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1. Introduction

The design theory began with the pioneering work of Codd [Cod1][Cod2]. Codd
observed that in the presence of functional dependencies, updating a relation may
result in certain problems which are widely known as the update anomalies [Cod2].
Codd suggested normalization as a way to separate independent facts into different
relations and to reduce logical data duplication. Since then, much research on design
theory centered around this problem. Various normal forms as well as other desirable
properties associated with normalization have been proposed
[ABU]|[Bern|[BDB][Cod1][Cod2][Cod3][F1][F2][Z]. Under a different setting, the problem
of how to store independent facts into separate relations was later studied by other
authors [CM1][GY][IIK][S1][S2].

Query answering is an important function in a database system. Consequently,
designing a database scheme that facilitates efficient query answering is highly desir-
able. Recent work on acyclicity [BFMY][F3][DM][Y1] addressed the problem of what
types of database structures allow efficient query answering in the presence of the full
join dependency. With functional and full join dependencies, several classes of data-
base schemes with such a desirable property were identified
[AC1][CH1][CM2][GY][IIK][MRW][S3]. The notion of boundedness [GM|[MUV] was
used in the latter work as the evaluation criterion.

Constraints are logical restrictions imposed on a database. Ensuring a database
satisfies the constraints is costly in general. The idea of independence was the first
attempt in characterizing when a database scheme allows efficient solution to the con-
straint enforcement problem. Informally, a database scheme is independent if each
relation in a state satisfies a specific set of constraints implies the state is globally con-
sistent [S1][S2]{GY][IIK]. Constant-time-maintainability is a generalization of indepen-
dence in which the constraint enforcement problem could be solved in time indepen-
dent of the state size [GW].

In this paper, we are interested in identifying a rather general class of schemes
which is desirable with respect to query answering and constraint enforcement. In
view of the importance of key dependencies [Bern][S1][S2], we assume throughout a
cover of functional dependencies is embedded in a database in the form of keys. There
are two classes of schemes which were proven to be highly desirable with respect to
query answering and constraint enforcement when a set of key dependencies is
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considered. They are the class of independent schemes [S1][S2] and the class of y-acy-
clic schemes [CH1]. However, there are database schemes which possess the same
desirable properties but do not fall into the above classes of schemes.

Exzample 1: Let us consider a university database in which a course could be
taught by more than one teacher. Let the database scheme be R = {R,(HRC),
Ry(HTR), R3(HTC), Ry(CSG), R5(HSR)}, where C = course, T = teacher, H =
hour, R = room, S = student and G = grade. The sets of (candidate) keys for R,
to Rg are {HR}, {HT, HR}, {HT}, {CS} and {HS} respectively. The set of constraints
is the set of key dependencies implied by the keys embedded in R. R is neither
independent nor ~y-acyclic. Because of the interaction between the relation schemes and
the constraints, it is not obvious if R is bounded. In fact, by the results in this paper,
not only can we show that R is bounded, but also it is constant-time-maintainable. So
this scheme is indeed highly desirable with respect to query answering and constraint
enforcement. O

Let us consider the following database scheme S = {S,(HRCT), S,(CSG),
Ss(HSR)}. The sets of keys for relation schemes S, to Sz are {HR, HT}, {CS} and
{HS} respectively. So the set of key dependencies implied by keys in S is identical to
the set of key dependencies implied by keys in R in Example 1. By a result in [S2], S
is independent with respect to the set of key dependencies. Suppose that we allow
unknown but existing nulls in a relation (null values may even appear in a key), every
state r on R can be transformed into a state s on S. This can simply be done by
extending tuples from R,;, R, and R3 to S, with distinct nulls, relations on R, and Rg
are simply relations on S, and S; respectively. Since S is independent, it is not diffi-
cult to see that r is consistent with respect to the set of key dependencies exactly
when the substate on R;, R, and R, and the relations on R4 and Rj all satisfy their
respective embedded key dependencies. Although R is not an independent scheme,
verification of consistency of a state can still be carried out by inspecting certain sub-
set of relations in the state. In this sense, R in Example 1 can be considered as an
instance of a more general kind of independent schemes. This type of schemes is the
object of study in this paper and they will be called (key-equivalent) independence-
reducible schemes.

In this paper, we first show that a class of database schemes, called key-equivalent
database schemes, is bounded with respect to a set of key dependencies. With this
result, we then show that the constraint enforcement problem for this class of schemes
can be solved incrementally via predetermined relational expressions. After that, we
propose a technique called independence-reducibility to show that a larger class of
cover embedding schemes, which we call key-equivalent independence-reducible data-
base schemes, or independence-reducible database schemes for short, also possesses all
the desirable properties enjoyed by key-equivalent database schemes. Hence the class
of schemes identified is highly desirable with respect to query answering and constraint
enforcement. To demonstrate that the class of schemes identified is rather general, we
prove that the class of independence-reducible database schemes contains a superset of
all previously known classes of cover embedding BCNF database schemes that with
similar properties [S1][S2][CH1]. Independence-reducible schemes properly contain a
class of constant-time-maintainable database schemes and an efficient algorithm is
found for testing when an independence-reducible database scheme is constant-time-



maintainable.

In Section 2, we give most of the definitions needed in this paper. In Section 3,
we define the class of key-equivalent database schemes and show that this class of
schemes is bounded and algebraic-maintainable. Algebraic-maintainability is a general-
ization of constant-time-maintainability. We then give a condition that exactly deter-
mines when a key-equivalent database scheme is constant-time-maintainable, and show
that it can be tested efficiently. In Section 4, we define the class of independence-
reducible database schemes and prove its properties. We show that independence-
reducible schemes are bounded, algebraic-maintainable and closed under an augmenta-
tion operation. Algorithms for computing total projections and for determining if an
updated state is consistent are also given. In Section 5, we find an efficient algorithm
which recognizes exactly the class of independence-reducible database schemes. We
also prove that this class of schemes contains a superset of all previously known classes
of cover embedding BCNF database schemes which are bounded and constant-time-
maintainable. Finally, we show that the characterization of constant-time-
maintainability for key-equivalent database schemes is applicable to independence-
reducible schemes. In Section 6, we summarize the results in this paper.

2. Definitions and Notation

In this section, we give most of the notation required for the rest of this paper.

2.1. Basic Definitions

A partition of a set S is a collection of nonempty subsets of S such that elements
in the collection are pairwise disjoint and the union of the collection is S. Each subset
in the collection is called a block. Two sets are tncomparable if neither one is a subset
of the other.

Following standard notation [Ma][U], we fix a finite set of attributes
U={A,, ...,A,} and call it the universe. With each A; we associate a set of con-
stants called its domain, denoted by dom(A;). Domains for different attributes are
assumed to be disjoint. A relation scheme R is a subset of U. A database scheme
R={R,, ...,R;}is a collection of relation schemes such that the union of the R;'s is
U. A tuple defined on R={A,, . .. ,Aj} is a function p that maps each A; to a value,
1<¢<j. The value can either be a constant, from dom(A4;), or a variable taken from
an infinite set of uninterpreted symbols. If ux is a tuple on R and X is a subset of R,
K[ X] denotes the restriction of u to X. We say u[X] is total if u[A;] is a constant, for
all A; € X. Let 7t be the restricted projection operator and be defined as 7!}(([ ) =
{t[X] |t €I and t[X] is total}, where I is a set of tuples. Let 7 denote the usual pro-
jection operator. A relation on R is a set of tuples defined on R such that every tuple
is total. A database state is a function r that maps each relation scheme R; €ER to a
relation on R;. We write r=<r(R;),...,r(Ry)>=<ry...,r;>. Let
r=<ry,...,r,> and s=<s;,...,5> be two states on R. Then s -
r=<8§;=7p ...,8—r>,andsUr = <s;Ury, ...,sUr,>.



2.2. Tableaux

A tableau is a set of tuples or rows defined on U [ASU]. Each column of a tableau
corresponds to an attribute in U. The domain of the i column of the tableau,
corresponding to an attribute A;, consists of the distinguished variable (dv) a;, a set of
countable many nondistinguished variables (ndv’s) {b;;} and constants taken from the
domain of A;. No variables can appear in two different columns in a tableau. A
tableau can contain redundant rows. A tableau is said to be minimized if no proper
subset is equivalent to the tableau. A detailed discussion on equivalence and minimiza-
tion of tableaux can be found in [ASUJ.

Given a database state r=<r;, ...,r,>, we define a tableau 7, on U and call it
the tableau for database state r: For each relation r; € r, and for each tuple ¢t € r;,
there is a row s in 7, corresponding to it. The row s is said to originate from r; (or
R;) and is defined as follows:

e s[R;] = t;

® s[A] = b;;, b;; is a ndv that appears nowhere else in T, for all A €U—R;.

The tableau for a database scheme R={R,, . .. ,Ry}, denoted Ty, is a tableau of
k rows where each row corresponds to exactly one R; in R [ABU][ASU]. The com-

ponents of the rows in TR are defined as follows: If ¢; is the row in Tg for relation
scheme R;, t;[A;] = a;, if A; ER;, else t;[A;] = b;;.

2.3. Functional Dependencies and Chasing

The kind of constraints considered here is functional dependencies (fd’s) [Ma][U].
Associated with each fd is an fd—rule. Given a tableau T and a set of fd’s, we can use
the fd-rules to infer additional information by equating symbols of 7. These transfor-
mation rules are defined as follows and their properties are described in [MMS]:

fd—rule: for each fd X—A, there is an fd-rule corresponding to it. Suppose
tableau T has rows t;, t, that agree in all X-columns. Let v, v, be the values in
the A-column of t,, to respectively. Furthermore, assume v; # v,. Applying the
fd-rule corresponding to X—A to rows t,, ty of T yields a transformed tableau T.

is the same as T except vy, vy are renamed as follows. If one of v, or v, is a dv
(or a constant) and the other is not, then rename the other by the dv (or the con-
stant respectively). If both are ndv’s, then rename the variable with the higher
subscript to be the variable with the lower subscript. If both are distinct con-
stants, the result of applying the rule is usually defined to be the empty tableau
and an tnconsistency is said to be found.

Let X = X3 * * * X, be a sequence of transformations, then x(T') denotes the appli-
cation of transformations x to the tableau T. x(T) is defined as x,( - - (a(T)) - )
Suppose F is a set of fd’'s, CHASER(T) means that we apply the corresponding fd-rules
exhaustively to 7.

