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ABSTRACT

Attribute grammars provide a formal declarative notation for describing the seman-
tics and translation of programming languages. Describing any real programming
language is a significant software engineering challenge. From a software engineer-
ing viewpoint, current notations for attribute grammars have two flaws: tedious
repetition of essentially the same attribute expressions is inevitable, and the various
components of the description cannot be decomposed into modules — they must be
merged (and hence closely coupled) with the syntax specification. This paper
describes a tool that generates attribute grammars from pattern-oriented specifica-
tions. These specifications can be grouped according to the separation of concerns
arising from individual aspects of the compilation process. Implementation and use
of the attribute grammar generator MAGGIE is described.

Introduction

Attribute grammars (Knuth, 1968) provide a formalism for describing the syntax, semantics, and
translation of programming languages using a declarative specification. One advantage of such a
specification is that it provides a formal definition of the programming language being described.
Another advantage is that the specification can be converted automatically into a compiler. The for-
malism itself is simple, yet quite powerful. However, close inspection of even a small attribute gram-
mar will reveal certain drawbacks, namely repetition, overwhelming detail, and the interleaving of
many activities. The size and complexity of a specification written as an attribute grammar is such

* On leave from Brandon University, Brandon, Manitoba, Canada. Bitnet address: gdueck at water; gery at

uofmcc.
t Internet address: gvcormack@waterloo.edu. Bitnet or UUCP: gvcormac at water.
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that the notion of correctness, originally an impetus for the formalism, is compromised; the grammar
is difficult to read and particularly difficult to debug.

Conventional attribute grammars have no facility to support abstraction; we cannot easily extract
from an attribute grammar the nature of individual algorithms or modules. To address this problem,
we have developed a mechanism to generate attribute grammars from templates which are grouped
together as modular attribute grammars (MAGs). Because a template describes a class of attribute
expressions, modular attribute grammars can be significantly less complex than equivalent attribute
grammars, and can be structured according to appropriate criteria for modular decomposition (Parnas,
1972).

To introduce MAGS, we first require some terminology from attribute grammars. An attribute
grammar consists of a context-free grammar with each production augmented by attribute expressions.
Attributes are values associated with nodes in the derivation trees corresponding to strings in the
language generated by the context-free grammar. An attribute expression defines an attribute in terms
of other attributes in the same or adjacent nodes. Each production may have a number of attribute
expressions associated with it; because of this, the structure of the context-free grammar, rather than
the relationships among the attribute expressions, dominates an attribute grammar. We feel it is
more appropriate to structure the attribute grammar according to the computation of attributes.

A single MAG is a set of patterns and associated templates. The patterns are applied to a
context-free grammar; for those that match, an attribute rule is generated from the associated tem-
plate. Pattern matching and selection of generated attribute rules are constrained; pattern matching
uses tentative definition and generated rules are selected by need, two ideas which are introduced in
this paper.

The rules generated by a MAG collectively define one or more output attributes from zero or
more input attributes. These sets of input and output attributes constitute the interface to the MAG.
Separate MAGs can be defined to address separate concerns in the language and compiler specifica-
tion and can be combined according to their interfaces.

We have built a prototype and gained some experience with modular attribute grammars. The
basic tool (see Figure 1) translates a context-free grammar and several MAGs into a monolithic attri-
bute grammar and produces tables used by another tool to parse program source, build a form of com-
pound dependency graph (Jalili, 1983), and evaluate the graph. Attribute expressions are written as
compound statements in C (Kernighan and Ritchie, 1978) and may reference user-defined functions.
We have used the prototype to perform semantic analysis of Pascal declarations and to develop tech-
niques for using MAGs.

Related Work

In several recent papers on attribute grammars, we find research motivated by the need to reduce the
complexity of compiler descriptions written as attribute grammars. In particular, Koskimies, Riihi,
and Sarjakoski (1982) note that attribute grammars are hard to read and understand, being far from
self-documenting; Gansinger and Giegerich (1984) quote further references in claiming that the few
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MAGGIE : Prog
: source
AG parser +
: R
: source translator : evaluator
translation

Figure 1: Translation of modular attribute grammars

attribute rules which bear semantic significance are often buried in a large number of trivial rules; and
Riihi and Tarhio (1986) mention the difficulty of comprehending the global use pattern of an attri-
bute in the presence of superfluous information. We agree with these concerns.

GAG (Kastens, Zimmerman, and Hutt, 1982) is a compiler generator that uses monolithic
attribute grammars and is necessarily rule based. GAG addresses complexity by providing attribute
transfer and remote attribute access facilities. Attribute transfer abbreviates a set of simple-copy attri-
bute expressions into one statement. Remote attribute access abbreviates the transfer of attributes
over long distances in the derivation tree. In effect, transfer and remote access are specific examples
of simple abstractions that the designers have built into GAG. Modular attribute grammars facilitate
general user abstractions that subsume both of these facilities. Jullig and DeRemer (1984) and
Koskimies er al. (1982) also address the problem of automatic propagation of attribute values through
the derivation tree.

