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ABSTRACT

This paper describes a control volume-finite element technique for
coupling coarse grids with local fine meshes. The pressure is treated in
a finite element manner, while the mobility terms are upstream weighted
in the usual way. This requires identification of the cell volumes and
edges which are consistent with the linear finite element discretization
of the pressure. In order to ensure that the pressure equation yields an
M-matrix, various conditions are required for the type of triangulation
allowed. Since the form of the equations is similar to the usual finite
difference discretization, standard techniques can be used to solve the
Jacobian. The local mesh refinement method is demonstrated on some
thermal reservoir simulation problems, and computational results
presented. Significant savings in execution times are obtained while giv-

ing similar predictions to global fine mesh runs.

Introduction

Local and dynamic mesh refinement are useful methods for obtaining high resolu-
tion of shock fronts and near wellbore flow in reservoir simulation [1-8]. This is partic-
ularly important in modelling cyclic steam injection which is used to recover high
viscosity erude oil [7-9].

Typically, control volume based finite difference methods are used to discretize
the system of equations representing multi-phase heat and mass transfer in a porous
medium [10,11]. These equations are highly non-linear, and of mixed hyperbolic-



parabolic type. Phase upstream weighting is used for mobility terms. In certain cases,
phase upstream weighting can be shown to converge to the physically correct solution

satisfying the entropy condition [12].

If the usual finite element method could be used, it would be a simple matter to
generate a locally refined discretization. However, it is difficult to combine upstream
weighting and the finite element method for multi-dimensional, multi-phase flows. It is
possible to use an asymmetric weighting function [13], but this does not ensure that
saturations will remain positive, in the absence of interphase mass transfer. This is
especially important in thermal problems, where interphase mass transfer does take
place. In this situation, the appearance of negative saturation values indicates viola-
tion of a thermodynamic constraint [8,11]. Consequently, since multi-phase flows with
heat transfer are very complex, it is desireable to retain the easy physical interpreta-
tion of control volume methods, while at the same time obtaining some of the intrinsic
flexibility of the finite element method.

Although the techniques used in this article are quite general, we will restrict
attention to the problem of local mesh refinement in reservoir simulation. In particular,
the problem of coupling the local fine mesh to the global coarse mesh will be con-
sidered. Two methods have been proposed for achieving this coupling. One technique
uses a very low order coupling for the pressure [1,3]. In fact, the truncation error for
this scheme is formally of O(1 /h), where h is a measure of the grid size. However, a
more subtle analysis shows that this scheme is convergent, but the convergence can be
slow in any region within O{h log(1/h)} of the interface [14]. This technique has the
advantage that in the single phase limit, the pressure is given by the solution of an
M-matrix, which ensures that no non-physical local maxima and minima can occur [15].
Although this method is often effective, some flow situations give inaccurate results [4].
An alternative is to use interpolation to obtain a high order coupling [4,16]. However,
this reduces the diagonal dominance of the Jacobian, which can lead to difficulties for
an iterative solver, unless some of the terms are evaluated explicitly. As well, in the
single phase limit, the pressure matrix is not as M-matrix, which can have undesireable

consequences.

The control volume finite element method has been proposed as a technique for
Navier-Stokes flows [17,18], which allows flexible grids. This method is similar to the
box method in semi-conductor device modelling [19,20]. Similar ideas were also pro-
posed by Varga [15]. In the following, we will apply the control volume-finite element
method to thermal reservoir simulation problems, subject to the constraint that in the

single phase limit, the pressure equation must be an M-matrix. As mentioned above,



this ensures that the pressure solution retains physically reasonable behaviour. An
added bonus is that, when viewed appropriately, the discrete equations have the same
form as the usual finite difference control volume formulation. Provided an existing
simulation code has a facility for arbitrary cell connectivity [16], it is a simple matter
to convert a finite difference code to a control volume-finite element formulation. This
has practical significance, since many person-years has gone into the development of

existing simulators, which are often 50-100,000 lines of code.

