e JUN 14 1988

m e m O University of Waterloo

PrintingRequisition/GraphicServices 19935

1, Please, 0;!"\;3'6(0 "unshaded areas on 2. Distribute copies as follows: White and 3. On'completion of order the Yellow copy 4. Please direct enquiries, g g requisi
form as applicable. Yellow. to Graphic Services. Retain Pink will be retumed with the printed tion number and aecount number, to
: Copies for your records. material. extension 3451.

TITLE OR DESCRIPTION

CS-88-11 A Communication System for Local Area Networks

DATE REQUISITIONED DATE REQUIRED ACCOUNT NO.

May 31/88 o ASAP o |1,2,6]6,0 4 04 1|
rReEQuUisiTIoNER- PRINT PHONE ; s ..,SL?Nlbf:G_AUTHORI:r:l’ i 4 . ,
< D, Cowan . 4467 e /bﬁr{m AL Lx/é ol

1 MAILING NAME DEPT. T e BLDG. & ROOM NB. -

INFO — Sue DeAngelis c.s. S DC 2314 O] prek-up

Copyright: | hereby agree to assume all responsibility and liability for any ‘infringément of copyrights and/or patent rights which may arise from
the processing of, and reproduction of, any of the materiais herein requested. | further agree to indemnify and hold blameless the
University of Waterloo from any liability which may arise from said processing or reproducing. | also acknowledge that materials
processed as a result of this requisition are for educational use only. o . . .

NUMBER o NUMBER .

OF PAGES 45 OF COPIES 100

TYPE OF PAPER STOCK Alpac Ivory =
D BOND DNCR . PT. GCOVER [:l BRISTOL DSUPPL!ED j '0!! 1o g

PAPER SIZE 10x14 Glossoocat
Fleyxnn [Jetxte [Juxiz [- - ;
.PAPER COLOUR INK E
S were X X erack O

‘PRINTING NUMBERING

[:]'l SIDE PGS, [32 SIDES PGS. FROM To

BINDING/FINISHING

! HOLE

E COLLATING D STAPLING D__Pgll;CHED. D PLASTIC RING

FOLDING/ . 7x10 saddle stitcliedTINc

.PADDING R _ SIZE

- Special Instructions

s B»e'a.v‘er‘ Cover

. Béth cover and inside in black ink piedée
_ Thank you | |

EBARTMENT
EEA

B
B

E
E
CE

SIS

3 CaRE
O COMPUTER

OVERSHY S WAIES
UNIVERSITY OF WATERLO

A Communication System for
Local Area Networks

Terry M. Stepien

Research Report
CS-88-11

May, 1988

A Communication System
for
Local Area Networks

Terry M. Stepien

Department of Computer Science
University of Waterloo

Waterloo, Ontario, 1988

(c) Terry M. Stepien 1988

page ii A Communication System

A Communication System page iii

ABSTRACT

Even with powerful independent workstations there is a need for connectivity to high speed local arca
networks. These networks are required to allow the sharing of information and expensive periphcrals.

This paper describes the design and implementation of a layered communication system for local
area networks which is designed to provide an efficient modular approach to data communications. Thc
process and message passing model is used to implement the layers in the communication systcm.

The communication system is designed to provide the transport mechanism for various applications.
One such application, called Waterloo JANET, which manages the resources of a local area nctwork, has
been implemented to demonstrate the viability of the communication system.

The communication system is implemented for the IBM Personal Computer family of computers
running the PC/DOS operating system version 3.3. The IBM PC Network Baseband adapter and the IBM
PC Cluster adapter form the basis of the network hardware. Although the communication system was
implemented on a specific hardware and software family, the approach should easily generalize.

page iv A Communication System

A Communication System page v

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Prof. D.D. Cowan, for his advice, constructive criticisms and tirclcss
readings of this paper.

Eric Mackie was a source of considerable assistance both as director of the Computer Systems Group
and for his valuable comments.

All members of the Computer Systems Group deserve thanks for their co-operation and assistance,
especially Peter Bumbulis and Rob Veitch.

Special thanks to my wife Nancy for her motivation and encouragement during the writing of this
paper.

Finally, I wish to thank the Waterloo Foundation for the Advancement of Computing for providing
fellowship support.

page vi A Communication System

A Communication System page vii

CONTENTS

ADSEEaCt et e et e et e e e e e e e iii
Acknowledgements ittt e e e e e \
Introduction i i it i e e e e e e e 1
MOUVAtON ittt ittt e it et i e e e e e e e e 1
Overviewof Accomplishments it i ittt ittt it 2
Orgamization ot vt vt i ittt ittt e e 3
Communication Models for Distributed Processing 3
Introduction it it it e e e e e e e e 3

The OSILayered Approach ot it i it it ittt i ie et enennnn 4
PhysiCal i i vt ittt e e e e e e e 4
DataLinkot i ittt it i e e e e e e e 5

30+ < 5
TRANSPOIE . . v v v v v e e vt vt e ot oot o ae st e te et eaeeean 5

SeSSION & . . it i e et e e e e e e e e e 5
Presenmtation it it e e e e e et e e e, 5
Application i e e e e e e e e e e e 6

The Hierarchical Approach ittt 6
Network AccessLayer it ittt ittt eintinnnennnennnnn 6
InternetLayer it i it i it e e e e e e e e 6
Host-HOStLayer v v i it i it i ittt it ittt et e ieeaenean 6
Process/ApplicationLayerttt i e e, 6

Internet Versus OST 0o i it i e e e e e e e 7
LANAPProachttt ittt ittt ittt ittt naeenanennenas 8
Physical Layerot vt i it it it ettt e 10
Medium AccessControl Layerot i ittt it 10

Logical Link Control Layero vttt it iiitinnennnennnn 10

General COMMENES . . & v v v v v v vt ottt vt vt e oo e oo ot ae s e en 10

A Model for Interprocess Communication 10
INtroduction it e e e e e e et e e 10
ProcessModel i e i e e e e e 10
I 11
Process Communication Primitives i 11
TheSend Primitive eenn.. 11
TheReceivePrimitive i ittt i 11
TheReply Primitivettt ittt et 12

The Signal Primitivettt e 12

Process Management Primitives i i it 12

The Priority Of PrOCESSES ¢ v ¢ v v vt ittt et it it ittt et 12

The Spawn Primitive ittt it e 13

The Kill Primitivet ittt e et et e 13
Implementation Considerations oo e e e e e e e e e 13
Integration withPC/DOS ittt e 14
TiMerSupport e e e e e 14

Performance @i i ittt e e e e e e e e et 14

page viii A Communication System

Process-Based Communication System Implementation 15
0T (o6 L1 o5) o 15
AdAressing i i e e e e e e e e e 15
Implementation Of Layers o v oottt e e 16
The Host-Host Transport Layer o o i i it ittt e e ettt e e e 17
Internet Layer o o i it e e e e e e e e e e e e e 19
Network AccesSLayer vt i it ittt e e e e e 20
BufferManagement ittt 22
PerfOrmance v v i i i it i e et e e e e e e e e e 23
General COMMENTS v v v v v v e e et e e e ettt e e e e e ot et a e s e aaaas 24

An Application of the Communication System 0000 25
INroduCtion o i v i e e e et e e e e e e e e e e e e e e 25
Waterloo JANET o it it e it e e e et e et e e e e 25
Waterloo JANET Implementation0ttt ittt ittt eeneneun o 26
WaterfoO JANET SEIVET o o i i i ittt e et e et ittt et oo eaae o 28
Waterloo JANET WOrKStation o ot i ittt it it ittt e e et e e enn e 28
Remote BOOLPOIt i i i ittt it et e i e it it ittt e e e 28
Performance of SYStem L i e e e e e e e e e 29

Conclusions i e e e e e e e 29
SUMMATY o ittt et et it i et ettt et s et 29
CoNCIUSIONS . . . & v v vt e e et e e et i e ettt e e e e e e e 30
Future Investigation i i it i it e e e e e e 30

Appendix A: DOS/KX: Multi Process Kemel Operations 31

Appendix B: Network Layer Message Definitions, 33

Appendix C: Transport Layer Message Definitions oo 36

Appendix D: Waterloo JANET Message Definitions 37

Appendix E: Network DriverPort i it ittt e 38

Appendix F: Queue AdminiStrator i e e e e 39

Bibliography e e e e e e e 41

A Communication System pageix

—
.

¥ ® N o v A W N

p—t
e

11.
12.
13.

FIGURES
Layered Modelttt e 5
HierarchicalModel 7
OSIVersusSINtemet o vttt ettt et e e e 8
802LANModel e e 9
CommunicationSystem B 16
Single Packet TransferProtocol e 18
Group Packet TransferProtocol ernenunn.. 18
Network Addressing 0ttt ittt 20
PacketFormat i 21
PacketData StrUCtUI® ittt it ittt it i et e e 23
BufferManagement ittt ittt e e e 24
Waterloo JANET Configuration oo v vttt ittt e e e ennn. 25

Layering of System ittt i e e e e e e 27

page x A Communication System

A Communication System ’ page 1

INTRODUCTION

Microcomputer workstations interconnected by local area networks (LANS) are often becoming the sys-
tems of choice to satisfy the ever increasing computing needs of user communities. These powerful work-
stations are being used to solve many of the problems once solved on larger mainframe systems.

The distributed nature of the microcomputer workstation environment presents problems in sharing
and with the administration of these systems. A well designed and implemented communication systcm
is required to provide the framework for the network applications to address these problems. The design
of such a system must deal with the many difficulties associated with remote communications. As statcd
by Svobodova [Svob85], "One of the major problems in designing distributed systems is how to decal with
the uncertainties caused by component failure and imperfect communications."

In this paper we demonstrate that a communication system for local area networks can be efficicntly
implemented in layers. We also show that the process and message passing model is a suitable implemen-
tation method for the layers of a local area network. As well we investigate the issues associated with
making a communication system for local area networks which can be used by a number of applications.
One such application, the Waterloo JANET local area network package, is used to demonstrate the feasi-
bility of the communication system.

The Waterloo JANET system was designed to interconnect a number of microcomputer workstations
with file, print and communication servers. The servers provide the user with application software, files
and shared printing devices over a number of interconnected local area networks.

In order to demonstrate the design of this communication system the following topics are examined:
. communication models for distributed processing,
. a simple protocol for local area network based communications,
. a modular approach for communications,

. the Waterloo JANET local area network.

Motivation

The original motivation for building a communication system for local area networks came from the need
to interconnect microcomputer workstations in an educational setting to allow sharing of application soft-
ware, files, and printing capacity.