Attribute coupled grammars (Ganzinger and Giegerich, 1984) and tree transformation gram-
mars (Keller, Perkins, Payton, and Mardinly, 1984) are used to specify compilation phases. We
define a phase as a data structure and an algorithm to map the (input) data structure into another
(output) data structure. A formalism to specify a phase-structured compiler necessarily requires a way
to specify data structures and inter-phase interfaces and we suggest this requirement increases the
complexity of the formalism. Modular attribute grammars may be used to specify phases using a sin-
gle, simpler formalism. However, we do not necessarily agree that phases are the most appropriate



approach to module decomposition.

Regular expressions improve the conciseness of the context-free portion of an attribute grammar
(cf. Kastens er al. (1982) and Jullig and DeRemer (1984)). However, they introduce the additional
notions of alternation and repetition into attribute expressions. They provide no fundamental alterna-
tive to the monolithic structure of conventional attribute grammars.

Extended attribute grammars (EAGs) are another notation based on attribute grammars (Watt
and Madsen (1982), Watt (1986)). In EAGs, the notation for expressing relationships between attri-
butes is embedded within the notation for expressing the context-free grammar. The benefit of this
approach is to allow attribute relationships to be stated implicitly. Our approach, in contrast, is based
on decoupling attribute computation and context-free productions.

Work on attribute evaluators that are efficient in terms of execution time (left to right evalua-
tors (Bochmann, 1976), ordered attribute grammars (Kastens, 1980), translation for direct execution
(Katayam, 1984), one-pass evaluators (Koskimies, 1984)) and storage management (Jazayeri and
Pozefsky, 1981) has progressed so that they can be realistically engineered for production compilers
(Kastens ef al., 1982). Our work complements this technology; the monolithic attribute grammar pro-
duced in an intermediate stage of our prototype (see Figure 1) may serve as input for other systems.

Koskimies ef al. (1982) and Riihi (1984) propose that, in designing an attribute grammar, con-
sideration should be given to the objects represented by the non-terminals, not by the productions.
The modules developed in the course of experimenting with the tools described here support this view.

Attribute grammars

An attribute grammar (AG) is composed of a context-free grammar G and a set of attribute rules R.
The attribute rules describe how an attributed parse tree is derived from any string in the language L
generated by G.

More formally, an AG is a sextuple (N,T,S,P,A ,R) where N is the set of non-terminal symbols,
T is the set of terminal symbols, V=NUT, ST is the start symbol, P is a set of productions, A is a
set of attributes, and R is a set of rules for the computation of attribute values. Each production peP
is a sequence Xg,Xy, - * - X,, where X¢eN and X;eV (1<i<n). A is the set of symbols used to denote
attribute values within the attributed parse tree. R is a set of attribute rules of the form (p,D,U,f)
where peP, D is an attribute reference of the form (i,a) (0<i<|p|, agA), U is a set of attribute refer-
ences of the same form as D, and f is a function that defines the attribute referenced by D in terms
of those referenced by U.

In this exposition, we denote members of N and A by words or letters, and members of T by
words, letters, or single symbols. Membership in N, T, or A may be deduced from context. A pro-
duction p is denoted Xg—X;X; - - - X,. Attribute rules pertaining to production p are written adja-
cent to p. Within an attribute rule (p,D,U.f), each attribute reference (i ,a) is denoted X;n.a where
n=WX;X,=X; n j<i}|. The special case of n=0 is abbreviated X;.a. The function f is a sequence of
statements in the C programming language that computes D in terms of the elements of U.
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The derivation of any string s from G may be described as a parse tree, with each leaf labelled
by a terminal symbol such that, when concatenated from left to right, these labels form s. Each inte-
rior node represents the expansion of some production peP = Xy—X,X; - - - X, ; the node is labelled
X, and its children are labelled X;,X, - - - X,, in order. Each node also has a set of attributes and
attribute values associated with it; the computation of these attributes is specified by the attribute
rules. The attribute rule (p,D,U,.f) where D is of the form (0,a) specifies the computation of the
attribute a for each node n representing an expansion of p. This value is obtained by applying f to
the values denoted by U; each (i,b)eU denotes the value of attribute b of n if i=0, otherwise of the
ith child of n. If D is of the form (i,a) for i»0, it specifies the computation of the attribute a for
each node which is the ith child of a node n representing an expansion of p. This value is obtained
by applying f to the values denoted by U, as defined above.

For example, consider the following attribute grammar.
A—DbBc
A.a = B.a
Ab=Bb
Bc=0
B—-C
B.a= C.a
B.b=C.b
C.c=B.c
C—-DE
C.a=D.a
Cb=EDb
D.c= C.c
Ec=C.c
D—ef

D.a = fi(D.c)
E—gh
Eb= fz(E.C)
In this grammar, we have N={A, B, C, D, E}, T={b, c, ¢, f, g, h}, S=A, A={a, b, ¢},
P={A—-bBc,B—-C,C—~DE,D—ef,E—~ghl}
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R={ (A—=bBc (0,a) {(2,a)} "(0,a) = (2,a);"),
(A—=bBc (0,b) {(2,b)} "(0,b) = (2,b);"),
(A—=bBc (2,0 {} "(2,c) = 0;"),
B—C 0,a) {(1,a)} "(0,a) = (1,a);"),
B-—C 0,) {(1,b)} "(O,b) = (1,b);"),
B—C (1,0) {(0)} "(1,0) = (0,0)3),
(C-DE (03 {12} "(0,a)=(1,a)"),
(C—=DE (0b) {@2b)} "(0,b)=(2,b);"),
(C=DE (1,09 {00} "(1,0)=(0,)"),
(C=DE (2,0) {00} "(2,¢) = (0,c);",
(D —ef (O,a) {(O,C)} "(O’a) = fl(ovc);");
(E—gh 0,b) {00} "(0,b) = £,(0,b);") }

Figure 2 shows the derivation tree and compound dependency graph produced by this attribute gram-
mar for the input string “bd fgh c”.

