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Abstract

It is well known that all the algorithms for tridiagonalization of an
unsymmetric matrix suffer from serious breakdown problems. Some
methods, such as the unsymmetric Lanczos method, also have a sta-
bility problem. In this paper we present a new algorithm for tridi-
agonalization of a general matrix. The breakdown problems can be
avoided before |n/2] steps. If the breakdown occurs after |n/2] steps,
we can still continue this process. However, instead of reducing the
matrix to a tri-diagonal form, it is reduced to a comrade matrix. In
particular, the comrade form is invariant under deflation process|6],
which is very useful in computation of several eigenvalues. Some im-
provements for a stable implementation are also described here. The
test shows that this algorithm is stable. The eigenvalues of the reduced
matrix are very good approximations of the original matrix.

Key Words. unsymmetric matrix, Hessenberg matrix, comrade matrix, eigenvalue,
tridiagonalization, breakdown

1 Introduction

Algorithms for the tridiagonalization of an unsymmetric matrix are well
known to have serious breakdowns. Therefore numerical analysts have ig-
nored these algorithms for a long time. The QR method has been very
popular for solving the eigenvalue problem of the unsymmetric matrix, but
as the order n of the matrix increases above 100, the work for every iter-
ation involved in QR method is O(n?). Recently the Lanczos method has
been reconsidered, especially if only a few of the eigenvalues are needed.
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2 Wei Pai Tang

But Lanczos method is essentially to tridiagonalize the original matrix. The
problems of the instability and breakdown make Lanczos method very dif-
ficult to use in practice. Some pivoting techniques were used for reducing
the chances of breakdown [4,6]. Some incomplete orthogonalization meth-
ods have been tried [5], but the breakdown problem has not been solved
successfully. The key to the solution is to find a way of choosing a proper
initial vector pair p and ¢ to guarantee that the breakdown situation will
not occur.

In this paper a new algorithm for tridiagonalization of a general matrix
is presented. When a breakdown or a small pivot occurs before |n/2] steps,
the algorithm can automatically adjust the initial vector pair to recover it.
Unlike the restarting strategy this algorithm does not waste the all prior
computation, only a few adjustments need to be made. If the breakdown
occurs after [n/2] steps we can still continue the reduction. However, the
matrix will be reduced to a comrade form i.e. tri-diagonal plus some non-
zeroes in the last column [1]. An important fact of this comrade matrix is
the invariance of the form under deflation process. Thus, we can take full
advantage of the sparsity in this form during the computations of multiple
eigenvalues. Several stabilization strategies are shown in this paper. The
test results show that this algorithm is very stable.

The next section is the main part of the paper in which the new algo-
rithms for the tridiagonalization of an unsymmetric matrix will be presented.
In section 3 some stability considerations will be discussed.

2 The algorithm

There are several ways of viewing the tridiagonalization process. It could
be thought as a biorthogonalization process of a Krylov space[5], but the
algorithm presented here is based on Wilkinson’s discussion of tri-diagonal
reduction, with modifications to avoid breakdown.

The algorithm for reducing a general matrix to a tri-diagonal form is
well known. Orthogonal transformations are used to reduce the matrix to
Hessenberg form. Then, elementary Gauss transformations are applied to
get the tri-diagonal structure. But this reduction process breaks down if
some pivoting elements are zero. Simple interchange strategies do not work,
since it will cause fill in below the sub-diagonal of the matrix. Attempts to
solve this problem have proved unsuccessful.

We present here an algorithm which can postpone the breakdown after
n/2 steps, but if such a breakdown does occur then, we also show some
algorithms which can keep the process going. However, we can not reduce
the matrix to a pure tri-diagonal form: it can be reduced to a comrade-form.
In this section, we shall first present a version of the method which assume
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there is no small element at positions ({+1,{) ¢=1,---,n—1. Then, how
to remove a small pivot element h;,;; will be discussed in the next section.