The ability to share files and devices is one of the primary reasons for installing a network. An
extensive discussion of sharing and other rationale for local area networks in an educational environment
is provided in [Cowa87a]. An extensive discussion of the design of file servers in a network sectting and
the type of services they should provide is presented in [Svob84]. The functions in the local arca network
must be provided to a level consistent with the facilities provided in a mainframe environment. Thus in
designing a distributed environment, such as a local area network, we must provide the same level of file

sharing as is provided in a mainframe or centralized environment.

An existing operating system, such as PC/DOS, is a base for the communication system, since it
already supports an extensive number of applications, an important attribute in an educational environ-
ment. Existing standalone applications must be compatible with the network environment; for example,

page 2 A Communication System

applications such as word processors, language compilers, spreadsheets and data bases must execute
transparently on the network. In other words, application programs should not require any modifications
to be compatible with the network environment.

The existing operating system is extended to allow a modular approach to accommodate the network
communication system. Modularity is required for two reasons. First, new network based applications
should be able to connect to the communication system without the need to duplicate existing function.
Second, the ability to add or change existing communication layers dynamically during development of
new communication protocols is a desireable feature to facilitate experimentation.

The design of the communication system could follow either of the following two approaches. The
first approach is called "the integrated approach" [Cheu86]. In this design the entities in the communica-
tion system are integrated with the application to form a vertically layered solution. The advantages of
this approach are usually improved performance and reduced size for the implementation. The disadvan-
tages of the integrated approach are the reduced modularity and the increased complexity of considering
all communication issues in one layer.

In the second approach, called "the layered approach” [Svob86a], communication functions are pro-
vided by different layers. The facilities in an upper layer use only those primitives defined in the lower
layer. Two possible approaches to layering are based on the use of general versus special purpose proto-
cols in the communication system. The implementation of general purpose protocols in a workstation
involves each layer in the communication system implementing the standard protocols for data exchange
at that layer. The advantage of this approach is that the completed communication system would be com-
pletely compatible with networks from other manufacturers which adhered to the same standards. The
disadvantage is that the existing standard protocols are designed to handle the general communications
problems which arise in wide area networks and do not take advantage of the features in underlying local
area networks. Hence, performance of the system is traded for portability.

The "special purpose protocol approach” is also a layered approach, but special purpose protocols
designed to take advantage of the architecture of the LAN are used in place of the general purpose proto-
cols. The advantage of this approach is that it maintains the modularity of the layered approach plus it
has much of the enhanced performance and reduced size of the integrated approach. For example, special
purpose protocols can be designed to take advantage of transmission characteristics of a local area net-
work which would be ignored in the general purpose protocol. Also, since the special purpose protocols
are customized for the local area network hardware, some of the unused features of general purpose pro-
tocols may be omitted from the implementation to reduce the size and complexity of the implementation.
The disadvantage of this approach is that workstations on the network cannot be added directly to existing
networks which use the general purpose protocols. However, the effect of this disadvantage is minimized
if we follow an approach similar to the one described by Cheriton [Cheri84a]. A gateway station may be
used to translate the special purpose protocols of a particular local area network to the general purpose
protocols available on other systems. In this paper we describe the implementation of a PC/DOS based
communication system which follows the layered approach with special purpose protocols.

Overview of Accomplishments
In this paper we describe the design and implementation of a communication system for interconnected
local area networks, which demonstrates the feasibility of a layered approach based on the OSI, Internet

and IEEE 802 Standards.

Further, each layer in the communication system is made highly modular through the use of co-
operating sequential processes which communicate by passing messages. The communicating sequential

A Communication System page 3

processes have been implemented using a set of message passing primitives and a real-time kemcl which
have been added to an existing operating system, namely PC/DOS.

The transport layer on the network uses special purpose protocols and "light weight" connections to
take advantage of the medium-access-control architecture of most local area network structures.

An application, called Waterloo JANET, which manages the resources of a local area network has
also been implemented to demonstrate the viability of our approach.

Finally, the performance of the communication system and the Waterloo JANET application have
been evaluated and found to justify our design approach.

Organization

This chapter explains the motivation for the paper. Chapter 2 describes communication systems for local
area networks and an overview of the existing models for such systems. Chapter 3 describes a model for
interprocess communication, the implementation, and the performance of such a model. Chapter 4
describes a process-based layered communication system, the implementation, and the performance of
such a system. Chapter 5 describes Waterloo JANET, an application which uses the communication sys-
tem. Chapter 6 summarizes our work and gives some directions for further investigation. The appendiccs
are divided into two parts. Appendix A through Appendix D are the structure definitions for the commu-
nication system. Appendix A contains the structure definitions for the real-time message passing kerncl.
Appendix B provides the definitions for the queue administrator. Appendix C provides the definitions for
the packet assembly/disassembly process. Appendix D contains the Waterloo JANET packet definitions.
Appendices E and F contain a coding framework for a sample network port and the queue administrator.

COMMUNICATION MODELS FOR DISTRIBUTED
PROCESSING

Introduction

The description of the functions required to perform communications between two machines are oftcn
considered too complex to be contained in a single unit. This leads to the realization that the communica-
tion functions may be conveniently described by a set of layers [Zimm80]. Each layer performs a certain
subset of the functions required to communicate with another system.

A widely accepted model for describing this type of structure is the seven layer reference model for
Open System Interconnection from the Intemational Organization for Standardization. The layered
approach for communications and the functions performed at each layer are described in this chapter.

An alternative model for communications has resulted from the extensive research and practical
experience of the ARPANET project. This model proposes the use of a four layer hierarchy of functions.
The hierarchical approach is defined and the functions performed at each of the layers are explained in
this chapter. The differences between the layered and the hierarchical model are indicated.

Both the OSI layered model and the hierarchical model were developed to describe communication
systems for wide area networks. A subset of the OSI model designed for local area network communica-
tions was developed by the IEEE 802 committee. The 802 LAN reference model follows the philosophy
of the OSI model, but the IEEE 802 committee were concerned with only the lowest two layers of the

page 4 A Communication System

OSI model The 802 LAN reference model was designed to take advantage of unique communication
characteristics in local area network environments.

All these models are included in this chapter since our communication system uses concepts from
each of them.

The OSI Layered Approach

Zimmerman [Zimm80] described principles used to arrive at a seven layer model for communications. A
common analogy is an onion skin, each subsequent layer conceals the contents of the inner layer.
Between each layer there is a protocol. Most communication systems have made some use of a layering
structure. Each layer performs a certain function in the transformation. However only the first layer has a
physical connection. The other layers have software connections to each other. In an effort to standardize
the function at each layer, the International Organization for Standardization (ISO) defined a seven layer
model. The standard which describes the specific functions to be performed at each layer is called the
Model of Open System Interconnection (OSI). This model is not universally accepted; however, it is a
useful model when discussing network design. The layers of the model are described in the following
section.

The OSI Reference Model consists of seven layers:

1. physical layer

2. data link layer

3. network layer

4. transport layer

S. session layer

6. presentation layer
7. application layer

Each layer k on one machine communicates with layer k-1 on the same machine using the layer k
interface between layer k and layer k-1. The communication of data between two machines A and B can
be pictured as being between layer k on machine A and layer k on machine B. A data unit originating at
the application layer on host A is passed down through the layers. Each layer adds control information in
the form of a header to the data unit. When the data unit arrives at machine B, each header is removed as
the data unit is passed up through the layers until just the data unit originally sent arrives at the applica-
tion layer on host B. Of course, some layers may also subdivide the data unit into smaller fragments and
other layers may reassemble the fragments into data units as part of their function. In other words, com-
munication is achieved by having corresponding "peer” entities in the same layer on two different systems
communicate via a protocol. Figure 1 illustrates the OSI seven layer model.

Following is a description of the functions performed by each layer in the OSI model.

Physical: The physical layer provides a connection between data link entities for transmission of
data. It performs the encoding of the data for transmission and regulates access to the physical network.

A Communication System page S

A Peer B

Application

Protocols

Presentation

Session

Transport

Network
Data-Link

= INDNjWw|dlO]IO | N

= INDN|Ww|~lO]|O |V

Physical

Figure I: Layered Model

Data Link: The data link layer provides error-free communication across the physical link between
adjacent nodes. Fixed length frames are transmitted along with a checksum and addressing information.
When the data link layer on an adjacent machine receives a valid frame it passes an acknowledgement
back to the sender.

Network: The primary function of the network layer is routing. Packets from the transport layer must
be directed to the appropriate destination using header information in the packet. The services provided
by the network layer are independent of the distance between the machines.

Transport: The transport layer provides reliable end-to-end transmission for arbitrary length mes-
sages. The size and complexity of this layer depends on the type of services provided by the network lay-
er.

Session: The session layer provides process to process communication between machines. This
involves the establishment, management and termination of sessions or virtual connections.

Presentation: The presentation layer provides for transformation of the data such as compression,
encryption and code conversion.

page 6 A Communication System

Application: The application layer includes all application systems that may want to communicate
with another machine on the network. Examples include terminal servers, printer servers and file servers.

The Hierarchical Approach

One set of protocols which defines the layers of a hierarchical model is called the "Internet protocol suite”
[Hedr87]. These protocols were developed as a result of research and experience gained in the ARPANET
project.

The Internet protocols are based on a three-part view of communication. The three parts are process-
es, hosts, and networks. Processes are the entities which execute on hosts and desire to communicate with
processes on other hosts. To facilitate this communication the two hosts are attached to a network.

The transfer of information between processes can be divided into three parts. First the information
is directed to the correct network. Second, the data is directed to the correct host on the network. Finally,
the message is directed to the correct process on the host. Each component of the demultiplexing may be
handled independently. The network is only required to route information between hosts.

The four layer architecture which results from the hierarchical structure has:

1. a network access layer

2. an internet layer

3. a host-host layer

4. a process/application layer

An entity at layer k may use the services of another entity at the same layer or directly use the servi-
ces of lower layers. Like the OSI model each layer adds header information onto the data unit. When the
data unit augmented with headers arrives at the destination host, the headers are removed as the data unit
is passed up through the layers. In the hierarchical model data units may also be subdivided and re-
assembled as they pass through some of the layers. The following is a description of the functions per-
formed by each layer in the Internet model.

Network Access Layer: The network access layer contains the protocols required to access the
communication network. The goal of the network access layer is to route data between hosts on the same
network.

Internet Layer: The intemet layer is responsible for routing data between hosts on multiple net-
works. This layer adds the concept of a gateway which connects network access layers for two networks.
This allows the transfer of data to occur between networks.