2. Control Volume-Finite Element Method

We will illustrate the basic idea of the method by first examining the discretiza-
tion of a simple prototype equation:

2L~ 9K, v P) 1)
where:
p = density
K, = relative permeability (a function
of the independent variables)
P = pressure

This equation has many of the characteristics of the multi-phase flow conservation
laws. Consider the triangle shown in Figure 1. From each side of the triangle, con-
struct a line from the midpoint of the side to a point o in the interior of the triangle.
This divides the triangle into ‘“boxes” surrounding each node [17,19,20]. The basic idea

of the control volume method is to discretize equation (1) in integrated form:
N+1 N
A (b =pi)

At =fS'KrVP"ﬁ dS (2)

where A; is the area of the box surrounding node 7. The integral in equation (2) is
over the edges e, (see Figure 1) surrounding node ¢, and the normal is outward to box
i. Let N; be the usual linear basis functions defined on triangles, N; =a; z +b; y +¢;

such that N; =1 at node ¢, N; =0 at all other nodes. Consequently:
P =3 F N, (3)

vP=) P, v DN



= constant
The discrete form of the right hand side of equation (2) is given by:

ng K, vP-'nds = E K,
I

e VP |, (1)

]

An upstream weighting for K, is easy to define. For example, if equation (4)

€5
results from the control volume around node 1, then the flux contribution across edge
ey, is given by:

Flux=K, |, e v P-n e (5)

with:
K, |, = K, (node 3) vP-n>0
= K, (node 1) vP'n <0 (6)

In order to see the relationships between this method and the usual Galerkin approxi-

mation, we will simplify the equation further. Let K, =constant=1. In this case, as

noted in [19], the integral in equation (4) is independent of the choice of point o, since
w2 N; =0, so that (for node 1):

fslvp'ﬁ ds =dy (P3—P1)+d3 (P, — Py) (7)
P cos 0;
PTURTT 44

A =area of triangle
=A1 +A2 +A3

As noted in [19], this is exactly the same as the row corresponding to node 1 in the
local stiffness matrix derived using the usual Galerkin approach:

— [, VNV Pdzdy=d, (P3—P)+d; (P,—Py) (8)

If a lumped mass approach is used for the left hand side of equation (1), then discreti-
zation of the mass term would be similar to the left hand side of equation (2). The
only difference would be that the area A; surrounding each node would depend on the

location of the point c. (The lumped mass approach would give the same area as the
control volume method if o was the barycenter of the triangle). For slightly more gen-
eral equations Bank and Rose [19] show that the control volume and Galerkin methods
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methods generate solutions of comparable accuracy, so that both methods are first
order correct. Consequently, regardless of point «, we can see that the control volume
approach, at least in the single phase limit, is linearly convergent.

It is interesting to note that both techniques give similiar discretizations for the
flow terms, with only the areas associated with each node being different. This is simi-
liar to cell centered and vertex centered finite difference methods on irregular grids. In
the finite difference case, both methods also yield the same order of discretization error
[21].

Recall from the introduction that an additional constraint on the discretization is
that, in the single phase limit, the pressure equation should reduce to an M-matrix.
From equation (5) it is clear that a sufficient condition for this constraint is that all
interior angles of the triangle must be less than 7 /2, which will ensure that d; are

positive. This puts a constraint on the types of triangulation that can be employed. A
similar restriction is required for some free boundary problems, [22] which require a

discrete maximum principal in conjunction with a finite element method.

From the point of view of discretization error, we are free to choose any con-
venient point « in the interior of the triangle. If all interior angles are less than 7 /2,
we can select « to be the intersection of the perpendicular bisectors of the triangle

sides. In this case, the flux across e, (equation (7)) becomes:
Flux e = d2 (P3_Pl) (g)

Note that this is the only choice for e, (the perpendicular bisector) which yields the
simple form of equation (9), even though the total flux crossing e, and e; is always

given by equation (8). In general, if a was not selected as the intersection of the per-

pendicular bisectors, then equation (9) would be a function of all three nodal pressures.