/
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Figure 2: Attribute Relations

Modular attribute grammars

A modular attribute grammar (MAG) consists of an ordered set of patterns PT and a set of templates
TM. The patterns are the analogues of productions in an attribute grammars, and the templates are
the analogues of attribute rules. One or more MAGs is applied to a context-free grammar G to
create an attribute grammar as defined above. That is, the MAG (PT,TM) specifies the construction

of Rintermsof N, T, S, P,and A.
Each ptePT has the form Y, Y, - - -Y,, where Yoe 'NUW and Y,€ VUWU{---}. 'N (the

stropped set of nonterminals) is {"x:xeN}, and 'V (the stropped set of vocabulary symbols) is
{'x :xeV}. W is the set of all words. Each rmeTM is a quadruple (pt, D, U, f), where D is a pattern
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attribute reference (i,a) where agA and 0<i<|pt|. U is a set of pattern attribute references of the
same form as D. The denotation used for PT and TM is identical to that used for P and R in the
attribute grammar.

From PT and P we compute MT, the set of textual matches between patterns and productions.
Each element mt € MT has the form (p,pr,m), where peP, ptePT, and m=MyM; - - - M, 4
O<M<|p|). mt eMT 'if and only if the following constraints hold: M;<M;,; (0<i<[|pr|-1);
Mi+1=M;y if Y;¢ - - - (0<i<|pt|-1); Y;="Xy, if Y;€ 'V (0<i<|pt|). Finally, we impose a total ord-
ering on MT with the following relations: (p,pr,m)<(p’',pt’',m’) if p appears before p’' in P;
(p.pt,m)<(p,pt’',m’) if pt appears before pt’ in PT; (p,pt,m)<(p,pt,m’) if M;=M'"; (0<i<j) and
M;<M’; for some j.

Each element mteMT generates a set of attribute rules, denoted gen(mr); the union of all
gen(mteMT) is denoted RM. For mt=(p,pt MM, - - - Mp,_1) € MT, each corresponding template

(pt,D,U.f) generates an attribute rule r = (p,D',U’,f’), where D', U’, and f' are computed from
D, U, and f by uniform replacement of pattern references of the form (i,a) by attribute references
(M;,a). gen(mt) is the set of all such r. RM is ordered according to the relation: r<r' if r is gen-
erated from seMT and r’ is generated from s'éMT and s<s’'.

If the entire set RM were used as R as described above, R would contain many meaningless,
useless, and ambiguous attribute rules. A rule r=(p,D,U,f) is meaningless if any of the attribute
values denoted by U do not exist; r is useless if the attribute value denoted by D is not used as an
input to some other rule; r and r’ are ambiguous if they both define the same attribute for some node
in the parse tree.

The set of tentatively defined attributes TDCV XA is the set of pairs (w,a) (denoted w.a) for
which a meaningful rule r=(p,(i,a),U.f)eRM exists, where X;=w. TD is the smallest set defined by
the recursive rule (w,a)€ID if 3,.4,3.q).v.1)em Xi=W A ¥y (X;,b)ETD. TD may be computed
assuming TD={} initially, and repeatedly testing (w,a)€VxA for membership in 7D, iterating to con-
vergence.

The set of needed atﬁibutes TNCVxA is computed in a similar fashion: it is the smallest set
that satisfies the two constraints: TND{(S,a):(S,a)eTD}; (w,a)EIN if 3,6 .)v.nen Xi,D)ETN A
e} J)QX =w.

The (possibly ambiguous) set of rules RA is generated by constraining RM using TD and 7N:
RA=(r=(p,(i,a),U.f):(X;,)€INY ¢ 5)e(X; b)TD}. Two rules r=(p,D,U.f) and r'=(p',D",U".f")
are ambiguous if p=p’ and D=D'. In this case, r is selected if r<r'. The final set of rules of the
attribute grammar is R={(p,D,U,f)eRA 3, p.v' s1eu (P, U’ f )<(p,D,U f)}.

For example, the attribute grammar given in the previous section is specified by the following
MAG.