Host-Host Layer: The host-host layer contains a set of protocols which provide reliable transfer
of data between two processes on different host computers.

Process/ Application Layer: The process/application layer contains all the protocols for
resource sharing. Examples of applications at this layer include file transfer and remote login. Figure 2
shows the layers of the hierarchical model and the names of common protocols at each layer.

A Communication System page 7

RJE
ad hoc
v FTP
TELNET
- TCP uDP |icMP
P
o
Network Interface
I

Figure 2: Hierarchical Model

Internet Versus OSI

Although the Intemnet hierarchical and the OSI layered model have the same final goal of providing com-
munications between machines, they have three fundamental differences in approach. These differenccs
are hierarchy versus layering, importance of internetworking and the utility of connectionless service.

Both the OSI and the Intemet models follow the approach that communications are too complex for
a single unit. The communication problem is decomposed into modules or entities. The OSI model
restricts a layer k to use only those functions provided by layer k-1. The Internet model is not as restric-
tive. An entity in the Internet model may directly use the services of any entity lower in the hierarchy.
The importance of this distinction is best illustrated by an example. Consider the communication system
for a local area network, the broadcast packet facility of a LAN is a function normally not found in a wide
area network. Hence, an interface would not be defined for this function and access to the broadcast func-
tion would be denied to the upper layers in the OSI model. The additional flexibility in the Internet mod-
el allows the protocol designer more freedom to develop efficient and cost-effective protocols.

The initial design of the Internet model included internetworking as an integral component. A dcsign
parameter of the model was to allow for a hierarchy of interconnected networks. The intemet protocols
(IP) were included to accommodate this goal. The concept of internetworking was not included in the ini-
tial definition of the OSI model.

Although the OSI reference model supports both connectionless and connection oriented services,
many current implementations favour the use of connection services. The Intemet model also supports

page 8 A Communication System

both connectionless and connection-oriented services. However, the connectionless service is an integral
component of the internetworking support in the Internet model. Services such as name binding and
urgent datagrams make valuable use of connectionless services.

The relationship between the layers in the OSI reference model and the layers in the Internet model
are shown in Figure 3. Each of the layers in the Internet model integrates functions from a set of layers in
the OSI model. By combining the layers the amount of overhead resulting from layer interfaces is
reduced.

oSl Internet

Application | 7

Process/
Presentation | 6 Application

Session 5

Host-host
Transport 4

Network 3 Internet

Data link 2 Network
Access

Physical 1

Figure 3: OSI versus Internet

LAN Approach

The IEEE 802 committee was formed to develop a set of protocols to define how devices could communi-
cate over a local area network. A local area network is distinguished from the data networks described in
the previous sections by the following three points:

. spans a small geographic area

. high data transfer rate

. low error rate

A Communication System page 9

The 802 LAN model follows the philosophy of the OSI model but the IEEE 802 committee was con-
cemned with only the lowest two layers. A subset of the OSI reference model with the following three lay-
ers was developed for local area networks:

1. physical
2. medium access control
3. logical link control

An application connects to a service access point (SAP), which is the interface to the logical link
control layer, to communicate with a destination SAP on another machine. A data unit is passed from the
logical link control layer to the medium access control and then to the physical layer for transmission.
Each layer encapsulates the data unit with the appropriate header information. Figure 4 illustrates the
802 local area network reference model.

Service Access Point (SAP)

N’) —)
Logical Link Control (LLC)

Medium Access Control (MAC)

Physical

Figure 4. 802 LAN Model

The following is a description of the functions performed at each layer.

page 10 A Communication System

Physical Layer: The physical layer is concerned with the details of the transmission medium and
clectrical signaling.

Medium Access Control Layer: The medium access control layer handles the multiplexing
and demultiplexing of the access to the shared transmission medium.

Logical Link Control Layer: The logical link control layer is concerned with the establish-
ment, maintenance and termination of links between communicating service access points.

General Comments

The 802 LAN reference model describes a system which is adequate for communications on a single local
arca network. The layers above the logical link control are not defined. There is proposed support for
internetworking in the 802 LAN model dealing with interconnection of homogeneous networks at the
media access control layer. A goal of our communication system is to support multiple heterogeneous
local area network media access control layers in one network. Hence, the 802 LAN reference is not suf-
ficient for our communication system. However, if we include the internetworking and higher layers
above the network access layer of the Internet model with the 802 LAN model we arrive at a model for
our communication system. Our model differs from the standards; however, it borrows ideas on layering
and hierarchy from the wide area network standards and LAN access from the local area network stan-
dard, in particular those standards from ISO, ARPANET and the ANSI 802 committee.

A MODEL FOR INTERPROCESS COMMUNICATION
Introduction

The components of each layer of the LAN communication system are co-operating sequential processes.
In the implementation of the system we decide how co-operating processes should be used to provide
both efficiency and portability. Since the target operating system did not have primitives for co-operating
sequential processes we chose to provide such an extension for the PC/DOS operating system. We
describe the syntax and semantics of the message passing primitives followed by a discussion of imple-
mentation and performance considerations. An overview of the extension is also described at the end of
this chapter.

Process Model

The use of processes is central to the design of most modern operating systems. Many models for pro-
cesses and interprocess communications have been suggested and implemented. Each model has its own
definitions for a process and interprocess communications primitives. The model for our operating sys-
tem extension consists of processes which communicate by passing messages and is similar to the one
described by Gentleman [Gent81] and used in the V Kemel [Cheri84] and Thoth [Cheri79]. This model
has been shown to be sufficient for many applications.

The process abstraction is implemented with a kemel containing a real-time scheduler which pro-
vides for inexpensive context switching. The kemel contains four primitives which implement interpro-
cess communication on the same machine and which cause suspension of a process when a message is
sent or received. In addition, process management primitives are provided for the creation and destruc-
tion of processes. The following sections provide descriptions in the language C of the primitives support-
ed by the kemnel and the data structures used.

A Communication System page 11

Messages

Messages are composed of two components, the header of a message, and the contents of the message.
The header contains two sub-component fields, the process id of the destination process and the size of
the the message following the length field. A typical definition of the type message, using data types in
the language C, is of the form:

typedef struct a_msg {

a_pid partner;

unsigned length;

int number [40] ;
} a_msg;

where partner is the name of the receiving process and is of type a_pid, and length is an unsigned integer.
The contents of the message may be any legal data type including a structure. The definition of a_pid may
be found in Appendix A.

Process Communication Primitives

The Send Primitive: The Send primitive sends a message from one process to another. All the
information is contained in a variable which is defined to be of type a_msg. The name of the process
receiving the message is contained in the partner component of the message header. The Send primitive
has a pointer to the message as its single argument.

A typical use of the Send primitive is of the form:
status = Send(&message);

where &message is a pointer to a variable of type a_msg. Send rctums the value zero if the Send fails,
and non-zero if Send succeeds. Send would fail if there is no process with the process id specified in the
message. Once the Send primitive is executed, the process sending the message is blocked until a Reply
to the message is received.

The Receive Primitive: The Reccive primitive reccives a message sent from any other process.
Receive does not know the identity of the sending process until the message arrives. A process executing
the Receive primitive is blocked until a message arrives from a sending process.

The arriving message is copied to a message buffer in the receiving process and the name of the
sending process is placed in the partner field of the message. This allows the receiving process to know
the identity of the sending process.

A receiving process must specify the maximum size of the message it expects before the Receive is
executed. The Receive primitive has two parameters, a pointer to the received message and a time-out
value. Once the Receive primitive is executed, the process waiting to receive a message is blocked until a
message actually arrives or the time-out value is exceeded. If a time-out value of zero is specified, then
Receive blocks until a message is received.

A typical use of the Receive primitive is of the form:

message.length = msgsize(message)’
signal = Receive(&message, delay):

page 12 A Communication System

where msgsize calculates the size of the structure represented by message. The variable signal, of type
unsigned, would have the value zero if Receive was unblocked because of the arrival of a message, and
non-zero if Receive was unblocked because the time-out value was exceeded.

The Reply Primitive: The Reply primitive responds to a message sent by a process. When the
sending process receives a reply to its message, the sending process is unblocked. The Reply primitive is
non-blocking. A simple Receive-Reply sequence is given in the following example:

msg.length = msgsize(msg)
Receive(&msg, delay):
status = Reply(&msg)}

The unsigned variable status would have value zero if the Reply fails, and non-zero if Reply succeeds.
Failure would occur if there is no process with the process identifier contained in the message, or if the
process named in the message was not waiting for a reply.

Replies to messages do not have to be given in the order received, and messages in the reply may be
different than the message that was originally received. The address of the sender must be in the partner
field of the header and is automatically placed there when the message is received. This allows a receiv-
ing process to return a message to the sender.

The Signal Primitive: The Signal primitive signals a specific process that an event has tran-
spired. The Signal primitive has two parameters, the process identifier of the process being signalled, and
the value of the signal. The signal is an unsigned integer and each bit or combination of bits in the integer
can be assigned a meaning. An example of a signal is:

Signal(process_id, 0x4000):;

Signals are non-blocking and they can be sent from any number of processes. Provided that each process
sends a unique signal, signals are collected for the receiving process and the union of all signals since the
last Receive are retumed.

A signal will cause a process blocked on a receive to be unblocked. The process issuing the signal is
not blocked by the signal primitive.

Process Management Primitives

The Priority of Processes: A process will block whenever it executes a Send or a Receive
primitive to send or receive a message. A process will unblock if it received a message or signal while
blocked on a Receive, or if it received a reply while blocked on a Send.

When a process is unblocked it is placed in a queue of processes waiting to be run. The next process
to be run or dispatched is selected from the queue using a FIFO discipline. Processes are assigned priori-
tics when they are created and processes in a higher priority queue are always dispatched first. A process
will only surrender its use of the processor if the process becomes blocked, or if a process of a higher pri-
ority is waiting to be dispatched. Thus it is possible for a process which does not execute a Send or
Receive primitive, to monopolize the processor for a long time and prevent all other processes at the same
or lower priorities from running.

Most processes are spawned to run at NORMAL_PRIORITY. Processes can be spawned to run at
higher priority by adding multiples of a UNIT_PRIORITY to the priority field in the Spawn procedure.
NORMAL_PRIORITY, UNIT_PRIORITY and MAX_PRIORITY are defined in appendix A.

A Communication System page 13

The Spawn Primitive: The Spawn primitive creates a process that can now run. The Spawn
primitive has four parameters:

1. a pointer to a stack for the process;
2. the priority of the process;

3. the name of the process;

4. the start of the code for the process.
The statement:

pid = Spawn(GetStk(1024), NORMAL PRIORITY, 3, Main);

creates a process with 1024 bytes of stack space, normal priority, a user assigned logical name of 3 and a
starting address specified by the label Main.

