2] Call) November 15

CORPORATION @ 1988.

1380 Willow Road, Menlo Park, California 94025 (415) 321-8574
Fax: (415) 321-3167

Ramesh Narayanaswamy
Project Leader
Zycad Corp.

Publications Office

Department of Computer Science
University of Waterloo

Waterloo

Ontario

Canada N2L3G1

Sir:

I would like a copy of the following Technical Report from the your Computer Scien

to my address given above. = ~
1.J. A. Brzozowski, A Model of Sequential Machine Testing, Research @S-SS-IZ. /

Thanking you in advance, -

Sincerely Yours,

M
4

EPARTMENT
EPARTMENT

EPARTMENT

ENCE B
NG 5

;

ER
ER

|

T
T
T

L
U
U

S
OMP

A Model for Sequential
Machine Testing

HNVERSIFY OF WATERISS &
ORNERRIY OF WATERLSS &

J.A. Brzozowski
H. Jirgensen

Research Report
CS-88-12

April, 1988

A Model for Sequential Machine Testing!

J. A. Brzozowski?

H. Jirgensen?

Abstract: A mathematical framework for the testing and
diagnosis of sequential machines is developed. A very gen-
eral fault model is used in which a faulty machine is repre-
sented as a sequential machine, possibly with state and out-
put sets different from those of the good machine. The set
of all possible behaviours is conveniently represented by a
non-deterministic finite automaton, called the fault schema.
A deterministic finite automaton, called the fault observer,
describes the process by which one gains information from
the observation of the responses to test sequences. A non-
deterministic automaton is derived from the fault-observer;
this automaton, called the non-deterministic tester, mod-
els all possible conclusions that could be drawn from ob-
serving the circuit under test. This model is suitable to
serve as a generator of test sequences. Moreover, it can
be used for describing testing with deterministic as well as
with random sequences. Probabilities are associated with
the fault schema and with the tester. These, together with
a stochastic source of input symbols, provide a probabilis-
tic test model. As a particular application we consider the
testing and diagnosis of random-access memories by ran-
dom test sequences. Our model generalizes the work by
David et al. on the calculation of the length of a random
test sequence required to guarantee that the probability of
detection of a fault exceeds a prescribed threshold.

1. Introduction

Present day integrated circuits and larger digital networks involve extremely
sophisticated processes, are very complex, and contain hundreds of thou-
sands of components. There are numerous causes of failure [Abr], and careful

1 This work was supported by the Natural Sciences and Engineering Research
Council of Canada, Grants A0871 and A0243. A preliminary version of this paper has
been presented at the Second Workshop on New Directions in IC Testing, Winnipeg,
Manitoba, April 1987. ‘

2 Department of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, N2L 3G1.

3 Department of Computer Science, The University of Western Ontario, London,
Ontario, Canada, N6A 5B7.

testing is an indispensable step in the production of a system. The genera-
tion of tests, their application, and the interpretation of the test results is a
very time-consuming and expensive process.

In general, it is practically impossible to devise tests which would
account for all the faults that may occur. Thus the usual approach is to
formulate an idealized and simplified fault model [Abr]. For example, one
may assume that a wire may become permanently stuck-at-0, that is, the
signal on the wire is always logical 0; such an eflect may arise due to different
physical failures, such as a short to ground or a broken connection. A good
fault model should account for a very large percentage of the likely failures.

In “deterministic testing” one analyses the circuit behaviour in the
presence of a fault and attempts to construct a test sequence which will
detect that fault. However, even the problem of deciding whether such a
test sequence exists is NP-complete in general [Fuj]. Also, even if a test
sequence is known, it may be difficult or impossible to apply it if the circuit
under test is embedded in a large system.

An alternative approach is to apply random or pseudo-random test
sequences. Now, however, one faces the following type of question: Suppose
the circuit under test has behaved properly for a large number of random
test vectors; how confident can one be that the circuit is fault-free? It is
clear that a precise mathematical model is required before one can perform
the analysis which will answer this question.

This paper was inspired by [Ful, Fu2] which describe random test-
ing of memories. In these papers, the length of a random test sequence
required to guarantee the detection of a fault with a probability exceeding
some threshold is calculated with the aid of certain Markov chains. In the
present paper we establish a rigorous mathematical framework in which such
problems can be attacked. In particular, we develop general algorithms for
constructing the required Markov chains. We also extend these ideas to fault
diagnosis.

The paper is structured as follows: A summary of the results is given
in Section 2. Section 3 contains the basic definitions and terminology. A
fault schema describing all possible correct and faulty behaviours is defined
in Section 4. The process of deducing knowledge from test results is captured
by the definition of an observer in Section 5. In Section 6, the concepts
of testing and diagnosis are formalized. Next, after introducing the basic
terminology concerning probabilistic automata and information sources in
Section 7, the concepts of observer, testing, and diagnosis are embedded in
a probabilistic test model in Section 8. Section 9 contains some concluding
remarks.

2. Summary of Results

We develop a precise mathematical model of the testing and diagnosis of
sequential machines. The model has the following properties:

e It is a generalization of the work of Ilennie from the 1960’s on deter-
ministic diagnosis and, at the same time, of the recent work of David
et al. on probabilistic testing, that is, testing with random sequences
of test vectors.

e The model uses the well-established notation, terminology, and basic
results from standard theory of finite automata.

o The main feature of the model is the “observer,” which uses the knowl-
edge of the applied input test vector and the resulting output vector.
This observer can be constructed algorithmically from the description
of the given correct machine and its likely faulty versions.

e The observer deduces the maximum possible information from each
observation, namely the information concerning the machine type,
its starting state and its present state. Thus the model is capable of
representing the most detailed diagnosis process possible.

o A general method is developed for deriving specialized smaller ver-
sions of the observer, if only partial information is required. Thus,
for example, we may wish to identify only the machine type, or to
detect only whether or not the machine is faulty. All such questions
are handled in a uniform framework.

e We show how a finite automaton may be derived from the observer
to serve as the minimal acceptor of test sequences or a minimal test
sequence generator.

o The basic deterministic observer is naturally transformed to a prob-
abilistics observer which is described in terms of standard Markov
chain theory.

o A number of concepts presented only informally in the work of Fuentes
et al. are formalized in our model.

o For one particular case of a faulty memory cell we prove analytically
a conjecture of Fuentes et al. concerning the length of a random
test sequence required to guarantee that the probability of detection
exceeds a given threshold.

We believe that the framework developed here constitutes a solid foundation
for future research in this area.

3. Basic Notions

In this section we introduce notation and review several fundamental notions.
For further details, the references [Wo, St] should be consulted.

3

An alphabet is a finite, non-empty set. Let X be an alphabet; then
X* denotes the set of words over X, including the empty word ¢, and X+ =
X*\ {e}. Fora word w € X*, |w| denotes the length of w. A language over
X is a subset of X™.

A deterministic finite semi-automaton is a triple (Q,X,6) with Q a
finite, non-empty set, the set of states, X an alphabet, the input alphabet,
and with 6 : Q x X — @, the transition function. As usual, 6 is extended to
a function of Q@ X X* into @ by requiring

6 _ q’ ifw = E,
(gyw) = §(8(g,v),2), ifw=vz withz e X,veX".

A deterministic finite acceptor is a quintuple A = (Q, X, 6,q0,Q) such that
(@, X,6) is a deterministic finite semi-automaton, ¢o € @, and Qr C Q.
Then qo is the initial state, and QF is the set of final or accepling states.
The language accepted by A is the set

L(A) = {w | (g0, w) € QF}.

A deterministic finite Mealy automaton is a quintuple A = (Q, X,Y,6,)
where (Q, X, §) is a deterministic finite semi-automaton, Y is an alphabet,
the output alphabet, and A : Q@ X X — Y is the output function.

A non-deterministic finite semi-automaton is a triple (Q, X, n) with @
and X as above; the (non-deterministic) transition function 7 is a mapping

n:QXX—>2Q

which, for every state ¢ € Q and every input symbol 2 € X, determines
the set 7(q,z) of potential successor states. As usual, 7 is extended to
a mapping of 29 x X* into 29. A non-deterministic finite acceptor is a
quintuple 4 = (@, X,n,Q',QF) such that (@, X,n) is a non-deterministic
finite semi-automaton, Q' C Q is the set of initial states of A, and Qr C Q
is the set of final or accepting states. The language accepted by A is the set

L(A) = {w | n(Q',w)nQF # 0}.

As is well-known, the accepting power of deterministic and non-deterministic
finite acceptors is the same. This is usually proved by the so-called power set
construction [Wo). For a non-deterministic finite acceptor A, let P(A) denote
the deterministic finite acceptor, obtained by the power set construction,
whose state set consists of precisely those states which can be reached from
the initial state.

