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Eng-Wee Chionh
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Abstract

Many properties of uniform B-splines can be readily derived and
studied by using the Fourier integral and convolution. The significance
of some of these properties to computer graphics, computer-aided geo-
metric design, signal processing, and image processing is discussed.



1 Introduction

The terms spline function and B-spline were introduced by Schoenberg in
1946 and 1967 respectively, though they are known earlier without being so
called. Due to the many nice structural properties and excellent approxima-
tion powers of spline functions, there has been a rapid development of theory
and applications of spline functions beginning in the sixties. They have been
applied with tremendous success in numerical approximation problems. A
recursive definition for B-splines, one of the classes of spline basis functions,
was found independently by Cox (1972) and de Boor (1972), who mentioned
that Lois Mansfield had also discovered this recursion. This formulation
of B-splines greatly facilitates their numerical computation. B-splines were
applied to computer-aided geometric design by Riesenfeld (1973), and sig-
nal processing by Hou and Andrews (1978). Both of these uses of B-splines
are solutions to approximation problems in specific application domains.
In computer-aided geometric design, the approximation problem is to con-
struct a curve or surface with certain desirable properties using a given set
of control vertices. In signal processing, the approximation problem is to
reconstruct the original signal from the signal samples. When the signals
are images, this becomes the image reconstruction application. The approx-
imation process is known as interpolation filtering ! in signal processing. It
is done by convolving the signal samples with an interpolation filter, in this
case a B-spline 2.

Given the wide applicability of B-splines, it is useful to study their prop-
erties. Using the Fourier integral and convolution, we will show that many
important properties of B-splines can be readily derived and studied. The
significance of some of these properties to computer graphics, computer-
aided geometric design, signal processing, and image processing will be dis-

cussed. Due to the significance of the function ‘i:: % in signal processing, the

nterpolation filtering and low-pass filtering are different. In interpolation filtering,
signal samples are convolved with an interpolation filter; in low-pass filtering, the original
signal is convolved with a low-pass filter.

?Note that when B-splines of order higher than 2 are used, the reconstructed signal will
not interpolate the signal samples.



use of B-splines in the integration of various forms of ’i','r:’ is given. Ease of

integration is an immediate consequence of the approach we take to study
B-splines, namely through use of the Fourier integral and convolution.

We assume the readers are familiar with B-splines, Fourier integrals, and
convolutions. For readers who need information on these subjects, the fol-
lowing references are recommended: Bartels, Betty, & Barsky (1987) for
splines and their applications in computer graphics and computer-aided ge-
ometric design; Schumaker (1981) for the mathematics of splines and a brief
but comprehensive account of the historical development and other represen-
tations of B-splines (pages 182-183); Bracewell (1986) and Papoulis (1977)
for Fourier integrals, convolutions, and signal processing; Pratt (1978) and
Gonzalez & Wintz (1987) for digital image processing.

All conventions, definitions, notations, basic theorems of the Fourier in-
tegral and of convolution, and basic properties of important functions are
given in the Appendix. It is worth emphasizing our convention that at a
point of discontinuity z, f(z) is defined to be ﬁ’;);—f(ﬁ)- Bartels etc.,
de Boor, Cox, and Schumaker do not adopt an explicit convention for func-
tion values at points of discontinuity, but one can be “inferred” from their
definition of 29, which is f(z) = f(z4). A convention for function values
at points of discontinuity is necessary in order to interpret formulas consis-
tently that involve derivatives of B-splines. For example, it will be shown
that Bz,'z(ﬁ) = Bo,(@) — B1,1(@). A convention for the value of By,(1) is
required as Bg (%) is not differentiable at & = 1 but Bo (&) and By,1 (1) are
defined for all values of @ (See Figure 1).

Bo'z (ﬁ) BO,l (ﬁ) Bl’l(ﬁ)

Figure 1: Graph of By (%), Bo,1(#), and By 1(#).