A unique process identifier (pid) is returned as the result of the Spawn primitive. The process identi-
fier is used to distinguish the process from other processes on the machine. A process may be assigned a
logical name when it is created by the Spawn primitive. The logical name provides a compile time name
binding which may be used to identify the process in any process communications. The logical name
ensures that you will know how to communicate with a process. The logical names are most often used to
identify system service processes which are always available on the workstation. The pid and logical
name of a process can be used synonymously for communications with the process.

The Kill Primitive: The Kill primitive destroys a process and removes it from the system. The
statement:

status = Kill(pid):
will destroy a process whose process identifier has the value of the variable pid. The unsigned variable
status will have the value zero if Kill fails and non-zero if Kill succeeds. Failure would occur if there is no
process with process identifier pid.
Implementation Considerations
In order to implement a process-based system we require a real-time kemel which provides fast context-
switching. Each process has an associated process descriptor which maintains the current state for the
process. A process may be in any of the following four states:
. Ready
. Awaiting Send
. Awaiting Receive
. Awaiting Reply

When a process is created it is placed in the Ready state. This indicates the process is prepared to be dis-
patched or run whenever the processor is available. Issuing a Send primitive will cause a process to block

page 14 A Communication System

and the state for the process to be changed to Awaiting Receive. The process will remain in this state until
the receiving process issues a Receive primitive.

When the receiving process issues a Receive the previously sent message is received and the state of
the sending process is modified to be Awaiting Reply. If there were no sends waiting when the Receive
primitive was issued, the state of the receiving process would be set to Awaiting Send and the process
would block until a message arrives or the specified time-out period expired. The sending process
remains blocked until a Reply primitive is executed which changes the state of the blocked process to
Ready.

Integration with PC/DOS: The kemel is implemented as a terminate and stay resident (TSR)
program under the PC/DOS operating system. Since PC/DOS is only serially re-useable, a process must
not give up control during an operating system call. Some preliminary research has indicated this problem
may be resolved by creating a PC/DOS file system access process. However, we rely on friendly applica-
tion processes to prevent this problem. The message passing primitives are implemented as a library of
procedure calls which are shown in appendix A.

Timer Support: The Receive primitive provides access to the timer support mechanism in the ker-
nel. When a Receive primitive is executed with a time-out value specified and there is no message wait-
ing to be received, an alarm is set indicating the time when the Receive expires. The alarm value for the
process is inserted into an ordered list of processes awaiting time-out. If the time-out period expires, a
signal is sent from the timer to the process to indicate the event. The signal unblocks the waiting pro-
cess, indicating a signal from the timer has been received. If the process receives a message prior to the
time-out period expiring the alarm for the process is deactivated and the message is passed to the waiting
process.

Performance: The process kernel is installed as a resident portion of the operating system on a
workstation. As such, it must be both compact in size and efficient in operation. The hardware configura-
tion used to measure the performance of the process kemel consisted of an IBM PC/AT microcomputer
with a clock speed of 8MHz and an Intel 80286 microprocessor. The workstation had 512K bytes of
memory and was running the PC/DOS version 3.3 operating system.

The memory requirements to run the kemel are quite small, it adds an additional 8K bytes to the resi-
dent portion of the operating system. Each user process requires a process descriptor to maintain state
information. The size of these descriptors is reduced to 40 bytes by storing some of the register state
information for the user process on the user process stack prior to performing a kemel request.

Performance measurements on the kemel were obtained by executing 20000 send-receive-reply
sequences with a message size of 10 bytes. The overhead time associated with the loop code was subtract-
ed from the total time. This resulted in 1709 send-receive-reply sequences being performed per second.
Hence the time for one send-receive-reply is 0.58 milliseconds. A similar test determined the context
switching time was 4334 context switches per second. The time for one context switch was 0.23 millise-
conds.

A subroutine call and retum sequence on the Intel 80286 requires 2 microseconds. The send-
receive-reply sequence requires 580 microscconds. This implies the time required for message passing is
approximately 300 times the normai subroutine invocation sequence. The use of processes must be care-
fully controlled to ensure that messages are not uscd as substitutes for subroutine invocations.

A Communication System page 15

PROCESS-BASED COMMUNICATION SYSTEM
IMPLEMENTATION

Introduction

In this chapter we concentrate on the implementation of a process-based laycred communication sys-
tem for a local area network. The distinguishing features of the communication system are efficient and
reliable network communications, modular structure and the ability to support heterogeneous network
environments. The communication system may be described by using the Intemet model discussed in
chapter 2. Each of the network access, internet, and host-host layers are implemented as a group of com-
municating processes. The network access layer contains all aspects of communications related to the
exchange of data between workstations on the same network. The intemet layer provides the routing and
queue management services for communication between local area networks. The host-host transport ser-
vice provides reliable communications for arbitrary sized data objects. This layer is responsible for the
establishment and breaking of connections between processes. Included in this layer is the disassembly
and assembly of data objects which exceed the capacity of the internet communication layer.

Addressing

Two types of addressing are used in the communication system. We use the term extended LAN
[Back88] to refer to a local area network consisting of multiple component LAN's connected by gateway
stations.

A flat name structure is one in which each entity has a name that is unique throughout the entire
communication network. This type of structure is appropriate for entities on a single component network.
This structure falters when communications may involve a variety of systems of different types from dif-
ferent vendors as each system tends to have different naming conventions.

A hierarchical name structure is one in which the names are layered, such that an entity has a name
which is only required to be unique over one component of the network. Each name forms a three-tuple
consisting of the fields domain, node, and port. The domain field identifies the local area network in the
extended LAN to which we wish to send a message. The node field identifies a particular workstation
within the specified domain. The port field identifies a service access point connected to an individual
process on the workstation. An advantage of hierarchical structure is that it is easier to add names to the
system since an entity must only be unique within a local system. Routing messages between local arca
networks is also simplified since it is easy to identify which domain contains the entity.

In an extended LAN, routing is required to direct messages between component systems. Static rout-
ing is a type of routing where each workstation maintains a predefined table of predefined routes which
span the topology of the extended LAN. The information in the route table is used to direct packets to the
proper domain.

Our communication system currently uses static routing. However, since the routes on any station
may be modified locally at the station or remotely from another station, static routing does not appear to
restrict our system. If a failure occurs, the network may be reconfigured quite rapidly.

page 16 A Communication System

Implementation of Layers

Each of the three layers in our communication system is composed of sets of processes which communi-
cate by passing messages using the inter-process communication primitives discussed in chapter 3. The
process structuring of the communication system is illustrated in Figure 5. Each of the application pro-
cesses communicates through a port process or service access point to access the network. The port pro-
cess encapsulates the message from the application with control information and sends it to a queue
administrator process. The queue administrator has similar functions to those of the administrator defined
by Gentleman [Gent79). By definition, the administrator process must never block on any of the worker
or client processes it services. To ensure the queue administrator does not block, Send primitives are only
issued by port processes, thus the queue administrator process is always available to handle incoming
requests.

The queue administrator process is responsible for the management of buffers for an arbitrary num-
ber of processes called ports. Ports are divided into two types: driver ports and application ports. A driver
port implements an interface between the queue administrator and the network. The application port is an
interface between the queue administrator and the application process using the communication system.
Messages are forwarded by the queue administrator to the driver ports which transfer the messages to the
network medium, The driver port implements the medium access interface, described in the IEEE 802.2
LAN standard, and provides the connection to the physical media. The next three sections describe the
implementation details of the host-host, intemet and the network access layers of the system.

Application Process

Process
Application

Console

Internet

Driver Process

Network

Access
Network

Network
1 2

Figure 5: Communication System

A Communication System page 17

The Host-Host Transport Layer

The purpose of the host-host transport layer is to ensure reliable information exchange between diffcrent
nodes reachable via the underlying network. In a LAN-based communication system the internet laycr
usually implements a form of connectionless service. Hence, error detection, recovery and flow control
must be provided by the host-host transport layer. We use a transport protocol similar to the "light
weight" connections described by Cheriton [Cheri84].

The transport process must implement a protocol to describe the transmission language between
machines. The nature of the protocol required is dependent on the underlying communications system. If
the underlying communication system was slow and unreliable a robust protocol which could easily
recover from communication errors would be required. In the case of a LAN-based communication sys-
tem the underlying network displays the characteristics of a high data rate and a low error rate. In this
type of environment a simpler protocol may be used.

The simplest of these protocols, the stop and wait protocol, involves the transmission of an acknowl-
edgement (ACK) packet for every data packet. Zwaenenpoel [Zwae85] showed that the cost of using a
stop and wait protocol on a local area network is substantial because of the overhead in generating and
receiving ACK packets. He suggested using a blast protocol with retransmission. In the blast protocol, the
number of ACK packets is reduced to one at the end of a successful transmission. If an error is detected,
retransmission will be from the first packet.

The use of a blast protocol must be restricted to reduce the probability of flooding the receiver. For
example, in a file-server based network it is common to have multiple stations using the server simultane-
ously. If a blast protocol is used by all stations it would place a heavy demand on buffer space in the scr-
ver. Incoming data packets which arrive after the server has exhausted the buffer supply will be lost or
ignored. Retransmission of these lost or ignored packets may cause the server to flood again. This type of
situation could result in a very low effective throughput rate for the network.

The group blast protocol is a modified version of the blast protocol. The group blast protocol
includes a flow control mechanism to reduce the probability of flooding with large data transfers. The
group blast protocol divides large data transfers into a number of groups. Each group is transmitted using
the blast protocol. Between the transmission of successive groups the sender and receiver synchronize to
ensure the group was received correctly and that the receiver is prepared to receive the next group.

In our implementation of the host-host layer, data transmission is divided into two types: short mes-
sages and long messages. Short messages are sent using a blast protocol. The receiver is assumed to have
the capacity to receive small packets. Currently small packets contain up to a maximum of 256 bytes.
Each small packet is acknowledged by the server upon reception. Lost small packets are handled by a
time-out and retransmission mechanism. The protocol for the transmission of a single small packet is
shown in Figure 6. The definition of transport layer packets may be found in Appendix C.

