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ABSTRACT

We propose a strongly-typed functional model of register-
transfer-level design specifications. The model is influenced by
Gordon’s register-transfer model of digital design and, com-
pared to it, is presented from a more intuitive point of view,
which in a way is closer to the reality of the RT design. We
use the typed nature of the design environment to develop a
semantic model for our SDC design notation, reported earlier,
and to enforce correct composition of SDC-based designs.

The model can be used for design specification purposes as
well as for analysing and reasoning about designs.
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University of Waterloo
Waterloo, Ontario, Canada

1. Motivation

Register-Transfer (RT) based designs enjoy a high degree of structural
regularity, which contributes to their acceptance as suitable models of VLSI
design. This regularity is manifested by the explicit separation of a design
into a PLA-type control-part and a slice-based data-path-part, and leads to
an efficient placement and routing scheme. Layout efficiency and regular-
ity has been the main motivation behind a number of silicon compilation
activities in the past,z'4 and will likely continue to contribute to future
developments.

Theoretical interest in RT-level modeling has also gained momentum over
the last few yearss’ 6 and, among others, Gordon’s functional model® has
received special attention. Unfortunately, that model (among others) does
not capture the above-mentioned regularities in an explicit form and so,
fails to act as a direct representation of the corresponding RT design.

It is our belief that for a design abstraction to gain acceptance, there should
be a one-to-one link between the objects of the design and the elements of
the model, similar to the relationship between the logic-gate-based designs
and their corresponding Boolean algebra model.

It is the purpose of this report to adapt a modified and extended version of
Gordon’s model to the direct capture of digital designs. To achieve this,
we apply the model to the SDC design primitivesl’ and show that SDC-
based designs can be modeled in a direct, one-to-one form, using the pro-
posed functional model.
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2. Defining Combinational Modules

Let T be the set of basic signal types used in communication with a device.
We define an m-input, n-output ( mXn-put ) combinatorial device D , shown
in Figure 1, to be of type:

D:(tXtpX " Xity) > (tm1X iy 42X Xlmin) (1)

if 14,25, -, t,,, €T represent the types of values appearing at the m
input and the n output ports of device D respectively.

We define the behavior of D by:

D = >\(771,772, ERY/ )'(E 19E2’ . ,En); (2)
where the right side of (2) is a short form for:

>\(771,772, e ’nm) . Ei s 1<i<n
nj:ti €T, 1<j<m is the jth input port’s value, and
8k:(t1X 12X X ty) —>tyyr, defined by g =Xny,m, -0, M) Ex,

1<k <n, defines the ksh output-port’s value.

T, 1,
1 z ™m .
Figure 1
E, E 4 En
v ¥ v

3. Defining Sequential Circuits

At every state, the behavior of a Mealy-type sequential machine B, shown
in Figure 2, has two components. First, its combinational behavior, B, ,
under the influence of the current state and port inputs, and second, its next
state behavior, B, , under the influence of the state and the port inputs at
the time of transition to the next state. Therefore, the behavior of an
m Xn —put , q —state sequential machine B, at state (sy,s5, ", 5;),
sj:tj €T, 1<) <q, is modeled by two combinational circuits of types:
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and,

Bemp : (81X02X + + * Xig Xtg 41Xtg 12X * * * Xlgim ) — (3)
(tq +m+1X0g +m +2X ° Xtg 4m +n)
Bgeq : (£1Xt X+ + - Xty Xty 1 1Xtg 42X+ * * Xlgym ) = (4)

(£1XtX - - - th)

and is defined by:

B

B emp
{ }:")\(771,772,"‘,ﬁq,ﬂq+1,"',nq+m).{
seq

(E1, Eq -+, Ey)
(F1, F o, '°'an)

\'2 v v

g
<]

~
N
e .
a

s,

Tl"-l-}i qu+2 q+m

Figure 2
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A few observations are appropriate at this point.

E{,E, ---,E, are the n output port values produced in response to
the corresponding input-port and input-state values at all times.