Des---
'D.a = fy('D.c);
P—m---Q---

P.a = Q.a;
Ees---
'E.b = fL("E.c);
P—---Q -

P.b = Q.b;
P—---'B---
'B.c = 0;

P—es---Q---

Q.c = P.c;

When this MAG is applied to the context free grammar from the previous example, we have the set
of patterns PT= {D — - -+ ,Pg— - - - Q- - - ,')E—-++,Py—=---Q--:,Pp—---'B -+,
Py—---Q3---}, 'N={'A, 'B, 'C, 'D, 'E}, 'V="N u{’b, ‘c, ‘e, 'f, 'g, 'h}, and the relevant subset
of W is {P, Q}. The set TM={(pt,D,U.f )} of templates, with attribute references of the form X;n.a

replaced by (i,a), is
™M={ (D—--- (0,a) {(0,0} "(0,a) = f1(0,0);"),
P Q- (0,8 {23} "0.a)=(2a)"),
(E=--- ©0,b) {(0,0} "(0,b) = £2(0,b);"),
@P—-- Q- (Ob) {2b} "(Ob)=(2Db)),
@Py=---'B--- 20 { "(2,) = 0;"),

@m- Q- (20 {0} "(2,0) = (0:0)) }
The set of textual matches between patterns and productions is MT={(p ,pt,m )} where m is a tuple of
elements that correspond positionally to elements of a pattern pt and that map elements of pt onto
elements of a production p.



MT={ (A—bBc Py—---Q-- ©, 1,1, 2)),
(A—=bBc Pp—---Q-- ©, 1,2, 3)),
(A—=bBc Pp—---Q-- ©, 1,3, 4)),
(A—=bBc P—---Q-- ©,1,1,2)),
(A—-bBc P—---Q-- ©,1,2,3)),
(A—=-bBc P—---Q-- ©, 1, 3, 4)),
(A—-bBc P,—---'B- ©, 1,2, 3)),
(A—=bBc Pi—---Qs-- ©,1,1,2)),
(A—=bBc Pp—---Q-- ©,1,2,3)),
(A—=bBc Pp—---Q-- ©, 1, 3, 4)),
B—C P Q- ©,1,1,2)),
B-C Pi—-- Q- ©,1,1,2)),
B—-C Py Q- ©,1,1,2)),
(CADE Py—-:-Q-- ©,1,1,2)),
(C—-DE Po—--- Q- ©, 1,2, 3)),
(C-DE P—---Q-- ©,1,1,2)),
(C-DE P—---Q - ©, 1,2, 3)),
(C—+DE Pyt - - - Q- ©, 1,1, 2)),
(C-DE Py—ms---Qy-- ©, 1,2, 3)),
(D—ef D - ©, 1)),
D—ef Po— - Q- - ©,1,1,2),
D—ef P - Q- - 0, 1,2,3)),
D—ef P Q- ©,1,1,2)),
D—ef P Q- ©,1,2,3)),
D—ef Pi—r - - Q- ©,1,1,2),
D—ef | SREEY o ©,1,2,3)),
(E—gh '‘E—--- ©, 1)),
(E—~gh P~ Q- ©,1,1,2)),
(E—gh P~ - Q- 0, 1,2,3)),
(E—gh Pp—--- Q- ©,1,1,2)),
(E—gh S O ©,1,2,3)),
(E—~gh Py - - Q- - ©,1,1,2)),
(E—gh Py Q- ©,1,2,3) }

The textual matches MT and templates TM generate RM={(p,D',U’,f"i}, a set of attribute rules. For
example, (Po—---Qy---, (0,2), {(2,a)}, "(0,a) = (2,2)") &M and (A — b B ¢
Py—s -+ Q-+, (0, 1, 1, 2)) 6MT generate (A — b B c, (0,a), {(1,a)}, "(0,a) = (1,a);") RM
because P, corresponds to 0 in m which corresponds to A in p, and Qg corresponds to the second 1 in
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m which corresponds to bin p.

RM={ (A—bBc (0,3 {(1a)} "(0.a)=1.2)"),
(A—bBc (0,a) {(2,a)} "(0,a)=(2,2);"),
(A—bBc (0,2 {B.a)} "(0a)=(Ga)),
(A—=bBc (Ob) {(1,b)} "(0Ob) = (1,b);"),
(A—=bBc (0,b) {(2,b)} "(0,b) = (2,b);"),
(A—=bBc (0,b) {Bb)} "(Ob)= (b)),
(A—-bBc (20 { "(2,c) = 0;"),
(A—=bBc (1,0 {00} ") =(0c)),
(A=bBc (2,0 {00} T"(2:)= (0.,
(A-=bBc (3,0 {00} "B30) = (0.)"),
B-C (0,a) {(1,3)} "(0,a) = (1,a);"),
B-—C (O,\b) {(1,b)} "(Ob) = (1,b);"),
B-—C (1o {0,090} ") = (0,0,
(C-DE (02 {(1a)} "(0.a)=(@1,a)),
(C—DE (0,3 {22} "(03)=(2a)),
(C —DE (o’b) {(lvb)} "(07b) = (1 ’b) ;"),
(C-DE (0)b) {@2b} "(0Ob)=(2b)"),
(C—»DE (1,0 {0} ") =(00)),
(C=»DE (2,0 {00} ") = (0.0)),