First, we give some notation and list some basic facts for later reference.
Let

A= (al,ag,...,an) =

a matrix € R**", where a; 1 = 1, .-+, n are the column vectors of the matrix
A, while§; §=1,.--,n are the row vectors. We will use e; to denote the
vector which all elements are zero, except the {th element,which is one, and
e} for its transpose. The following elementary matrices are used intensively
in our discussion.

1. The inverse of the matrix

G,';n =I+e; z akei
kell
t1<k<n

5-;1![=I—e" E ake‘k’
kell
t<k<n

where II is a subset of integers € [i,i+ 1, -+, n]. Two most often used
cases are
G.';,' =TI+ ae.-eg-,

and
Giip) = I+ ei(ouef + arel).
Their inverse are
-1 _ t
G".;j = I — ae;e;
and
G;;(lj,k) =I- e,-(a,-e;- + akei),
respectively.

2. A= G.-—;}[AG.-;H is similar to A . The effect of this similar transfor-
mation is that of adding o;a; to ag, k € I, and ¢+ < k < n then
subtracting Y oA from 3;. In particular, if the left zero profile of
4; is included in the left zero profiles of &, k € II, then this trans-
formation does not change the left zero profile of a;. Therefore, any
Hessenberg matrix H will preserve the Hessenberg form under this
similar transformation.
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Theorem 2.1 For any non-deflated Hessenberg matriz H, the breakdown of
the tridiagonalization process can be avoided before |n/2| steps. If the break-
down or small pivot does occur after that, H can be reduced to a comrade
matriz.

Proof: Suppose

" hyy hiz his -++ hin-1 hin ]
ha1 haz hes <+ hzpn-1 h2n
O hss hss -+ hsn-1 hsn
H=10 0  hyg -+ hgn1 hun

L 0 0 0 hn,n—l hnn J
Because H is non-deflated, we know h;41; #0 ¢=1,---,n—1. We may
also assume that hj41 >> ¢, ¢ = 1,--+-,n— 1. The non-zero elements
hij, J>1i+1of H are partitioned into § — 2 zones as the picture in the
following page shows. The tridiagonalization process then is also divided
into ¢ — 2 steps. Each step of the reduction will annihilate the non-zeros
in the corresponding zone. The eliminations at each step ¢ are divided into
i stages. We have labeled the first five steps in the following matrix. The
notation 4/ in this matrix indicates that this location will be annihilated
at j-th elimination stage of the step . To simplify the notation, we will
always use h;; to denote the element of matrix H, ,(k) where H ,(k) is the I-th
intermediate stage at k-th step of the tridiagonalization procedure.

"z oz 1! 2! 2! 3! 3! 4! 4! 5! 51 . . omom MM ]
z z z 22 3% 32 42 4% 52 52 . .. oo o MM
z z =z 3% 4% 4% 5% 55 . . omonm NN s o
z z =z 4% 5* s8¢ .. . =& = NN
z =z =2 5% . . uowo N
z T zT .. "n "
z T =z n "
z z =z W x
H= T T ZT * .
z T T .
z z =z =
T T =z
z z 2z
z z =z
z z =%
T z Z
z z z
z z

Our proof is constructive, namely, a sequence of similar transformations,
which will annihilate the non-zero elements h;;, j > i+1, is constructed. The
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procedure is similar to the one in Wilkinson’s book [6] except the remedy
for the breakdown and stability. The key to the success of this procedure
is to use both h;;;1 and hiy1; as pivot elements. If any of h;;4+; becomes
zero or very small at step ¢ during the tridiagonalization process, the el-
ement h;y2;41 will be used to bring a non-zero pivot element (or normal
pivot element) at position (¢,7+ 1) so that the procedure can be continued.
Meanwhile, the Hessenberg form is still well preserved. The penalty of fixing
a breakdown or small pivot is to bring about a few non-zero elements in the
positions which have been annihilated previously. Thus, we need to elimi-
nate these refill-ins. The cost of the reelimination is just double the cost of
annihilation process at step 1. Our experiences show that real breakdown
has rarely happened, but the small pivots will appear now and then.