In the case that I, # constant, then equation (5) becomes:

Flux

=Ko | (PP (10)

with K, |, given by equation (6). Note that this form of the flux guarantees that
2

mass will always move from a node with higher pressure to a node with a lower pres-
sure. In general, if o was selected at a different point, it would be possible to have
mass flow from node ¢ to node j, even if the pressure in node j was higher than node .

This type of behaviour is unacceptable from an engineering point of view.



From equation (7) and (8), an alternative expression for dj is:

dk=—fA VN,VN] d:cdy (11)

1
= ——— [(¥i4+1— Yi+2) (yj+1+yj+2)
4A

+ (Tite—Tit1) (xj+2_zj+1)]

Some straightforward geometry shows that, provided all interior angles are less than
m/2, and o is the intersection of the perpendicular bisectors then equation (11)

becomes:

€k
d = 7. (12)

In the case that equation (1) is:

0
B_[t) = (Kz K, Pa:)z + (Ky K." Py)y (13)

where K, K, are possibly functions of (z, y), then equation (10) becomes:

Flux 62=Ky Kr e d2 (P3—P1) (14)
where:
K,
de =, (7e) (NVi)z (Nj)e + (Ni)y (N;)y | dz dy (15)
y
—1 z
= 4 Ky (yi+1"yi+2) (yj+1“yj+2)

+ ($£+2"‘xi+1) (“’j+2_xj+1)]

where we have assumed that (K, /K,) is constant over the triangle.

The condition that d), are positive is equivalent to requiring that all angles in the
triangle obtained by mapping the physical triangle into the (z', y’) plane:

-z 16
PN, (16)
Y
y'=
Ky
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are less than 7 /2. If the mapped triangle satisfies this condition, then the pressure
equation will be an M-matrix.

The d; given by equation (15) can be conveniently calculated by the usual finite

element assembly procedure. This will produce a ‘‘geometric’’ global stiffness matrix
7ij such that ~;;, ¢#j contains the sum of the d from triangles with a common

side. Consequently, 7;; contains the entire geometric information about the coupling
between node ¢z and node 7.
Each local dj is associated with nodes ¢, 7 # k. As each local d; is calculated,

the total area associated with nodes ¢ and 5 (47, Af) is incremented by:
(Incremental areas associated with nodes ¢, 5)

K
Ki ] (z;— ;) (17)

dj
= [(yj—-y,-)2+

This incremental area for node ¢ is shown as the shaded area in Figure 2. A7

represents the sum of all the incremental areas for all triangles of which node 7 is a

vertex. Consequently, AiS represents the area of the box associated with node <.

The final discretization for equation (1) will be:

(piN+1 _pzN)

AP N = 3 Ky ju K; jon (Pj—F) Vi (18)
J€n;

where 7; is the set of neighbours of node 7, and ~y;; is the (¢ j)'th entry in the global

geometric stiffness matrix, and:
K, jww =K, if P;>P; (19)

=K,; if P;>P

ry
Harmonic averaging can be used for K, ;. [10].

Note that this geometric stiffness matrix need only be calculated once, and the
values for 7;; and areas A7 stored. Then, equation (18) can be viewed as a discretiza-

tion of equation (1). Since we are interested in highly non-linear time dependent prob-
lems, we would like to avoid the expensive finite element assembly procedure, which
would have to be carried out for every Newton iteration. Instead, the Jacobian can be
directly constructed from equation (18). Of course, equation (18) has the same form as
the usual finite difference discretization of equation (1). The areas and connections
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associated with each node have simply been re-defined. However, we have gained con-
siderable flexibility in type of mesh which can be used. Since equation (18) has the
same conservative form as difference methods, it is possible to use a very efficient
method for constructing the Jacobian [8]. A slightly more general condition can be
obtained for generating a triangulation which will produce an M-matrix for the pres-
sure equation. The area of the triangle in Figure 1 is given by:

Zkej sin9,~

2
Restricting attention to the case where K, =K, 6 = constant, then equation (7)
becomes:
cot 8;
T2

In general, for interior nodes, the ~;; will contain contributions from two triangles
with the common side formed by the edge connecting node ¢ to node 5. Consequently:
cotd, cotf,

2 + 2

’Yij =

so that a necessary and sufficient condition for 7;; to be positive is that the sum of

the two angles opposite the edge connecting node ¢z to node 7 must be less than 7. A

triangulation which satisfies this condition is known as a Delauney triangulation.