- (D—ef (0,a) {0, "(0,a) = f£1(0,0);),
D—ef (0,a) {(1,a)} "(0,2) = (1,a);"),
(D—ef (0,2) {(2,2)} "(0.a) = (2,2);),
(D—ef ©O,b) {1,b)} "(O,b) = (1,b);"),
D—ef (O,b) {2,b)} "(Ob) = (2,b);"),
D—ef (1,09 {0,09} ") = (0,0,
D—ef 20 {00} "2c) = (0,0,
(E—-gh (0a) {(La)} "0a) = (1)),
(E—-gh (02 {2a} "0a)=@2a)),
E—-gh (©Ob) {00} "Ob)=rx00)",
(E—gh (©Ob) {@b)} "(Ob)= (b)),
E—gh (b)) {2b)} "(Ob)=(2b)"),
(E—gh 1,0) {0} ") = (0,07,
(E—gh (2,0 {00} "2c) = (0,)") }

The elements of RM are more useful for the purpose of this exposition if attribute references (i,a) are
rewritten in the form X;n.a.
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RM={ (A—bBc A.a {ba} "A.a=b.a;"),
(A—-bBc A.a {Ba} "A.a=B.a;),
(A—-bBc A.a {cal}] "A.a=c.a;),
(A—-bBc ADb {bb} "Ab=Db.b"),
(A—-bBc Ab {Bb} "Ab=B.b"),
(A—-bBc Ab {cb} "Ab=cb),
(A—-bBc Bc {} "B.c = 0;"),
(A—=bBc bc {Ac "c=Ag"),
(A—-bBc B.c {Ac "Be= Ak,
(A—=bBc cc {Ac "cc=Acg"),
B—C B.a {C.a} "B.a= C.a;"),
B-C Bb {Cb} "B.b=C.b;"),
B—~C Cc {B.c} "C.c=B.c"),
(C—~+DE C.a ({D.a} "C.a= D.a;"),
(C-DE Ca {Ea} "Ca=E.ua)),
(C-DE Cb {Db} "Cb=D.b;"),
(C-DE Cb {Eb} "Cb=E.JD"),
(C—~DE D.c {Cc} ™.c=C.),
(C-DE Ec {Cc "Ec=Cg),
D—ef D.a {D.c; "D.a= f,D.c;"),
D—ef D.a {e.a} "D.a= e.a;"),
MD—ef D.a {f.a} "D.a=f.a;"),
D—ef Db {e.b} "D.b=ce.b;"),
D—ef Db {f.b} "D.b={.b;"),
MD—ef ec {D.c} "e.c=D."),
MD—ef fc {D.c} ".c=D.;"),
(E—~gh E.a {g.a} "E.a=g.a;"),
(E—~gh E.a ¢{h.a} "E.a= h.a}"),
(E—gh Eb {E.c} "E.b= f,E.c"),
(E—gh Eb {gb} "Eb=gb"),
(E—gh E.b ¢{hb} "E.b= h.b;"),
(E—gh gc (Ec "gc=E.g"),
(E—~gh h.c {E.c} ‘"h.c=E.c;") }
RM is used to generate TD, the set of tentatively defined attributes. 7D is initially empty; B.c can be
added to TD because 3, p yy exuD= B.c and U= {}. Now the set {D:V p.p,upUC{B.c}} = {C.c} can
be added to TD. The set TD finally becomes {B.c, C.c, D.c, D.a, E.c, E.b, E.c, e.c, f.c, g.c, h.c,
C.b, C.a, B.b, B.a, A.b, A.a}.

The set TN of needed attributes is initially composed of those attributes tentatively defined on
the goal symbol. TN is initially {A.a, A.b}. By repeatedly adding to TN the set {U:3, p,uyp eruD ETN
and U€eTD)}, the final set TN= {A.a, A.b, B.a, C.a, D.a, D.c, C.c, B.c, B.b, C.b. E.c, E.c} is
created. :
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The set of attribute rules R, specified in the attribute grammar of the previous section, may now
be derived from RM, TD, and TN.

An Example

In this section we use an example from Knuth (1968). The problem is to create modules that gen-
erate an attribute grammar to recognize and evaluate expressions on binary numbers. At the end of
this section, we discuss how changes to the problem affect the modules.

The syntax is described by the following context-free grammar.
goal — expr

expr — term

expr — expr addop term

term — factor

term — term mulop factor

factor — int

factor — ( expr)

int — digit

O 00 1 QA W & W=

int — int digit
digit — 0
digit — 1
addop — +

-
N = O

13 mulop —*

n
The value of a binary number is determined using S (d‘,,)*"‘l where p denotes the position of a
p-l

binary digit d with respect to the right boundary of a string of n digits.

The following patterns describe the synthesized attribute val, used to compose the value of a
binary number or expression.
module val
1 digit—"'0
digit.val = 0;
2 digit —’1
digit.val = 2 " digit.scale;
3 binop — Lopnd op Ropnd
binop.val = callop(op.op, Lopnd.val Ropnd.val);
4 compose — valA valB
compose.val = valA.val + valB.val;
5A—---B -
A.val = B.val;
Considering only textual pattern matching, the first two patterns match productions 10 and 11; pattern
3 matches productions 3, 5 and 7; pattern 4 matches production 9; and pattern 5 matches productions
1 — 13 in 20 different ways.
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Pattern 5 textually matches any production with one or more right-part symbols. A concrete
definition will only be generated from this pattern if, for a production that matches, a) the right-part
symbol is able to synthesize the attribute val and b) an occurrence of the left-part symbol appears in
some other production on the right-hand side and needs the attribute val in that context. For exam-
ple, although the pattern symbol B in pattern 5 could match the symbol “(” in production 7, there is
no opportunity for “(” to have synthesized this attribute.