A non-deterministic Mealy automaton is a quadruple (Q, X, Y,) with
Q and X as before, where Y is an alphabet, the output alphabet, and 7 :
Q x X — 29*Y is the transition-and-output function.

Let A(Q, X) and A,4(Q, X) denote the classes of deterministic, and
non-deterministic semi-automata, respectively, which have X as the input
alphabet and a subset of @ as state set. Similarly, let A(Q,X,Y) and
Ana(Q,X,Y) denote the corresponding classes of Mealy automata whose
output alphabets are subsets of Y.

In the sequel, when referring to (semi-)automata, we shall usually
omit the word ‘“finite,’ as no infinite (semi-)automata will be considered in
this paper.

4. Fault Schema

A formal description of fault assumptions needs to be provided as the basis
of any rigorous treatment of circuit testing. We choose to use deterministic
Mealy automata as the formal tool. Not only do they seem to be the natural
abstractions in this context, but they also turn out to simplify the subsequent
constructions of fault analysis and test models. Similar ideas were already
discussed in 1964 by Poage and McCluskey [Po] and Hennie [He2]. However,
Poage and McCluskey assumed that the good and faulty circuits can all be
reset to the same initial state, whereas no such assumption is made here.
Our work also generalizes the work of Hennie, as will be shown later.

The correct behaviour of the circuit under consideration will be
given as a deterministic (Mealy) automaton, the “good machine.” If
Ao = (Qo, X, Yo, b0, Ao) is such a good machine, then Qo denotes the set
of “physical states” of the circuit, X denotes the input alphabet or set of
“actions” applied to the circuit, Yy is the set of outputs, 8 is the “correct”
or intended transition function, and Ao is the “correct” or intended output
function. This model includes the case when certain inputs do not result in
an output, for example, the case of a writing operation in a memory. In such
a case Yp would contain a special symbol, $ say, meaning “no output,” which
would be the formal output symbol. A faulty version A; of Ap will also be
a deterministic Mealy automaton. It will have the same input alphabet X.
However, its set Q; of physical states, its output alphabet Y7, its transition
function 6;, and its output function A; could be different from Qo, Yo, o,
and), respectively. In the sequel, we assume without special mention that
there is a set Q of states such that the state sets of the good machine and
of its faulty versions are subsets of Q. Similarly, we assume that there is
an alphabet Y such that the output alphabets of the good machine and of
its faulty versions are subsets of Y. This allows for a very simple identifi-
cation of corresponding states and output symbols of different versions of a

5

machine.

In summary, a fault is just a deviation from the good machine. Let
Ao = (Qo, X, Yo,80,20) € A(Q,X,Y) be a good machine. A fault of Ao is
a deterministic automaton A; = (Q1,X,Y1,61,A\1) € A(Q, X,Y) which is
different from Ao.

We shall now provide three examples, or rather groups of examples,
to illustrate the definitions. They address quite different issues in circuit
testing. The first one concerns faults in memory cells; we demonstrate how
a combination of fault types can be modelled. The second example shows
how faulty read operations in a memory fit into our framework. The third
example explains that faults in combinational circuits can also be adequately
formulated in our model.

Example 4.1 Let By = (Qo, X, Yo, 80, Ao) be an automaton which describes
the behaviour of a pair (i,j) of memory cells. Here Qo = {0,1}? is the set
of the four possible states of the two cells. Let

— CRR T B B R
X = {wp, w;,wd,wi, ", v’}

be the input alphabet where we interpret w} as writing k into cell /, and r!
as reading cell /. Let Yo = {0,1,$} be the output alphabet, with § meaning
“no output.” The transition function 8§y is given by Figure 1(a) where we
simplify the notation by writing 01 instead of (0,1), etc. The output function
Ao is defined as follows:

P, ifz = ri.’
Ao((pl,pg),l’) = », ifz = 7‘1’. . , .
8, ifze {w,wl,w),wi}

Now consider a fault of the following type: If cell 7 contains 0 and 1
is written into cell ¢, then cell j will become 1 if it was 0. This fault type is
denoted by 1 ¢ =1 j in [Ful]. Let By = (Q1,X,Y¥1,61, A1) be this fault as
shown in Figure 1(b) where Q; = Qo and Y; = Y;. The output function A4,
which is not shown in the diagram, is identical to Aq.

The second type of fault to be considered is a stuck-at-0 fault in a
single cell. Of course, the natural state set for this kind of fault would be the
set {0,1} or just {0}, if cell 7 is the only cell considered. However, in order
to apply the fault to By, we define it again on the set {0,1}%. Let B, =
(@2, X,Y2,685,2) be a stuck-at-0 fault of cell i. Then Q, = {(0,0),(0,1)},
Y; = Yo, and 6 is defined in Figure 1(c). Az is the restriction of Ag. Let
B3 = (Q3, X, Y3, 83, A3) denote the analogous automaton for cell j stuck-at-
0.

The simultaneous presence of two or more faults in a given circuit
is called a multiple fault. This can again be represented by an automaton.

6

i i i .
r yrij07w$

(c)

Figure 1. (a) Good machine By; (b) fault By,
ti = 17; (c) fault B,, cell ¢ stuck-at-0.

rtrd wp,w]

For example, the double fault “cell i stuck-at-0” and “cell j stuck-at-0” is
defined as follows: The automaton By = (Q4, X, Yy, 84, \y) represents the
double fault, where Q4 = {(0,0)}, Y; = {0,$},

64((07 0)7 112) = (07 0)
and

_Jo, ifz=riorz =1,
24((0,0),2) = { $, otherwise,

forall z € X.

It should be pointed out here that not all pairs of faults are “com-
patible.” For example, the fault “cell i stuck-at-0” and the fault “cell ¢
stuck-at-1” are clearly incompatible.

Let Ag € A(Q,X,Y) be a good machine. A fault model for Ay is a
finite family F4, = {A; = (Qi, X,Y:,8i,\i) | i € I} of faults of Ag where I is
a finite index set. Note that some of these may be multiple faults. Assume
that 0 ¢ I and let Iy = TU {0}.

With the fault model ¥4, we associate the non-deterministic automa-
ton F(F,a,) which we call a fault schema and which is defined as follows:
F = (Q, X,Y,n) where (¢,y) € n(p,z) if and only if there exists an i € I
such that §;(p,z) = ¢ and Ai(p,z) = y. Thus the fault schema F(F,,)
expresses the potential behaviour of a circuit under the given fault assump-
tions. In a later section of this paper, probabilities will be added to the fault
model and to the fault schema. The transition part of the function # of the
fault schema for Example 4.1 is shown in Figure 2; the output part of the
function 7 is obvious and has been omitted from the diagram.

Our second example deals with faulty read operations.

Example 4.2 The good machine By models a single memory cell as shown in
Figure 3(a). Bj describes the fault of “inverted reading,” while B) illustrates
a fault with “destructive reading.” Observe that we write /0 and r/1 to
mean that the read operation r yields 0 and 1 as output, respectively. The
diagrams of these faults are shown in Figure 3(b) and (c). The fault schema
is shown in Figure 3(d).

As the next example shows, combinational circuits can also be mod-
elled quite adequately within our framework.

Example 4.3 A combinational circuit is an automaton with a single state.
The automaton Bj as shown in Figure 4(a) models a NOR gate. To simplify
the presentation we use the following encoding of inputs: 00 — 0, 01 ~— 1,
10 — 2, and 11 ~ 3. Similar encodings are used in the sequel without special
mention. The input lines of the gate are labelled « and b. The input symbol

8

P P . i i P
r‘>r";wbywérwl’w{ r ’rJ;wO)w{le

r",r",w'i,wg,w{' v, rd wi w]

Figure 2. Fault schema F(Fpg,).

2 means an input of 1 on line a and an input of 0 on line b; the symbols 0,
1, and 3 have similar interpretations.

The automaton By models the fault of line a stuck-at-0. The au-
tomata By and Bj describe two faults typical with CMOS realizations of
gates. A CMOS realization of the NOR gate is shown in Figure 4(c). BY
models a stuck-open fault of n-transistor Ty, while Bf describes a stuck-on
fault of p-transistor T5.

In BY, when the input is 2 (that is, a = 1, b = 0), the output node.c is
electrically isolated and remembers its previous value due to the capacitance
of the node. Thus we have two states,c =0 andc=1. fa=0and b =0,
¢ becomes 1; if b = 1, ¢ is driven to 0; when ¢« = 1 and b = 0, the previous
state is remembered. This results in Figure 4(d).