Although Delauney triangulations are a generalization of triangulations having all
interior angles less than 7/2, for simplicity we will restrict attention in the following
examples to local mesh-global mesh couplings with all acute angles.

3. Thermal Reservoir Simulation Equations

The basic equations for modelling steam injection in a dead oil reservoir consist of
conservation equations for oil, water (liquid and steam), and heat. Phase velocities are
given by Darcy’s law for multi-phase systems [10]. The gas phase is taken to be
entirely steam, and instantaneous thermal equilibrium is assumed between phases.

With the above assumptions, the equations are:

Conservation of oil:

d KK,
E(quoMo):v. MOTV¢O + 4 (20)



Conservation of water:

0
_a_t (¢[Swa+SgMy])

=V'{Mw

K K,, K K,,
p vV [tV 1M p v,

w g

+qut+9

Conservation of heat:

where :

0
E((]S (S, M, U, + S, M, U, + S, My Ug| + [1 — 9| U, M,)

=V'{ho M,

KK

- v¢0}+h0 qO

(7]

KK,.g
+v - 1hy M, 0 vlbw +hy QG

w

KK,
+ v 1h, M, p VY (thea,

g

+V'>‘HVT + Geoss

de oss

saturation of phase £
pressure of phase ¢

temperature
relative permeability of phase ¢

viscosity of phase £

absolute permeability
molar density of phase ¢

internal energy of phase ¢
(R = rock)
enthalpy of phase £
source/sink term for phase £
heat loss to surrounding rock strata

porosity

heat conductivity

(21)

(22)
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The phase potentials are given by:

Vi =VP—pegvD (23)
where:
Pe= mass density of phase £
g= gravitational acceleration
D= depth

In addition to above equations, there are the constraints:

S, + S, + S,=1 (24)
Pg _P0=ch (So+Sw)

Po _Pw=Pcw (Sw)

where P, P, are the capillary pressures. There is also the thermodynamic con-

straint:
Sg =0 if P,, (T) < Pg (25)
P,, (T)=Pg if Sg >0

where P, is the water vapour pressure (see the Appendix). Equation (25) governs the

appearance/disappearance of the gas (steam) phase. This equation is usually solved as
a separate equation along with equations (21-23), to give four equations in the four
unknowns (P,, S,, S, ,T) [8,11,23]. The properties in equations (21-23), (25), such as

viscosities, enthalpies, vapour pressurs, etc., are non-linear function, of the independent

variables, which are described in the Appendix.

4. Discretization

We will demonstrate the discretization method of the previous section for the oil
conservation equation. It is convenient to consider a three dimensional system with
thickness A z, so that the volume associated with each node is:

Vi=Az AP (26)
with A defined in equation (18).

Consequently, equation (20) is discretized in the following way:
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Vi
A_t [(¢So MO)N+1_(¢SO MO)N]

=g+ 3 v Lz
JEN;

Ky

L
MOK"O ]
Ko Jup
(P =P —pLiing (D;—D;)}

where ~y;; is the entry in the global geometric stiffness matrix (equation (18)), N is the

timestep number, and K, is computed using the harmonic mean [10].

The term:
L
MO Kro
— (28)
Ho Jup
is evaluated at the upstream point as determined by the sign of:
(PYF =PIt —pLiiy ¢(D; = D) (29)

An adaptive implicit method is used for timestepping [24-27], so that superscript L is
either L =N or L =N+1, depending on the state of node j,,.

The other equations (22-23) are discretized in a similar fashion. Full Newton
iteration is used to solve the resulting set of non-linear algebraic equations. A detailed
description of the adaptive implicit method, Jacobian construction, and matrix solve is
given in [25]. Since the form of equation (27) is similar to the form of the usual finite
difference equations, the methods of Reference [25] can be used with only the slight
generalization to nodes with an arbitrary number of neighbours.