Long messages are sent using a synchronized group blast protocol. Prior to transmitting a large mes-
sage the workstation must synchronize with the server by sending a service request packet (SRQ). Mes-
sage transfer is integrated with the service request packet to reduce the number of packet exchanges. If the
server has buffers available it returns a clear to send (CTS) packet to the workstation indicating it is will-
ing to receive the remainder of the group. Each group may hold a maximum of 4096 bytes of data. The
final packet of the group is marked to indicate the end of the transmission. If the server received the group
correctly, an acknowledgement packet is returned to the workstation. The protocol for the transmission of
a single large message transmission is shown in Figure 7.

page 18 A Communication System
Host A Host B
DATA
‘AC/K
Figure 6: Single Packet Transfer Protocol

Figure 7:

Host A Host B
RQ + Data
CTS

Ack

d

Group Packet Transfer Protocol

A Communication System page 19

Internet Layer

The purpose of the intemet layer is to route packets between networks on the extended LAN. We
use static routing implemented in the internet layer to direct packets to the proper domain. Routing tables
exist at each workstation which specify the driver port and node to use to get the packet one step closer to
the destination. The packet is sent to the driver port specified in the routing table. The packet is then for-
warded by the port to the gateway node specified in the routing table entry. A gateway node is a work-
station which has connections to two or more component networks. The gateway node will determine
where to send the packet next. If the packet destination is on the local component LAN the routing tablc
entry has NULL in the node field. This will result in the packet being sent directly to the destination.
Each routing table maintains information on how to direct a packet to any node on the extended LAN.
The implementation assumes that the extended LAN is acyclic. There are no procedures to remove pack-
ets from the extended network after a maximum number of hops between component LAN's.

Figure 8 shows an extended LAN with two domains labeled D=1 and D=2. The domains or networks
are represented in Figure 8 by circles circumscribed with squares. The circles labelled AP, DP and Sw arc
the application ports, the driver ports and the queue administrator respectively. The following example
shows how the application on machine A on domain D=1 would communicate with application port P=4
on machine D on domain D=2.

Routing table entries are required in machines A, C and D to enable the communications to occur.
Machine A would require a routing entry which specifies that to reach domain D=2 first send the data unit
to driver port P=2 then forward it to node N=1. Machine D would require a routing entry for the reverse
communications with machine A. It would specify that to reach domain D=1 first send the data unit to
port P=2 then forward it to node N=3 on machine C. Machine C is a gateway machine since it exists on
more than one domain. On domain D=1, machine C is known as node N=1. On domain D=2, machine C
is known as node N=3. Machine C requires two routing table entries. The first entry specifics that to
reach nodes on domain D=1, data units should by sent to driver port P=2. Since driver port P=2 is on
domain D=1 no additional forwarding of the data unit is required. The second routing entry specifics that
to reach nodes on domain D=2, data units should be sent to port P=4. Once again no further forwarding of
the data unit is required.

The data unit transfer is performed between machine A and machine C in the following fashion:

1. The application on machine A sends a message to application port P=1 indicating the message
is to be sent to domain 2, node 4, and port 4.

2. The application port formulates the message into the format required for a queue administrator
data unit. The packet is sent to the queue administrator.

3. By using the information in the routing table the queue administrator determines the data unit
should be sent to port P=2 and then forwarded to node N=1. The data unit is transferred to the
driver port P=2.

4. The data unit is sent over the network to the gateway node N=1. When received the driver port

relays the data unit to the queue administrator on machine C.

5. The routing tables are used to determine the data unit should be sent to driver port P=4 which is
on the destination domain for the data unit. The driver port sends the data unit to the destination
node N=4 on machine D.

page 20 A Communication System

6. The driver port on machine D reccives the data unit and transfers it to the queue administrator.
The queue administrator determines that the data unit is on the correct domain and port before it
sends the data unit to the application port P=4.

Data units are routed first to the proper domain and then to the correct machine on that domain. The
address of the final destination for the data unit is maintained in the destination node field during the rout-
ing process. The port field is used to select the correct port on the destination machine.

Application

Figure 8: Network Addressing

Network Access Layer

The purpose of the network access layer is to provide connectionless service between nodes on a single
network. The nctwork access layer is implemented as a driver port process which is connected to the
qucue administrator process. Sample code for a driver port is provided in Appendix E. The driver port is
responsible for transmitting and receiving packets on the local arca network. Packets received from the
queue administrator process are transmitted to their next destination. Packets received from the network
are sent to the queue administrator process for distribution. The packet format for network packets is
shown in Figure 9.

The driver port prepares packets for transmission by using the network header information to fill in
the necessary data link fields of the packet. When packets are reccived, the driver port performs any nec-
essary translation to put the packet into the standard internal format shown in Figure 9.

A Communication System page 21

Destination Source
Address Address
6 Bytes 6 Bytes
Data Link Header
Destination Source Control
Service Service 1-2
Access Point Access Point Bytes
1 Byte (DSAP) | 1 Byte (SSAP)
Node Port
1Byte 6 Bytes 1Byte
Network Header
Source Source Source
Domain Node Port
1Byte 6 Bytes 1Byte

Data

Figure 9: Packet Format

The network adapters are configured to respond to both the individual node address and the network
broadcast address. Thus incoming broadcast packets are received in addition to packets addressed to the
individual node. Broadcast packets follow the packet format shown in Figure 9. The broadcast packet is
sent to the queue administrator on each machine for delivery to the application port specified in the broad-
cast packet. Packets with the destination address set to be the broadcast address are transmitted by thc
driver port to all stations on the local domain.

Most local area network adapter cards support some form of remote program load facility. This facil-
ity allows workstations to be automatically loaded from the network when they are started. The packets
generated by the remote program load facility usually differ in format from the standard packet format
used in the communication system. The format of the packets cannot be easily modified because of the
ROM implementation of the procedures. A transformation by the driver port changes these packets into
the standard format and sets the address field to be a prescribed port which services remote boot requests.

Currently two driver ports have been implemented for the communication system. Driver ports for
the IBM PC Cluster and the IBM PC Network Baseband adapter have been implemented. The widely var-
ying data link interfaces presented by these two adapters did not present any serious complications. Other
network adapters such as Token Ring and Ethernet have been examined and driver ports for these media
appear feasible. This leads us to believe that driver ports for other network adapters can be added easily
to the system.

N

page 22 A Communication System

Buffer Management

The performance of a layered communication system is directly affected by the number of message copy
operations required betwecn the layers. This fact is amplified in local arca networks since the transmis-
sion speed of the network usually exceeds the speed of the processor in the workstation accessing the net-
work. Buffer management in our communication system is controlled by the queue administrator.

The queue administrator process is responsible for the management of buffers for an arbitrary num-
ber of port processes. Ports are divided into two types: driver ports and application ports. A driver port
implements the media access interface to a network. The application port implements the interface
between the queue administrator process and the application process using the communication system.

A port process is connected to the queue administrator dynamically by sending a SET_PORT request
to the known address for the Console port. The Console port is a utility port which can establish and
remove ports from the local queue administrator process. In addition the Console port controls the setting
and modification of the static routes in the routing tables on the workstation. Since the Console port is
attached to the queue administrator, the functions provided by the Console port may also be accessed
remotely from any workstation on the extended network. A port descriptor is established which describes
the current state of the port. Each port process connected to the qucue administrator process is assigned a
pair of packet queues which are initially empty. These packet queues operate in a first-in-first-out (FIFO)
manner and represent the transmission and reception qucues for the port. Once the port is connected to the
queue administrator process it can receive packets from other ports on the same machine.

A port obtains packets of data from the queue administrator process by sending a message requesting
a packet from the receive queue for the port. If a packet exists in the receive queue the packet field in the
message is set to the address of the packet and returned with a reply. Otherwise the message is returned
with the packet field set to NULL. Figure 10 illustrates the packet data structure returned from the queue
administrator. The complete definition of the packet data structure may be found in Appendix B.

When the packet has been emptied it is returned to the qucue administrator. If another packet is wait-
ing to be received it is returned automatically. By passing pointers we avoid extra message passing while
processing a sequence of packets. When there are no further packets to receive, the switch message is
returned with the packet ficld sct to NULL. The next time a packet is reccived for this port the queue
administrator signals the port that there is a packet available for processing. This signalling prevents the
port from having to poll to determine the state of the receive queue.

If the port is required to send data in addition to receiving data, buffer space for this operation must
be allocated by the port process. The number of packets allocated determines the transmission window
size for the port. The allocated packets are given to the queue administrator and placed in the transmission
queuc for that port. Figure 11 shows a sample configuration. The queue administrator process has three
ports connected. Each port has one available packet remaining in their respective transmission queues and
two packets in flight. Transmission packets are managed by the queue administrator and returned to the
port when packets are required for data transmission. When a packet is transmitted to the queue adminis-
trator the addressing information contained in the buffer within the packet is used to determine the proper
driver port to use to reach the destination port. The packet is placed in the receive queue for the proper
driver port. The driver port transmits the packet on to the network and then returns the packet to the queue
administrator process so it can be returned to the original owner port of the packet. The retumned packet is
placed on the end of the transmission queue of the originating port. Sample code for the queue adminis-
trator is provided in Appendix F.

A Communication System page 23

A_Switch_msg

partner

length A Packet
request prev

part /
next
1

pkt

ton 1 A_Buffer

addr 1

net
prefix

len 2

addr 2 N

N

Figure 10: Packet Data Structure

Performance

The communication system was designed to provide good system performance, not just good kernel per-
formance. Good system performance requires that the higher level operations performed by applications
must map efficiently onto the primitives provided by the communications system. The performance of the
communication system is measured in terms of the attainable data throughput rate. In this section we
measure the performance of our communications system at both the internet and the host-host layers.

The hardware configuration used consisted of two IBM PC/AT microcomputers. Both workstations
had clock speeds of 8MHz and used the Intel 80286 microprocessor. Each workstation was equipped with
512K bytes of memory and an IBM PC Network Baseband adapter. The network adapter had a data trans-
mission speed of 2.0Mb and used the CSMA/CD access protocol. The network was lightly loaded when
the testing was performed.

The performance of the internet layer was measured using an application port designed to transmit or
receive data through the internet layer. The program is designed to measure the time required to transmit
the specified number of packets on the network. The packet size transmitted may be set to either small or
large packets. The transmission of 2000 packets of size 120 bytes required 9 seconds. This translates to a
rate of 222 packets/sec and a transmission throughput of 0.21Mb/sec. The transmission of 2000 packets
of size 1220 bytes required 17 seconds. This translates to a rate of 117 packets/sec and a transmission
throughput of 1.2Mb/sec which represent a 60 percent utilization of the transmission medium.

page 24 A Communication System

Figure 11: Buffer Management

The throughput performance of the communication system is directly related to the size and number
of packets transmitted. By experimentation, we have detcrmined the optimal packet size to be 1024 bytes.
At this size we achieved good performances and the demand on buffer space was not excessive. The per-
formance of the host-host transport laycr was measured by a measurement program designed to transmit
data through the communication system to an application port on the destination node. The test involved
the transmission of 500 messages of 4000 bytes each. Each message transmitted would require a group of
four large packets be sent with acknowledgement by the host-host transport layer. The measured speed
was 0.591Mb/sec.