For Bj, the circuit behaves normally unless the input is 2 (that is
a =1, b=0). Then n-transistor T; is closed and p-transistor T5 is stuck-on
instead of being open. Consequently, there is a conducting path from Vpp to
ground, and the output voltage takes on some intermediate value X between
Vpp and ground.

wg,r /0 wy,r/1

wq,r/1 w,,r /0

wo,r /0,r/1 wy,r/0,r/1

Figure 3. Faulty read operations: (a) good
machine BY; (b) fault B{, inverted reading; (c)
fault B, destructive reading; (d) fault schema

F(F)-

1/0,2/0,3/0 C;C):>o/1

(a)

1/0,3/0 CCI)O/I, 2/1

(b) Voo

a ——d[T,
l/g,/%/O, 0/1
o o (1 Do
1,/0,3/0
(d)
L

. (©)

2 /%
GND
1/0,3/0(;():)0/1
()

Figure 4. Combinational circuit faults: (a) the
good machine Bf, a NOR gate; (b) the fault
BY, input a stuck-at-0; (c) CMOS realization
of the NOR gate; (d) the fault BY, transistor T
stuck-open; (e) the fault BY, transistor T,
stuck-on.

11

5. Fault Observer

In this section we provide a formal definition of the notion of fault observer.
It will be used as a basis for the concepts of fault diagnosis and detection,
both in deterministic and probabilistic settings.

Let Ao = (Qo,X,Y0,80,A0) € A(Q, X,Y) be a good machine and let
F = Fa, = {Ai = (Qi, X, Y;,6i,Mi) | ¢ € I} be a finite family of faults of Ao.
Without loss of generality we assume that I = {1,...,n}. Using Ag and F
we define a deterministic semi-automaton A with starting state; A models
the process of fault detection and fault diagnosis from observations of the
behaviour of the circuit under test. A can be constructed algorithmically
from Ao and F. The idea of the construction is quite simple: In order to
test a given circuit A, the experimenter feeds inputs into A and observes its
outputs. At the same time, he runs copies of the good and faulty machines
feeding them with the same inputs and observing their outputs. Since he
cannot know the initial state of A, he will start the experiment with copies
of the good machine and each of the faults initialized to any of their possible
states. When the output of a copy of the good machine or a fault is found
to disagree with the output of A, that copy is eliminated from the contest.
That is, at any given moment, the observed behaviour of A is consistent
with that of all machine copies still in the contest.

The (deterministic) fault observer

A = A(Ag, F) = (D, X x Y, 8,do)

is defined and interpreted as follows. Let A be a circuit which is to be
tested. A models the process by which one arrives at the conclusion that A
is correct or faulty and possibly also which of the automata A;, i € I, the
circuit A actually is. Even its initial and present states may be identified.
Some auxiliary concepts are needed before A can be defined.

With every deterministic finite Mealy automaton

AI = (QI,X, Y',&',A’)
with Q' C Q and Y’ C Y one associates a deterministic finite semi-

automaton A' = (Q', X x Y,8') as follows: Let w be a new state (not in
Q) and Q' = Q' U {w}. Define
8(q,x), ifN(q,2)=y,
Pl @) = { 0 M0 2y

and
8'(w,(2,9)) = w

12

forgeQ',z€ X,andy €Y. R

For all i € Iy, let A; = (Q;, X X Y,4;) be the semi-automaton asso-
ciated with A;. In a state d € D we record which set of states the circuit
could be in if it was any A; started in some state ¢, ¢ € Qi, 7 € Ip. A typical
state d of A is a tuple with components of the form d; where d; 4 € Q;. If
A is in state d then d; 4 is the state of A, if A happens to be A; when started
in state ¢. Thus, let

K'={(i,q)|i € I, ¢ € Q:}
and
D ={d|diq € Qs, (i,9) € K'}.
Initially, the experimenter knows nothing about A, that is, A could be any
of the machines A; in any of the states ¢ € Q;. Therefore,

[doli,g = 4
for (i,q) € K'. Here and in the sequel, if e is an expression or symbol
denoting a tuple, we (may) use [e]; , to denote its (7,g)-th component.
To define the transition function 6, let d,d’ € D. One has d' =
6(d,(z,y)) for z € X and y € Y if and only if

d o = 8i(dig, (2,))
holds true for all 7 € Ip and all ¢ € Q;.

Example 5.1 In Figure 5 we show the good machine By of a memory cell
and the fault B; of the cell being stuck-at-0, as well as the corresponding
fault observer A(By, Fp,) where Fp, = {B1}. In the notation for states of
the observer, a semicolon separates the different machines.

In Example 5.1 and Figure 5 one sees that the observer may become
quite large even for a very simple fault model. Indeed, the only a priori
bound on the number of states of the observer is m™"*+™ where m = |Q|+ 1
and n = |I|. However, two comments are important at this point:

o if all the information about the potential identity of the circuit A
which is being tested (the machine type, the initial state, and the
current state) is required, then the observer cannot be made any
smaller; on the other hand—as is to be explained in the next section—
if the goal of testing can be achieved with less information, then a
modified version of the standard reduction theory of finite automata
can be applied to yield smaller models;

e our model allows for an algorithmic construction of the observer; this
implies that quite large observers may be still manageable as long as
the construction is “handed over” to a computer.

13

Wy, 1‘/0 wy, 1‘/1 Wy, Wy, 1‘/0

(a) (b)

r/O,r/l,wo,wl

()

Figure 5. Memory cell stuck-at-0: (a) the
good machine By; (b) the fault By; (c) the
observer A(Bg,{B,}).

14

6. Deterministic Testing and Diagnosis

In this section we define the notion of diagnosis. The goal in circuit testing
is to determine whether the given circuit is faulty or not. More accurately,
the actual goal may depend on various requirements and may vary between
the extremes of exact identification of the fault and just the detection of the
presence of a fault. Our definition takes care of this range of possible goals.

The maximum amount of information that can be obtained from a
test of a given circuit A with fault model F,4, is the machine type (that
is, the value of the index i), the initial state ¢, and the present state q'.
Frequently, one does not need all this information. For example, it may
suffice to identify the machine type or just to determine whether A is faulty
or not. The properties we may wish to identify for a given purpose can be
conveniently specified by a partition B = (By,... ,B,) of the set ', where
By,...,B, are the blocks of B and

K ={(i,q,¢') | i € Io, q,¢' € Qi}.

In order to be able to express the fact that a state d of the observer
A(Ao, Fa,) = (D, X xY,6,dp) has a property specified by some block of B,
we introduce the notion of the contents ||d|| of a state d of A as follows:

ldll = {(¢,q0,4") | (i,q) € K', ¢’ = di,g # w}

where K' is defined as in the previous section. Intuitively speaking, a state
d identifies the property B; if ||d|| C B;. This leads to the following formal
definition.

Definition 6.1 A state d of the fault observer A is said to be B-decided if
|ld]| € B; for some block B; of B. An input word w € X* B-diagnoses, if
and only if 6(do, (w,v)) is B-decided for all output words v € Y!*I,

The following are typical examples of useful partitions.

® Mazimum information partition: Let By = (Big,e | (3,9,¢") € K)
with B; o = {(i,9,¢')}. A word w Byy-diagnoses if and only if
l6(do, (w,v))|| contains at most one triple (i,q,¢') € K for every
v € YI*l, If w is applied to the circuit A under test and v is the
observed output word, then ||6(do, (w,v))|| = {(i,¢,¢')} means that
A has been identified as machine A; started in state ¢ and with present
state ¢’. On the other hand, ||6(do,(w,v))|| = @ implies that A is not
described by any machine in the fault model.

o Machine and initial state partition: Let Big = (Biq - | (i,q) € K')
with B;q— = {({,¢,¢') | ¢ € Q:}. A word w Bjs-diagnoses if and
only if the projection of ||6(do, (w,v))|| onto L', which is given by

15

(i,9,¢') — (4,q), contains at most one element (i,q) € K’ for any
v € Yl Thus, ® # ||6(do,(w,v))|| € Bi,q,— means that A has been
identified as machine A; started in state ¢.

Machine and present state partition: Let Bps = (Bi- ¢ | (i,¢') €
K') with B; _ o = {(i,9,¢') | ¢ € Qi}. A word w Bps-diagnoses if
and only if the projection of ||6(do,(w,v))|| onto K’, which is given
by (i,q,4¢') = (i,¢'), contains at most one element (3,q') € K' for any
v € Y, Thus, @ # ||6(do,(w,v))|| € Bi,-,o means that A has been
identified as machine A; with present state ¢'.

Machine partition: Let By = (B; | i € Ip) where B; = {(i,4,¢") |
¢,¢ € Q;}. By-diagnosing means that one determines which machine
A; the circuit A actually is.