2 Some Observations

Those familiar with Fourier integral and convolution will notice the resem-
blance of the shapes of the B-splines and the repeated convolutions of a
rectangle function. Indeed, we will show that the uniform B-splines of inte-
ger knots are the repeated convolutions of the unit rectangle function u(z)
on the unit interval (0,1). This would not be too surprising if one knows
that Schoenberg (1946) defined the following function in his studies of spline

curves: .
+00 : )
Mi(z) = _2_1_/ (.2__3_“1_(“_/2_)) 4% dy E>1

Since II(z) « ’3:%’2&1, it can be seen that Mj(z) is simply II(z)*%, i.e. TI(z)
convolved with itself k — 1 times, where II(z) is the unit rectangle func-
tion defined on the unit interval (—1,1). With this definition of M(z),
Schoenberg established that

1 -
Mk(:ﬂ) = (T_—l)" A"a:i 1
k-1

where z% ! is the one-sided power function and A* is the kth order unit
step central difference.

The approach taken in this paper is exactly the opposite of that of
Schoenberg. We will prove that:

(—l)kk[oa”':k:t] (a_t)i_l=“(ﬁ)*k k>1

But by the definition of B-splines given by Bartels etc. (1987), the left hand
side of the above equation is a uniform B-spline with knots 0,---,k. Note
that due to the difference of convention for function values at points of
discontinuity, when k = 1, our B-spline differs from that of Bartels etc.,
de Boor, Cox, and Schumaker at # =0, 1.

Without loss of generality, we only study uniform B-splines with integer
knots. It is advantageous to be able to express the uniform B-splines either
as divided differences or repeated convolutions. It seems that divided differ-
ences facilitate numerical computations but repeated convolutions facilitate

analytical studies as will be shown in later sections.

4



3 Divided Difference and Convolution

Divided difference and convolution are closely related by the Dirac delta
function §(z). Several relationships between divided difference and convo-
lution are established in this section. They will be needed later to establish
other results.

We first establish Lemmas 1, 2, 3, and 4. These four lemmas give us the
divided difference of an arbitrary function f(&) in terms of convolution.

Lemma 1
[£,--,i+k:t)f(@—t) = [0,---,k:t]f(a—1-1t)

where k > 0.

Proof

By the definition of divided difference.
|

Lemma 2
[6,---,i+k:t]f(8—t) = ([0,---,k:t]f(m—1t))=*6(a—1)

where k > 0.

Proof

Use Lemma 1 and note that [0,---,k : t]f(& — 1 — t) is a linear combination
of terms of the form f(% —1—t), 0 <t < k, each of which can be written as
f(@—t)*6(u—1).

||



Lemma 3

6(a—1) - 86(u
0, k+1:t]f(@—1t) = [0,-+-k:t]f(a—t)= (a k-?—l ()
where k > 0.
Proof

This is simply the definition of divided difference rewritten using Lemma 2.
Note that k(@) * §(#) = h(a) for any h(%).
|

Lemma 4

= (_l)k — ~ — xk
o,k f@-0 = Cp@) (5@ - s@-1)

where k > 0. Note the convention that h(#)*® = §(u) for any h(a).

Proof
By mathematical induction and Lemma 3.



Lemma 5 shows that (§(#) — §(@ — 1))** is a linear combination of some
translations of the Dirac delta function §(#). An immediate consequence
of Lemma 5 is Corollary 1, which shows that the divided difference of a
function at knots 0,---,k is a linear combination of some translations of
that function.

Lemma §
k 5 [k i
§(a)—6(u-1))"* = ) (-1)6(u -

(50 -8@-)* = X(¢) o=
where k > 0.
Proof
Use mathematical induction and note that §(@ —¢) * (@ — 5) = 6(i@ — 1 —j).
|
Corollary 1

k
o.-wkedf@-n = LS () nre-

o

-,
Il
©

where k > 0.

Proof

By Lemmas 4 and 5.
|



We will now establish Theorem 1, which can be considered as a special
case of Lemma 6. Theorem 1 is essential for the subsequent sections, it
relates the divided difference of a function to the derivative of that function

(if it exists) and the repeated convolution of the rectangle function p().

Lemma 6

0,k f@-1) = CH @) (@)™ (5() - s(a— 1) ¢

where 0 < m < k.