General Comments

The communication system provides a gencral purpose mechanism for application processes to use the
network. Application processes can use either the reliable transport service provided by the host-host lay-
er or they can interface directly to the internet layer.

Heterogeneous network environments can be accommodated by having a gateway machine with two
driver ports. Then by setting up the appropriate routing table entries, a node on the network can communi-
cate with any other node on the extended network.

The processing overhead related to buffer copying has been minimized by passing packets by refer-
ence between the layers. Synchronization problems arc avoided by using blocking send and receive prim-
itives.

A Communication System page 25

AN APPLICATION OF THE COMMUNICATION
SYSTEM

Introduction

Even with powerful independent workstations there is a need for connectivity to high speed local arca
networks. These networks are required to allow the sharing of information and expensive peripherals. In
this chapter we concentrate on the implementation of the Waterloo JANET local area network system
which uses the communication system described in chapter 4.

Waterloo JANET

Waterloo JANET was originally designed to provide shared access to printer and disk resources on a cen-
tral server. The configuration in Figure 12 shows a typical system. Waterloo JANET was developed to
provide efficient low cost computing resources for instructional purposes. Waterloo JANET was first
installed in 1981 and there are currently over 25 such LANS in various academic areas on the campus of
the University of Waterloo.

. Network
Printer Controller Disk

Communications Link

| 1

ws ws ws ws

Figure 12: Waterloo JANET Configuration

The original Waterloo JANET implementation used the IEEE-488 bus [Fish80] for a physical layer.
The structure of the communication system in this implementation followed an integrated approach and
co-existed with the single thread PC/DOS operating system. Workstations were either IBM Personal

page 26 A Communication System

Computers or PC Compatibles. Waterloo JANET was designed with the philosophy that the amount of
extra knowledge required to use the network should be minimal.

When a user first encounters a microcomputer workstation connecied to Waterloo JANET, he sees a
logo and a line requesting a userid. When the userid is typed, a password is requested. Once this authori-
zation and authentication procedure is complete, the Waterloo JANET workstation appears to the user as
a normal stand-alone microcomputer with six fixed-capacity network disks. These network disks behave
as if they were diskette drives; for example, on an IBM PC the nctwork disks are labelled A,B,C,D.E and
F and each can store files in a tree-structured file system. Each nctwork disk can be a different size rang-
ing from 20Kbytes to 2.0Mbytes, the size depends upon some initial allocation. Each network disk is
actually a portion of the hard disk which is attached to the disk-server.

Security is extremely important when file space is shared among many users in a computer system
designed for educational applications. Access to files is controlled by the userid and password required
when a user signs on to the system. Also the amount of sharing that occurs among the different user-
groups can be controlled by mechanisms which allow limits to be placed on this type of activity.

Some extra commands have been added to PC/DOS to allow the disk-server and print-server to be
manipulated from a workstation. These commands, which are described in the following paragraphs, are:
access, pswd, detach, limit, logoff, printit, purge, and qprn.

The access command allows the user to establish a logical connection between one of the drive let-
ters on the workstation and a portion of the hard disk on the server. Access to a specific network disk
may also require a password. The former network disk attached to that label is released. The pswd com-
mand allows the user to change the password of a network disk. The dctach command is the counterpart
of the access command, it breaks the mapping between a local drive letter and the server.

The print-server is controlled by a number of commands. Output from the workstation is accumulat-
ed or spooled on the server until it is released by the printit command from the workstation. When the
file is released for printing it can be directed to one of the printers attached to the print-server. The num-
ber of characters of printing which can be accumulated by the print-server for any workstation is limited.
The limit command can be used to change this value. Spooled output which is not required can be delet-
ed via the purge command before it is printed. The gprn command allows a user to determine the status
of the printer. A summary of the output queue for the printer is reported.

The logoff command disconnects a user from the Waterloo JANET server and from the network
disks that were accessed.

Waterloo JANET Implementation

A server is a system that provides services for a previously unknown set of clients. A common example
of a server occurs in most local arca networks where there is a file server and a number of workstations
which access the file server. The Watcrloo JANET server may be described in terms of this client/server
model. The server is responsible for scheduling the access to the shared resources it controls.

A client is an entity that uses the services provided by servers. The client is designed to communicate
with the server over the connecting local area network.

Since each client and server usually reside on a separate processor, the modular approach to the soft-
ware design requires special attention. The division of function between the client and the server must
take into account the remote connection between the entities. Many other research projects have investi-

A Communication System page 27

gated the client/server approach including project Athena at MIT [Balk85]. We use the clicnt/scrver
model to describe our Waterloo JANET implementation. Figure 13 is a block diagram showing the
architecture of a Waterloo JANET system using the communication system. An important implementa-
tion consideration was that the communication system co-exist with PC/DOS such that existing PC/DOS
applications would still operate correctly.

Figure 13: Layering of System

The illustrated configuration has the Waterloo JANET server program installed on a gateway workstation.
The gateway station connects a domain of workstations on IBM PC Cluster adapters with a domain of
workstations on IBM PC Network Bascband adapters. The Waterloo JANET software is composed of the
following three applications:

. the Waterloo JANET Server

. the Waterloo JANET Workstation

. the Remote Boot Port

The following sections describe the functions of the three components of Waterloo JANET.

page 28 A Communication System

Waterloo JANET Server

The interface between Waterloo JANET scrver and the communication system is the host-host transport
service labelled PAD in Figure 13 on page 27. This layer provides the reliable communication of arbi-
trary size application packets required in the Waterloo JANET application.

In addition to servicing requests for data transfer and printer access, the Waterloo JANET server pro-
vides authentication, authorization and network maintenance services. The format of requests for service
by the Waterloo JANET server are shown in Appendix D. Service requests received from the work-
stations are processed by the server and the results are returned to the requesting workstation.

The structure of the Waterloo JANET server requires that messages be copied to and from the trans-
port layer of the communication system. To minimize the overhead associated with the copy we have
added a simple presentation layer data compression algorithm. A library routine compresses the data
while it is being copied between the buffers. The compression routine eliminates sequences of three or
more identical characters. The sequences are replaced in the buffer by an escape character, a length, and
the repeated character. Since the chosen escape character may appear in the buffer, occurrences of the
escape character are replaced by an escape character, a length and the escape character. The compression
routine has been designed to remove the possibility of the compressed buffer being larger than the origi-
nal. If we are asked to compress a buffer where the resulting buffer is larger than the original, the com-
press routine aborts the attempted compression and performs the function of a normal copy routine.
Measurements of the operation of the compression routine indicate we achieve a 15 to 20 percent reduc-
tion on average in the packet size after compression.

Waterloo JANET Workstation

The Waterloo JANET workstation process, along with the communication system, is loaded from diskette
at the workstation. The workstation process replaces the diskette and printer interrupt routines and con-
nects to the transport layer of the communication system. To determine the location of the Waterloo
JANET server program, a broadcast packet is issued to all stations on the network. Any station which has
a Waterloo JANET server running will respond and provide the workstation with an address to be used
for any future communications.

Remote Boot Port

The remote boot port services boot requests from workstations which do not have diskette drives. These
stations send a broadcast message on the network to locate a port from which to load. The remote boot
port transfers a copy of the Waterloo JANET workstation program to the requesting stations. When the
Waterloo JANET workstation code is received, it is installed as a replacement for the diskette device driv-
er. Any future diskette requests from the workstation are directed to the Waterloo JANET server for pro-
cessing. The function of the workstation is now similar to the locally loaded workstation previously
described.

The remote boot port is an application port which communicates directly with the queue administra-
tor process. The remote boot protocol reliability is provided by the network adapter card.

A Communication System page 29

Performance of System

The Waterloo JANET application was designed to provide disk access for the workstations which is com-
parable in performance to local diskette drives. The performance of the system is measured by timing a
file copy from the network and from diskette. The file copied in each case was 107698 bytes in length.

The hardware configuration used consisted of two IBM PC/AT microcomputers. Both workstations
had clock speeds of 8MHz and uscd the Intel 80286 microprocessor. Each workstation was equipped with
512K bytes of memory and an IBM PC Network Basecband adapter. The network adapter had a data trans-
mission speed of 2.0Mb and used the CSMA/CD access protocol. The network was lightly loaded when
the testing was performed.

The first copy from the network required 3.8 seconds, subsequent copies from the network requircd
an average of 2.5 seconds. The first copy was longer because the file had to be loaded from the disk on
the server. The second and subsequent copy operations read the file directly from the disk cache on the
server. The average time required for the copy from diskette was 8.7 seconds. We see that the network
performance meets and exceeds the expressed goal for the Waterloo JANET system. For comparison, we
measured the time required to copy the test file from the hard disk on the PC/AT. The copy from the hard
disk required 1.1 seconds on average. The specd of the copy from the local hard disk is a lower bound on
the performance of the network server since the network server has the same type of hard disk.

Other measurements of the Waterloo JANET system were performed on a network of 16 IBM PS/2
model 25 workstations and IBM PS/2 model 60 server. The simultancous load of a 160K program file on
the 16 workstation took 8 seconds. These measurements indicate the communication system performs
well under load. Our measurements indicate the speed of the hard disk on the server is a limiting factor
on network performance before network transmission capacity is exceeded.

CONCLUSIONS
Summary

In this paper, we have investigated the design and implementation of a process-based layered communica-
tion system for a local area network. Special purpose "light weight" protocols designed to take advantage
of the high data and low error rates of the local area network are used in place of standard general pur-
pose data communication protocols.

Many models have been proposed for the structure of communication systems. The widely accepted
OSI model proposes the communication function be divided into seven layers. Each layer performs a por-
tion of the entire communication operation. A subset of the OSI model designed to deal with communi-
cation systems for local area networks has been proposed by the IEEE 802.2 committee. This threc layer
model accommodates the special communication requirements of local area networks. The IEEE 802.2
LAN model does not provide protocols for interconnected local area networks. The Internet model sug-
gests a four layer structure where the four layers form a hicrarchy and an application may use functions of
any lower layer. Our communication systcm uses fcatures from both the hierarchical and IEEE 802.2
models.

Each of the layers of the communication system is implemented as a set of co-operating sequential
processes. A real-time message passing kernel was implemented to provide the process and message
passing environment required by the communication system.

page 30 A Communication System

The communication systcm was designed to provide applications with efficient communications over
the network.