5. Cyclic Steam Cross Section

In order to compare a locally refined grid (discretized with the control volume-
finite element technique) and the usual finite difference grid, we will adopt the follow-
ing procedure. Given a typical finite difference grid, a locally refined grid will be con-
structed by coarsening certain regions of the finite difference grid. The objective is to
show that essentially the same predictions can be obtained with a control volume - fin-
ite element grid compared with a typical finite difference grid, but at much reduced
cost. We will not attempt to demonstrate convergence to a solution, because of the
computational cost involved. In any case, this is rarely done in practice. Since com-
paratively coarse grids are being used, we can expect some differences in the results

obtained using different discretizations.
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Figure 3 shows a typical finite difference grid for a cross sectional cyclic steam
injection problem with a horizontal well. The various physical properties are given in
the Appendix. The oil viscosity is initially very high, and the idea of cyclic injection is
to inject steam for a limited period of time, followed by a soak period, and then to pro-
duce from the same well. Oil is produced from the heated zone near the well, since oil

viscosity decreases very quickly with increasing temperature.

For this problem, 70% quality steam was injected at 327 °C, at a cold water
equivalent rate of 5m3/day per meter of horizontal well length. One complete cycle
of a 10 day injection, 10 day soak, followed by 10 days of production was simulated.
The well was produced at a bottom hole pressure of 100 kpa, subject to a maximum
fluid rate of 10m?3/day per meter of well length.

This problem was run on both the conventional 13 X 8 difference grid shown in
Figure 3 (the global grid), and the locally refined grid obtained using a control
volume-finite element grid shown in Figure 4. The dotted lines in Figure 4 represent

the triangulation used to obtain the global geometric stiffness matrix <;;. However,

the dotted lines represent connections which are identically zero. These connections
are not included in the neighbour lists #;. The same code was used in both cases,

with the neighbour lists 7;, nodal volumes, and connection factors reflecting the par-
ticular choice of grid.

Table 1 shows the cumulative oil production per meter of well length after the ten
day production period. Note that the difference in comulatives between the global and

local grids is less than 2%.

The actual oil rates for both grids are shown in Figure 5. Rapid changes in oil
rate occur in the first day days after production due to the sudden drop in wellbore
pressure, which causes flashing of steam. Also, the well operating constraint switches
from pressure, to maximum fluid rate, and finally back to pressure during the first few
days. However, the oil rates for both grids are in reasonable agreement.

Table 2 gives the CPU times for both grids using a fully implicit and adaptive
implicit timestepping method [24-27]. In both cases, an approximate 40% reduction in
CPU time was achieved, while obtaining virtually the same predictions for oil produc-
tion. Note that use of the adaptive implicit method combined with local mesh refine-
ment is almost four times faster than a fully implicit method on a conventional grid. A
fully implicit, finite difference method is the standard approach for solving these prob-

lems [9].
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6. Steam Injection into a Fracture

Figure 6 shows a conventional areal finite difference grid, with a fracture in the
lower right corner. The reservoir is taken to be 10 m thick. Fractures are often pro-
duced by the high pressures resulting from steam injection [28]. The fracture is
modelled by using very thin cells (approximately .01 m in width) with very large per-
meabilities (10°md). Figure 6 shows a 14 X 13 grid (note that the grid line extension
of the fracture is too small to be seen).

The same problem was run on the control volume-finite element grid shown in
Figure 7 (the local grid).

Steam (327 °C, 70% quality) was injected into the fracture at a cold water
equivalent rate of 50 m3/day for ten days. A ten day soak period followed, and then
the fracture was produced for ten days. The injection/production well was placed in
the lower right corner of the fracture. The well was produced at a bottom hole pres-
sure of 100 kpa, subject to a maximum fluid rate of 50 m3/day. Other relevant physi-
cal data are given in the Appendix.