Fi,F,, ---,F, are the ¢ next-state values produced in response to the
corresponding input-port and input-state values at every step. They are
evaluated at the time of the transition to the next state.

The g +m inputs represent the m input-port (environment) and g¢
input-state values. To distinguish between the state and the port inputs
we (sometimes) move the input-state bound variables to the left of the
equality symbol, while keeping the environment inputs on the right side
of the definition.

We write B(sy, s, " °,5,) to represent module B at state
(51,82, "' *,8,), and B(Fy,F,, - ,F,), to define a next state
(F1,Fog, -+, Fg) for B, where F;:t; €T, 1< <q is the new value for
the jth state variable.
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Combining the two components of (5) into a single definition, and follow-
ing the new practice of separating the bound variables, we write

B (s1, 52, °'°9sq)=>‘(771’772"":77m)' (6)
((EwEg - " Ep), B(F,Fo - ’Fq))
to represent the behavior of B and re-write (3) and (4) as
chb (s19s2, s S8 )=>‘(771’772a e ’nm) . (ElaEZa e 9En) (7)
and
Bseq (31,32, vt ,sq )=>‘(771’7729 v :nm) . (F19F29 te ’Fq) (8)

to represent B’s combinational and sequential behaviors, respectively.

4. Composite Modules

So far we have concentrated on the definition of primitive modules, or the
leaf cells.8 It is the purpose of this section to propose a formalism for the
definition of composite modules in terms of the instances of primitive
and/or other (possibly predefined) composite modules. In the context of a
composite module, we refer to the lower level instances as its sub-modules.

An m X n—put composite module f ¢ is defined as the interconnection of s
submodules £ %, f 1, .-, f*~1 and a (hypothetical) n X m —put environ-
ment module f *, where the input and output ports of f ¢ respectively
define the output and the input ports of f ¢, as shown in Figure 3. Further-
more, we define:

s s .
® 1 =UI', 0 =0, as the set of internal input and the output ports
i=0 i=0
respectively, where I', o<i<s, and O, o<i<s, are the respective
sets of input and output ports of the izh module, and
® P ={py,py " ,p} as the set of nets used in connecting the submo-

dules, such that h.: OU I — P is a total function assigning a single net
to every port, h: O — P is one-to-one, and h:1 — P is onto.

To capture the net connections of a module, say f' ( m' Xn'—pur,
q' —state ), in a functional form, we write

(y1y2 ""yn‘)=fc'l;nb(s1’82’ °°"sq")(x1’x29 T X)) 9)
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as a short form for MOpULE. 5

Yj =(>‘(771’772, "',774", 774"+1,77q"+2, "”ﬂqi+m")-Ej) (10)
(51,52, © " " 5,80, X1,X0, " ,Xui) 1<j<n’
where
f c‘lmb = >‘(771’ N2s +oees ﬂqi, 77q"+1, 77q"+2, e ﬂqi+mi) . (E 1 Ez, ety Eni),

and y; €n(0'), o<j<n’ and x; €h(I'), o<j<m' are the values of the nets
connected to the corresponding ports. Thus, the behavior of the module
f ¢, composed of the interconnection of submodules: f 9 f1 .- f*,
using the connection nets P , can be defined as:

£fc(sLs2 - ,8)=Mhr(O%)).(rec
(Y' =f o (S)NX") 1gi<s-1) (11)
in (B(I°),f° (f 40(S')X") 1gigs-1))

where
Y! =(yi.v5, - L.yl ),y EP—h(0°), 1<) <n’1<i <51,
and
XU =(xi,x5, - xki),x] €EP, 1<j<mt1gi <5,
are the net values, S = (s{,s%, -+, s/i ) is the set of states of f i gl is

the number of state variables in f ', 1<i<s, and rec and in are defined as
09
in.
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5. The SDC Model of Register-Transfer Design

Let T ={S,C,D } be the set of signal types used in the design of a
register-transfer-based design, where:

® S is the type of signal indicating the truth values of the assertions made
about the status of the data-path.