The Waterloo JANET local arca network application, which uses the communication system, has
been in use at the University of Waterloo since September 1987. Undergraduate student computing
requirements for many courses have been provided by the system. In addition, there are five other sites
outside the University of Waterloo successfully using the system.

Conclusions

Measurements of the system indicate that it is possible to design and implement a local area network
according to the design principles exemplified by the layered and hierarchical approaches. Further modu-
larity can be achiceved through the use of co-operating sequential processes implemented under an exist-
ing operating system supplemented by a real-time kernel.

Future Investigation

The current network access layer interfaces to the IEEE 802.2 medium access control layer on the
IBM PC Network Baseband adapter. Plans are in place to extend this interface to the 802.2 logical link
control level, a common interface used by many existing network application packages. Hence, existing
packages not specifically designed for our communication systcm will be able to access the network
through the standard interface.

Other network applications programs, such as distributed data-bases and terminal servers, are being
developed at the time of writing. These applications connect to the communication system as applica-
tions ports. The network requirements of these applications may well be different from the requirements
for Waterloo JANET. Additional monitoring of the communication system will be required to determine
if minor modifications are required for these applications.

Finally, the protocols and packet formats used in the internet and host-host layers of the communica-
tion system should be changed to proper subsets of the Intemet standard protocols. The growing number
of networks using the Intemet protocols suggests that gateway access to these networks will soon be
desired from local areca networks. By using subsets of the standard protocols the complexity of the gate-
way program will be reduced.

A Communication System page 31

Appendix A
DOS/KX: MULTI PROCESS KERNEL OPERATIONS

/%
kernel
*/
#define KERNEL SIGNATURE "Kernel v1.3%
/t
Priorities
*/
typedef unsigned a_priority;
#define MAX PRIORITY ((a_priority) 65535)
#define NORMAL PRIORITY ((a_priority) 32768)
#define UNIT_PRIORITY ((a_priority) 4096)
/t
Names
*/
typedef unsigned a_pid:
#define ME ((a_pid) 32767) /* Also used for no-name. */
#define NET_SWITCH 1 /* Reserved name for Switch. */
t#define NUT_KPRN 2 /* Reserved name for kprintf.*/
#define NUT_FIRST FREE 10 /* First non-reserved name. */
/1%
Messages
*/
typedef struct a_message {
a_pid partner;
unsigned length; /* % of bytes of data that follow */
} a_message;
#define msgdata(m) (((char *) &(m)) + sizeof(a_message))

#define msgsize(m) (sizeof (m) -sizeof (a_message))

page 32

A Communication System

/*

Signals
*/
#define SIG_STATS
#define SIG_TIMER
#define SEC_1000
#define SEC_1

/*
Interrupt #'s

*/

#define IRQ_TIMER

#define IRQ_BASEBAND

#define IRQ CLUSTER

extern unsigned (far *kcall) ():
#define K_DISPATCH
#define K_CATCH
#define K_IGNORE
#define K_SEND
#define K_RECEIVE
#define K_REPLY
#define K _SIGNAL
#define K_SPAWN
#define K_KILL
#define K_STOP
#define K ME
#define K _MAXPD

0x8000 /* Sent by kstat(). */
1

18206

(SEC_1000/1000)

2 /* and 3 */
/* and 5, 6, 7 */

0w o NN s WN O -

-
- o

extern char far * GetStk(unsigned); /* Small code, no free. */
extern char * StackAlloc(unsigned); /* Large code, alloc/free. */

extern void StackFree(char *);

extern a_pid Spawn(char far *,
#define Kill(id)

#define Send(msg)

#define Receive(msg, delay)
delay)

#define Reply(msg)

#define Signal(id, signal)

#define Catch(intreq)
#define Ignore(intreq)

#define Stop()
#define Me()
#define Maxpd()

a_priority, a_pid, void (far *)());
(*kcall) (K_KILL, (a_pid) id)

(*kcall) (K_SEND, (a_message far *) msg)
(*kcall) (K_RECEIVE, (a_message far *) msg, (unsigned)

(*kcall) (K_REPLY, (a_message far *) msg)
(*kcall) (K_SIGNAL, (a_pid) id, (unsigned) signal)

(*kcall) (K_CATCH, (unsigned) intreq)
(*kcall) (K_IGNORE, (unsigned) intreq)

(*kcall) (K_STOP)
(*kcall) (K_ME)
(*kcall) (K_MAXPD)

extern unsigned long (far *ktime) (void);

#define KTime()

(*ktime) ()

A Communication System page 33

Appendix B
NETWORK LAYER MESSAGE DEFINITIONS

#define SWITCH_SIGNATURE "Switch vl1.1"
#define SWITCH_TS 1287 /* (0) Dec 87 */
/%

Priorities.
*/
#define SWITCH PRIORITY (MAX_PRIORITY-UNIT_ PRIORITY)
#define PORT_PRIORITY (SWITCH_PRIORITY-UNIT_PRIORITY)
/*

Reserved ports.
*/
#define NET_DROP_PORT 0 /* Just assumed in code. */
#define NET_BCAST PORT 1 /* All domain broadcast. */
#define NET_CONSOLE_PORT 2 /* Name & remote routes. */
#define NET_TEST PORT 3 /* Receive wiring test messages. */
#define NET_SCREEN_VIEW 4 /* Receive screen broadcasts. */
#define NET_JANET 5 /* Reserved for JANET use. */
#define NET_FIRST FREE 10 /* First non-reserved port number. */

/*
an_address
*/

page 34 A Communication System

typedef unsigned char
a_domain_id;

typedef struct {
unsigned char a[6]:
} a_node_id;

typedef unsigned char
a_port_id;

typedef struct an_address {
a_domain_id domain;
a_node_id node;
a_port_id port;
} an_address;

static a_node_id NULL_NODE_ID = {0}; /* a constant ! */
static an_address NULL_ADDRESS = {0,0,0}; /* a constant ! */
static a_node_id RPL_NODE_ID = { 0xCO, 0x00, 0x40, 0x00, 0x00, 0x00 };

/1%
a_net_prefix

The application port must set dst to the destination. The source domain

and node is filled in if the src domain is 0. The source port is filled

in if the source port is 0.

Switch sets the src and lan.dst field based on the switch route tables.

*/

#define ROUTE_MAX LEN 18 /* bytes */

#define RouteBit(pfxp) (pfxp->lan.src.a[0] & 0x80)

#define RouteBitSet (pfxp) (pfxp->lan.src.a[0] |= 0x80)
#define RouteLen(pfxp) (pfxp->lan.route(0] & Ox1f)

#define RoutelLenSet(pfxp, len) (pfxp->lan.route(0] |= (len & Ox1f))

typedef struct a_net_prefix {
struct LAN802 { /* 802.2 lan */
a_node_id dst;
a_node_id src;
unsigned int length;
} lan;
an_address dst;
an_address src;
} a_net_prefix;

/*
a_buffer

*/

#define SWITCH_DATA_MIN (578 - sizeof(a_net_prefix) + sizeof (struct LAN802) - 1)

typedef struct a_buffer {

A Communication System

page 35

YA

*/

a_net_prefix pfx;

unsigned char data[SWITCH_DATA MIN];

a_buffer;

a_packet

A packet's first buffer (lenl, addrl) must start with a_net_prefix.
Lenl includes sizeof(a_net_prefix). The optional second buffer (len2, addr2)

must contain only data. Driver
(lenl, addrl) which starts with

typedef struct a_packet {

}

struct a_packet far * prev; /*
struct a_packet far * next; /*

void near * owner; /*
unsigned int lenl; r*
a_buffer far * addrl; r*
unsigned int len2; /*
char far * addr2; /%
a_packet;

/*
a_switch_msg

*/

#define ALLOC 0x01

#define TX QUEUE 0x02 /*

typedef struct a_switch_msg {

a_pid partner;

unsigned int length;
unsigned char request;
a_port_id port;

struct a_packet far * pkt;

} a_switch_msg;-

ports receive data into a single buffer
a_net_prefix.

switch internal */
switch internal */
switch internal */
len of data in addrl (incl pfx in first) */

prefix & data */
len of data in addr2 */
data */

RX_QUEUE if not TX QUEUE */

#define TX AVAIL 0x4000 /* 0x8000 is SIG_STATS */
#define RX_AVAIL 0x2000
/%
alloc.c
*/
extern int AllocBuffers(a_port_id, unsigned); /* port, n */
extern int AllocBuffersS(a_port_id, unsigned, unsigned); /* port, n, size */

extern
extern

extern int ResetPort(a_port_id);

extern
extern
extern

a_port_id SetPort(a_port_id, char *);
a_port_id SetDriv(char *, a_domain_id, a_node_id, unsigned);

a_domain_id SwMaxDomain(void);
unsigned SwPktLen(a_domain_id);
a_port_id SwFindPort(char *);

page 36 A Communication System

Appendix C
TRANSPORT LAYER MESSAGE DEFINITIONS

typedef struct a_pad_prefix {
a_net_prefix net;
unsigned ts;
enum PAD_ID { PAD_RTS, PAD_CTS, PAD_CONT, PAD_EOT } id;
unsigned bundle_serial;
unsigned char packet_serial;
} a_pad_prefix;

typedef struct a_pad_msg {
a_message h;
enum { PAD_SEND, PAD_RECV, PAD_NONE } request;
a_pad_prefix * pfxp;
unsigned pfxl;
char far * bl;
unsigned lenl;
char far * b2;
unsigned len2;
} a_pad_msg;

A Communication System

page 37

WATERLOO JANET MESSAGE DEFINITIONS

Appendix D

typedef struct a_janet_prefix {

int enum Handler {
USERINFO,
DISKIO,
PRINTER,
ACCESS,
BOOT,
TIMER,
CHPSWD,
LOGOFF,
LOGON,
SPEEDCHK,
DIRREQ
} id;

/*
/*
/*
/*
/*
VA

User defined packets

Disk i/o request

Spool request for spooler
Access minidisk

Boot workstation occurred
Workstation wants TOD
Password processor
Workstation logoff
Workstation logon
Measure speed of network
Directory manager req

unsigned char data[4096 };

} a_janet_prefix;

*/
*/
*/
*/
*/
*/

*/
*/
*/

page 38 A Communication System

Appendix E
NETWORK DRIVER PORT

unsigned signal;
a_request txmsg;
int txactive;
a_request rxmsg;
int rxactive;

initialize_port();
txmsg.partner = NET_SWITCH;
txmsg.length = msgsize(txmsg);
txmsg.request = TX_QUEUE|ALLOC;
txmsg.pkt = NULL;
txactive = FALSE;
rxmsg.partner = NET_SWITCH;
rxmsg.length = msgsize(rxmsg);
rxmsg.request = ALLOC;
rxmsg.pkt = NULL;
rxactive = FALSE;
catch();
while(1) {
signal = Receive(NULL, 0);
if(signal & NEW_TX)
send(&txmsg);
if(signal & NEW_RX)
send(&rxmsqg);
if(signal & HW_DONE_TX) (
send(&txmsg);
txactive = FALSE; }
if(signal & HW_DONE_RX) {
send(&rxmsg);
rxactive = FALSE; }
if(!txactive && txmsg.pkt != NULL) {
start_tx_io(txmsg.pkt);
txactive := TRUE;)}
1f(!rxactive && rxmsg.pkt != NULL) {
start_rx_io(rxmsg.pkt);
rxactive := TRUE; }
}

The functions start_tx_io and start_rx_io initiate transmission and reception of data from the network
hardware, respectively. The hardware signals HW_DONE_TX when a message has been sent and
HW_DONE_RX when a message has been received.