Fault partition: Let Br = (Bo, Bzo) where Bo = {(0,4,¢') | ¢,4' €
Qo) and Byo = {(i,9,¢') | i € ITand ¢,¢' € Q;}. In this case, B-
diagnosing just results in distinguishing faulty from good circuits.

In general, B-diagnosis has the following interpretation: Let w be an input
word which B-diagnoses, and let v be the output obtained from A, the
circuit under test, as a reaction to the input w. If ||6(do, (w,v))|| # @ and
|I6(do, (w,v))|| € Bi, then A has been identified as having the property Bi.
On the other hand, if ||6(do,(w,v))|| = @, then A is not described by the
fault model.

Example 6.2 The special partitions listed above are as follows for the fault
model of Example 5.1:

and

Bwmi = ({(0’ 0,0)},{(0,0, 1)}7 {(0,1, 0)},{(0,1, D} {(1,0, 0)}) ’
Bjs = ({(0,0, 0)’(070? 1)}’ {(09 1,0), (0' 1, 1)}a {(1,0,0)}),

Bps = ({(0’ 0,0),(0,1, 0)}s {(0, 0,1),(0,1, 1)}’ {(3,0, 0)}) ’

Bwm = ({(0’ 0,0),(0,0,1),(0,1,0),(0,1,1)}, {(1, 010)}) ’

Bp = Bwm.

For example, the following are the Bjs-decided states of the observer:

(0,w;w), (1,w;w), (w, 0;w), (w, 1;w), (w, w; 0), (w, w; w).

The set of By-decided states includes these and the following states:

(0,0;w),(1,1;w).

The input word rwyr Bis-diagnoses, while the word w;r By-diagnoses but
does not Bjs-diagnose.

16

We now define a non-deterministic finite acceptor, the non-determin-
istic B-tester, which will be used to clarify the notions of test sequence
and test sequence generation. Essentially, the non-deterministic B-tester is
obtained from the observer by the following two steps:

e by omitting the “output part” Y from the input alphabet X x Y of
the observer; this introduces non-determinism;
e by introducing the set of B-decided states as the set of final states.

Definition 6.3 The non-deterministic B-tester for
A(Ao, Fao) = (D, X x Y, 6,do)
is the non-deterministic finite acceptor
A(Ao, Fae, B) = (D, X,8,{do}, F)
where F is the set of B-decided states of A and
§(d,z)={d'|yeY: §d,(z,y))=d}.

A word w € X* is strongly accepted by A if 6(do,w) C F. Let Lmons(A)
denote the set of words strongly accepted by A, the strong language of A.

The following observation is an immediate consequence of the defini-
tions:

Remark 6.4 A word w B-diagnoses if and only if w € Lytrong(D)-

Observe that this result has two practically relevant consequences:
o the non-deterministic B-tester can be used to distinguish between
sequences which B-diagnose and sequences which don’t;
e the non-deterministic B-tester can be transformed into a test se-
quence generator.
Moreover—as will be shown in another section of this paper—the formal
model of testing developed so far translates readily into a probabilistic set-
ting.

We now proceed to show that the set of all words which B-diagnose
is a regular set having some special properties. To show that Lsmng(-A-) is
regular, one uses a variant of the power set construction. Recall that P(A) is
that part of the deterministic finite acceptor, obtained from A by the power
set construction, which contains precisely the states which are reachable. We
modify the set of final states of P(A) as follows to construct the deterministic
finite acceptor P(A). A set D' C D is a final state of P(A) if and only if
D' C F, that is, if and only if every d € D' is B-decided. The acceptor P(A)
is called the deterministic B-tester. Obviously, L(ﬁ(Z)) = Lmong(K). This
proves the following;: :

17

Proposition 6.5 The set Lmo,,g('A_), that is, the set of words which B-
diagnose, is regular.

The following observation will be useful in the sequel; it is easily
verified.

Remark 6.6 For B € {Bwmi, Bis, Bps, Bm, Br}, if a state d € D is B-
decided, then every successor state d' of d is B-decided.

Informally, this means that, once we have obtained some information
(for example, that A is machine i in present state ¢) we cannot forget this
information by applying further inputs. (After applying some input we still
know that it is machine ¢ and we still know its present state.) In view of the
remark, a partition B is called closed if it satisfies the following condition:
For every d € D, if d is B-decided then every successor state of d is B-
decided.

Proposition 6.7 Let L be the set of words which B-diagnose. If B is closed,
then L = LX"*.

Proof: If d is B-decided then 6(d,(z,y)) is also B-decided for all z € X
and y € Y. Therefore, if w B-diagnoses, then wz also B-diagnoses for every
z € X. This proves LX*C L. O

The language Ls;,o.,s(K) is precisely the set of test sequences which,
when applied to a circuit, will B-diagnose it. Thus, the shortest words
in Lmo.,s(K) are the shortest test sequences. The deterministic B-tester
5(5) distinguishes between test sequences and sequences which are not test
sequences. If this distinction is the only point of interest, then standard
reduction algorithms can be applied to P(A) in order to obtain a minimal
acceptor for test sequence recognition—or a minimal test sequence generator.

As has been mentioned before, the observer may be far larger than
required for the particular diagnosis task; the same remark applies to the
non-deterministic B-tester. It seems natural to reduce both models modulo
the task requirements. This is described in greater detail as follows.

Assume that B = (31 ,Ba,..., Bk), where the blocks are enumerated
in some fashion. Since B is a partition, each B-decided state d can have its
contents ||d|| in only one block B; unless ||d|| = 0. Assign a Moore output
v(d) to each state d € D as follows:

0, ifd is not B-decided,
d) =44, if0#]d|| < Bj,
oo, if||d|| = 0.

Now reduce the resulting Moore machine A’ using standard reduction tech-
niques. This is illustrated in the example below.

18

Example 6.8 We use the fault model and the observer of Example 5.1. No
reduction of the observer is possible for B = Byy;. Consider B = Bjg. In this
case, the state (0,w;w) would be considered equivalent to (1,w;w); similarly,
(w,0;w) and (w, 1;w) would be considered equivalent. However, as the read
operation behaves differently on these states, no reduction is possible in the
case of B = Big either.

Now consider B = Bpg. In this case we would start with the equiva-
lences

(0, w;w) ~ (0,0;w) ~ (w,0;w)

and
(1"*’;“’) ~ (]-a l;w) ~ (wa 1;“")'

As a consequence we get
(0,w;0) ~ (0,0;0)

and
(1,w;0) ~ (1,1;0).

The resulting “reduced observer” is shown in Figure 6. In the diagram, a
state (z*;y) denotes the equivalence class of (z,w;y).

Finally, consider B = By and note that By = Br in this case. It
turns out that reduction with respect to B results in the same automaton
as that for Bps.

Reduction with respect to a partition B, as illustrated in Example
6.8 results in a minimal automaton which still distinguishes the properties
expressed by the blocks of B. There is another natural notion of reduction;
in this case no distinction is made between B-decided states, and reduction is
carried out according to standard algorithms. This corresponds to assigning
an output of 0 to all states that are not B-decided and an output of 1 to all
the states that are B-decided. This is illustrated in the following example.

Example 6.9 We continue with Example 5.1 and consider B = Br = By.
One starts with B-decided states made equivalent. Using the notation of
the previous example, we find the additional equivalence classes (0*;0) and
(1%;0). Moreover, (0,1;0) is equivalent to the states in (1*;0). The resulting
reduced automaton is shown in Figure 7. Observe, that this automaton is
identical to the one obtained in [Ful].

19

r/O:r/l)wwwl

Figure 6. Observer of Example 5.1 reduced for Bps.

The reduction as described in the first of these two examples is defined
with respect to an equivalence relation ~p on the set of states of the observer.
The relation ~p is the coarsest equivalence such that d ~p d’ implies

16(d, (w, V)|l € Bi <= [|6(', (w, 0))I| € B

and

”‘S(dv(wvv))“ =0 < ||6(d',(w,v))” =0
for all w € X*, v € Y*|, and B; € B. This condition implies that ~p is an
automaton congruence. Let A/ ~p denote the resulting factor automaton.

20

r/O,r/l,wo,w,

Figure 7. Reduction with all By-decided
states equivalent.

On the other hand, reduction as described in the second of these
examples is defined with respect to another equivalence relation =g on the
set of states of the observer. The relation =p is the coarsest automaton
congruence which has the set of B-decided states as one equivalence class.
Let A/ =p denote the resulting factor automaton.

Remark 6.10 A/ =g is the minimal acceptor for the language consisting
of all B-diagnosing words. A| ~pg is the minimal automaton which distin-
guishes the input words according to the properties in B.