Given a set of dependencies F, there are additional dependencies implied by this
set in the sense that any relation that satisfies this set must also satisfy the additional
dependencies. The set of dependencies that is logically implied by F is the closure of
F, denoted by F*. Two sets of fd’s F and G are equivalent, or F is a cover of G, if
Ft = G*. Given a set of attributes X, the closure of X with respect to (wrt) F,
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denoted by X7 (or X if F is clearly understood), is the set of attributes {A [X—A €
Ft}.

An fd X—A is said to be embedded in a relation scheme R if XACR. The pro-
jection of a set of fd’s F onto R;, denoted by F' |R;, is the set of projected fd’s X—A
€ F' such that XA is embedded in R;. A database scheme R is said to be cover
embedding wrt a set of fd’s F if there exists a cover G of F such that for each fd
X—A €G, X—A is embedded in some R; €ER. G is said to be an embedded cover of
R. If F* = G* then CHASER(T) = CHASE4(T), for any tableau T on U [MMS].

Given a set of fd’s F, a nonempty subset K of a relation scheme R is called a
candidate key, or simply a key of R if K—R € F* and no proper subset of K has this
property. XCR is a superkey of R if X contains a key of R. If K is a key of R and
AER—K, we say that K—A is a key dependency embedded in R. F is a set of key
dependencies (embedded) in R if F is equivalent to the set {F—A | F—A is a key
dependency in R}. F is a set of key dependencies (embedded) tn a database scheme R
if F' is equivalent to the set U{F; | F; is a set of key dependencies in R;, R;ER}. A
database scheme R is in Boyce-Codd Normal Form (BCNF) wrt a set of fd’s F if for
all nontrivial X —Y € F" embedded in some R;, R; €ER, X is a superkey of R;. If R
is a cover embedding database scheme wrt a set of embedded key dependencies, we
assume the set is explicitly given. A database scheme R is lossless wrt F if
CHASER(TR) has a row of all dv’s. SCR is said to be a lossless subset of R covering
X if USDX and S is lossless wrt the fd’s embedded in S.

2.4. Hypergraphs for Database Schemes

A hypergraph is a pair H = <V, E>, where V is a set of nodes and F is a col-
lection of nonempty subsets of V called edges [B]. Any subset of E in H forms a
subhypergraph of H.

Given a database scheme R, its hypergraph, denoted by Hg, has U as its set of
nodes, and R as its set of edges. In this paper, we are interested in ~-acyclicity

[DM][F3]. Following [ADM][F3], we give below the required terminology of hypergraphs
used in this paper.

Let H = <V, E> be a hypergraph. A path from z; (E,) to =, (E,) is a
sequence <FE,, E,, ... ,E,, > such that:

e =z, €FE,and z,, EE,;

e FE,,E,...,E, areedgesin E, m>1;

o E,.NE,,%#gfork=12,...,m—1;

e no proper subsequence of it satisfies the above properties.

Two nodes (edges) are connected if there exists a path from one to the other. H =
<V, E> is connected if every pair of nodes (edges) in H are connected.

Given a family of sets E = {E, . . . ,E, }, Bachman(E) is defined as follows:
e if F; €EFE, then E; €Bachman(E);
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e if X and Y are in Bachman(E), then XNY is in Bachman(E);
e nothing else is in Bachman(E).

m
A family of sets {Wy,...,W,,} is connected if the hypergraph H=< U W;,
i=1

m
_Ul{Wi}> is connected. Let R be a database scheme. A connected set V =
1=

{Vi, ..., Vin} € Bachman(R) is a unique minimal connection (u.m.c.) among XCU, if

° m
uUvV; DX, and

1=1

k
for every connected subset {W,, ... ,W;} of Bachman(R) such that U W; D X,
i=1
there exists {W;, ... ,W; } C{W;, ..., W,}such that W, 2V, for 1<j<m.
There are several efficient methods of finding the u.m.c. [BBSK][C2][Y2]. The follow-
ing result concerning u.m.c.’s and ~-acyclic hypergraphs is stated in [F3][Y2], and
recently proven in [BBSK].

Theorem 2.1: Let R be a database scheme and be connected. R is ~-acyclic if
and only if R has a u.m.c. among X, for any XCU.

2.5. Weak Instances and Boundedness

Let r be a state for a database scheme R={R,, ... ,R;}. Let I be a relation
defined on U. Then I is a weak instance for r wrt a set of dependencies F' if

o mp(I) 2 r;, for each 1<4<k;
e [ satisfies F.

A database state r is said to be consistent wrt a set of dependencies F' if a weak
instance exists for the state wrt F' [GMV][H2]. It has been shown that CHASER(T,) is
nonempty if and only if r is a nonempty consistent state [H2]. CHASER(T,) is called
the representative instance for state r. The X-total projection of the representative
instance for r, denoted [X], is m{(CHASER(T,)). This model is known as the weak
instance model and has been used by various authors as a formal way to study infor-
mation content in a database. See for example,
[AC1][AD][C1][CA][CKS][CH1][CM2][GW][GY][IIK][M][MUV][S1][Y1].

A database scheme R is bounded wrt F if every total tuple ¢ in the representative
instance of any consistent state r of R wrt F' can be obtained in at most k fd-rule
applications starting from T, for some constant k>0 [GM][MUV]. It has been shown
that a database scheme is bounded wrt F' if any total tuple in the representative
instance for a consistent state can be computed by a predetermined relational expres-
sion [GM][MUV].

The largest classes of database schemes known to be bounded wrt fd’s are the
class of independent database schemes [AC1][C1]|[IIK|[MRW][S3] and the class of y-acy-
clic cover embedding BCNF database schemes [CH1|. Chan and Herndndez investi-
gated how to generate bounded database schemes incrementally [CH2]. Sagiv studied
the problem of computing total projections on the universe in the presence of full
implicational dependencies. He obtained a characterization for computing such a total
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projection when a set of tuple generating dependencies is considered [S4]. Recently,
Chan and Herndndez found a general sufficient condition for unboundedness when fd’s
are considered [CH3].

2.6. Extension Joins and Sequential Joins

An extension join is of the form E,Xi7pnR,)uy(Es), Where E; and Ej are either

relation schemes or extension joins defined on R; and R, respectively, YCR,—R; and
R,NR,—Y E€F.

Let E be a join expression on R. If E is of the form
((RyXn Ry)Xil Rg) - -+ X R, ), where R;, . ..,R, is an ordering of distinct members of
R, then we say that E is sequential [F3|. Intuitively a sequential join corresponds to
first joining R; and Ry, then joining the result with R3 and so on.

2.7. Independence, Constant-time-maintainability and Algebraic-
maintainability

The maintenance problem (for database states) of R wrt F is the following deci-
sion problem: Let r be a consistent state of a database scheme R wrt F and assume we
insert a tuple ¢ into r, €r. Is ' = r U {t} a consistent state of R wrt F?

We say that <r, t> above is an instance of the maintenance problem of R wrt
F. An algorithm is said to solve the maintenance problem of R wrt F' if the algorithm
correctly determines if an instance of the maintenance problem is consistent or not
[GY].

In view of the importance of the maintenance problem, designing a database
scheme that allows efficient solution to the problem is essential. The first such class of
desirable schemes proposed is called independent schemes and is defined as follows.

Let the set of consistent states for a database scheme R wrt a set of dependencies
F be denoted by WSAT(R, F)={r |r is a state of R and is consistent wrt F}. The
locally consistent states of R are elements of the set LSAT(R, F)= {r | r; satisfies
F*|R;, for each r; € r}. That is, r is locally consistent if no relation r; €r violates any
projected dependencies. A database scheme R is said to be tndependent wrt a set of
dependencies F' if LSAT(R, F) = WSAT(R, F). The independent schemes were pro-
posed and investigated in [GY]|[IIK][S1][S3]. The constraints that they considered
include fd’s and the full join dependency. Recently, this class of schemes was studied
in the presence of fd’s and inclusion dependencies [AC2].

Suppose R={R,, . . .,R.} is cover embedding wrt F=FU - - - UF}, where F; is a
set of key dependencies embedded in R; €R, for all 1<¢<k. Then independence is
characterized by a condition called the uniqueness condition. R is said to satisfy the
uniqueness condition if for all R;, R; in R, R;#R;, (R;)}F_Fj does not contain a key

dependency embedded in R; [S1][S2].

Recently, Graham and Wang [GW] generalized the concept of independent
schemes and defined a class of database schemes called constant-time-maintarnable
(ctm) schemes. Informally, a database scheme is ctm if there is an algorithm which
solves the maintenance problem by retrieving ’exactly’ those tuples in the state that
need to be examined in determining if the updated state is consistent. Moreover, the
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number of tuples retrieved is ’small’. We now give a definition of constant-time-
maintainability as follows.

Let ® be a conjunction of equality formulae of the form A = ’'a’, where
A ER; €ER and a €Edom(A). @ is said to be a conjunctive formula. A selection
0s(E) is a conjunctive selection if ® is a conjunctive formula. Define CST(®) as {a |
A = ‘a‘is an equality formula in ®}. Let ¢ be a tuple, then CST(t) is the set of con-
stants in ¢. Let {t;,...,t,} be a set of tuples, then CST({t;,...,t,}) =
CST(t)J - - - |JCOST(ty). Let E be a relational expression on R. E is said to be
single-tuple if for any consistent state r, E(r) always returns a set containing at most

one tuple. Let x = o (Ey), - . . ,00 (Ey), n20, be a sequence of single-tuple conjunc-
tive selections on R. The sequence x is said to defime on an instance <r, t> if
CST(®,)CCST(t) and for all 1<t <n,

CST(®;)COST({t}| J oo (Er(r)) * - s, (Ei—i(r))). A database scheme R is ctm
wrt F' if there is an algorithm that correctly determines if an instance <r, t> is con-
sistent by examining the tuple t and tuples generated from applying a sequence
0 (Tx (R1)), - - - ,00 (7x,(Ry)) of single-tuple conjunctive selections on <r, t> to r,
where for all 1<i<n, X;CR;, R; €R, and n is dependent only on R and F.

The class of ctm database schemes is desirable wrt constraint enforcement since
there is an algorithm which solves the maintenance problem by examining a number of
tuples which is independent of the state size. Furthermore the set of tuples can be
computed easily. A more general class of database schemes that allows efficient solu-
tion to the maintenance problem is defined as follows.

A database scheme R is algebraic-maintainable wrt F if there is an algorithm
which correctly determines if an instance <r, t> is consistent by examining the tuple
t and tuples generated from applying a sequence of single-tuple conjunctive selections
oy (Ev) - -+ ,09,(Ep) on <r, t> to r, where for all 1<4<n, E; is an expression on
R, and the sizes of the expressions and the sequence are dependent only on R and F'.
We first show by an example that not every database scheme is algebraic-maintainable.