Step 1. There is is only one element needed to be annihilated. If
the pivot element hj; is zero at this step, there are two cases: first, if all
hi; =0, j5=3,---,n, then thisis a deflated case. The eigenvalue problem
is decomposed as two smaller problems. We simply leave this row and go to
the next. If there is some h;; # O then let G1;3 = I — e;e} such that

B = G{1HGy;s

have a non-zero hjs element. The effect of G ;;},H G);3 is that of adding the
third row to the first row and then subtracting the first column from the
third column. Furthermore, the Hessenberg form of H is well preserved. It
is easy to see the new hj;2 # O because of hgz # 0. Now we are able to
assume hjs # 0. Let
azs = —hig/hy2
and
Ga:s = I + azsezes.
H{l) = G;;;Hcg;s will have a zero element at (1,3) and the step 1 is

complete!.
Step 2. At stage 1 of the step 2, let

Gias=1- el(aﬁz)ei + ag”eg),
where .
aﬁz) = —hy4/h12; ag )= —his/h12.
and

2 - 1
Y = GrasH { JGrus

! Actually, we can eliminate all k,;,5 = 3,---,n, here. But if breakdown does occur
before |n/2| steps, there are possibilities of refill-ins at these positions. In order tn avoid
to eliminate them multiple times, we will leave some of k;; for now and only annihilate
these which will not be refill-ined late.
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has zero elements at position (1,4) and (1,5). Then the stage 1 is completed.
At stage 2, if has is not zero, the step 2 can be completed by letting

Y = G31HPGy,

where h
24
G2;4 =1- —egei.
has

But, we may also find that the element hz 3 of the resulted H (12) is zero or
very small. That means a breakdown, or risk of stability of the tridiagonal-
ization process has taken place at this stage. Here is a way to rescue this
tridiagonalization process: let

Ga;s = I + Beszel,
where 8 # 0 can be set to improve the stability, then
HY =63 HMG:;s

will have a non-zero element at position (2,3). But this process will also
bring a non-zero element at position (1, 4), which was just annihilated in the
previous stage. This new fill-in at position (1,4) can not be eliminated by
hy 2 at this time, since that will bring back the zero at (2,3). This is why
the breakdown has not been resolved before. Fortunately, there is one more
non-zero element at (5,4) which also can be used to eliminate the non-zero
at position (1,4) without destroying the Hessenberg form. Let

_ t
G5 = I + ay5eres

where
ays = —hi4/hs 4.

Then the element hy 4 of
HY = 61 EYG

is zero. It is not difficult to see that there will be a new fill-in at position
(1,5) and it can be annihilated by the pivot element at (1,2).
At this point, the second step of reduction can be completed by letting

HY = G3AHP Gy,

Step I. By induction, we can assume that this process has been suc-
cessfully proceeded to stage ¢ — 1 of the step 1 since pivots hjjt1 # 0,
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J=1,.--,4— 1. The resulted matrix is as follows:

[z z 0 O 0 0 = = Nt N T
z z z O 0 0 = o« M
z z 2 O 0 0 = non
z z z O 0 0 = nn
z z z 0 0 O = = N N
z z X ¢ = LI
z z =z = NN ox o«
z z z YN x x .
H= T T T * 5
T zT z . B .
T zT =z * .
z z z *x . . !
z z z . ' ! =
z z z ! =
z z z =
T z =z
T z =z
- z z -

where X is the pivot element for row ¢, namely, element k; ;11 and * denotes
the last element needed to be annihilated at stage ¢ of the step i. If this
element A;i;; is a normal pivot, then the last stage of this step can be
completed by letting

BY = 61, HY, Gissa.

and

hiiya
—ee ;.

Gijy2=1- 1=

s+

The last non-zero element in the s-th zone will be annihilated after that.