® C is the type of signal selecting among the path alternatives inside the
data-path.

® D is the type of signal carrying data values among the path slice com-
ponents. Such data values depend on the width of slice being defined.
For example, for a binary slices, we have D, ={0,1 }, and in case of
a decimal slice, we have D, ={0,1,2,3,4,5,6,7,8, 9}

In the remainder of this report we will use small letter identifiers as vari-
ables ranging over the above sets of values and ‘()', ‘[], and ‘ {}’ to
enclose S, C, and D type variables, respectively.

We now introduce four design primitives which constitute the building
blocks of our SDC model.

5.1. The Selector-Slice Primitive

A selector —slice sel , Figure 4, is a combinational device of type
sel : D XD XC — D XC , defined by:

sel =X\{dj,djo}c].{c —d, d}c], (12)

where ‘—’, in the context of an expression, stands for the if _shen_else opera-
tor. Definition (12) indicates that the output of a selector is equal to one of
its two data inputs and the selection is made according to the value of input
c:C.

Figure 4




5.2. Functional Primitives

Functional —slices are a family of (m + k )X(n + k )—pur combinational devices
of type (D™XS¥)—->D"xSk), as shown in Figure 5, where:
m>1, 1>k >0, 1>n >0, and n+k >1.

Td 1 Td z Tdm
b}

———— L Figure 5

Thus, the behavior of a functional primitive can be defined by one of the
following three definition schemes:

)‘{dl’d2’ ’dm}<s>{E}<F> (13)
Mdy, do, °'°’dm}<s>'<F> (14)
\Mdg,dy - sdy}. {E) (15)

Depending on the nature of application, the number and type of operators
used in E and F may vary. For example, multiplication might not be
allowed when the model is used as the input to a silicon compiler, while its
use in simulation applications might be allowed. In a similar way, addition
might prove to be un-acceptable when the model is used for reasoning
about hardware, but acceptable when the model is intended for silicon
implementation. We now present a few typical functional-slices specified
according to the techniques discussed in (13)-(15).

Ex.1- Binary ‘and’ Slice:
A binary and slice is a D2 — D, type device defined by:

and =X{a,b}.{aAb} (16)

Ex.2- Binary ‘equal’ Slice:
A binary equal slice is a D,2X S — S type device defined by:
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equal =X\{a,b}(s). (s A(a Db)), (17)

where a and b are the slice’s data inputs, s is the status input indicating
the result of comparisons at more significant slices, and s A (a @ b) is the
status output to the less significant neighbouring slice.

Ex.3- Decimal ‘add’ Slice:
A decimal add slice is a Dg2xS — Dy XS type device defined by:

add=Xa,b¥s).{(a+b+num(s))mod 10 num (s) +a+b >9) (18)

Where a and b are the slice’s data inputs, s is the carry input from the less
significant neighbouring slice, (a + b + num (s )) mod 10 €D 1is the data out-
put, (num (s) + a+ b>9) €S is the carry to the more significant neighbour-
ing slice, and num:S —D is a function that produces the numerical
equivalent of the status input signal.

5.3. The Controller Primitives

Controllers are a family of m Xn —put devices of type C? xS9 —C*XS*,
where m =p+q and n =s+1t, p >0, ¢ >0, s >1, and ¢ >0; a typical way of
defining this might be as:

Nn1s m2, "',77p]<77p+1’ Mp +2» "'?77p+q>'[Bl,BZ’ ", By (19)
<S 1> S2’ T, St >,
where B;, 1<i <s,ands;, 1<i <t, are the sum of the products of the

bound variables and their complements.

5.4. The Unit Delay Primitive

A unit-delay del is a 1X1—put , single state, polymorphic 10 sequential dev-
ice of type del : (* X *) — (* X * ), shown in Figure 6 and defined by:

del (n)=X(i).(n,del(i)) (20)
Ti
i
n Figure 6



6. Typed Connections

We extend the concept of typed ports to that of typed nets. This assumes
that the nets of a particular type connect the ports of the same type. We
continue to use the parenthesis pairs [], and {} and ( ), to enclose control,
data, and status nets, respectively.