A Communication System pagce 39

Appendix F
QUEUE ADMINISTRATOR

struct a_port_descriptor {
a_packet *rxqueue;

Y. -
a_f t *txq H

a_domain_id domain;
a_process_id driver;

code
a_switch_msg msg;
a_port_descriptor *port;
a_process_id partner;
int empty;
initialize_switch();
while (1) {

receive(&msg, 0);
port = port_of(msg.partner);
if(msg.request & TX QUEUE) {
if(msg.pkt != NULL) {
partner = msg.pkt->owner;
empty = partner->rxqueue == NULL;
enqueue (partner->rxqueue, msg.pkt);
if(empty)
signal (partner->driver, TX AVAIL);
msg.pkt = NULL;
}
if(msg.request & ALLOC && port->txqueue != NULL
msg.pkt = dequeue(port->txqueue);

~

else {
if(msg.pkt != NULL) {
partner = route(msg.pkt);
empty = partner->txqueue == NULL;
enqueue (partner->txqueue, msg.pkt);
if(empty)
signal (partner->driver, RX_AVAIL);
msg.pkt = NULL;
}
}
if(msg.request & ALLOC && port->rxqueue != NULL)
msg.pkt = dequeue(port->.rxqueue);
}
reply(&msg);

page 40 A Communication System

The Port_of(id) function retumns a pointer to the port descriptor associated with the process id. The
Route(buffer) function returns a pointer to the port descriptor for the port we should send the message in
‘buffer’ out on.

A Communication System pagc 41

Back88

Balk85

Black87

Cheri79

Cheri83a

Cheri83b

Cheri84

Cheu86

Cowa87a

Cowa87b

Dici79

Eise83

Fish80

Gent81

BIBLIOGRAPHY

Backes, F, “Transparent Bridges for Interconnection of IEEE 802 LANs”, IEEE Nctwork,
Vol 2 No. 1, January, 1988, 5-9.

Balkovich, E., Lerman, S., Pammelee, R., “Computing in Higher Education: thc ATHENA
Experience”, Communications of the ACM, Vol 28 No. 11, Novcmber, 1985, 1214-1224.

Black, J. P., Cheung, W. H., Lam, E. C., Lay, F. C. M., Manning, E. C., “Shoshin: Devcl-
oping and Understanding Distributed System Software”, Institute of Computer Rescarch
87-04, University of Waterloo, Waterloo, Ontario, Canada.

Cheriton, D. R., Malcolm, M. A,, Melen, L. S., Sager, S. R., “Thoth, a Portable Real Time
Operating System”, Communications of the ACM, Vol 22 No. 2, February, 1979, 105-115.

Cheriton, D. R., “Local Networking and Intemetworking in the V-System”, Proc. 8th Data
Commun. Symp., 9-16, 1983.

Cheriton, D. R., Zwaencpoel, W., “The Distributed V Kemel and its Performance for Disk-
less Workstation”, Proc. of the 9th ACM Symposium on Operating Systems Principles,
129-140, 1983.

Cheriton, D. R., “The V Kemel: A Software Base for Distributed Systems”, IEEE Soft-
ware, April 1984, 1942,

Cheung, W. H., “Integrated Versus Layered Approach for Efficient Remote Communica-
tion”, Master’s thesis, Dept. of Computer Science, University of Waterloo, Ontario, Cana-
da, 1986.

Cowan, D. D., Fenton, S., L., Graham, J. W., Stepien, T. M., “Networks for Education at
the University of Waterloo”, Computer Science Research Report CS-87-49, University of
Waterloo, Waterloo, Ontario, Canada.

Cowan, D. D., Stepien, T. M., Veitch, R. G., “A Network Operating System for Intercon-
nected LANS with Heterogeneous Data-Link Layers”, Computer Science Research Report
CS-87-50, University of Waterloo, Waterloo, Ontario, Canada.

Dicicco, V., Sunshine, C. A., Field, J. A., Manning, E. G.,: “Altematives for the Intercon-
nection of Public Packet Switching Data Networks”, Proc. Sixth Data Commun. Symp.,
120-125, 1979.

Eisenhard, B. T., “Corvus Omninct and its Position in a Hierarchical Network”, IEEE
Digest of Papers - Spring'83 Compcon, 1983.

Fisher, E., Jenson, C. W., “PET and the IEEE 488 Bus (GPIB)”, Osborne/McGraw-Hill,
California, USA, 1980.

Gentleman, W. M., “Message Passing Between Sequential Processes: the Reply Primitive
and the Administrator Concept”, Software Practice and Expericnce, Vol. 11 August 1981,
435-466.

page 42

A Communication System

Hail85

Hect86

Hedr87

IBM84

IBM86

IBM87

IEEE85a

IEEE85b

IEEES85c¢

Kell85

Limb82

Morr85

Pope79

Post80

Post81

Pouz82

Shoc79

Hailpem, B., Heller, A., Hoevel, L. W., Thefaine, Y. J., “ALAN: A (Circuit Switched)
Local Area Network”, IBM Thomas J. Watson Research Center, Yorktown Heights, New
York, USA.

“HECTOR: A High Speed Heterogeneous University Network. Personal Computer in
University Teaching and Training. Project Overview”, Project Overview, IBM Deutsch-
land, June 1986.

Hedrick, C. L., “Introduction to the Internet Protocols”, Computer Science Facilities
Group, Rutgers University, New Jersey, July 1987. 1986, 184-201.

IBM Corp, “IBM Personal Computer Hardware Reference Library Technical Reference
Options and Adapters Volume 2”, IBM Corp, Florida, USA, 1984.

IBM Corp, “IBM Personal Computer Hardware Reference Library Technical Reference
Token-Ring Network PC Adapter”, IBM Corp, Florida, USA, 1986.

IBM Corp, “IBM Personal Computer Hardware Reference Library Technical Reference
PC Network Baseband Adapter”, IBM Corp, Florida, USA, 1987.

IEEE Standard 802.2-1985, “Logical Link Control”, IEEE, New York, USA, 1985.

IEEE Standard 802.3-1985, “Carricr Sense Multiple Access with Collision Detection”,
IEEE, New York, USA, 198S.

IEEE Standard 802.5-1985, “Token-Passing Ring Access Method and Physical Layer
Specification”, IEEE, New York, USA, 1985.

Keller, H., Muller, H. R., “Engineering Aspects for Token-Ring Design”, IBM Zurich
Research Laboratory, Ruschlikon, Switzerland.

Limb, J. O., Flores, C., “Description of Fasnet - A Unidirectional Local Area Communica-
tions Network”, Bell System Tech Journal., Vol 61, No 7, p1413-1440,1982

Morris, J. H., Satyanarayanan, M., Canner, M. H., Howard, J. H., Rosenthal, D. S. H.,
Smith, F. D., “Andrew: A Distributed Personal Computing Environment”, Communica-
tions of the ACM, Vol 29 No. 8 March 1986, 184-201.

Popescu-Zeletin, R.,: “The Data Access and Transfer Support in a Local Heterogeneous
Network (HMINET)”, Proc. Sixth Data Commun. Symp., 147-152, 1979.

Postel, J., “User Datagram Protocol”, RFC 768, USC/Information Sciences Institute,
August, 1980.

Postel, J., “Internet Protocol: DARPA Intemet Program Protocol Specification”, RFC 768,
USC/Information Sciences Institute, August, 1980.

Pouzin, L et al. (1982). The Cyclades Computer Network, North-Holland Publishing
Company, New York, USA.

Shoch, I. F., Stewart, L.,: “Interconnecting Local Networks via the Packet Radio Net-
work”, Proc. Sixth Data Commun. Symp., 153-158, 1979.

A Communication System page -4a

Stal84

Stal8s
Stal86

Svob84

Svob85

Svob86a

Svob86b

Tane81la

Tane81b

TOP10

Zimm80

Stallings, W., “A Primer: Understanding Transport Protocols™, Data Commumcatons,
Novembcer 1984, 201-215.

Stallings, W., “Data and Computcr Communications™, Macmillan, New York, 1985,

Stallings, W., “A Tutorial on the IEEE 802 Local Nctwork Standard™, L.ocal Arca and
Multiple Access Networks, Computer Scicnce Press, 1986.

Svobodova, L., “File Servers for Nctwork-Based Distributed Systems™, Computing Surveys
vol 16, no 4, December, 353-398, 1984,

Svobodova, L., “Client/Server Modcl of Distributed Processing™, Kommunikation in ver-
teilten Systemem 1., Springcr-Verlag, 485-498, 1985.

Svobodova, L., “Communication Support for Distributed Processing: Design and Implc-
mentation Issues”, Networking in Open Systems, IBM Europc Institutc, Obcrlcch, Austria,
1986.

Svobodova, L., Drobnik, O.,: “OSI Communication Scrvices in a Local Arca Nctwork™,
IBM Zurich Research Laboratory, Ruschlikon, Switzerland, 1986.

Tanenbaum, A. B., Computer Networks, Prentice-Hall, Inc., Englewood Cliffs, New Jer-
sey, USA, 1981,

Tanenbaum, A. B., “Network Protocols”, Computing Surveys vol 13, no 4, Dccember,
453-489, 1981.

Technical and Office Protocols: A Communications Network for Open System Intercon-
nection, version 1.0, The Boeing Company, Network Services Group, Seattle,
WA98124-0346, November, 1985.

Zimmermann, H., “OSI reference model - the ISO model of architecture for open systems
interconnection”, /EEE Trans. Commun. :April, 425-432, 1980.

page 44 A Communication System

	