Proof
By Lemma 4 and using u'(@) = 6(@) - §(@—1), f(@)*g (@) = f (@) *g(a).
|

Theorem 1

o, k:f@-1 = S 0@y s eyt

where k > 0.

Proof

Let m = k in Lemma 6.
|



4 Uniform B-Splines by Repeated Convolutions

There are many equivalent definitions for B-splines. We shall take the def-
inition of divided difference as the standard definition for B-splines, then
show that this is equivalent to one by repeated convolution when the knot
sequences are uniform. For notational brevity we assume integer knots. The
following definition for B-splines by divided difference is taken from Bartels
etc. (1987, page 146).

Definition 1
Given knots @g,* -+, lm," ", Ums+k With § < m and @ < Gy, B;k(Q), the

B-spline of order k associated with the knots @, - -, @) is defined to be

Bi k() = (—1)* @iy — @) [, -, G 1 8] (8 — £)577

Applying the above definition to the knots ¢,---,1 + k, we have the fol-
lowing definition for uniform B-spline with integer knots.

Definition 2
The uniform B-spline of order k with knots¢,---,¢ + k is

Bix(@) = (-0)Fk[i,....i+k:t](@a—t)k?

where k > 1.

From this definition, it can be seen that B; (%) is a piecewise polyno-
mial by Corollary 1 and the fact that @7} is a piecewise polynomial. The
constituent polynomials of By (%), 1 < k < 5 are given in the Appendix.



From Definition 2, we see that for any integer 1, there is a uniform
B-spline B; (@) of order k. The following theorem relates these uniform
B-splines: each B; (i) is a translation of Boi(#). Thus without loss of
generality, we need only study the properties of By k().

Theorem 2

B,',k(ﬁ) = Bo,k(ﬁ) * 5(17, - t')

= Box( 1)
where k > 1.
Proof
By Lemma 2 and the definition of B; ().
|

The following theorem is a main result. It shows that the uniform B-
spline By k(&) is simply the repeated convolution of the rectangle function
n(a).

Theorem 3

Box(n) = p(@)™
where k > 1.
Proof
Let f(@) = @*~! in Theorem 1. Note that (@¥~1)(*-1) = (k — 1)! U(@) and

U'(u) = 6(@), where U(@) is the Heaviside unit step function.
|

10



Since W
sing _jw
e 2

p(@) <

we have .
Cw
Bo () = p(a)** (—"—lL)
2

Using this result, many properties of Bg (&%) can be derived by examining
the corresponding properties in the frequency domain.

From Theorem 3, Theorems 4 and 5 can be readily derived. They show
that higher order uniform B-splines can be computed from lower order uni-
form B-splines either by convolution or by integration.

Theorem 4
Box(@) = Bok-m(&)* Bom(t)
where 0 < m < k.

Proof

By Theorem 3 and the associativity of convolution.

Theorem 4 says that higher order B-splines can be obtained recursively from
lower order B-splines by convolution. For example, we have

Bos(#) = Boa(@)* Bo(u)
= Boz(@) * Bo,s()
= Bo,2(8) * Bo,2(@) * Bo,1()

11



Theorem 5

a
Born(@) = [ Borv)v

where k > 1.

Proof
By Theorem 4,

Bok+1() = Boxk(a)* p(a)

+o00
= [ Box(v)u(a- v)av

But p(% — v) = 1 when 0 < & — v < 1 and equals zero elsewhere except at

= 0,1, hence the theorem is proved.

u
|

Thus higher order B-splines can be obtained recursively from lower order
B-splines by integration. This theorem is useful in computing the algebraic
expressions for the constituent polynomials of a uniform B-spline. In alge-
braic manipulation systems such as the Maple (Char, Geddes, Gonnet, &
Watt 1985), programming an integration is straightforward. Since the value
of an integration is not affected by ignoring function values at a finite num-
ber of points, this way of obtaining algebraic expressions has the advantage
of not having to treat knot points specially.

12



5 Properties of By ()

Many properties of uniform B-splines are derived in this section. Each prop-
erty is given in the form of a theorem. The significance of each theorem is
discussed following its proof. The proof of these theorems clearly shows the
usefulness of the convolution definition.