The template in pattern 3 invokes a function that has been bound to the attribute op.
module op
6op—'+
op.op = (int) add;
7op—"'*
op.op = (int) mul;
The inherited attribute scale (required by pattern 2) is initially zero for the right-most digit of a
binary number and incremented to the left.
module scale
8 binary — left right
right.scale = binary.scale;
9 binary — left right
left.scale = binary.scale + 1;
10 factor — ‘int
‘int.scale = 0;
11 A—B
B.scale = A.scale;

The result of applying the generator to the context-free and pattern grammars illustrated above
is the following attribute grammar. (The numeric suffixes on vocabulary symbols disambiguate multi-
ple occurrences of the symbol within a production.)

1 goal — expr

goal.val = expr.val ;
2 expr — term

expr.val = term.val ;
3 expr — expr addop term

expr.val = callop ( addop.op , exprl.val , term. val )
4 term — factor .

term.val = factor.val ;
S term — term mulop factor

term.val = callop ( mulop.op , terml.val , factor.val ) ;
6 factor — int

int.scale = 0 ;

factor.val = int.val ;
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7 factor — ( expr)
factor.val = expr.val ;

8 int — digit
digit.scale = int.scale ;
int.val = digit.val ;

9 int — int digit
intl.scale = int.scale + 1 ;
digit.scale = int.scale ;
int.val = intl.val + digit.val ;

10 digit — 0

digit.val = 0 ;
11 digit —» 1

digit.val = 2 " digit.scale ;
12 addop — +

addop.op = (iint ) "add" ;
13 mulop — *
mulop.op = (int ) "mul”;
Discussion of modularity. To measure the degree of abstraction achieved by the three modules
above, let us propose some syntactic and semantic changes to the example language and discuss how
this affects the modular specification.

Module val is immune to all changes except those that directly affect the computation of val.
For example, patterns 1 and 2 each handle unique digits. If the number-base changes from binary to
some other base, the number of digits will increase and each will require a pattern and template simi-
lar to 1 and 2. This will change module va! directly in proportion to the number base change. On the
other hand, if more operators or more operator priority levels are added, pattern 3 will remain
unchanged. Pattern 5 is a copy rule that simply propagates val up the tree. The language could also
be changed so that val is required in more places; pattern 5 guarantees that it is always available.

Module op abstracts the individual operators. It is immune to number base and priority changes
but is clearly affected by the addition of more operators. The grammar could be modified by incor-
porating the unit productions for addop and mulop into productions where they are referenced. In this
case, the patterns in module op could be modified to recognize the operators + and * in situ, with no
further changes to the modules required.

Module scale is unaffected by any of the proposed changes.

Implementation Concerns

Figure 1 shows the components of the implementation. In the conventional view of an attribute
grammar evaluator, the derivation tree is decorated with attributes connected to form a graph. The
graph, traditionally called a compound dependency graph, reflects both the structure of the derivation
tree and relationships specified in the attribute grammar. The graph represents an expression that can
be evaluated and, if the attribute grammar specifies a translation, the result of the evaluation is the
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desired translation.

The size of the graph and the time to traverse it is linear with respect to the size of the input
and the size of the attribute grammar. For our research, a straightforward graph evaluator is suffi-
cient to provide adequate performance. Should performance become an issue, we note that tools for
generating efficient evaluators exist and that the MAG translator has been designed so that such
evaluators can be interfaced with the monolithic attribute grammar produced by our system.

MAG templates are written as C statements using a special denotation for attributes. These
denotations are recognised by the AG translator, which replaces attribute references with references to
clements of an activation record and emits the C statement as a procedure parameterized by the
activation record. The activation record is built by the parser from an attribute-record descriptor pro-
vided by the AG translator.

proc(p)

attrib *p;
{
*L(p+0) = R(p+1)+R(p+2);

————————
e e—-d

i 1
| S
Figure 3: Evaluation of attribute expression

Ax=By+ Cz

Figure 3 shows the structure built to evaluate a representative attribute expression. Each node
in the derivation tree has an associated attribute record. An unevaluated attribute is initialized by the
graph builder to be a pointer to an activation record prefixed with a field containing the address of a
procedure. Upon the first evaluation of an attribute, the procedure is invoked. The body of the rou-
tine is generated from an attribute expression with routine calls in place of attribute references. Rou-
tine R evaluates an attribute and returns the result; routine L returns an L-value. In the example, the
initial value of A.x will be replaced by a computed value. A tag is maintained by L so that future
references to an evaluated attribute via routine R simply return the value.
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The implementation has the following implications.

1) Module decomposition is enhanced because well-known data structures and algorithms can be
used to implement abstractions that can be accessed easily by C function calls from within attri-
bute rules.

2) There is no constraint imposed by the evaluator on the interdependencies of attribute expres-
sions.