In [Hel] and [He2] input words of a finite automaton with special
properties related to diagnostic experiments are considered. We indicate
here, how some of the notions introduced in [Hel] and [He2] arise as special
cases of our concepts. There only a single machine with an unknown initial
state is considered.

An input word is distinguishing in the sense of [Hel), if knowledge
of the output word uniquely determines the starting state. The natural
generalization to our situation is as follows: A word w € X* is said to
be distinguishing if knowledge of the output word uniquely determines the
machine index ¢ and its initial state ¢. Formally, w is distinguishing, if for
every v € YI*l there is a pair (i,¢) € K’ such that ||6(do, (w,v))|| C Biq,--
Thus, a word is distinguishing if and only if it Bjs-diagnoses.

An input word is homing in the sense of [Hel], if knowledge of the
output word uniquely determines the present state. We generalize this as
follows: A word w € X™ is said to be homing if knowledge of the output word
uniquely determines the machine index i and its present state ¢’. Formally,

21

w is homing, if for every v € YI¥l there is a pair (i,¢') € K' such that
l6(do, (w,)| € B;,- 4, that is, if and only if it is Bps-diagnosing.

The observer obtained by our construction for Example 5.1 differs
from the one constructed in [Ful] considerably. Two critical points deserve
to be mentioned:

e in [Ful] no convincing reason is given for the choice of the initial
states; as our construction shows, the initial state is uniquely deter-
mined.

e in [Ful] the assumption is made, that the circuit under test is indeed
faulty. The testing will only have to detect this fact.

Whereas the first remark is crucial for the correctness of the testing results,
the second one mainly affects the size of the observer and the tester. We
generalize this assumption as follows: Let Ao be the good machine and
Fao = {Ai | i € I} a fault model for Ag. Let Koy C K'. We modify the
the construction of the observer A so as to include the assumption that the
circuit under test is one of the machines A; started in state g for (i,q) € K.
This assumption is referred to as the Ky-assumption.

Consider the following equivalence relation on D: d ~g, d' if d = d'
orifdig =w = d}, for all (i,q) € Ko. This equivalence is an automa-
ton congruence because, if d and d' are equivalent, so are their successors.
Now Ak, = A/ ~k, is the observer under the Ko-assumption. Of course,
A/ ~k, need not be reduced.

Intuitively, the equivalence ~ g, lumps together all those states which
are impossible under the Ko-assumption. Closed partitions of D turn into
closed partitions of D/ ~,. Figure 8 shows the observer of Example 5.1
using the assumption Ko = {(1,0)} of [Ful] and its reduced version with
respect to B.

The introduction of an assumption K via a modification of the con-
struction of the observer and the B-tester built from the observer is quite
convenient in the non-probabilistic situation as it helps to keep the result-
ing automata “small.” We shall see that in the probabilistic case a simpler
approach can be taken by assigning probabilities appropriately.

7. Further Basic Notions

Our next step in modelling the testing of circuits involves adding probabili-
ties to our models. Before doing so, we review a few basic notions concerning
probabilistic automata and (information) sources [Do], [St].

A probabilistic finite semi-automaton is a triple (Q,X, H) with Q
and X as above, and with H the probabilistic transition function. Thus
H(q' | q,2) is the probability of the next state being ¢’, given that the
current state is ¢ and the input symbol is 2. Again, H is extended to input

22

r/o 0, 1;0

A Wo r/1
r /0, w, r /0,wg
0,w;0 0,0;0
r/1 c N\ /1
w, Wo wy Wy
\ wl \ wl
1,w;0 r /0 1,1;0
r/1 r/0 r/1
w;w;0
r 0,“)0, r/l
wy
[w,w;w]

r/oxr/lywo’wl

(a)

r/0,r /1,wp,w,

(b)

Figure 8. Observer under Kassumption: (a)
observer; (b) reduced with respect to Bp.

words so that H(q¢' | ¢, w) is the probability of the state reached being ¢'
given that the current state is ¢ and the input word is w. A probabilistic
state is a probability distribution over Q. For a probabilistic state £,

H(- | & w)

is the probabilistic state reached from £ under input w. A probabilistic
finite acceptor is a quintuple A = (Q, X, H, &,QF) such that (Q,X,H) is
a probabilistic finite semi-automaton, & is a probabilistic state, the initial
state, and Qf C @ is the set of final or accepting states. For A > 0, the
language accepted by A with threshold X is the set

Ly(4) = {w| H(QF | &, w) > A}.

A probabilistic Mealy automaton is a quadruple (Q, X,Y, H) where Y is an
alphabet, the output alphabet, and H is the probabilistic transition-and-
output function. In other words, H(¢',y | ¢,2) is the probability of the next
state being ¢' and the output being y, given that the current state is ¢ and
the input is 2.

For an alphabet X, let X“ denote the set of infinite sequences (w-
words) over X. A source is a pair S = (X,) with X an alphabet and ¢ a
probability distribution over X“ [Fe]. In most of the rest of this paper, only
the special cases of memoryless and Markov sources are considered. They
are defined below.

As usual, we let Y(w) = P(wX?¥) for w € X*. Observe also, that
¥(X*'w) is the probability of S sending w beginning at time ¢ for ¢ > 0;
here and in the sequel we assume discrete time starting at 0. We define
Pi(w) = P(X'w).

The following two special types of sources are of particular interest
in the sequel: In a memoryless source one has

Y(zoxr -+ 2) = [[¥(a:)

i=0

for every t > 0 and any z¢,2,...,2; € X. In a (homogeneous) Markov
source one has a probability distribution 19 over X and a set of conditional
probabilities p(z' |) with 2’,2 € X such that

¢
W(@oz1 - x¢) = Yo(o) - [[mlai | 2ic1)
i=1
for all t > 0 and any z¢,z;,...,2¢ € X. Clearly, with X considered as the

state space, a Markov source is just a Markov chain over X with transition
matrix

M = (u(a' | 2)), ex

24

Its distribution at time ¢, t > 0 is given by t; = o M?* when ¥ and 1, are
considered as row vectors.

8. Probabilistic Test Model

In this section we add probabilities to our models for fault detection and
diagnosis. In particular, we introduce the notions of “probabilistic fault
schema,” “probabilistic fault observer,” and “test model.” We also continue
to expand our examples to illustrate how certain actual test situations can
be expressed in our setting. The proposal of [Ful] turns out to form a special
case of our model.

A test model consists of three parts: the (probabilistic) fault schema
describes the behaviour of a circuit A assuming certain kinds of faults; the
probabilistic observer describes how tests and their outcomes are to be in-
terpreted; finally, the test procedure is defined using a test source. All three
components have the following in common: a finite set Q of possible physi-
cal states, a finite set X of allowable actions, and a finite set Y of possible
outputs.

Let Ao € A(Q,X,Y) be a good machine, and let F4, = {4; =
(Qi, X,Y:,6:,0) | i € I} be a fault model for Ag. Without loss of gener-
ality, assume that Y = UJ;¢;, Yi and @ = U;¢q, Qi- Consider a probability
distribution 7 = (mo,...,7,) over Ip. We interpret 7; as the probability of
a randomly chosen circuit being of type i. By definition, the faults A; are
given in such a way that they are mutually exclusive. Typically, 7 would be
determined experimentally in the circuit production process.

With these data, one defines a probabilistic automaton

F = F(Fa,,7) = (Q, X,Y, H),

the probabilistic fault schema, as follows: For ¢,¢' € Q,z € X,and y € Y

one has
H(d,y|q,2)= (Z 7&')/(ielzv:vith 7"-‘)-

i€lo with
i(q,x)=q' 9€Q:
Ai(g,7)=y

Thus, H(¢',y | ¢,) is the probability of an output y and a transition of A
from state ¢ into state ¢’ under input 2, when the probability distribution =
of faults is taken into account.

25

Example 8.1 Let By and Fp, be as in Example 4.1. The probabilistic fault
schema F(Fg,,) is shown in Figure 9. The outputs are irrelevant in this
case and, therefore, have been omitted. To illustrate the calculations, let
¢ = 10, z = wj. Then one has ¢' = 11 in Bg and B;, ¢' = 10 in B3, and
g=10 ¢ Q2 U Q4. Thus

H(11|10,w!) = (mo + m1)/(m0 + ™1 + 73).

Whenever H(q' | ¢,z) = 0 we do not show the edge from ¢ to ¢’ labelled z.
If H(q' | g¢,z) = 1 the probability is not shown, to keep the diagram simpler.