Theorem 6
Box(w) is C*2?

where k > 1.

Proof
Clearly By (%) is C~!. For k > 2 write Theorem 5 as

BO,k+l('_‘) = ‘/:.: Bo,k(v)dv — /::l Bo,k(v)dv

hence
Bo,k+1(8) = Box(8) — Bos(a— 1)
The proof follows by mathematical induction and the fact that Bg (@) is
CO.
|

This theorem reveals the continuity of curves and surfaces when control ver-
tices are approximated by uniform B-splines. Knowledge of continuity is
essential in controlling the smoothness of the curves and surfaces in com-

puter aided geometric design. Smoothness is important in design for either
functional or aesthetic reasons.

13



Theorem 7
Bok(@) is symmetric about k/2

where k > 1.

Proof

Bo,x (1) is symmetric about k/2 iff Bok(@ + %) = Box(a) * §(a + &) is
symmetric about the origin, i.e. an even function. But a function is even iff
its Fourier integral is real, indeed

W
2

. k
w
sin 5
o ( )
w
2

cw .\ k
Bo k(@) * 6(a+k/2) o (smfe-’zﬁ> eikw/?

is real.

Theorem 7 is useful when By i(@ + £) is viewed as an interpolation filter. It
allows the interpolated value at any point z to be interpreted as either the
sum at z of filters centered at each sample point weighted by the respective
sample values or the sum of filter values at each sample point weighted by the
respective sample values of the filter centered at z (Smith, 1983, page 248).
An example would clarify the above comment. Consider a triangular filter
f(z) covering 5 sample points. From Figure 2, the sum at zg of contributing
weighted filters centered at the sample points a, b, ¢, d is

Af(z0 — a) + Bf(zo0 — b) + Cf (20 — €) + Df(zo — d) (1)

From Figure 3, the sum of weighted filter values at contributing sample
points a, b, ¢, d of the filter centered at zg is

Af(a— zo) + Bf(b— z0) + Cf(c — z0) + Df(d — zo) (2)

Clearly Equations 1 and 2 are equal when f(z) is even, i.e. symmetric about
the origin.

14



Cf(z—c)

B f(z—b) Ef(z—e¢)

\

> .
€

a b =z c d

Af(z—a)

Figure 2: Filters centered at sample points weighted by the sample values.

X Bf(b-20) X Cf(c—z0)

A D
Af(a—zo) f(z—20) D f(d-zo)
e
a b =z c d e

Figure 3: Weighted filter values at sample points of the filter centered at zq.
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Theorem 8

Box(a) > 0 O<a<k

Box() = 0 4<0 or u>k
where k > 2.
Proof
By mathematical induction and Theorem 5.
|

Theorem 8 gives the non-negativity and locality properties. Locality is im-
portant in computer graphics and computer-aided geometric design: ma-
nipulation of a control vertex only affects a portion of the curve or surface
“near” that vertex rather than the entire curve or surface. Non-negativity
is desirable in image processing. It ensures that the intensities of images re-
covered from non-negative samples by a uniform B-spline interpolation filter
would not be negative.

16



Theorem 9
00
Z B;'k(ﬁ) =1
i=—o00

where k > 1.

Proof
By Theorem 2

i Bix(a) = i Bo k() * 6(6 — 1)

t=—00 t=—00
[
= Box(@)* Y 6(a—1)
t=—00
00

. w N\ k
- (312‘2'e—-'-§) 2r Y 8(w—2i7)

f=-—00

2

in @ yw k
The last expression means function (%‘-e'lf) is sampled at {2i7x}2__,
which gives 275(w). This proves the theorem since 1 < 27§(w).

Any collection of functions whose sum is uniformly equal to one is said to
have the partition of unity property. This and the non-negativity property
of Theorem 8 ensure the convex hull property, which is important in com-
puter graphics and computer-aided geometric design. Convex hull property
means that any B-spline curve or surface will be entirely contained within
the convex hull of its control vertices.

The partition of unity property also provides translation invariance.
Thus in general, B-spline geometric modeling is affine invariant. This means
that the affine transformation (Gans, 1969) of the approximated curve or sur-
face is the approximated curve or surface of the transformed control vertices.
Since affine transformations are one-to-one and onto mappings between Eu-
clidean spaces of the same dimensions, being affine invariant means that the
B-spline geometric modeling is coordinate independent.