If h; ;41 is zero or very small at this stage, we will use the same strategy
in step 2 to bring a normal pivot element at (£, {+1) from position (1+2,+1)
to recover the breakdown. Let us first discuss the breakdown happens before
[n/2]. After a normal pivot is brought into the position (1, + 1), there will
be a refill-in at position (1 — 1,7+ 2). For the same reason in step 2, we have
to use h;;3i;2 as pivot element to annihilate this refill-in. Unfortunately,
after we eliminate the refill-in at position (i — 1,1+ 2), there will be another
new refill-in at position (f — 2,1+ 3). Repeatly, we are refilling in the zone
+ until we finally reach the row 1. After the refill-in at position (1,21 + 1)
is annihilated, another half of the zone ¢ have been refilled as the following
picture shows:
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z z 0 O r oo N ]
z z z O ronon NN o«
z z z O r oo N *
z z z O 0 r nn
z z z 0 0 r non .
z z X ¢ & oo o« oo
z z =z = MW ox o+ L onounox
z z z W o*x x . . oo ox %
H= T T T * R x  x ’
T T T . u o u o x * .
zZ T ZT I * % !
z z z *x . . ! !
z z z . ' '
z z z ! u
T T zT u *
T T T *
z z =z
e z z -

where r indicates the refill-in at zone . Now, we can use the regular pivots
hjj+1, J=1,---,1 to annihilate the remaining non-zero elements in zone
.

If { < |n/2], all the refill-ins can be annihilated using both pivots h; 1
and h;;1:. Unfortunately, when ¢ > |n/2] the last “bad” refill-in does not

have an extra pivot to be annihilated (see following picture).

z z 0 O . .
z z z O .. .
z z z O b
z z z O . 0 g
z z z O . 0 g =
z z z O 0 g =
z z z O 0 g = %
z z z O 0 g = =
H= z z z 0 0 g ==
T T T g = i * ..
T T T ok % !
Z T T * vt
z z z . ! ! =
z z z ! ]
T z z .
z z z
T z z
L z oz

where b is the “bad” refill-in and g is the “good” refill-in which can be
annihilated by the normal means. Thus, after the elimination of all “good”
refill-ins, we have an extra non-zero remains unannihilated in the last col-
umn. We may leave this bad fill-in there and continue the reduction process
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The resulted matrix after step ¢ will be:

z z O ]
z z 2 O
z z z O b
z z z O 0
z z z O 0 =
z z z O 0 =
z z z O 0 = =
z z z O 0 = *
H= z z z O 0 = % .
z z z 0 = = ox x ., .
T T zT u % . !
z z z *x . . !
z z z . ! '
z z z ! u
z z =z *
T T zT *
zT z z
- zz-

Then the reduction can be continued. If any breakdown or small pivot
occurs, we can use the exact same procedure to recover it and after fixing
the breakdown or bringing in a large pivot there will be a “bad” refill-in
in the last column. The following picture lists all the possible positions for
these bad fill-ins.

[z 2z b

z z z

z z b
z

]
I
| 88K
| 8K
|88
|88
| 88
|® 88
LI I
| 8K
| 88
| 8 &8
| 88
| 88
|88
| 88
888K

z
z

|88

It is not difficult to see that the bad fill in can only occur in the last column
at every other row, when the breakdown occurs after |n/2| steps.

As mentioned above, this process also can be viewed as the readjusting
of the initial vector for the biorthogonalization of the Krylov spaces. It
is well known that an improper initial vector will cause breakdown([4]. It
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was hitherto unknown how to choose the initial vector to ensure the success
of the procedure. In our process, we choose e; as initial vector p and g,
which may cause the breakdown. However the process of bring in the non-
zero pivot and the elimination of these refill-ins is actually equivalent to
readjusting the initial vector (when 2{ < n). The “good” fill-in at row 1 is
the new initial vector. The elimination of the rest of the “good” fill-in is the
readjusting process. But when the breakdown occurs after |n/2] steps, this
kind of adjusting does not work any more. The “bad” fill-ins will remain at
column n. We could not get any readjusting information from this process.