In the next step we define a probabilistic fault observer. A proba-
bilistic fault observer is a 4-tuple A(Ag, Fa,,m,a) = (D, X, H, Do) with the
following properties: Ag is the good machine; F4, = {A; | ¢ € I} is a fault
model for Ag; X is the input alphabet; 7 is a probability distribution over Io;
for each i € Iy and ¢ € Q, a; 4 = a(q | %) is the probability, that a machine
A; is initially in state g. Of course, ai, = 0 for ¢ € Q;. Again, like the
probabilities ;, the data a; , would have to be determined experimentally.

The construction of A starts from the (deterministic) fault observer
A(Ag, Fa,)- A is a probabilistic semi-automaton with starting state. Its set
of states is the set D, the set of states of A. Its initial state distribution is
deterministic and given by

1, ifd=do,
Do(d) = {0, otherwise,

for d € D, where dy is the starting state of A. Truly probabilistic behaviour
arises from the uncertainty about outputs only. In defining the probabilistic
transition function H, we use the notation

Bdy=Y Y alglim

i€lo q€Q;

di g #w
where d € D. Then H is given by

0, if 8(d) >0and Vy € Y : 8(d,(z,y)) # d',

H(d | d,z) = B(d")/B(d), if B(d)>0and 3y €Y : §(d,(z,y)) =d,
A0, if 3(d) =0 and d' # (w,...,w),
1, if 8(d) =0 and d' = (w,...,w),

ford,d' € D and z € X.
The first two cases of the definition of I take care of the situation,
when the present state of the observer still contains pairs (7,¢) which have

26

. w‘;(t2+ 1’4) rivrj:w(i)’w{
wfrotmtr))

wh .
! To+ T+ 7o

i|__Fot™
W\
Mo+ T+ T

7f0+ﬂ'l
3 3 . . w
rt,rJ,w'l’ws 1I’0+‘K1+1r3
U b
e .
w- T3 r rr"’wl)wi
Tot+ T+ 73

Figure 9. Probabilistic fault schema F(Fpg,, 7).

non-zero a priori probabilities a; ;. The third and fourth cases deal with
the situation when all pairs (¢, ¢) contained in d have probability a; ,m; = 0.
Clearly, 3y ep H(d' | d,z) =1 for all d € D and z € X because every A; is
deterministic.

An assumption Ko C K, as discussed in one of the previous sections,

27

can be easily expressed by letting
;=0 if (i,¢)¢ Ko forall ¢€Q;
or
ai,=0 if (i,9) ¢ Ko and (i,¢') € Ko forsome ¢ €Q;.

This automatically eliminates transitions which are impossible according to
Ky and leads to the probabilistic version Ak, of Ag,. Let Hg, denote its
probabilistic transition function.

Proposition 8.2 Let Fa, be a fault model and let Ak, and KKO be the
deterministic and probabilistic observers, respectively, with assumption K,
Ko CK'. Forde D,d € D\ {(w,...,w)} and z € X, if the probability
of a transition from d to d' under z in 31\'0 is greater than 0, then there is
such a transition in Ag,.

Proof: By the definition, if d does not contain any (i,q) € Ko, then 3(d) =0
and Hg,(d' | d,z) = 0 for d' # (w,...,w). If d contains some (i,q) € Ko
then B(d) may be greater than 0. If it is not, then Hg,(d' | d,z) > 0
implies d' = (w,...,w). Thus we may assume that 8(d) > 0. But then
Hg,(d'| d,z) > 0implies that §(d,(z,y)) = d' forsome y € Y and 5(d') > 0.
Hence, there is a transition from d' to d in A, under input (z,y). O

Example 8.3 We continue using Example 5.1. Using the assumption Ko =
{(1,0)}, one finds that Ak, as shown in Figure 10 is actually deterministic,
as true probabilistic behaviour arises from the uncertainty about the outputs
only. (Note that Ak, corresponds to A, of Figure 8(a). In Figure 10, all
the transitions shown have probability 1 and transitions with probability 0
are not shown.) On the other hand, without the assumption Ky, the observer

A is truly probabilistic at certain transitions. For instance, one has

' : _ Jaoamo, if d' = (w, L;w),
H(d"|(0,1;0),7) = { agomo + 71, if d' = (0,w;0).

Now we combine the ideas developed so far into the definition of a test
model. A test model is a 6-tuple © = (Ao, Fu,,7,a,S) with the following
properties: Ao, F4,, T, and a define a probabilistic fault observer; S is a
source with alphabet X, the test source.

The interpretation of O is as follows: The source S provides the input
symbols to the circuit A which is to be tested and also to the “observer”
A who runs the good machine and the various faulty machines in parallel.

28

Figure 10. The observer Ak, of Example 5.1
with assumption K¢ = {(1,0)}. All transition
probabilities are equal to 1.

Transitions of A take place according to probabilities defined by I in the
probabilistic fault schema F' = F(F4,,7) = (Q,X, H). Which inputs are
applied, depends on the characteristics of the source S.

Let S = (X,9). We assume that S is independent of A; this excludes
the possibility of the observer influencing the test sequence. Note that de-
terministic testing is not excluded by this assumption. On the other hand,
adaptive testing is not covered. Additional restrictions on S will be useful,
however. In particular, assuming that S is a Markov source simplifies the
mathematical discussion significantly. In this context it should be pomted
out, that in [Ful] a memoryless source is used.

A test model ® with S a homogeneous Markov source is called a
Markov test model. In the rest of this section we consider Markov test models
only. We show how to determine the transition matrix of a Markov chain
describing the behaviour of a Markov test model. This procedure clarifies
and generalizes the mathematics used in [Ful].

29

The state set of the Markov chain Cg is the set D x X. The entries
u(d',2' | d,z) of the transition matrix M are defined as follows:

w(d',2' | d,z) = ¢(a' | 2)H(d' | d,2).

Of course, if S is a memoryless or even a deterministic source, the notation
can be simplified considerably.

For z € X let vp(z) be the probability of S sending z in step 0. Define
pi(d, z) as the probability of state (d,) of the Markov chain at step 7 and let
pi denote the row vector with entries p;(d,). Then po(d,z) = o(z)Do(d)
and p; = poM*.

As in previous sections, let K be the set of all triples (i,q,q’') with
i € Iy and ¢,¢' € Q;. Let B be a partition of K. We can now define the
probabilistic analogue of B-diagnosis.

Definition 8.4 Let € be a real number with 0 < ¢ < 1. The test model
e-B-diagnoses at step t if

w(B) = Z E Z pne(dyz) > €

z€X B' ||d||eB’
where the second summation extends over all blocks B’ of B.

Recall that a set of states F' of a Markov chain is called closed if for
every state f € F, the probability of going from f to some state outside F
is 0. With probability 1, a finite Markov chain will eventually enter one of
its closed sets [Do].

Proposition 8.5 Let © = (Ao, F4,,7,,S) be a Markov test model, let B
be a closed partition of K, and let F = F' x X where K and X are as above
and where F' is the set of B-decided states of the observer A(Ao, Fa,). Then
F is a closed set and py(B) < py41(B) for all t.

Proof: The state set of Cg is finite. Moreover, if d is a B-decided state of
the observer A then every successor state of d is B-decided. Therefore, F is
closed. By the definition, y;(B) is the probability of the chain Cg being in
F at time t. As F is closed, this probability can only increase as t increases.

a

By the general theory of Markov chains [Do], the state transition
process will eventually enter some closed set with probability 1. Let us
assume that there is no closed set F' C (D x X)\ F such that yu;(F) > 0 for
some t. Roughly speaking, this means that there is no set of states in which
the test model could get “trapped” without the ability to diagnose. Such an
assumption was made implicitly in [Ful]. In this case,

p((D x X)\F) <"y

30

for some vy and 4’ with 0 < 4 < 1,1 < 4/, and for all ¢. Bounds on v and '
can be computed from the transition matrix A/. Now let € be a real number
such that 0 < € < 1. By ¢ we denote the reliability threshold of probabilistic
testing. We intend to determine a lower bound on the number ¢ of steps to
be executed by the probabilistic tester in order that F' be reached with a
probability no less that 1 — ¢. Assume that ¢t > —H%‘,—;L so that 7'y < 1.
From

pe(F)>1-4"7'2>1-¢

one computes v'7* < ¢, that is, logy' + tlogy < logec or t > 2 co-sl?v . This
result is summarized in the following observation.

Proposition 8.8 Let © be a Markov test model, let B be a closed partition
of K, and let F = F' x X where F' is the set of B-decided states of the
observer and X is the input alphabet. Assume that there is no closed set F
in (D x X)\ F such that m(F) > 0 for some t. Then there are constants y
and ¥’ with0 < v < 1 and 1 < v’ such that for every ¢ with0 < ¢ < 1 the
mequalzty t> 5’-‘-‘{-02'-?-;51- implies p,(F) > 1 — €. Moreover, upper bounds on

v and v' can be computed from the transition matriz M of Co.