Ezxample 2: Let R = {R,(AB), Ry(BC), R3(AC)} and F = {A—C, B—C}. Con-
sider the following state tableau for a consistent state r on R. The TAG-column indi-

cates from which relation a tuple originates.
A B C TAG

Qg Co R3
) bo R,
a bo R,
a; by R,
ay, bn Rl

Now suppose we insert a tuple <a,, ¢, > into rs, ¢,#c¢,. Since any proper sub-
state of r with the tuple <a,, ¢, > is consistent, all tuples in r need to be retrieved to
show the inconsistency of the updated state. This implies that the size of the sequence
of single-tuple conjunctive selections is dependent on the state size. Hence R is not



algebraic-maintainable wrt F'. O

By definitions, an independent scheme is a ctm scheme, and a ctm scheme is an
algebraic-maintainable scheme. The scheme R = {R;(ABC), Ry(AB)} is not indepen-
dent wrt FF = {A—BC} but is ctm. As we will see in the Example 5, there is an
algebraic-maintainable database scheme which is not ctm. In summary, independence
implies constant-time-maintainability and constant-time-maintainability implies
algebraic-maintainability. Moreover, the inclusions are proper.

3. Key-equivalent Database Schemes

In this section, we define a class of cover embedding database schemes which is
neither independent nor ~-acyclic. The class of schemes properly contains a class of
ctm schemes. We prove the desirabilities of this class of schemes by showing that it is
bounded and algebraic-maintainable. We also characterize efficiently when such a
scheme is ctm. Let S be a database scheme and F is its set of embedded key depen-
dencies. Then S is said to be key-equivalent wrt F if for all S; in S, S;t = US.

Ezample 3: Let R={R;(AB), Ry(BC), R3(AC)}, F= {A—B, B—A, B—C,
C—B, C—A, A—C}. R is key-equivalent but R is not independent nor is y-acyclic.
In fact, R is not even o~acyclic [F3]. O

We want to prove first that key-equivalent database schemes are BCNF'.

Lemma 3.1: Let S be a key-equivalent database scheme wrt the set of embedded
key dependencies F'. Then S is BCNF wrt F.

[Proof]: Suppose S is not BCNF wrt F. Then there is X—A € F" embedded in
some S € S such that X is not a superkey of S. Now observe that in this case, X
must include a key in S because the set of fd’s is a set of key dependencies. But since
S is key-equivalent, X—S and hence X is a superkey of §. O

The above lemma guarantees that during the chasing of a state tableau of any
state on a key-equivalent database, it is sufficient to equate symbols in whole tuples in
the state tableau.

3.1. Key-equivalent Database Schemes are Bounded

We first show that any key-equivalent database scheme S is bounded. Let s be a
consistent state on a key-equivalent database scheme S. Algorithm 1, shown below,
chases T,, the state tableau for s, to obtain the representative instance of s. Notice
that any key in a key-equivalent database scheme S functionally determines every
attribute in US and that step (1) of Algorithm 1 is well-defined since s is a consistent
state.

Lemma 3.2: Let s be a consistent state on a database scheme S which is key-
equivalent wrt F, where F is a set of key dependencies in S. Let K be the set of keys
embedded in S. Let T, and K be the input to Algorithm 1, and let T" be the tableau
returned after step (1) (but before step (2) is executed). Then

(a) if ¢t is a tuple in T* with its constant components defined on C, then t[C] is a
total tuple in CHASER(T,);
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Algorithm 1

Input: The state tableau T, for a consistent state s on a key-equivalent database
scheme S, and a set of keys K in S.

Output: The representative instance of s.
Method:

(1) while (there are two tuples u and v in T, that agree on a key K in K but their
constant components are defined on distinct sets of attributes) do

Case (1): Whenever v[A] is a constant, u[A] is also a constant. In this case,
equate the components of v to the corresponding constant components of u;

Case (2): The constant components of v and v are incomparable. In this case,
v[A] is equated to u[A], wherever u[A] is a constant;

end

(2) eliminate duplicate tuples with identical constant components from the tableau
produced in step (1).

(b) if ¢ is a tuple in T* with its constant components defined on C, then t[C] is
returned by a join of a lossless subset of S covering C

(¢) any two tuples in T* that agree on a key agree on their constant components.

[Proof]: (a) Step (1) of Algorithm 1 is an application of an fd-rule to tuples u and
v involving the fd K —Y € F, for some YCU. Hence the claim follows.

(b) We prove this by induction on the number k of fd-rules applied to Tj.

Basts: k=0. This is trivially true, because initially every total tuple in T, ori-
ginates from some relation scheme S;.

Induction: k>0. Suppose the inductive hypothesis holds for k—1 applications of
fd-rules. Now consider the k%* application of an fd-rule, or equivalently, the k™ itera-
tion of the while loop. Let u and v be the two tuples involved. There are two cases
to be considered, as are indicated in step (1) of the algorithm.

Case (1): Assume the components of v are set to the constant components of u.
By the inductive hypothesis, the constant components of u can be computed by a join
of a lossless subset of S. So after v is set to the constant components of u, the
hypothesis still holds.

Case (2): By the inductive hypothesis, let £, and E, be the two joins of lossless
subsets of R that compute the constant components of u and v respectively. After the
corresponding components of v are set to u’s, the constant components of v can be
computed by E, X E, which is a join of a lossless subset of S covering the constant
components of v.
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This completes the induction proof.

(c) If they would disagree on their constant components, we would not have fin-
ished with step (1). O

Corollary 3.1: Let s be a consistent state on a database scheme S which is key-
equivalent wrt F', where F is a set of key dependencies in S. Let K be the set of keys
embedded in S. Let T, and K be the input to Algorithm 1 and let T: be the final
tableau produced by Algorithm 1. Then

(a) T: is the representative instance for the state s, and all ndv’s in T: are distinct;

(b) the X-total projection of the representative instance is computed exactly by a
union of projections onto X of all joins of lossless subsets of R covering X;

(¢) S is bounded wrt F.

[Proof]: (a) The final tableau T, is a satisfying relation wrt F. Hence it is the
representative instance for the state s. Clearly all ndv’s are distinct since no ndv’s are
being equated in the algorithm.

(b) Lemma 3.2(b) implies any X-total tuple is computed by some projection onto
X of a join of a lossless subset of R covering X. By a result in [MUV], any projection
onto X of a join of a lossless subset of R produces X-total tuples in the representative
instance.

(c) Follows directly from (b) above. O

Ezample 4: Let R={R,(AB), Ro(AC), R4(AE), R,EB), Rs(EC), R¢BCD),
R,(DA)}, F = {A—B, A—C, A—E, E—>A, E—B, E—~C, BC—D, D—BC, D—A,
A—D}. R is key-equivalent wrt F. By Corollary 3.1(b), [AE] is computed by Rz U
Tsr(AB Xi AC Xi (BE Xi CE)). Observe that the join expression is a union of
projections of extension joins. O

3.2. Key-equivalent Database Schemes are Algebraic-maintainable

The last subsection shows that key-equivalent database schemes are bounded. In
this subsection, we prove that they are algebraic-maintainable, but not necessarily ctm.
Example 4 above can be used to show that key-equivalent database schemes are not
ctm.

Ezample 5: Let R={R(AB), Ro(AC), R4(AE), R, EB), Rs(EC), R¢BCD),
R;(DA)}, F = {A—B, A—~C, A—E, E—~A E—B, E—~C, BC—D, D—BC, A—D,
D—A}. R is key-equivalent wrt F. Let us consider the following consistent state
defined on the above database scheme.

ri(A B) ro(A C) rs(A E) rs(E B) rs(E C)
a b a ¢ e b e c
62 b
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Consider now we insert the tuple <a, e> into rz. From the last example, at
least we need to verify if {<a, e>} U T p(ABXIACIXiI(BEXICE)) is satisfying wrt
A—FE. Suppose R is ctm. Since the value "e" does not appear in r, or 75, the way to
verify if the updated state is consistent or not is by first issuing commands o4_¢(R;)
and/or 04 4(R;). Since CST({<a,e>} J{0a=a BRI J{0a=a(R2)}) = {a,b,c,e}, we
then can issue either op_q(R,) and/or oc_¢(Rs). Without loss of generality, we
assume Opg.q(Ry) is issued. Then clearly given the above state, the number of tuples
retrieved depends on the size of the state. If op_«(Rs) is issued instead, a similar
state can be constructed to show that the number of tuples retrieved depends on the
state size. Hence R cannot be ctm wrt F. O

The above example shows that key-equivalent database schemes in general are not
ctm. However, as we will see in the following, there is a simple algorithm to enforce
satisfaction of constraints incrementally for key-equivalent database schemes via
predetermined single-tuple conjunctive selections on some relational expressions. This
will show that key-equivalent database schemes are algebraic-maintainable.

Consider now we are given a consistent state on a key-equivalent database scheme
S. Suppose a tuple on S; €S is inserted into the consistent state. Algorithm 2, shown
below, is an algorithm to verify if the resulting state from such an insertion is still con-
sistent wrt the key dependencies in S. The following example illustrates how the algo-
rithm works.

Example 6: Let R = {R(ABE), Ry(AC), R3(AD), Ry(BC), Rs(BD), R¢(CDE)}
and F = {A—BE, B—AE, E—~AB, A—CD, B—CD, E—CD, CD—E}. The set of
keys in R is {A, B, E, CD}. R is key-equivalent wrt F. Let us consider the following
state tableau for a consistent state on R. The TAG-column corresponds to the rela-
tion scheme from which the tuple originates. Since no fd-rule is applicable, the state
tableau is also the representative instance for the state.

A B C D E TAG
a c R,
b d R;

[+ d e Rs

Suppose now we insert <a, b, ¢’> into r;. Since A, B, and E are the three keys
in R, let the sequence of keys selected and processed by the first three iterations of
while loop of Algorithm 2 be A, B and E. The three total tuples generated in step (4)
for the keys A, B and E are <a, ¢>, <b, d> and <e'> respectively. So after the
first three iterations of the while loop, ¢ = <a, b, ¢, d, e'>.

At the beginning of the fourth iteration of the while loop, unprocessed = {CD }.
Hence the total tuple v generated in step (4) in the fourth iteration of the while loop
is <c¢, d, e>. But since in step (5), ¢ = <a, b, ¢, d, e'>Xi<c, d, e> = g, the
algorithm outputs no. The reader should verify that the updated state is not con-
sistent wrt F. O

Theorem 3.1: Let a consistent state s on a key-equivalent database scheme S, a
set of keys in S, and a tuple ¢ on some S; €S be the input to Algorithm 2. The algo-
rithm outputs yes exactly when sU {t} is consistent wrt the key dependencies in S.
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Algorithm 2

Input: A consistent state s on a key-equivalent database scheme S, a set of keys in S
and an inserted tuple ¢ on some S; €S8.