3 Stability consideration.

In the last section the breakdown is successfully postponed. Here we will
discuss how to remove the small pivot elements h;;1; ¢=1,---,n—1.

Let

zZ T T T T Z Z T T ZT T I
r 2 T T 2 T T T T T T I
T T T T T T T T T T I
zZ T T 2 T T T T I 2
T T T T T T T 2 Z
H= € T T T T T T X
T T T T T 2 2
T T T T I 2
T T X T Z
T T T Z
T T =z

-3 zz-

be the resulted Hessenberg matrix after the orthogonal similar transforma-
tion. There is one small pivot at position (1* + 1,1*). Then let

[ 1




where ui; =1,

UT'HU =
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. ..
1=1,..,t%uy =c¢,

|\
| 8K
8 8 8K
KR 8§ 8 8§ 8

QW 8 888K

OO OO N S S WY Y

[ T I I T I T

NN AN oM

O I O T L T T T )

HH R KRNSO oM

1=1"+1,.,n,u; =0,

I T T T T T T T I ]

11

{f # 7, then

-

HHH RN om

Thus, the small pivot is transferred to a small up-right submatrix which is
safe for our reduction process.

If there are more than one small pivots in the subdiagonal such as

Q8 KK
| K8 8K
| 8N K] K
a8 888N

I T I B ]

B H 8 AR AKAHER

m RN KRN QRN

LI T T T T T BB )

BN R RN HERRAEN

W HHHERHEKREREARN

W N8 H R EEREAEARSN

-

where two small pivots are at position (i3 + 1,¢1) and (iz + 2,43). Let

where y;; =1,

1=1,..

y315 Uis = €,

.. <2
1t =1]1,..,12; Uis = €7,

1 =13+1,..,n;



12 Wei Pai Tang

|8
LI

]| 8 8K
|8 8 8§ 8 8
| 8 8 8 88
L W T WL T
(U I U U Y
L Y T WL T
U I
L G T WL T
(U A
L W T WL T
(U I U Y

UT'HU =

L L L )
[T TR CR L S S Y Y
PO TR TR R S S S Y Y
MR A

RREEMNAA

QR BRMN™MAM
L T T B T ]

For the case of having more than two small pivots a similar scaling can
be used to remove all small pivots in the sub-diagonal. It is also worth
to indicate that this kind of scaling can be done dynamically during the
reduction process.

The question will naturally arise: is this algorithm stable? The answer is
positive. There are many discussions about the instability of the unsymmet-
ric Lanczos method. Let us examine the instability source carefully. Look
over the algorithm given above. There are two possible sources of the insta-
bility. The easiest to find is the small pivot element. Another is as Busiger[5]
pointed out : when only Gaussian elimination approach is used for reducing
a matrix to a Hessenberg form , even when no small pivot elment appears,
there is some possibility of exponential growth in the result. But we claim
both the instable sources can be avoided in our algorithm.

The small pivot problem has been resolved in the construction of our
algorithm and the previous discussion. The second source of the instability
can also be dismissed. Businger gives a example which shows that if we
use the Gaussian elimination technique to reduce the matrix to Hessenberg
form, the element will grow exponentially. The reason for this is: When
we use Gaussian approach exclusively, it causes the accumulation of the
elements. This kind of danger can be avoided. It is easy to see, the Hessen-
berg form is not necessary before the tridiagonalization process starts. It
is only needed for the convenience of discussion. In the real application we
may mix the reduction of a matrix to Hessenberg form with the tridiago-
nalization process. By inserting the Householder transformations between
the steps of our tridiagonalization process, the possibility of the exponen-
tial growth can be largely reduced. It is well known that the Householder
approach will smooth the growth of the elements. Our experiences of this
algorithm shows this observation is valid. The numerical tests using matlab
show that this algorithm is stable. The eigenvalues of the reduced matrix
are very good approximations of the original matrix.
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