In this spirit we partially re-write (9) as:
{)’I’y2’ e ’ynd}=f cmb(sl’SZ’ e ’Sq)(xl’xZ’ e 9xm) (21)

to emphasize the output data conections of f, where n; is the number of
data outputs of f.

In a similar way, one may specify the control and starus type connections, or
extend the definition into a single statement of the form:

{Yp HYcKYs)="F omp (S Xp H Xc N Xs) (22)
so as to re-write (9) in a completely-typed form.
We also write: ‘

{f cmo (S Xp HXc K Xs)} 5 [F omp (S Xp } Xc K X5 )1,
and

(f omp (S){Xp { Xc X Xs))
in order to refer to the net sets: Y, , Y-, and Yg, respectively.
Extending this convention to the sequential behavior, we write:

f seq ( S ){ XD }[ XC ]( XS >’ (23)
to refer to the next-state values of f.

Finally, we call a composition a data- (or control-, or status- ) composition,
if only data ( or control, or status ) type nets are used in making the con-
nections.
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7. Register-Transfer Slices

A Register-Transfer (RT) slice is defined as the data-composition of primi-
tives and/or other data-composed sub-modules. This guarantees that the
control and status ports of an RT-slice remain unconnected. We now
present a number of RT slice examples.

The m-bit "register-counter” slice:

Following are the behavioral definitions of three submodules: sel, del,
and inc used in the composition of the m-bit "register-counter” slice
shown in Figure 7.

Figure 7

sel =Xinq,ing}c].{c—inying}[c]
del (n)=X{in}.({n}, del (in))
inc = X\{in}. {(in +1) mod 2" }.

Next we write the composition rule for the m-bit "register-counter” using
the above sub-modules, the nets yq, y5, 3, in, ¢i , and ¢, . According
to the (11),

count (n) = Xin }[ ¢;, ] . (rec (
{y1flco]l =sel omp {y3,in Y cin ;
{2} =del oy (n){y 1);
{y3} = inc o {y2}) in ({y 2}lcoy ], count (del &, (7 )y 1))))-
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This can be expanded to
count (n ) = \{in }[c;, ] . (rec (
Y1=Cipn—>in,ys;
Cot = Cin >
ya=n;
y3=(y2+1)mod 27) in ({y o}{cot | , count (yy))),
and reduced to
count (n) = X{in }c;, ] . ({ n }c;y ], count (¢c;; —in , (n +1) mod 2™).

Verbally, count is a single state (n) sequential device with one data
input (in ), one data output, one control input (c;, ) and one control out-
put. The counter’s next state value is controlled by the value of the
control input which selects between (#n +1 )mod 2™ and in as the next
state value.

The "shift-register” slice:
The following is the behavioral definition of one slice of a shift register

shown in Figure 8. The sub-modules sel, and del used in the composi-
tion of the "shift-register” slice are defined as usual.

Figure 8




—12 —

The shift slice is a new functional primitive defined as

shift = \{in {Kin,) . {in,} {in4).

Next, we write the composition rule for forming the "shift register” slice
using the above sub-modules and the nets yq, y3, ¥3, ¥4, in, Cin,5 Ciny Sin >
Coty> Cotp» @Nd s, . According to the (11),

shift —register (n ) = X\{in Yci, > Cin,J(sin ) - (rec (
{ 1Heor,] = sel gmp {y 4, in Ylcin )5
{ 2}eor,] = sel omp {3, ¥ 1}Cin,I5
{3} = del oy (n ){y 2}
{7 aXsor ) = shift gy {y 3Ksin )
in ({ ¥ 3}{cor,> Cor,)(S0r ) >

shift —register (del ., (n )(¥ 2))))-
This is expanded to

shift —register ( n) = Xin Ycin » Cin,J(5in ) - (rec (
Y1=Cip,—>in,y4;
Cot; = Cin,>
Y2=Cin,™>YV1,Y3

cotz = cinz;

ysz=n;
Y4=Sin;
Sot =YB)

in ({y 3}[5'0:1’ cat;](‘yot > , shift —register (y 5))).
and reduced to
shift —register ( n ) = >‘{ in }[cinl’ cin2]<sin > . ({ n }[cin 1 cin2]<n > H

shift —register ( c;,, — ( iy, —>in, 5ip ), 1 ).
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® Hierarchical Design Example:

In the following example we first give the behavioral definition of one
slice of a register with add capability, called radd, shown in Figure 9.

Figure 9

————— oy

We then show the use of this unit in a hierarchical design using two such
modules. The sub-modules used in composition of the radd are sel, del,
and a binary adder called badd defined by

badd = M\in 1, inyXs;, ) . {in 1@Din oPs;, } {in (Aing + in (Asy + ingAsy ).

Next, we write the composition rule for forming the radd slice, using the
above sub-modules, the nets y;, y,, y3, inq1, ing, Cin, Sin> Cor, and s, .
According to the (11),

radd (n) = Nin 1, in g} cin 1(sin) - (rec (
{ 1lleor ] = sel mp {y 3, in1}{cin |5
{ 2X(s0r ) = badd ey ¥ 1, in K50 )3
{y3} = del gy, (n ){y2}) in
({ ¥ 3 y2}co lsor ) » radd (del o () 2))))-
This is expanded to
radd (n ) = M in 1, ino}{ci, [(sin ) - (rec (

Y1 =Cip—in1,y3;
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Cot = Cin>
Y2 =y 1bin 2Psin ,
Sot. = Y 1NNy + Y 1ASiy + inaASiy
yz=n)
in ({y 3, ¥ 2}[cor {50 ) » radd (v 2))),
and reduced to
radd (n ) = N{in 1, in}[ci, |(sin ) -
({n,(cn—ing, n) @ iny D sin Heim]
((cin=>inq, n)Aing + (Cin —>in 1, B )ASi + inoASiy )
radd ((c;;, —ing, n) @ iny D sin))-
A further reduction yields
radd (n ) = Nin 1, in o} {cin |(sin ) -
({n, (cin—iny,n) @iny D sin Ycin |
(Cing + sin )A(cin —>in g, n) + ingAsiy ),
radd ((c;; —iny, n) @ ingy D sin ).

We are now interested in deriving the behavior of the serial connection of
two radds, as shown in Figure 10.

[~ T Y

4001'__ . I
radd |Cin,
Smi _S}b' Figure 10
g
4%t -
radd Cinz
i I 5
l" 2

meyed
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The following derivations lead to the definition of combined behavior.
First,
Dradd (n ;m ) = Nin 1, in 3}{Cin,> Cin[(Sin,> Sin,) - (vec (
15 2}cor Jsor,) = radd gy, (n ){in 1, in 2} cin [(5in,)
{ot 1, ot 2} cor J(Sor,) = radd gy (M )Y 1, ¥ 2}[Cin J(Sin,))
in ({0t 1, 01 2}[Cor,> Cot,(Sot,» Sat)
Dradd (radd s, (n ){in 1, in 2}[cin J(5in,)»
radd ;, (m ){y 1, ¥ 2}[Cin,J(5in,))))-

This is expanded to

Dradd (n ,m ) = \in 1, inp}{Cin ., Cin,(Sin > Sin,) - (vec (
yi=n;
y2={(cin,—>iny, n) P iny D sin,,
Coty = Ciny,
Sot, = (i 2, Sin JN(Cin,— in 1, 1 )+in oAsjy
ot{=m;
0ty = (Cin,=>y1,m) D y2D Sin,,
Cot, = Cin,,
Soty = (V2 + Sin )N (Cin,—> Y 1, m ) + Y2 A Sin,)
in ({or 1, ot 2}cor,> CorJ(Sot 5 Sor,)» Dradd (