Output: yes if s U {t} is consistent; no otherwise. If yes is printed, a tuple ¢ is also
output.
Method:

(1) Let {Ky,...,K,} be the set of keys on S; and
let CHASER(T;) be the representative instance for s;
unprocessed:={K, . . . ,K, };

closure := S;;
processed = @;
q:i=1t;
(2) while (unprocessed # @) do
(3) let K € unprocessed;
(4) if there is a tuple p in CHASER(T;) such that p[K| = ¢[K];

then v := p[C]; where C is the set of attributes on which p is constant;
else v := ¢|K] and C := K

(5) q = q¢Xiv;

(6) if ¢ is empty, then output no and exit;

(7) closure := closureUC;

(8) let new_keys be the set of keys embedded in closure and
let processed := processed U{K };

9) unprocessed = new_keys—processed;

(10) end

(11) output yes and gq.

[Proof]: Suppose the algorithm outputs yes. Let ¢ be the tuple inserted into some
s; €s. Let t' be the tuple ¢ produced by Algorithm 2 padded with distinct ndv’s to
US. We want to show that CHASER(T,)U{t'} is consistent. If ¢’ does not agree with
any tuple in CHASER(T;) on a key in S, then the final chased tableau for the state
sU{t} is CHASEp(T,)U{t'}. Suppose one or more tuples agree with ¢’ on a key. Let
{p1, - . . ,p,} be the set of tuples in CHASER(T,) that agree with t' on a key. By Algo-
rithm 1, if p,, agrees with ¢’ on a key K, there is no other tuple in CHASER(T,) that
agree with ¢’ on K. Since K is a key embedded in ¢, K will eventually be selected by
statement (3) of Algorithm 2. By statements (4) and (5) of Algorithm 2, if p,,[A] is a
constant, then t'[A]=p,,[A], for all 1<M<y. So after the ndv’s of the p,'s are
equated to the corresponding constants from t/, the set of tuples {p1, ... s Py t'} are
identical on their constant components. Since no tuple other than {p1s - - - ,py} agrees
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with ¢/ on a key, no contradiction is possible in chasing CHASER(T;)U{t'} if the algo-
rithm outputs yes. Thus the state sU{t} is consistent.

Now assume the algorithm outputs no. Suppose the rejection comes at the w’ th
iteration of the while loop. Let the sequence of keys processed up to the point of
rejection be K, ... ,K,, and let tl, ce be the sequence of total tuples generated
in step (4) to extend t. Let z=((- (t ID(IIt DX+ 2 )iXit,,_; ). Clearly z is a total
tuple in the chase of the state tableau for sU{t} By assumptlon, z is nonempty but
(( C(EDXity )X -+ - )Xit,) is empty. Since ((+ -+ (EDXut )X - -+ )iXit,) is empty,

twlA] and z[A] are two distinct constants, for  Some A € (closure K,), where
closurew is the closure at the beginning of the w'® iteration of the while loop. But

[Kw]—tw[Kw] Hence sU{t} is inconsistent wrt the key dependencies. Therefore if
the algorithm outputs no, then the updated state sU{t} is not consistent wrt F. O

Suppose we are given a consistent state r on a key-equivalent database scheme R
and a key value t[K]. If we could compute the (unique) total tuple s, if it exists, in
the representative instance for state r such that ¢[K]=s[K]| by applying to r a
sequence of single-tuple conjunctive selections of the form o (E) such that E and the
size of the sequence depend on R and F, then together with Algorithm 2, R is
algebraic-maintainable wrt its embedded key dependencies.

Let E, and E, be two lossless expressions of R on S; and S, respectively. Then
E, is greater than E, if $;2S,. Suppose K is a key in a key-equivalent database
scheme R. Let {E;, ...,E,,} be the set of joins of lossless subsets of R covering K .
Since there is at least one relation scheme in R containing K, m>1. Let r be a con-
sistent state on R. Then for any 1<8<m, oy _¢(E;) will either return an empty set
or a set containing a single tuple, or else the state is inconsistent. Hence o4 (E;) is
a single-tuple conjunctive selection. Let ox_4(E;), ... ,0x_4«E;) be the expres-
sions that return nonempty sets of tuples and let these sets of tuples be {t,}, - {t }
respectively, 1<p<m. If p>1, then there exists a {t .} produced by o _ ¢(E; ,) such
that og_4<(E;,) is greater than all other lossless expressions og_4(E; ), 1<q#j<p.
This is because o 4«(E; X + * - IXIE; ) is equivalent to o _4<(E; ), for some 1<¢<p.
By Lemma 3.2(c), Corollary 3.1(b) and the fact that ox_4<(E;) is greater than all
other lossless expressions, ¢; is the (unique) total tuple in the representative instance
that contains the value "k". Since every total tuple with a particular key value can be
found by means of a sequence of single-tuple conjunctive selections and its size
depends only on R and F, together with Algorithm 2, any key-equivalent database
scheme R is algebraic-maintainable wrt its embedded key dependencies.

Theorem 3.2: Let R be a key-equivalent database scheme wrt F, where F is a
set of key dependencies embedded in R. Then R is algebraic-maintainable wrt F'.

[Proof]: Follows from the above argument. O

The following example illustrates how constraint enforcement can be carried out
incrementally via relational expressions for key-equivalent database schemes.

Ezample 7: Let R={R,(AB), Ry(AC), R3(AE), R, EB), Rs(EC), Re¢BCD),
R;(DA)} and F = {A—B, A—C, A—E, E—A, E—B, E—~C, BC—D, D—BC,
D—A, A—-»D}. Let us consider the following consistent state defined on the above
database scheme.
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ri(A B) ro(A C) rs(A FE) rsE B) rs(E C)
a b a c e1 b e c
€9 b
en b

Consider now we insert the tuple <a, e> into r3. Since A and E are the two
keys in Rg, by Algorithm 2, we have to compute the total tuples in the representative
instance for the consistent state that embed the values "a" and "e" respectively. Sup-
pose A is selected in the first iteration of the while loop in Algorithm 2. With the
above state, the set of lossless subsets of R covering A which return a nonempty set of
tuples is {R;, Ry, R,IXiI Ry, R;IXIRyiXi (R4Xi R5)}. The total tuple in the representa-
tive instance that contains the value "a" is therefore computed by
O g g (R1X RyiXil (R41X1l R5)) and the tuple returned by this expression with the above
consistent state is <a, b, ¢, ¢;>. In step (5) of the algorithm, <a, b, ¢, ¢;,>Xi<a,
e> = ¢. Hence Algorithm 2 outputs nmo and therefore the updated state is not con-
sistent wrt its embedded key dependencies. O

3.3. Key-equivalent Database Schemes are Ctm if and only if Split-free

In the last subsection, we show that key-equivalent database schemes are
algebraic-maintainable but not necessarily ctm. In this subsection we find a character-
ization of constant-time-maintainability for key-equivalent database schemes. More-
over the characterization can be tested efficiently under the key-equivalent assump-
tion. We shall prove that key-equivalent database schemes are ctm exactly when their
keys are not "split".

Let S = {Sy, . ..,S,} be a key-equivalent database scheme wrt FF = F; U
U F,,, where F; is a set of key dependencies embedded in S;, for all 1<:<m. We are
going to define when S is split-free.

For any S5; € S, we compute S;" wrt key dependencies embedded in S as shown
below in Algorithm 3.

Let us consider a computation of S;t. Let S; €8S be such that it is chosen in step
( ) of Algorithm 3 and let CP; = S; N closure/, Where closure’ is the closure when S;
is chosen in step (2). Then we say that S; completes a key K in S’, it K & closurc
and S;—CP; D K—closure'. Now we say that a key K is split in S;t if there is a com-
putatlon of S, where some S; chosen in step (2) of Alg01 ithm 3 that completes K in
S;t is such that K &€ Si. Intultlvely, K is split in S/ if there is a partial computation
of Sit that covers K but none of the schemes in such a computatlon contains K.
Then we say that S; is split- free (wrt F)if no key in S is split in St else it is split. S
is split-free if for all 1< 1< m, S; is split-free; else it is splet.

Ezample 8: Let R = {R,(AC), Ry(AB), R3(BCA), R(BCD), Rs( AD)} and F =
{A — ¢, A—>B, BC—A, BC—D, D—BC, A—BC, A—D, D—A}. R is split since
the key BC is spht in R, RS, or R, but R3 and R, are split-free. O
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Algorithm 3

Input: S, €S ={S,...,S,}and F=F, U -+ UF,, where F; is a set of key
dependencies embedded in S, for all 1< 1< m.

Output: S;t.

Method:

(1) closure = Sj;
(2) while (there is S; in S, S; & closure and a key of S; is included in closure) do

(3) closure = closure U Sj;
(4) end

The following is an example of a split-free database scheme.

Ezample 9: Let R = {R,(AB), Ry(BC), R3(CD), Ry(DE)} and let F = {A—B,
B—A, B—C, C—B, C—D, D—C, D—E, E—D}. Since all keys consist of a single
attribute, R is split-free. O

We claim that a key-equivalent database scheme is ctm if and only if it is split-
free. We now start proving the ¢ f-part of this claim.

3.3.1. Key-equivalent Database Schemes are Ctm if Split-free

We assume for the rest of this subsection that S = {S;,...,S,,} is a split-free
and key-equivalent database scheme wrt FF = F, U --+ U F,,, where F; is a set of
key dependencies embedded in S;, for all 1< < m. We want to prove that S is ctm.
The plan for the proof is as follows. We first prove that CHASER(T;), for any con-
sistent state s of S, can be computed using sequential extension joins. We then give
an algorithm to solve the maintenance problem of S wrt F' in constant time.

Let s be a consistent state on S. Algorithm 4, shown below, extends a tuple ¢ on
a key K embedded in S as far as possible using the key dependencies and tuples in s.