Example 8.7 Consider the fault model of Example 5.1 with the assumption
Ko = {(1,0)}. Moreover, we assume that there is an additional input sym-
bol ¢ in X, which does not change the state and results in no output, that
is, a “do-nothing” operation. This operation will be needed later in com-
paring our work with that of [Ful] As A Ko is deterministic, the transition
probabilities in the test model arise from the source S only. Suppose that
S is memoryless with probabilities ¥(r), ¥(wo), ¥(w1), and ¥(¢). Then the
state set of A, can be used as the state set of the test model. The resulting
Markov chain—after merging of equivalent states—is shown in Figure 11.

To complete this section, we indicate how the model of [Ful] is ob-
tained as a special case of our model. In [Ful] only memory cells are dealt
with. Suppose the memory to be tested consists of m cells and we are test-
ing for stuck-at-0 faults as in Example 5.1. The test source S issues read
or write instructions for the m cells at random. In our model, this would
mean that in addition to the reading and writing actions we require a “do-
nothing” action ¢ in the alphabet X as shown in Example 8.7 and Figure 11.
Implicitly, this is actually required in [Ful], too. The action ¢ corresponds to
actions performed on other cells. Like [Ful], we assume that S is memoryless
with actions equally probable. Thus ¢(r) = ¢(w) = 2¢(we) = 2¢(wy) =
and ¢(¢) = 1 — L. Moreover, the memory is assumed to be faulty, that 1s,
we assume Ko = {(1,0)} as shown in Example 8.7. Using the state set of
Ak, as the state set of Co as in Example 8.7, we get the following transition

31

¥(¢)+¥(r)+¥(wo) () +¥(wy)

¢(wl)
; ¥(r) @ .

P(wo)

Figure 11. Test model for Example 5.1 with
memoryless source with assumption
Ko = {(1,0)}).

matrix M for Co

1 A 4 m=1 A
Im + im + im 0
= . 1 g m=1 1 | _ L.
M = m mTtT o | = (m'vJ)i,j=l,2,3
0 0 1

with the indices 1,2,3 of the rows and columns of A corresponding to the
states (0*;0), (1*;0), and (w*;w), respectively. It turns out that Co has
only a single reachable closed set, that is, the set F' = {(w*;w)}. The other
states, that is, those corresponding to the indices 1 and 2, are transient.
Given a threshold ¢, one is interested in the number ¢ of steps required
to guarantee fault detection with a probability no less than 1—e. Let to(e,m)
be the smallest ¢ such that the probability of detection is greater than or
equal to 1 — e. As in [Ful], we consider the quotient to(e,m)/m, called
the length coefficient. In [Ful], it is conjectured that the length coefficient is
bounded in the case of single stuck-at faults. This conjecture is proved in the
sequel. First we derive an exact expression for the probability of detection.

Lemma 8.8 Consider random testing of stuck-at-0 faults of single-bit mem-
ory cells with equally likely actions. Let

m(4+2v2) -1

=1 -
P + 8m? -8m+1

and
m(4—2v2) -1

=1 .
P2 + 8m2—-8m+1

32

Then the probability of detection by step t is equal to

V2-1 V2+1
2p} 2p5

1+

The sequence of these values is strictly increasing for t — oo, t > 1, and it
converges to 1.

Proof: To simplify notation, let z; = m‘,‘},, Yt = m%, and

a l-a 0
M=|8 v 1-8-7
0 0 1
where a = (4m —1)/(4m), B = 1/(4m), and v = (4m — 3)/(4m). Note that
z; is also the probability of detection by step t, as the test model is started

in state 1.
The values of z; and y, satisfy the following recursive equations:

T = oz + (1 - @)y,
Y1 =B+ vy + (1= — 7).

As starting values one has z¢ = yp = 0. To solve this recursion, consider the
generating functions

00 o0
F(2)= Zztz‘ and G(2)= E yezt
t=0 t=0

of z; and y;, respectively. From the recursion one computes the following
two equations:

F(2) - azF(z) - (1 - a)2:G(z) = 0,

G(z) — B2F(2) — v2G(z) - (_1_—T,£-i_—z_7)z =0.

Solving for F(z) yields

(1-0a)1-8-7)?

F(z) = (1-2)(1-az-(1-a)B22 — (1 - az)z)

The denominator of this expression for F(z) has three roots p;, ps, and p3
where p3 = 1. One verifies that p; and p, have the values given in the

33

lemma. Thus all the roots are distinct. Decomposing F(z) into partial
fractions yields

1 pm-1) p2(pm — 1)
1-z (pm-p)(1-2/p) (p2—p)(1-2/p2)
L, V2 -1 V2+1
1-z 20 -z/m) 201-z/p2)

One expands this again into a power series and compares coefficients to
compute the value of z; as claimed.
For the rest of this proof, let

1-vV2 1+V2

2p} 2ph

Et =

We first show that e; > 0 for all t. Assuming the contrary is equivalent to
(1+V2) < (m/m)".
By direct computation one verifies that

8m—4-— 2\/"
0<p2/p1 = —W

Thus
(p2/p1)t <1< (1+V2),

a contradiction! Now assume that €441 >

> ¢; for some t, t > 1. This is
equivalent to

, ~1)
t> (14 va)y. =l
(m/m)' 2 (14 V2P - BB
One computes that

=2 P —1)
1+v2) p(;—1) !

which implies
(p2/m)" 2 1.

This is impossible for ¢ > 1. Finally, it is clear that lim;~oo€: = 0. [

34

The lemma guarantees that to(&,m) exists and can be used as a bound
on the length of a test sequence required to guarantee fault detection with
a probability no less than 1 — e.

To indicate that p; and p; of Lemma 8.8 depend on m we write p; (m)
and pa(m), respectively. Let

1-v2 1+2
2p(m)t * 2ps(m)t

The following table lists a few numerical results with ¢ of the form t = Im:

e(m) =

m p(m) = p2(m) = l eim(m) =
1000 1.00085 1.00015 40 0.0034476
48 0.0010683

49 0.0009227
50 0.0007970

1000000 1.00000085 1.00000015 40 0.0034491
48 0.0010688
49 0.0009232
50 0.0007975

From these values, one obtains #5(10~3,10%)/10% = 49, for instance. It is
interesting to note that the simulation results of [Ful] are quite close to this
value.

In the following lemma we provide an approximation of &y, (m) for
large m. This approximation is then used to prove the existence of a bound
on the length coefficient.

Lemma 8.9 Consider random testing of stuck-at-0 faults of single-bit mem-
ory cells with equally likely actions. Let p; and p; be defined as in Lemma

8.8, and let
1-v2 | 14+V2
2p(m)t - 2py(m)t’
For every fized integer 1, | > 0, the sequence €;,,(m) converges to

1-v2 | 1+4V2
2el(3+ %) ' 9pl(3-F)’

ei(m) =

e® = lim em(m) =
m—00

Moreover,

lim ¢® = 0.
=00

35

Proof: The limits are obtained using classical formulae. [J

Theorem 8.10 Consider random testing of stuck-at-0 faults of single-
bit memory cells with equally likely actions. Then the length coefficient
to(e,m)/m is bounded for every e, 0 < e < 1.

Proof: Let Iy be such that ¢ < e/2 for all | > lp. The fact that
€lym(m) converges to ell) as m — oo implies the existence of mg with
|elt) — g1om(m)| < €/2 for all m > mg. Hence g;,m(m) < ¢ for all m > mo.
Let

s = max{lp, max{[to(e,m)/m] | m < mo}}.

Then g,,(m) < €, and s is an upper bound for the length coefficient. []

The method used to prove the existence of a bound on the length
coefficient for random testing of stuck-at faults is not easily generalized. It
relies on obtaining an expression for the probability of detection and even
on the special form of this expression. An obvious alternative would be,
to try and use classical bounds obtained by the general theory of Markov
chains and applied in Proposition 8.6. The following paragraphs illustrate
this idea for the example above—they show that these methods will not lead
to satisfactory results in general.

One computes the parameters v and 4’ of Proposition 8.6 as follows
(see [Do)): Consider the smallest positive integer s such that

m(l‘j{ + m(lf% <1 and mg‘j{ + mg‘g <1
where mg,’} is the (7, j)-entry of AM®. Let ¥ be the larger of these two sums.