Figure 8 shows the oil rates predicted for both the local and global grids. After
two days of production, both methods are in good agreement. However, during the
first few days of production, the oil rate oscillates rapidly. Detailed examination of the
output revealed that the sudden drop in wellbore pressure at the onset of the produc-
tion cycle caused the appearance of superheated steam in several cells adjacent to the
well. During this period the well constraint also switched from pressure, to maximum

fluid rate, and back to pressure.

Very small differences in nodal pressures and temperature between the two runs
were enough to trigger slightly different numbers of superheated nodes, and this also
affected the timing of the constraint switches. This can be seen from the shift in the
peak production rates of the two curves in Figure 8. In short, this problem should be
viewed as an extremely pathological test of the ability of the local grid to reproduce

the results of the global grid.

Table 3 shows the cumulative oil productions for both grids. In this case, the
cumulatives differ by approximately 10%. This is all due to the different oil rates
predicted during the extremely sensitive period which follows the beginning of the pro-
duction cycle. However, the difference between the two runs, even in this pathological

case, is probably insignificant in practical situations with uncertain geological data.
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Table 4 gives the execution times for both the grids (local and global) shown in
Figures 6 and 7. Note that the local grid solution requires approximately 50% less
CPU time than the global grid. The adaptive implicit technique was used for both

runs.

7. Conclusions

A control volume-finite element technique has been developed for reservoir simula-
tion problems, based on triangular mesh elements. The pressure is discretized in a fin-
ite element manner, while a control volume approach allows upstream weighting of the
phase mobilities. The cell volumes and edges are consistent with the linear finite ele-
ment discretization of the pressure. Provided certain restrictions are placed on the
geometry of the triangles, this technique will produce an M-matrix for the pressure in
the single phase limit. This means that no non-physical local maxima and minima can
appear in the pressure solution. In the multi-phase case, we have also ensured that
mass can only flow from nodes with higher phase potential to nodes at lower phase

potential. This also prevents non-physical behaviour.

In the single phase limit, this technique can be viewed as a special type of finite
element method [19], and so the pressure is at least first order correct in terms of
discretization error. The usual finite element assembly procedure can be used to
obtain all the geometric factors required for the final discrete equations. These final
equations have the same form as the usual control volume type equations, except that
the cell volumes, interfacial areas, and neighbour lists have been redefined. Conse-
quently, it is a simple matter to implement this technique in any existing simulator
with an arbitrary cell connectively facility. This also means that standard iterative
techniques can be used to solve the Jacobian matrix [29], since the Jacobian also has

similar properties compared to the usual control volume discretization.

The control volume-finite element method has been demonstrated as a means of
coupling local fine meshes with global coarse meshes. On the same example thermal
cyclic steam simulations, the local mesh gives comparable predictions to the global fine
mesh at 40-50%% less computing cost. It is interesting to note that an adaptive implicit
- local mesh solution is almost four times faster than the standard fully implicit global

mesh approach.

Although this technique has been demonstrated in conjunction with local mesh
refinement, it can be used as a general method for discretization. The use of a tri-
angulation gives great flexibility in construction of a mesh. Consequently, the control

volume - finite element method has great potential for widespread use in reservoir
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simulation.
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area of triangle

area of triangle associated with node 7
sum of all associated areas for all triangles
with 7 as vertex

finite element pressure coupling term
depth

edge of box in triangle (see Figure 1)
gravitational acceleration

enthalpy

relative permeability

absolute permeability
length of side of triangle (Figure 1)
molar density

linear triangular basis function associated

with node 2
unit normal to edge e
pressure

liquid-gas capillary pressure
oil-water capillary pressure
water vapour pressure

source /sink term

heat loss to surrounding rock strata
saturation

temperature

internal energy

volume associate with node ¢
z-coordinate of node ¢

y-coordinate of node ¢

mesh spacing in z-direction

point in the interior of a triangle
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p density
Vij entry in global geometric stiffness matrix

connecting node 7 with node j

¢ porosity
© viscosity
P phase potential
A heat conductivity
n; set of vertices neighbouring
node ¢
Subscripts
0 oil
g gas
w water
r rock
Jup upstream
Superscripts

N, L time level
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Appendix

This Appendix gives the physical data for the cyclic steam examples. The relative
permeabilities are given in Table 5. Stone’s model [10] is used for the three phase rela-

tive permeability. Other relevant data are:

Absolute permeability (K, =K,) 100 md
Absolute permeability in K, =100 md
the fracture K,= 10°% md
Porosity 3

Rock compressibility 5% 107° (kpa)~?