Lemma 3.3: Let s be a consistent state on a split-free key-equivalent database
scheme S. Let u[K], a tuple on some key K in S, and s be the input to Algorithm 4
and let ¢ on C be the tuple returned by the algorithm. Then
(a) t[C] is a total tuple in the final chased tableau for state s;

(b) if J is a key in S embedded in C and t' is the tuple on C' returned by Algorithm

4 with input ¢[J] and s, then C = C' and t = t'; and

(¢) t[C] can be computed by applying a sequence of single-tuple conjunctive selec-
tions on the instance <s, u[K]> to s and the size of the sequence is dependent
on S and F. Moreover, the conjunctive selections are of the form 04(S;), S; €S.
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Algorithm 4

Input: A tuple t on a key K embedded in S, and a consistent state s on S.
Output: A total tuple t' on C.
Method:

(1) ¢ = K; t'[K] = t|K] and t'[A] is a distinct ndv, for all A €(U S) —K;

(2) while (there is a tuple p in some s; € s such that C includes a key K; of S;,
Si—O #* B, and p[K,] = t’[K,]) do

(3) 'Sl = p[Si); € = C U S
(4) end
(5) return t'[C] and C.

[Proof]: (a)(c) Follow trivially.

(b) Let C} be the value of C after the k™ iteration of step (2) when u[K] and s
are used as input; we define Cy = K. We prove by induction on k£ that for every key
K'in Cy, t'|K'] can derive t'[C)] with input state s.

Basts: k = 0. It holds trivially.

Induction: k > 0. Suppose S; is included into C} in the k™ iteration of step (2)
and suppose K' is a newly added key. From step (2), there is a key K; of S; such that
K; € S; N Ci_;. By the inductive hypothesis, t'[K;| can derive t'[C}_;] with state s.
Since S; completes K' in C* and S is split-free, K’ C S;. By assumption that S is
key-equivalent, t'[K'] can trivially derive t'[S;], and hence t'[K;], with state s. Thus
t'[K'] can derive t'[C}] with state s.

This completes the inductive proof and hence C = C' and t'|[C'] = t[C]. O

Corollary 3.2: Let s be a consistent state on a split-free key-equivalent database
scheme S. Let T%* be the final minimized chased tableau constructed for the state s.
Then

(a) any X-total tuple in T%; can be obtained by a sequential extension join of some .S;
€ S covering X; and

b) there are no two tuples in T% that agree on a key embedded in S, and all ndv’s in
8
T%*, are distinct.

[Proof]: (a) Let T, be the initial tableau for the state s. We obtain the final
minimized chased tableau T% in two steps as follows.

First step: For each relation s; € s, and for each tuple t € s;, replace ¢ by the
tuple t’ returned by Algorithm 4 with input ¢[K| and s, where K is a key of S;. Then
pad t’ to US with distinct ndv’s. Let T* be the tableau produced in the first step. By
Lemma 3.3(a), T* is a partially chased tableau for s. By Lemma 3.3(b), for any two
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tuples v and w in T%*, if v and w agree on a key, then they agree on their constant
components.

Second step: We minimize T* to obtain the final chased tableau. The minimiza-
tion process involves eliminating tuples that agree on their constant components. After
the elimination, it can be easily seen that the resulting tableau is the final chased
tableau for T.

It follows that any X-total tuple in 7%, can be obtained by a sequential extension
join of some S; covering X.

(b) It follows directly from (a). O

Given a consistent state on a split-free key-equivalent database scheme S, we
want to show that there is a constant time algorithm to enforce satisfaction of fd’s
when a tuple is inserted into the state. Algorithm 5 shown below is such an algorithm.

Algorithm 5

Input: A consistent state s on a split-free key-equivalent database scheme S; a tuple
t on S;, where S; €8.

Output: yes if s U {t}is consistent; otherwise, no.
Method:

(1) let {Ky,...,K,} be the set of keys of S;. For each K, invoke Algorithm 4 with
input ¢[K;] and s and let t'; on C; be the tuple returned by Algorithm 4;

(2) let g = {t}Xn {t';} DX -+« X {t',};
(3) if ¢ # @, then output yes else output no.

Ezample 10: Let S = {S,(AB), So(BC), S3(AC)}, and let F = {A—B, B—A,
C—B, B— C, C—A, A—C}. The set of keys is {A, B, C}. S is split-free and key-
equivalent. Let s =<s; = {<a, b>}, Sq = {<b, c>}, 83 = @>. Suppose now we
insert <a, ¢'> into s;. Let us execute Algorithm 5 with the above input. Since A
and C are the two keys of S5, t/; = <a, b, ¢> and t'y = <c¢'> are the two tuples
returned in step (1). In step (2), ¢ = {<a, !>} X {<a, b, c>} Xi {<c'>} = @.
Hence the algorithm outputs no. The reader can easily verify that the updated state is
inconsistent wrt F'. O

The following lemma proves that Algorithm 5 is correct. This shall imply that
split-free key-equivalent database schemes are ctm.

Lemma 3.4: Let s be a consistent state on a split-free key-equivalent database
scheme S. Let s and a tuple ¢ on some S; €S be the input to Algorithm 5. The algo-
rithm outputs yes exactly when T*U{t'} is consistent wrt the key dependencies
embedded in S, where T%, is the final chased tableau for state s, and t’ is the inserted
tuple t on S; padded with distinct ndv’s to US.
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[Proof]: Clearly if the algorithm outputs no, using an argument similar to the
proof of Theorem 3.1, we can show that the updated state is inconsistent. If the algo-
rithm outputs yes, we claim that {q'}UT*s is consistent wrt F', where ¢’ is the tuple ¢
in Algorithm 5 padded to US with distinct ndv’s. Assume otherwise, there is a tuple u
in T*, that agree with ¢’ on a key K, but is not one of ¢ or t/,’s. By Corollary 3.2(b),
K cannot be a key embedded completely in one of the relation schemes on which
tuples t or t',’s are defined. This implies K is split in SF. A contradiction. There-
fore we conclude that the resulting state with the inserted tuple is consistent. O

Now we are ready to state the main result in this subsection.

Theorem 3.3: Let S = {S,, . ..,S,,} be a database scheme key-equivalent wrt F’
=F,U -+ UF,, where F; is a set of key dependencies embedded in S;, for all 1<
1< m. If Sis split-free wrt F, then S is ctm wrt F.

[Proof]: From Lemma 3.4, Algorithm 5 is an algorithm that correctly determines if
an updated state is consistent. Algorithm 5 invokes Algorithm 4 in time dependent on
F only. By Lemma 3.3(c), each invocation is equivalent to applying a sequence of
single-tuple conjunctive selections on the instance <s, t> to s. Moreover, the size of
the sequence is dependent on S and F. Hence S is ctm wrt F'. O

3.3.2. Key-equivalent Ctm Database Schemes are Split-free

In this subsection, we prove that ctm key-equivalent database schemes are split-
free. Let S = {S;,...,Sn} be key-equivalent wrt F = F; U - - U F,, where F; is
a set of key dependencies embedded in S;, for all 1< 7< m. We shall prove that if S
is split wrt F, then S is not ctm wrt F'.

Assume S is split. Then there is a key K in S which is split in S;*, for some S, €
S. Let S;,...,85) be the relation schemes in a partial computation of S/t that shows
K is split, where k>1. Let S, = {5, ... ,S,} and let Uy = US;. It is easy to
observe that Uj—K s ¢. Let t; be a tuple on U, such that ¢;[B] is a unique constant,
for every B €U,.

Now we construct a state s; on S from ¢, as follows:
e Forall §; €S8,if S; €S, then s; = 75 ({t,}), else s; = ¢.

Now let S, €S be such that S, 2 K; S, does exist because K is a key of some
scheme in S; observe that S, £ S; since no scheme in S; may contain K. Let
Sqp v ,quﬂ, where p> 0 and S, = S, be a sequence of relation schemes in a partial

computation of S;' such that S, N (U —K)+#g but (S, U -+ U qu) n U, —
K) = @; such computation exists since S;' = US and U,—K#g. Let Sq = {
Sgp v - ’qu+1} and let U, = US,.

Proposition 3.1: S, N §; = ¢.

[Proof]: If p = 0, then S, = S, is the only member of S;. In this case, we
already observed above that S; £;.

Assume p> 0. Suppose qugs,, for all 1<7<p. We claim quﬂﬁS,. Assume
otherwise. First observe that (S, U - - - US, )JNU;=K and (S, U - * - US,)2K', where
K' is a key of quﬂ. These two facts imply K DK/, because qu+1 €S,. But since no
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scheme in S; may contain K, KDK'. This violates the minimality condition for K to
be a key, because S is key-equivalent. O

Now let §'; = g, if p=0, else let 8’ = {S,,...,S, }. Let U, = US';. Observe
that U; N U', is either empty or is exactly K. However U, Ny, D AK, A Z K, and
K—A €F*. "Let t, be a tuple defined on U, as follows: ¢,[K]| = t,[K], and ¢,[B] is a
unique constant, for every B €U, — K; notlce that {¢, [KA], t,[FKCA]} does not satisfy
K—A. Now we construct a state s/, on S from t,[U’;] as follows:

e Forall S; €8,if S; €'}, then s; = mg,({t, [U’q]}), else 5; = @.
Let s =8, U ¢/,.
Lemma 3.5: s is consistent wrt F.

[Proof]: We first chase tuples for states s; and s’q separately. Because of the loss-
lessness of S; and 8'y, ¢;[U;] and ¢,[U’;] are derived. By considering the two cases that
U NU'y = K or g, the lemma follows. O

Now we define a tuple u on S, such that s U {u} is inconsistent wrt F, where u
= t [ Qp+1]
Lemma 3.6: s U {u} is inconsistent wrt F.

[Proof]: By definition, ¢, and ¢, violate K—A € F", where KA CU, N U,, A £
K. Then the lemma follows since S; and S, are lossless wrt F. O

Now we are going to define some tuples such that s plus the new tuples are still
consistent, but is inconsistent when the tuple u is included.

Lemma 3.7: Let {S;, . ..,S,} €S, be such that for 1< h<r, K, = S,NK+# o.
(Note that r>1) For 1< h< r, let s, = {t|t is a tuple on S, such that t[K,] =
t;[K,] and t[B] is a unique constant for every B € S, —K},}, where s, has an arbitrary
but finite number of tuples. Then

(a) s;Us'y UsyU - Us, is consistent wrt F}
(b) s', U {u}UsU - Us, is consistent wrt F;
(¢) s;Us, U{u}UsU - - Us, is inconsistent wrt F.
[Proof]: First observe that for 1<h<r, K is not a key in S, or else the minimal-
ity condition of keys is violated.

For (a), from Lemma 3.5, s = s; U s/, is consistent wrt F. Now s U s;U * - - Us,
is consistent wrt F because any two tuples in CHASER(T,) and s,U * - * Us, are dis-
tinct on any key in S.