(Cin,—>in1, n) @ iny @ sin,s

( cinz_-’y 1> m )@y 2@Sin2):
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and reduced to
Dradd ( n ,m ) = Min 1, in 2}{Cin,> Cin,l(Sin> Siny) - (
{m , (cin,mn , m)D(cin,—> in 1, n )Din ,Psin )Psin, }
[cinp cin2]
((n 2, 5in JN(Cin,—> in 1, 1 )+in 3ASy,
(((cin,— in 1, n )Din 2PBsin, ) +Sin )N (Cin,—n , m )+
((cin,= in 1, n )YDin 2Psin, ) ASin,)s
Dradd ((c;,,— in 1, n )Pin 2DSin >
(Cin,—n , m)D((cjp,—>inq, n)

@in Z@Sinl ) @sinz)))'
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8. Multi-Slice Data-Path Definition

Given a data —slice f and a positive integer n, an n-wide data-path is
formed by concatenating n such slices along their control and starus ports, as
shown in Figure 11.

Di
—> 1st. si1ice |—>

T Figure 11

{m]

D——)[ nth. Slice |-——>

N A

ph-t

—>{¢h-1>th. Slicel—>

Di

—> 1st. si1ice >

T 1

Therefore, the behavior of an »n -wide data-path F is defined by:

DP(f ,n)=F (i s? ---,s"y=xpL,D? ---,D"})C].
(n=1— ({fcmb & 1){D 1}[C ]<V>} <fcmb (s 1){D 1} [C ](V»’ (24)
£ seg SHD HC K) ),

(f omp D" YNCKDP (f ,n=1){D', D% ---, D" HC)H}
{femp S")D"HC(DP (f ,n-1){DY, D2 ---, D" HCH)),
fseqg ")D™YCIKDP (f ,n =)L, D% -, D" HCH)),

where §' =si,s5, -5/, 1<i <, are the values and ¢ is the length of
the state vector of ith. slice; D' =dy,d5, ---,d,, 1<i <n, are the m data
input values; C is the control input vector of each slice; and v is the first
slice’s status initialization vector.

A few observations are in order here.

® Since the slices are identical’, concatenations can be realized through
the abutmentl! of the corresponding layouts.

t+ - In practice f can be parametrized and the ith slice can receive i as its parameter.
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We have assumed that the status information is passed from the lower
indexed slices to the higher indexed ones. Assuming that the smallest
indexed slice is also the least significant slice ( under some number
representation scheme), this formulation satisfies the requirements of
certain functionals, such as the carry propagations in a sliced adder.

A similar formulation exists for the case where the status signal has to
propagate in the opposite direction, for example a sliced comparator.
Since control signals are simply passed through the slices without any
modification, simultaneous flows of both formulations will not lead to
infinite recursion, as might be feared.

Definition (24) can be used to extend certain slice properties to that of
the data-path itself, through structural induction proof techniques. In
the past, designers have assumed this in an implied way and have used
the properties of the slice and the corresponding » -wide data-paths in
an interchangeable form. We also do this in the next example by
defining a single slice, and applying the control part to the slice, assum-
ing that the multi-bit version of the data-path leads to the identical
behavior.
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9. A Complete Example

The SDC-based graphical representation of a circuit designed to calculate
the greatest common divisor (GCD) of two values at its data-input ports
‘in, and ‘in,’, and producing the result at its data-output port ‘out’ is shown
in Figure 12.
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Figure 12
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The input values are sampled at the last assertion of the ‘r’ (reset) control
input and the availability of the result is signaled by the first assertion of
the ‘f (finish) status output. The hardware follows the usual GCD algo-
rithm of repeatedly subtracting the smaller value from the larger value until
the two values match. It is the purpose of this section to develop the func-
tional models of the data-path and the control parts independently, and to
combine them to form the total module’s behavioral model.