In the example, s = 2 and

1 1 3 1
J= —_——]l —}=1- —.
max{1 8m?’1 m 8m'-’} 1 8m?
Now let
1
— 01/3 = 1 —
7 8m?
and
7! = 0-1 — ,),—2'

Then by [Do],
4) <
for 7 = 1,2 and, consequently,

me({1,2}) < 4"+

36

fort > s.
Thus, the number of steps t required to detect the presence of a fault
with a probability no less than 1 — ¢ is bounded by

loge —logy' loge
logy logv

to(e,m) =

from above.

It turns out that this upper bound on t¢(e,m) is not tight enough to
prove the boundedness of the length coefficient. In fact, ty(e,m)/m — oo
as m — oo. Numerical calculations show that t4(e,m) is so much larger
than t9(e,m) that it is useless even for practical purposes, when the limiting
behaviour might be less relevant. A lower bound tj(e,m) on to(e,m) can be
derived in a similar fashion. That bound is not tight enough either; it yields
tg(e,m)/m — 0 as m — oo.

These observations seem to indicate that classical bounds of Markov
chain theory will not yield acceptable approximations of the length coeffi-
cient. New tools have to be developed to deal with this task in general.

We close with a general remark about random testing: While testing
for stuck-at faults with random sequences is clearly inefficient, the following
argument seems to be convincing [Ful]. Suppose we need to test for many
types of complex faults. In deterministic testing, one may have to apply an
exhaustive test for each fault type in the worst case. In randomized testing,
the test would have to be applied only for the length required by the “worst”
of the faults.

9. Concluding Remarks

In summary, we have developed a precise mathematical model of the test-
ing process along with algorithms for its construction. The methods pre-
sented apply to both deterministic and random testing. Given this model,
we are now in a position to study questions about testing of sequential cir-
cuits within the framework of the classical theories of finite automata and
stochastic processes.

References

[Abr] J. A. Abraham, V. K. Agarwal: Test Generation for Digital Sys-
tems. [Pr], 1-90.

[Do] J. L. Doob: Stochastic Processes. John Wiley & Sons, Inc., New
York, 1953.

37

[Fe] W. Feller: An Introduction to Probability Theory and Its Applica-
tions. John Wiley & Sons, Inc., New York, 1968 (3rd edition).
[Ful] A. Fuentes, R. David, B. Courtois: Random Testing versus Deter-
ministic Testing of RAMs. Proceedings of the 16th International
Symposium on Fault Tolerant Computing Systems, IEEE, 1986,
266-271.
[Fu2] A. Fuentes: Contribution & I'étude du test aléatoire de memoires
RAM. These, Institut National Polytechnique de Grenoble, 1986.

[Fuj] H. Fujiwara: Logic Testing and Design for Testability. MIT Press,
1985.

[Ha] J. P. Hayes: Detection of Pattern-Sensitive Faults in Random-
Access Memories. IEEE Trans. Computers C-24 (1975), 150-157.

[Hel] F. C. Hennie: Finite-State Models for Logical Machines. John
Wiley & Sons, New York, 1968.

[IIe2] F. C. Hennie: Fault-Detecting Experiments for Sequential Circuits.
Proceedings of the 5th Annual Symposium on Switching Theory
and Logical Design, IEEE, 1964, 95-110.

[Mc] W. H. McAnney, P. H. Bardell, V. P. Gupta: Random Testing for
Stuck-at Storage Cells in an Embedded Memory. Proceedings of
the 1984 International Test Conference, IEEE, 1984, 157-166.

[Mo] E. F. Moore: Gedanken-Experiments on Sequential Machines. Au-
tomata Studies, 129-153. Princeton University Press, Princeton,
N.J., 1956.

[Po] J. F. Poage, E. J. McCluskey: Derivation of Optimum Test Se-
quences for Sequential Machines. Proceedings of the 5th Annual
Symposium on Switching Theory and Logical Design, IEEE, 1964,
121-132.

[Pr] D. K. Pradhan (ed.): Fault-Tolerant Computing. 2 volumes,
Prentice-Hall, Englewood Cliffs, N.J., 1986.

[St] P. H. Starke: Abstract Automata. North-Holland Publ. Co., Am-
sterdam, 1972.

[Wo] D. Wood: Theory of Computation. Harper & Row, New York,
1987.

38

Prmtlngls/GraphlcSerwces o 1a11s

1. Please oomploto unshaded areas on 2. Dlstnbute copies as follows : White and- 3. On completion of order.the Yellow copy 4. Please direct enquiries, quoting requisi-
form as apphcable Yellow ta Graphic Serwces Retain Pink will be retumed wuh the printed tion number and account number, to

Copies lor your records. : . : matenal) . ex’ensnon 3451,

TITLE OR DESCRIPTION .

A Model for Sequential Machine 'resting CS—88-12

DATE REQUISITIONED " DATE REQUIRED" TACCOUNT NO.
_April 7/88 ___ nsaP Please a2 15|5l3l1 g8la 1]
REQUISITIONER.—:PR.NT . PHONE | o _ SIGNING AUTHORITY

J.A. Brg %4441 _ L nag

MAILING = NAME RS ‘ S . DEPT. . - - BLDG. & rRbom No.
INFO- sue Deangelis ter Scionee _MC 6081E D PicK-r

Copyright: | hereby agree’ to assume all responsmlllty and’ Iiabllnty for any infringement of copyrights and/or patent nghts Wthh may arise from
. ‘the processing of, and reproduction of, any of the materials herein requested. | further agree to indemnify and hold blameless the
-University of Waterloo from any liability which may arise from said processung or reproducmg I'also acknowledge that materials
processed as a result of this requnsmon are for educatlonal use only.: o i

NUMBER ° . . NUMBER . : cobe
OF PAGES ___ 38 OF.COPIES _ 'IQQ L 'CO1J
TYPE OF PAPER STOCK ' |

Ecovsa Damsron. Dsuppuso |:| E J 4

D BOND’ DNCR

PAPER.: SIZE :

[] 8t xn Da x14 Dllxl7 _ ‘

PAPER COLOUR . , INk =V Ple N

[Jrweire . [} B K] scack - [MJ'IMG Tin

PRINTING 7 =7 NUMBERING .

D 1 sIDE 'P-Gs. E 2 SIDES PGS, - FROM rO

BlNDiNG/FlNlSHlNG HOLE .
T L - - HOL : . .

@cbuu_ﬂmc [:l STAPLING [J——runcuen - [] prastic rine .~
FOLDING/ -~ CUTTING

IﬁADDING' 7310 saddle SIZE S

Special Instructions m

SPECIAL BEAVER COVER WITH BLACK INK FORMAT

PrmtlngRequusmon/G : 12161

1. Please complete unshaded areas on .. - 2. Distribute coples as’ foliows Wmte and 3. On. completlon of ordw the Yollaw copy 4. Please direct enqunries, quoting requisi-
torm as appllcable : . Yellow to Graphic: Services: Retam Pmk s will I'be’retumed- with .the printed tion - number and account number, to
: Copies for your records S) matenal : . - extension 3451 B

RARSS

535"’”°K Model for Sequential Machine Testing JA. Brzozawsk1

i A AT EITRY
REQUISITIONER= PRINT . . ‘ © PHONE - : - SIGNING AUTHORITY : -
Colleen Bernard_ 2192 SRR D | -/
e S DERTS ; S BLDG & ROOM NO. . E DELIVER
: #"AF”6|EG CO] leeﬂ Bernard R cs S - - KRR "DC~-2314 i] pick-up

Copyright: I hereby agree to assume all responsnblllty and hablllty for any mfrlngement of copyrlghts and/or patent rights which may arise from
the:processing of,. and reproduction of, any of the matenals herein requested. | further agree to ‘indemnify and hold blameless: the = .
" . University of Waterloo from any liability which may arise from said processmg or reproducing. I also acknowledge that materials

processed as-a result of this reqmsmon are for educatlonal use only.
T

NUMBER L ONUMBER™ e

OF PAGES MO 38 : _ |OF COPIES 10 .
TYPE OF PAPER‘ S'TOCK , Mpac IVOV'.Y 14m g
[:] EOND D NCR D COVER D BRISTOL - D SUPPLlED D

FAPER SIZE | —I0XI4 G

‘De x 1 fjszxu [j”lO’Pt[R',: '

PAPER c0|_ouR R TANK e el
[} wwire [3 . o K{ siack [] S
PRINTING T B ‘NUFMBE‘RING I R
l:] 1 SIDE____ PGSV 8:] 2 SIDES . PGS, . ' FROM o To L
BINDING/F!NISHING _ N

HOLE' : .
E] COLLATING B STAPLING D_PUNCHED' [] pLasTic.rING

FOLDING/ CUTTING

PADDING 7X1ﬂ 5&(1(“8 StitChedlZE _

Speclal lnstruct

P]ease prcvide with Beaver covers.

}8]ack 1nk on covers and 1nside.

	