For (b), s, = ¢/, U {u} is consistent wrt F, since s, is the projection of ¢; on S,.
Then s, U s;U - Us, is consistent wrt F' because any two tuples in CHASER(Ts )
and s;U * * * Us, are distinct on any key in S.

For (c), from Lemma 3.6 s U {u} is inconsistent wrt F, and so is s U {u} U
s,U -+ Us,. O

From parts (b) and (c) of Lemma 3.7, in order to show that s; U s/, U {u} U
s;U - Us is inconsistent wrt F', we need tuples from s; in addition to tuples ins', U
{t}UsU -~ Us,.
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We are ready now to prove our main claim in this subsection.

Theorem 3.4: Let S = {S,, ...,S,,} be key-equivalent wrt F = F; U --- U
F,,, where F; is a set of key dependencies embedded in S;, for all 1<¢< m. Assume S
is split wrt F'. Then S is not ctm wrt F.

[Proof]: Assume S is ctm wrt F. Let us consider the state s = s; U s/, defined
above. Then to each of the relations in s; whose schemes contain a nonempty subset
of K, let us add a distinct tuple as defined in Lemma 3.7; each of these relations now
has two tuples; let 8', be the resulting substate. Now let s’ = s/, U s';. By Lemma
3.7(a), s’ is consistent wrt F.

Let s” = s' U {u}, where u is the tuple defined above on Sgpsyr By Lemma 3.7(c),
s" is inconsistent wrt F. Observe that u is a tuple on S; , a scheme in S;, and then

from Proposition 3.1, v & s;. Now Lemma 3.7(b) and 3.7(c) imply that tuples are
needed from s; to show s” is inconsistent wrt F.

Now observe that by construction of s”, s; and s”"—s; have common attribute
values only on tuples defined on schemes in S; which contain nonempty subsets of K.
The constant-time algorithm A will eventually try to access for the first time a tuple
in s; via a single-tuple conjunctive selection og(mx(S,)), where S, € S;. Before the
request is issued, the values that are possibly known to A that are in the relation on
S, in state s; are those in {t,[B] | BEKNS,}, hence ® is a formula of the form K, =
'k’, where K,CKNS,. By asimple analysis, we could show that XDK,. However, s,,
the relation on S,, has two tuples with exactly the same values on K, hence the selec-
tion o4 (mx(S,)) is not single-tuple. Thus A does not solve the maintenance problem of
S wrt I in constant time. O

Corollary 3.3: Let S = {Sl, cen ,Sm} be key-equivalent wrt F' = F\U * - - UF,,,
where F; is a set of key dependencies embedded in S;, for all 1<¢<m. Then S is ctm
iff S is split-free.

[Proof]: Follows from Theorems 3.3 and 3.4. O

3.3.3. An Efficient Test for Splitness

The following lemma proves that we can test splitness of key-equivalent database
scheme in polynomial time.

Lemma 3.8: Let R be key-equivalent wrt its embedded key dependencies and let
K be a key in R. Let W be {R, IRp €R and R, does not contain K} and let G be a
set of key dependencies embedded in elements in W. The key K is split in R;t, for
some R; €R, iff there is a row t; in CHASEg(Ty) such that t;[K] are all dv’s.

[Proof]: Let S be any cover embedding database scheme wrt a set of fd’s F. By a
theorem in [BMSU], the chased tableau CHASER(Tg) can be constructed as follows:
For each row t; in the tableau, say t; corresponds to the relation scheme S; €S, ¢;[A]
is a dv if A € S, where S;t is computed wrt F, and distinct ndv’s otherwise. We are
now ready to prove our claim.

"If" Since W is cover embedding, the existence of such row t; in CHASEg(Tw)
implies there is a sequence of relation schemes from W that covers K. This shows that
K is split in the closure of some relation scheme in W.
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"Only if" If IC is split in R, for some R; € R, then there is a sequence of relation
schemes that demonstrates I is split. This set of relation schemes in the sequence is a
subset of W. Let t; be the row in CHASEg(Tyy) for R;. If follows from the comment
above that t;[K] are all dv's in CHASE4(Ty,). O

4. Independence-reducible Database Schemes

In this section, we use the class of schemes characterized in the previous section
to define a much larger class of schemes that has the same desirable properties.

Let R={R;, ... ,R,} be a database scheme and let F = F; U - * U F,, where
F; is a set of key dependencies embedded in R;, for all 1<¢<n. R is said to be key-

equivalent tndependence-reducible wrt F, or independence-reductble wrt F for short, if
there is a partition T={T}, . . . ,T}} of R such that

(a) D = {UT,|T, €T}is independent wrt F, and

(b) for any T, € T, T, is key-equivalent wrt the key dependencies embedded in ele-
ments in T,.

If R is independence-reducible wrt F, then T is an independence-reducible partz-
tton of R and the database scheme D is the corresponding independence-reducible
database scheme of R (induced by T). D is obviously cover embedding wrt F' and an

embedded cover can be found by merging corresponding F;’s that are in the same
block.

Ezample 11: Let R—={R,(AB), Ry(BC), R4(AC), R4(AD), Ry(DEF), R{(DEG)}
and F = {A—B, B—A, B—C, C—B, C—A, A—C, A—D, D—EFG}. R is
independence-reducible. An independence-reducible partition is T = {{R;, Rs, R3, R4},
{Rs, Rg}}- Notice that R} = Rg . Similarly for R;, Ry, Rs and R4. The corresponding
independence-reducible database scheme in D ={D;(ABCD), Dy(DEFG)} and is
independent wrt F. O

Independent schemes have an interesting property that local satisfaction of con-
straints in each relation suffices to ensure global consistency of data. Independence-
reducible schemes are a generalization of independent schemes in the sense that satis-
faction of constraints within each block of relations in the partition guarantees global
consistency of data. Consequently, the subset of relations that needs to be examined
as a result of an insertion of a tuple can be readily identified. In the example above,
given any state r, if we can verify that the substates on {R;,R,,R3,R,} and on {R5,Rg}
are consistent wrt their respective embedded key dependencies, the state is guaranteed
to be globally consistent. As we will show, independence-reducible schemes inherit
most of the desirable properties of independent, as well as of key-equivalent, database
schemes. We first prove that D is cover embedding BCNF wrt F.

Lemma 4.1: Let R = {R;,...,R,} be cover embedding wrt a set of fd’s F.
Without loss of generality, let F = F; U * -+ U F,, where F; is a set of fd’s embed-
ded in R;, for all 1<i<n. If there is some F; that does not cover F* IR;, then R is not
independent wrt F.

[Proof]: See [GY]. O
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Corollary 4.1: Let R be independence-reducible wrt F' = F|U * -+ UF,,, where
F; is a set of key dependencies embedded in R;, 1<t<n. Let T = {Ty,...,T}} be
an independence-reducible partition of R, let D ={UTp | T, € T} be the corresponding
independence-reducible database scheme of R, and let F), be the set of key dependen-
cies embedded in elements in 7}, for all 1<p<k. Then D is cover embedding BCNF
wrt F.

[Proof]: Clearly D is cover embedding. For BCNF wrt F: by Lemma 4.1, if X —A
€ F* is embedded in UT,, then X—»AGF;. This implies X is a superkey of a relation

scheme in T}, and by the assumption that 7}, is key-equivalent, X is a superkey of UT,.
O

In the following subsections, we will prove some interesting properties about
independence-reducible database schemes. These include that the class of
independence-reducible database schemes is bounded and algebraic-maintainable wrt
its embedded key dependencies. Sketches of algorithms are also given for computing
total projections and for determining when an updated state is consistent.

4.1. Independence-reducible Database Schemes are Bounded

Let r be a consistent state on an independence-reducible database scheme R. Let
T ={Ty, ...,T;} be an independence-reducible partition of R. Let us construct a
state d from r on the corresponding independence-reducible database scheme D as fol-
lows. For each T; € T, let Tj={Sl, .. .,5,}JC R and D; = UT;. Let F; be a set of
key dependencies in T;. Now construct a tableau on D; from the substate
<81, ++.,8,> of r as follows: For each s; on S; in <sy,...,s,>, pad s; out to D;
with distinet ndv’s, for all 1<¢<n. Let the resulting tableau be Td,.. Then chase de
wrt F;. Let the relation d; be the final chased tableau. Note that d; may contain some
ndv’s.

For each D; €D, construct d; as above and let the state d = <dj, ...,dy> be
the corresponding state of r.

Lemma 4.2: Let R and D be as defined above. Then there is a sequence of
fd-rules which converts 7, to a tableau which is equivalent to T,;, where r is a con-
sistent state on R, d is its corresponding state on D constructed above, and Ty is the
state tableau for d.

[Proof]: For each D; €D, consider the part of the tableau in 7, for S;, ...,S,,
where D; = UT; = S; U -+ - US,. We apply to T, the same sequence of fd-rules as
we applied to de in the construction of the relation d; on Dj, for all D; €D. Then 7}

and the partially chased tableau for 7, are identical up to renaming of ndv’s. O

Theorem 4.1: Let R be an independence-reducible database scheme wrt F', where
F is a set of key dependencies embedded in R. Then R is bounded wrt F.

[Proof]: By Lemma 4.2, for any consistent state r on R, we can construct an
equivalent state d on D such that the final chased tableaux are equivalent. By Corol-
lary 4.1, D is cover embedding and BCNF wrt F. By the definition of independence-
reducibility, D is independent wrt F'.
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Since D is cover embedding BCNF and independent wrt F, for any XCU, we can
compute the X-total projection via an algebraic expression [S2]. The expression is a
union of projections onto X of sequential extension joins covering X. Let E(D) =
Tx(Dy X -+ Xi Dy) be an expression in such a union. Let D; = UT}, for any
1<y<k and assume d; is the final chased tableau for the substate of r on T wrt the
key dependencies in T}. For each D; involved in E(D), define Y; = D; N (D, U - - - U
Djy UDjy; U---UD, U X). Let Y = UY;. By Lemma 4.2 in [CA], my(7y,(D,)
Xit -+ X0 7wy (Dg)) = wy(Dy Xt -+ Xt Dg). From definition, XCY and hence
Tx(my(Dy) Xit -+ - Xt 7y, (D)) = E(D). Since we want the tuples returned by E(D)
to contain only constants in the state r, we claim E(R) = mx( [V, [X1 -+ - - X [Y, |) is
an expression that returns exactly this set of tuples, where [le is the set of Y;-total
tuples in d;, for all 1<5<k.