We start by applying the composition rule (11) to the data-path. Given
functional primitives:

eql =X{a,b }.{a =b)
gt =X{b,b}.{a>b)
sub =X{a,b }.{a —b }
and the composite register module
reg(a )=\in Yid].({a },reg(ld —in,a ))
the ged_path is defined by:
ged_path (a,b)=Ninq, ing }[j,k,la,Ib] . (rec(
{y1}=selgm{y7,in1 }[Jj];
{y2}=selgm{y7ina}[Jj];
{ys3}=regem(a){y1}lla];
{ya}=regemp (b)) {y2}[6];
(s1)=edlgm {¥3, ¥4 }; (24)
(s2)=8tmp{¥3 Y4}
{yst=selom{yays}[k];
{ve}=selem{y3ya}[k];
{y7}=subm{ys y6}) in(
{y3}(s1,52), ged_path (reg oy (a){y1 Y la],
(reg seq (2 ){y2 L b ).

Please note that in this example we have used a single slice and a data-path
of those slices in an interchangeable form. As the result, we have assumed
that the status inputs to the data-path receive proper initialization without
explicit reference to them.
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After expansion and simplifications, ged_path behavior reduces to:

ged_path (a,b)=Xiny,inyg{j,k,la,lb].{a}{a =b,a>b),
ged_path ((la —(j —iny, (k—(a—b),(b—a))),a),
(b—(j—ing, (k—(a—b),(b—a))),b)))
This completes the definition of the data-path part.

The control part is made of two sub-modules: the PLA and the unit-delay
parts. The PLA realizes the microprogram to be executed by the module.
The unit-delay holds the state of the control-part. We start by first defining
the PLA part, called pla, and combine it with a unit-delay element to form
the complete control-part, called contunit. Following are these two steps.

pla =X\r](sy,s5,¢).([c’,j,k,la,lb }{f))
which is expanded to:
pla =X r]{(sy,s2,¢ ). ([((FASCAsL)VFAC),
ro(FASIASIAE), (rV(F AsiASzAT)),
(rvV(FAsiASIATNI(F Ac))
and
contunit (p ) = X[ r { 51, 54).(rec (
[y, isk,la, X f)=placp[rls,s2,52);
(y2) =del gy (p)y1]) in (
[Jj.k,la,b](f ), contunit (del , (p)[y1])-
contunit can be reduced to
contunit (p) =\ r]{s, s2).([7r,7 ASIASIAP,
rV(F ASTASaAB), T V(F ASTAS2AP)]
(FAp ), contunit (FA P A s)V(FAp))
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- ] Figure 13
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Combining gecd-path and contunit, as shown in Figu’re 13, to form the com-
plete module, called ged, leads initially to:

ged(a,b,p)=XNinq, iny}[r]. (rec(
{out X 51, s2) = ged_path ., (a, b){inq, in}[ j, k,la,b]);
[j,k,la,b](f )= contunit y, (p)[rk s s2))
in ({ouw ¥ ),
ged (ged_path o, (a, b){inq, in}[ j, k,la,b],
contunit ;. (p)[ 7 K 51, 52))));
this exapnds to:
ged(a,b,p)=Ninq,inp}[r]. (rec(
out = a ;
si1=a =b;
spo=a>b;
j=r;
k =FASIAS2AP;
la =rV (7F AS1ASaAP);
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b =rv(F AS{AS3AD);

f =Fap)in ({outX f),

ged ((la—(j—iny, (k—(a—b),(b—a))),a),
(b—(j—iny, (k—(a—-b),(b—a))),b)),
(FAPAsD)V(FAP))),

and can eventually be reduces to:

ged (a,b,p)=Xing, ing}{r].({aX7Ap), ged(
(rvg)—=(r—iny, (¢g—(a—b),(b—a)),a),
(rvag)—(r—iny (¢g—(a-b),(b-a)),b),
(FAPAs1V(FAP)))
where

=rA(a=b)A(a>b)\D

q
q'=7rA(a=b)AN(a>b)AP
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