requested. | further agree to indernnify and hold blameless the:
-University of Waterloo from any liability: which may arise from said processing or reproducing. l also acknowledge that maxenals
processed as a result of this requisition are for educational. use only. o

NUMBER / o NUMBER - Q‘a o
OF PAGES __ /@ OF COPIES' - . -

TYRE OF PAPER STOCK . o o
.B';ono.Duea .pv. [over [JemisroL M”'—."P O

PARER SIZE _

m’uxu ~ [0 8 x 14 Ouxw OJ

PABER COLOUR . Nk ‘ .
waite - [} . . [srack O——

PRINTING X i '-‘ NUMBERING)

O sw: PGS, m{sw:s PGs. FROM 7o

G/FIN|SHING 3 AN iy ool

COLLATING stapLine] %uncueo ™ [erasvic rine

FOLDING/ ' © . GUTTING o

PADDING . A Slz,E .

Special instructions’

. TAXES -~ “RROVING

	