If k=1, then D;2X and hence Y| = Y = X. Then E(R) clearly returns the
correct answer. If £>1, and if any tuple ¢ € 7TY,~(Dj) contains a ndv, then by assump-
tion that 7; is key-equivalent and Corollary 3.1(a), the symbol is a distinct ndv. Let
t[A] be the entry in which the distinct ndv appears. Since A € Y}, either A €
D;N(DyU + - UD;_1UD; U - -UDg) or A € D,NX. In the former case, ¢ is not
joinable with other tuples in the expression. In the latter case, even if ¢ is joinable
with other tuples to produce a tuple t' in E(D), t'[A] is a ndv and therefore t' is not a
tuple we want to be included in E(D). Hence my(D;) cannot contain any ndv and our
claim is proven. By assumption, 7} is cover embedding BCNF and key-equivalent wrt
a set of key dependencies embedded in T}, for all 1<5<k. By Corollary 3.1(b), the Y;-
total projection can be obtained by a union of joins of lossless subsets of T); covering
Y;. Hence R is bounded wrt F. O

Ezample 12: Let R ={R,(AB), Ryo(BC), R3(AC), R4AD), Rs(DEF), Rs¢(DEG )}
and F = {A—B, B—C, C—A, A—D, D—EFG}. R is independence-reducible. An
independence-reducible partition T of R is {{R;,, Ry, Rs, R4}, {Rs, Rg}}- The
corresponding independence-reducible database scheme D ={D,(ABCD), Do(DEFG )}
and is independent wrt F. Let us compute the ACG-total projection. The relational
expression on D that computes the ACG-total projection is Ty4oq(D; Xi D,). By the
method in the proof of Theorem 4.1, we first find Y; and Y,, where Y; = D; N {D, U
ACG} = ACD and Y, = D, N {D; U ACG} = DG. An expression to compute [Y; ] is
Taop(R; X Ry X R,) U maep(Rs X R,). An expression to compute [Y,] is
Tpa(Rg). So an expression to compute the ACG-total projection is 4o ([Y7 | X TYZ )
= 06 (Tacp(Ry Xi Ry Xl Ry) U Tyep(Rg Xt Ry)) IXi 7pg (Rs)). O

4.2. Independence-reducible Database Schemes are Algebraic-maintainable

Constraint enforcement for an independence-reducible database scheme R can be
carried out incrementally. Suppose r,, €r is updated by an insertion of a tuple. By
definition of independence-reducibility, R is partitioned into blocks T}, ...,T; and
each T; is key-equivalent wrt its key dependencies. Let R, € T}, for some T;. By
Theorem 3.2, any key-equivalent database scheme is algebraic-maintainable wrt its
embedded key dependencies. So after a tuple on R,, is inserted into a consistent state
r on R, we could determine if the updated state on T} is consistent wrt its embedded
key dependencies. If the updated state on T; is not consistent, then obviously the
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updated state on R is not consistent. Suppose the updated state on T} is consistent,
we claim that the updated state is also consistent. Since R is partitioned by
{Ty, . . .,T}}, relations in the updated state are also partitioned by {Ty, ...,T}}. For
all T; = {5, ... ,Sp}, 1%#J, the final chased tableau d; for the substate
<8y, - - . ,8p> of the updated state on T; is consistent, since by assumption the origi-
nal state is consistent. By assumption that the updated substate on T} is consistent,
hence every chased state tableau d; on T} is consistent wrt its embedded key dependen-
cies, for all 1<I<k. By definition of independence-reducibility, {UTy, . ..,UT}} is
independent wrt F. By considering each chased state tableau as a relation,
d=<dy, ...,d,> is a state on {UTy, ...,UT}}. Since each d; is satisfying wrt its
embedded fd’s, the updated state is consistent wrt F. Hence our claim is proven.

Theorem 4.2: Let R be an independence-reducible database scheme wrt F', where

F is a set of key dependencies embedded in R. Then R is algebraic-maintainable wrt
F.

[Proof]: Follows from the above argument. O

4.3. More Properties of Independence-reducible Database Schemes

The following is another interesting property of the class of independence-
reducible database schemes. Let R be a database scheme. SUBSET(R) = {R;|R; is a
nonempty subset of some R; in R}. AUG(R) = R U S, where SCSUBSET(R). It is
worth noting that given a database scheme R, there may be many AUG(R)’s. Let C
be a class of database schemes. Then AUG(C) = {AUG(R) | R is in C}. We call
AUG(C) the augmentation of C. Let C be the class of independence-reducible data-
base schemes. We want to show that this class of schemes is closed under the augmen-
tation operation. That is, AUG(C) = C. First we need the following property of
independent schemes.

Lemma 4.3: Let R be cover embedding BCNF and independent wrt F. Let SCU
and S does not embed any key of R. Then R U {S} is independent wrt F.

[Proof]: First observe that RU{S} is cover embedding BCNF wrt F. Suppose R U
{S} is not independent wrt F. Then there are R; and R; in R U {S} such that R;" wrt
F-F; contains a key dependency in F ]+ . Since F; contains some nontrivial fd, R;#S.
Since ST = S and S embeds only trivial fd’s, R;#S. This implies R is not independent
wrt F. O

Theorem 4.3: Let C be the class of independence-reducible database schemes.
Then AUG(C) = C.

[Proof]: By definition, AUG(C) contains C. Now we need to show every element
in AUG(C) is also in C. We prove this by showing that if R is an independence-
reducible database scheme, then V = R U {S} is also independence-reducible, where S
is a nonempty proper subset of some R; €ER. Let T be an independence-reducible par-
tition of R and D its corresponding independence-reducible database scheme.

Case (1): S does not contain a key of any R; € R. In this case, an independence-
reducible partition for V is TU{{S}} and the corresponding database scheme for V is
D U {S’} Since D is independent wrt F' and S embeds no key of any R; € R, by
Lemma 4.3, D U {S} is independent wrt F. Hence V is also independence-reducible
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wrt F.

Case (2): S embeds some key of some R;. In this case all the keys embedded in S
are equivalent. Let these keys be keys of R;, for some R; €ER. Assume further that R;
is in the block 7; in T. Then an independence-reducible partition of V is T/, where T’
is T except that T; includes S. The corresponding database scheme for V is still D.
Hence V is independence-reducible.

Therefore AUG(C) = C. O

Let R be a database scheme. RED(R) is the reduction of R. A database scheme R
is reduced if no relation scheme is a proper subset of other.

Corollary 4.2: Let R be a database scheme and F' be a set of embedded key
dependencies. R is independence-reducible wrt F' iff RED(R) is.

[Proof]: Follows from Theorem 4.3. O

5. Recognition and Subclasses of Independence-reducible Database Schemes

In this section, we shall derive an efficient algorithm that recognizes exactly the
class of independence-reducible database schemes. We also state the condition under
which an independence-reducible database scheme is ctm. We prove some interesting
properties of the class of schemes accepted by the recognition algorithm. These results
will show that this class of schemes properly contains a superset of the classes of
schemes identified by Sagiv [S1][S2] and by Chan and Herndndez [CH1]. This proves
that the class of independence-reducible database schemes is the largest known class of
schemes which is desirable wrt query answering and constraint enforcement when a set
of key dependencies is considered.

5.1. Finding the Key-equivalent Partition of R

Let R be a cover embedding database scheme and let R; € R. Define [R;] as the
largest subset of R containing R; such that [R;] is key-equivalent wrt its embedded key
dependencies. The collection {[R;] | R; € R} is called the key-equivalent partition of
R. The key-equivalent partition of R is unique.

Let R = {R,,...,R,} be a database scheme and let F = F; U - U Fy,
where F; is a set of key dependencies embedded in R;, for all 1< < n. We shall
prove that the output from KEP, shown below, when (R, F) is its input, is the key-
equivalent partition of R.

It is easy to see that the output of KEP(R, F) is a partition of R. The following
example illustrates how the key-equivalent partition is obtained by KEP.

Ezample 13: Let R = {R,(AB), Ry(CD), Ry(ABC), R,(ABD), R5(CDE), Ry(EA),
R,(EF), Rg(FB)} and let F = {AB— C, AB—D, CD—E, E—CD, E—A, E—F,
F—B}.

Assume we call KEP with R and F as its input. Since R} = -+ = R} =
ABCDEF and R = FB, then part in statement (2) is {{R;] = {Ry, . . . , Rz}, [Rg] =
{Rg}}. Thus the union of KEP({Ry, ...,R;}, G;) and KEP({Rg}, G,) is the key-
equivalent partition of R, where G, and G, are a set of key dependencies embedded in
elements of [R,] and [Rg] respectively.
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function KEP(R, F);

Input: A database scheme R = {R;,...,R,}and F = F, U --- U F,, where F}
is a set of key dependencies embedded in R;, for all 1< 1< n.

Output: The key-equivalent partition of R wrt F'.

Notation: [R;]={R; €ER |R = R}}.

Method:
(1) begin
(2) let part = { [R}] le ER};
(3) if part = { R } then return({R})
else return(KEP(p,, G,) U --+- U KEP(p;, G;)), where part =

{p1, - --,p;} and Gj, for all 1< j< I, is a set of key dependencies embedded
in schemes of p;;

(4) end

For KEP({Ry, . . . ,Rq}, G,), part in statement (2) is { [R,] = {R;, R3, R4} [Rz]
= {R,, Rs, Rg, R;}} (remember that closures are computed wrt G, = F; U U
F7). Thus we have to compute the key-equivalent partitions of {R;, R3, R,} and {R2,
Rs, Rg, Ry} wrt key dependencies embedded in {R;, R, R,} and {R,, Rs, R R7}
respectively. The sets returned contain the sets input. Hence KEP({R, . . . ,R7}, G)
returns {{R,R3,R4}, {Ro,R5,Re,R7}}-

Since KEP({Rg}, G5) = {{Rs}}, the key-equivalent partition of R is {{Rs}, {R;,
R37 R4} {R2’ R5a R R7}}‘ o

The following is a basic fact about KEP and its correctness follows from state-
ments (2) and (3) of the function.

Lemma 5.1: Let R = {R;, ... ,R,} be a database scheme and let F = F; U
*++ U F,, where F; is a set of key dependencies embedded in R;, for all 1< < n.
Let {KE,, ...,KE)} be the output from KEP when (R, F) is its input. Then for all
1<1< !, KE; is key-equivalent wrt its embedded key dependencies.

Lemma 5.2: Let R = {R,...,R,} be a database scheme and let FF = F; U
«++ U F,, where F; is a set of key dependencies embedded in R;, for all 1< 1< n.
Let {KE,, . ..,KE,} be the output from KEP when (R, F) is its input. .\ssume S C
R is key-equivalent wrt its embedded key dependencies. Then S C K/;. lor some
1<t <.