3) The compound dependency graph is executed directly instead of using an interpretive evaluator.

4) Because the parser builds the compound dependency graph from activation-record descriptors
and procedure addresses provided by the generator, the derivation tree is not required and is not
built.

The modular input to the MAG translator is typically smaller in terms of numbers of attribute
definitions than the resulting monolithic attribute grammar. It would not be reasonable to gengrate a
unique C procedure for each attribute definition. For example, many generated attribute definitions
are just copy rules. The C procedure for a copy rule is quite simple, and our implementation allows us
to generate just one version of the copy procedure that serves for all occurrences of copy rules. We
have generalized this optimization to generate unique C procedures for sets of isomorphic attribute
expressions.

For a given production, there may be a number of attribute expressions that compute informa-
tion used only by other attribute expressions in the same rule and not at all by attribute expressions in
any other production. Using textual substitution, an attribute reference may be replaced by the
expression used in the attribute’s definition. This optimization, in conjunction with the one described
in the previous paragraph, has yielded a 90 per cent reduction in the number of procedures generated.

As a consequence of the textual substitution optimization, it is possible that certain attribute
definitions associated with a production, which had been originally generated because of need,
become unreferenced. If this is the situation for all definitions of an attribute of a particular grammar
symbol, the attribute becomes redundant for that symbol and may be removed from the symbol’s
attribute record.

In development work, it is useful to have automatic checks for undefined attributes. This is
unnecessary in our system because we perform static consistency checks on the generated attribute
grammar. Starting from the goal production,

a) for each synthesized attribute X.a that is referenced, the attribute must be defined for all deriva-
tions of X, and

b) for each inherited attribute X.a that is referenced, the attribute must be defined for all produc-
tions that contain X in the right part.

This simple test guarantees that all attributes reachable from the goal are defined for any derivation
tree. It can also be used to detect attribute definitions that are not referenced at all, indicating errors
in the modular grammars.
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Using Modular Attribute Grammars

In this section we discuss different approaches to modularity in compiler construction and show how
MAGSs may be used to achieve module decomposition.

Bucket Brigade. In a compiler, it is often the case that the name space or environment is propagated
down the derivation tree and an environment augmented with new definitions is propagated up the
tree (Koskimies er al., 1982) (see Figure 4).

Figure 4: left-to-right tree traversal

The bucket brigade operator of regular-right part attribute grammars (Jullig and DeRemer, 1984) was
introduced for this purpose. The following sets of patterns and templates accomplish the same effect.
We have subdivided them into two modules: the first produces the output attribute env intended to
represent the environment propagated down the derivation tree and the second module produces the
attribute def intended to represent the (modified) environment passed up the tree. We assume the
start symbol in the context-free grammar is goal. In terms of inputs and outputs, the two modules are
dependent both on themselves and on each other. The example illustrates a valid modular decomposi-
tion that that cannot be expressed as a phase oriented decomposition.

module env
(1) ’goal — A ...
A.env = 0;
(2)A—B...
B.env = A.env,
B3)A—..BC...
C.env = B.def;
module def
(4HA—..B..
B.def = B.env;
G)A—~..B
A.def = B.def;
6)A—

A.def = A.env;
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In module env, (2) the left symbol of a right part inherits env from the left part and (3) other
symbols in the right part inherit env in terms of def synthesized by their left neighbours.

In module def, an empty production (6) sends env back to its parent as def. In a non-empty pro-
duction, (5) def is synthesized from the right-most symbol of the right part. In the case (4) that a
right-part symbol is not a non-terminal and therefore def cannot by synthesized by (5) or (6) when the
symbol appears as a left part, env is passed along as def.

The modules shown above will generate a top-down left-to-right traversal for any derivation tree
of any context-free grammar. The modules demonstrate that a constant number of patterns can be
used to describe an abstraction — namely, bucket brigade — that applies to any size attribute gram-
mar; we feel this is a significant reduction in complexity. In a compiler application, the def module
will be augmented by patterns that recognize defining occurrences of identifiers and generate attribute
definitions that modify the environment.

To illustrate the flexibility of modular attribute grammars, we show how to perform a top-down
right-to-left traversal of the derivation tree with the following modules.
module env
’goal — ... A
A.env = 0;
A—..B
B.env = A.env;
A—..BC..
B.env = C.def;
module def
A—..B..
B.def = B.env;
A—B..
A.def = B.def;
A —
A.def = A.env;
Abstract MAGs. A common technique in compiler construction is to transform the parse tree into an
abstract syntax tree, a representation of the parse with less irrelevant detail. Some notation is neces-
sary to specify the relationship of the parse tree to the abstract syntax tree. A MAG could be used to
specify the translation from concrete to abstract syntax tree, whose shape is specified by a second
context-free grammar (the abstract grammar). A second MAG, based on the abstract grammar,
could specify the evaluation of attributes in the abstract syntax tree.