Molar densities
M, =M, [1+a, (P—P,)—B, (T—T,)] mol /m?
M, =5.55X10* mol /m®
o, =4.3X107% (kpa)™
B,=2.1x10"* (°K)!
T,=273 °K
P, =100 kpa
M, =M, [1+ e, (P—P,)=B, (T —T;)] mol /m?
M, =4.1X10® mol /m®
o, =3X107°% (kpa)™!
B,=2%x10"* k °K)!

M,=P/RT  mol/m®
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Molar mass

Water 18X 1072 kg /mole
Oil 170 kg /mole
Enthalpies

hy=C, (T—T,)
C,=242 J/(mole — °K)
hy,=Cy (T—-T,)
Cp,=754 J/[(mole —°K)
hy=Cy (Ts—T,)+ hygs + Cy (T —Ts)
C,=380.5 J /(mole — ° K)
T, =243+ | P, /(.877 X 1078)(1/476) * k¢
P, =pressure in kpa
g =4.814 X103 (T,, —T,)%® J/mole
T,=6473 'K
Vapour pressure of water
P,,=.877X1078(T —243.0)*™ kpa

T =temperature in ° K

Viscosities
Water
_ 10~°
[12.1+42.88 (T —273)+7.78 X 10~* (T —273)*] kpa — day
Steam
=103 [1.574 + .44 (T —273)] kpa — day
oil

(See Table 6)
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Heat Capacity of rock
U, M, =2.35X10° J/(M?®—°K)
Heat loss
No heat loss permitted

Capillary pressure

Both gas and water capillary pressure are set equal to zero.

Initial data

Temperature 367 °K
Qil saturation .8
Water saturation .2

Pressure 500 kpa
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Table 1

Cumulative oil production at 30 days for the global and locally refined grid solu-

tions of the cyclic steam cross section problem.

Cumulative Oil Production
(m® /m of wellbore)

Global Grid 3.10
(Figure 3) '
Locally Refined 3.04

(Figure 4)
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Table 2

Comparison of the execution times for the global and locally refined grid solutions
of the cyclic steam cross section problem.

Method Execution Time (VAX 11/785 seconds)
Global Grid Locally Refined
(Figure 3) (Figure 4)
Fully Implicit 995 627
Adaptive Implicit 449 272
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Table 3

Cumulative oil production at 30 days for the global and locally refined grid solu-
tions of the fractured cyclic steam example.
Cumulative Oil Production (m?)

Global Grid
(Figure 6) 29.7

Locally Refined
(Figure 7) 33.1
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Table 4

Comparison of execution times for the global and locally refined grid solutions of
the fractured cyclic steam example.
Execution Time (Vax 11/785 seconds)

Global Grid
(Figure 6) 1259

Locally Refined
(Figure 7) 656
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Table 5

Relative permeability curves used for the cyclic steam examples.

Sw wa Kro
2 0.0 .88
3 .04 .55
4 .10 43
i) 18 31
.6 .30 .20
7 44 12
.8 .60 .05
.9 .80 0.0
1.0 1.0 0.0

SotSy Ky K,

2 1.0 0.0

3 75 0.0

) .35 .005

.6 21 12

.8 .04 34

.95 0.0 .58

1.0 0.0 68
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Table 6

Oil Viscosity for the cyclic steam examples.

T("K) pol(ep)

310 1380
338 187
366 47
394 17.4
421 8.5
449 5.2
533 2.5
700 1.0




Figure 1

(x3,y3)

Basic triangular mesh element.



Figure 2

(xj,¥;)

(xi ,yi)

Incremental area associated with node 1 from edge e; .
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Local grid
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