[Proof]: This follows from the fact that if SCR and S is key-equivalent wrt its
embedded key dependencies, then in statement (3) either part = {R}, in which case
the lemma holds, or in any recursive invocation of the function, S C p,, for some p, i
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statement (3) of the function. O

Lemmas 5.1 and 5.2 prove that the partition of R produced by KEP is the key-
equivalent partition of R.

5.2. Recognition of Independence-reducible Database Schemes

In this subsection we give an efficient algorithm that recognizes exactly the class
of independence-reducible database schemes.

Algorithm 6
Input: A database scheme R and a set G of key dependencies embedded in R.

Output: Accept or reject. If accept is output, an independence-reducible partition of R
and an embedded cover are also output.

Method:

(1) generate the key-equivalent partition {KE, . ..,KE,} of R via KEP(R, G);
(2) let F; be a set of key dependencies embedded in elements in KE, for all 1<j<n;

(3) if {UKEI, ...,UKE,} is not 1ndependent wrt G (or UF);), then output regect,
else do output accept, {F;, ... ,F,}, and {KE,, . . KE »} end.

Suppose {KEj, . . . ,KE,,} is the key-equivalent partition of R produced after the
execution of step (1) when (R, G) is used as input to Algorithm 6. Suppose (R, G) is
accepted by Algorithm 6 and let D = {UKE, . ..,UKE,} be the database scheme
and {Fy, . ..,F,} be its corresponding embedded cover. Note that G is equivalent to

n

U F;.
1=1

Corollary 5.1: Let R be a database scheme and let G be a set of key dependen-
cies embedded in R. If (R, G) is accepted by Algorithm 6, then R is independence-
reducible wrt G'.

[Proof]: Let T = {KE,, ...,KE,} be the partition of R generated in step (1) of
Algorithm 6. By Lemma 5.1, KE is key—equlvalent wrt its embedded key dependen-
cies. By step (3) of Algorithm 6, D = {UKE;=D;| KE; € T} is independent wrt G.
Hence R is independence-reducible wrt G. O

Corollary 5.2: Let R be a database scheme and let G be the set of key depen-
dencies embedded in R. If (R, G) is accepted by Algorithm 6, then R is bounded and
algebraic-maintainable wrt G.

[Proof]: Follows directly from Theorems 4.1, 4.2 and Corollary 5.1. O

Corollary 5.3: Let R be an independence-reducible database scheme wrt G,
where G is the set of key dependencies embedded in R. Let {P;,...,P;} be an
independence-reducible partition of R and let {KE,,...,KE,} be the partition
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generated after the execution of step (1) of Algorithm 6 when (R, G) is its input.
Then for all 1<t <k, there is exactly one KE, such that P;CKE,, for some 1<¢<n.

[Proof]: By Lemma 5.2, for each P;, 1<¢<k, P;CKE,, for some 1<¢<n. If P; is
embedded in more than one KE,, then {KEI, .. KE ' } does not partition R. Hence
there is exactly one KE, that embeds p;. O

Theorem 5.1: Let R be an independence-reducible database scheme wrt &G,
where G is the set of key dependencies embedded in R. Then (R, G) is accepted by
Algorithm 6.

[Proof]: Let {KE,, ...,KE,} be the partition generated after the execution of
step (1) when (R, G) is input to the algorithm. Let {P;,...,P;} be an
independence-reducible partition of R. Corollary 5.3 implies {Py, . ..,P;} is parti-
tioned into n disjoint sets. Let P, ... ,P be the blocks contained in some KE, for

some 1<qg<n. It is easy to verify that U P,=KE,.
i=0

Let D = {D,=UKE,,...,D,=UKE,} and F = F,U ---UF, be the key
dependencies embedded in D. We want to show that if {UPy, ...,UP;} is indepen-
dent wrt its embedded key dependencies, then D is also independent wrt F'.

Suppose D is not independent wrt F. By a close inspection of the algorithm for
testing independence from [GY] and by Lemma 5.1 that KE, is key-equivalent wrt its
embedded key dependencies, for all 1<v<n, there are Dj, D;, ©sj, and there is a

sequence of relation schemes D; = D;,...,D; such that D; # Dj, for all 1<p<l,
l

U D N Dj = X and X embeds a key dependency K;—A in F+
p=1

Consider SCR for those relation schemes in R that are members of D;, 1<p<l.
Clearly {D, y o D,,} is connected and lossless wrt its embedded key dependenmes
KE; i is also connected and lossless wrt its embedded key dependencies, where D; i =
UKE; , for all 1<p<I. Hence S is lossless wrt its embedded key dependencies.

Let UKE; = D;. Since K;—A is in F]'-'", there is a sequence of key dependencies,
and hence a sequence of the relation schemes in KE; of K; covering A. Let the
sequence be Hy, ... ,H,. Without loss of generallty, We assume for all Hy, p<q, H,
does not contain A. Then V = S U {H,, ...,H,_,} contain K A, for a key depen—
dency K,—A in H,.

Let R, be any relation scheme in KE;. Let Gy be a set of key dependencies
embedded in H,. Then R+ wrt G - Gy, contains V and hence R, and H, violate the
independence test since R"’ wrt G - GH contains K —A, Whlch is a key dependency

embedded in H,. Hence R is not 1ndependent wrt 1ts embedded key dependencies.
Since R, and H are not in the same KFE,, they are not in the same P,. This implies
that {UP, . . . ,UPk} is not independent wrt its embedded key dependencies. O

Corollary 5.4: Let R be a database scheme and F be the set of embedded key
dependencies. Then there is a polynomial time algorithm that determines if R is
independence-reducible wrt F'.
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[Proof]: Algorithm 6 clearly is a polynomial time algorithm and recognizes exactly
the class of independence-reducible database schemes. Its correctness follows from
Corollary 5.1 and Theorem 5.1. O

5.3. BCNF Independent and BCNF ~-acyclic Schemes are Independence-
reducible

In this subsection, we will show that the class of database schemes recognized by
Algorithm 6 properly includes all previously known classes of database schemes which
are bounded wrt a set of embedded key dependencies.

Theorem 5.2: Let R be a cover embedding ~y-acyclic BCNF database scheme wrt
G. Then (R, G) is accepted by Algorithm 6.

[Proof]: Suppose there is a cover embedding ~-acyclic BCNF database scheme (R,
G) that is rejected by Algorithm 6. Let D = {D;=UKE,, ...,D,=UKE,} be the
database scheme that is rejected by the independence test in step (3) of Algorithm 6.
Let F) be a set of key dependencies embedded in Dy, for all 1<k<n and let F' = UF}.

Since D is not independent wrt F', by a close inspection of the algorithm for test-
ing independence from [GY] and by Lemma 5.1 that KE, is key-equivalent wrt its
embedded key dependencies, for all 1<v<n, there are D;, D;, ¢#j, and there is a
sequence of relation schemes D; = D;, .. .,D; such that D; # Dj, for all 1<p<m,

UD,-P N D; = X and X embeds a key dependency K;—A in F]’-*.

Consider the hypergraph S for those relation schemes in R that are members of
D; , for all 1<p<m. Clearly {D;,...,D; } is connected. KE; is also connected,

where D,-p = UKE,-p, for all 1<p<m. Hence S is a connected subhypergraph of R.

Let UKE; = D;. Since K;—A is in F]'-", there is a sequence of key dependencies,
and hence a sequence of the relation schemes in KE; of K; covering A. Let the
sequence be Hy, ... ,H,. Without loss of generality, we assume for all H,, p<g, H,
does not contain A. Then V=S U {H,, ... ,Hq_l} contains K A, where K,—A is a
key dependency in H,. If K A is embedded in some element in S, then H is in some
D;, for some 1<p<m. This would contradict {KE,, ...,KE,} partitions R. By
assumption A is not contained in any Hp, p<g, K A is not embedded in any element
in V.

Since no element in V contains K A and V is a connected subhypergraph of R, a
u.m.c. does not exist for K, A. By Theorem 2.1, R is not y-acyclic. O

Next we want to show that the class of database schemes recognized by the algo-
rithm properly contains the class of independent schemes identified by Sagiv [S2].

Theorem 5.3: Let R = {Ry, . ..,R,} be a cover embedding independent data-
base scheme wrt its embedded key dependencies G = G; U - -+ U G,. Then (R, G)
is accepted by Algorithm 6.

[Proof]: {{R,}, . . . ,{R,}} is an independence-reducible partition and the theorem
follows trivially. O
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As a consequence of the above result, the class of database schemes accepted by
Algorithm 6 in fact properly contains a superset of the previously known classes of
bounded (which are also ctm) database schemes.

Theorem 5.4: AUG(S) and AUG(G) are both accepted by Algorithm 6 and hence
are both bounded and algebraic-maintainable, where S is the class of cover embedding

BCNF independent schemes while G is the class of y-acyclic cover embedding BCNF
database schemes.

[Proof]: Follows directly from Theorems 4.3, 5.2, 5.3 and Corollary 5.4. O

5.4. A Characterization of Ctm for Independence-reducible Schemes

We showed in Section 4 that independence-reducible schemes are algebraic-
maintainable, but not necessarily ctm. We now state the condition under which an
independence-reducible scheme is ctm. Let R be an independence-reducible database
scheme wrt F, where F is a set of key dependencies embedded in R. Let T =
{Ty, . ..,T;} be an independence-reducible partition of R. Then we say that R is
split-free if each T; in T is split-free wrt its embedded key dependencies.

Theorem 5.5: Let R be an independence-reducible database scheme wrt F', where
F is a set of key dependencies embedded in R. R is ctm if and only if R is split-free.

[Proof]: It follows from definition of independence-reducibility and Corollary 3.3. O

6. Conclusion

We defined a generalization of independent schemes, called independence-
reducible schemes, and proved that it is highly desirable with respect to query answer-
ing and constraint enforcement. The criteria we used in evaluating a database scheme
are boundedness and algebraic-maintainability. We showed that this class of schemes
is bounded by deriving relational expressions for computing total projections. We
proved that it is algebraic-maintainable by finding an incremental algorithm for enforc-
ing constraints via single-tuple conjunctive selections. To demonstrate that the class
of schemes identified is quite general, we showed that it includes a superset of all pre-
viously known classes of cover embedding BCNF database schemes with similar desir-
able properties. We also found an efficient algorithm which recognizes exactly the
class of independence-reducible database schemes. Independence-reducible schemes
properly contain a class of ctm schemes. An efficient test was found which determines
if an independence-reducible scheme is ctm.
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