In a number of instances, the same abstraction can be achieved without using the two-phase
approach described above. Patterns can be used in place of two common mappings from concrete to
abstract syntax: grouping and elision. Grouping involves building nodes of a common type for sub-
trees derived from a number of nonterminal symbols or rules with similar meanings. In the binary-
numbers example given above, the nonterminals term, factor, and expr all represent expressions; the
nonterminals addop and mulop both represent operators. The rules expr — expr uddup term and term
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— term mulop factor both represent binary expression tree nodes. Patterns and templates conveniently
express this abstract grouping: attributes are assigned to concrete syntax elements using templates and
patterns containing stropped symbols; abstract attribute computations are expressed in terms of
unstropped patterns and templates — the binding of these computations to the concrete syntax is con-
trolled by the availability of attribute values. That is, the set of tentatively defined attributes is used
to label nodes according to the abstract syntax. Elision, the removal of irrelevant detail, is accom-
plished in two ways: patterns containing - - - are used to match strings of symbols that are semanti-
cally irrelevant, and unit rules can be handled by the general copy rule paradigm presented above.

Several layers of abstraction may be built using attribute-controlled MAGs — each successive
layer is built from attribute values generated by the previous one. Also, several different abstract
views may be imposed on the parse tree at the same time: each abstract view needs to deal with only
the sorts of information of interest to it. In our evolving methodology for the use of MAGs, we are
attempting to write reusable modules such as symbol table routines, expression evaluators, overload
resolution algorithms, and code generators. One of our first motivating examples was to express using
reusable MAGs an operator selection algorithm akin to that of Ada; this algorithm has been described
informally in terms of attributes by Cormack and Wright (1987). The general approach is that each
such module would apply to any parse tree decorated by some specific set of attributes. The user of
the module would be responsible to ensure (possibly by writing an interface MAG) that the input
attributes decorate the parse tree in the appropriate manner. These input attributes may be computed
from concrete patterns, or from the outputs of other modules. For example the expression evaluator
in the example could be applied to a variety of concrete grammars, provided the operator nodes and
value-generating nodes were assigned the attributes op and val respectively.

Experience. We have written MAGs to perform semantic analysis for the declaration statements of
Pascal. Our implementation uses a 158 line context-free grammar and 12 modules comprising 101
patterns and templates. The generated attribute grammar contains 525 attribute definitions that
require 50 unique procedures, given the optimizations described in the implementation section.

From this experience we note that module usage may be partitioned into creation, combination,
and distribution. Modules that are not partitioned strictly according to these categories generally con-
tain some aspect of each. Creation modules use patterns to recognise syntactic constructs that
uniquely identify semantic constructs — syntactic recognition is enhanced by availability of tentatively
defined attributes. Combining modules recognise situations where multiple threads of similar infor-
mation are combined into a single thread. For example, a list is composed by appending elements to
another list or to an empty list. Combining situations can be recognised solely through attribute avai-
lability but may be triggered by cues in the concrete syntax. Distribution modules use bucket-brigade
patterns to distribute information throughout a derivation tree. These modules may also use syntactic
cues to terminate distribution.

From the Pascal implementation we also note that using MAGs is not easy as we would like.
Perhaps due to unfamiliarity with the pattern matching process, we observe that the user occasionally
must resort to inspecting the generated AG to determine the effect of pattern matching. This is
analogous to object-level debugging of a program written in a high level language; we hope to find
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methods and tools to allow us to work exclusively at the MAG source level. This aim is partly
addressed with the use of a strict methodology like that outlined above.

Conclusions and Future Research

The complexity of attribute grammars is due to the dominance of the structure of the context-free
grammar over the structure of information flow through attribute expressions. This paper has sug-
gested that the specification of the computation and flow of information through attributes can be
decoupled from concrete syntax and rearranged as an appropriate module decomposition. A tool to
generate attribute grammars from modular specifications has been used to investigate how decomposi-
tion should apply to attribute grammars. We have gained enough experience to conclude that modu-
lar attribute grammars represent an improvement over monolithic attribute grammars in reducing the
complexity of attribute specifications; we are now in a position to make suggestions for further
improvements. '

The textual patterns introduced in this paper are intentionally designed for simplicity. While
more sophisticated patterns are possible, we are not yet convinced that individual improvements in
this area will significantly reduce complexity. In contrast, the contribution of tentative definition and
of need in constraining textual pattern matching cannot be overstressed. If a better technique for
MAG translation is to be found, we believe it will be coupled with an increase in the power of
attribute-constrained pattern matching.

Our experience with modular attribute grammars shows that some form of bucket-brigade pat-
terns is incorporated into most modules. We hesitate to incorporate automatic generation of copy
rules into the MAG translator because this is a particular solution for a particular problem that may
addressed by a more general solution. We find many modules, not necessarily concerned solely with
attribute propagation by copy rule, that share a similar overall appearance. A possible solution is to
provide generic modules, parameterized by attribute and production symbols, that can be used to pro-
duce module instances. This would make it possible to incorporate an instance of a generic general-
purpose bucket-brigade module as a sub-module of any module, or, indeed, to compose modules
entirely of instances of generic modules.

MAGGIE was designed to address shortcomings in attribute grammars that became apparent
because of considerable experience (our own and others) in using attribute grammars to specify pro-
gramming languages and compilers. Before making any changes to MAGGIE, we need a larger body
of expertise in creating reusable MAGs using the existing tool. Only with this expertise can we prop-
erly evaluate possible enhancements.
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