17



Theorem 10
+o00
/ Boi(@)da = 1
—00

where k > 1.

Proof

Since

w N\ K
- (B25.%)

By Fourier integral theorem we have

k
in ¥ . +o00
sin w .
9 v —\ —iwd =
( o€ 2) —-—/ Box(@)e™?“du

2

The theorem follows by letting w = 0.
|

Thus we can use By (& + %) as a convolution filter * without having to per-
form normalization. However, when the knot spacings are not unity as as-
sumed, the integral value is ¢, which is the knot spacing for knots 0, ¢, - - -, ke.

In this case a simple normalization is required.

®Note that Bok(% + £) is symmetric about the origin. See Theorem 7.

18



Theorem 11

i k+1-4a _
Boj+1(8) = £ Box(®)+ —%— Bux(®)
where k > 1.
Proof
Consider

w|E

dw

w|E

_jﬁ(Bo'k(ﬁ) * (6(17,) - 5(5 -1)) o d [(Sin

‘W k .
e—"z_) (1- e—’”)]

. d [sin**1(9) _jesne
— 2]@' -—(%-,)k—-e 2

) sin§ _jw k —iw
o Jlk+1)|—F2eTT | eV-

But the inverse Fourier integral of the above is
3 ((k+1)Box(@) * (2 — 1) — kBo,x+1(5))

hence the theorem is proved.

Theorem 11 is a special case of the Cox/de Boor B-spline recurrence when

the knots are 0, - - -, k. This recurrence greatly facilitates the numerical com-
putations of B-splines.

19



Theorem 12
B M@ = ) (”‘) (~1'BG_ (2 i)

where 0 < m < k.

Proof

By Theorem 3 we have
Bo(8) = Bokm(8) * u(a)™

But (f(a)*g(a)) = f'(8) *9(a) = f(8) *¢'(a) and p'(w) = 6(a) - 6(a - 1),

hence
B{™™ (@) = BY_,.(a) + (8(8) - 6(a— 1))

By Lemma 5, the theorem is proved.

In curve and surface design, it is necessary to perform derivative calcula-
tions. This theorem provides a general recurrence formulation for the higher
derivatives of higher order B-splines in terms of the lower derivatives of lower
order B-splines.

Theorem 13

Bo k(@) approaches the Gaussian distribution function for large k.

Proof

Use Theorem 3 and the central-limit theorem. See Bracewell (1978, page
168) for more detail.
|

This theorem describes the asymptotic behavior of B-splines in terms of their
orders.

20



. k
6 FEvaluation of / " (Smm:) dz
—00 T

The interpolating or filtering function Si;‘r:z is significant. It can be thought
of either as the perfect reconstruction filter for samples of a bandlimited
signal satisfying the Nyquist sampling rate condition, or as the ideal low-
pass convolution filter. In this section we relate By (&) to the evaluation
of integrals of variants of ’i::” in more general forms than those given in
the mathematical handbooks by Beyer (1981) and Gradshteyn & Ryzhik
(1980). It is interesting to note that [*3°(%222)2kJy provides an indication
of the attenuation of signal energy after convolving a signal with a B-spline
of order k. For if f(z),g(z) are the signals before and after the convolution
with a B-spline Bo(z + £), then by Rayleigh’s theorem, the signal energy
after convolution is

[l@re = o [lew)r

—00

2k
+00 in @
= L ™rw) (2) do

27) 0o %

< |Fman)l [ (Si“’”’)" iz

00 nT

in 2\ k
where f(z) ¢ F(w),g(z) < G(w) and note that Boi(z + £) & (5—%_-2-) .

In image processing, loss of energy due to the attenuation of high fre-
quencies makes images look fuzzy.

21



We begin by giving the Fourier transform pair of the uniform B-spline
BO,k (ﬁ)

Lemma 7
k
1 +oo in ¥ jw -
Bo'k(t_l,) = —_— (SII:) 2 e_ 15.) elwadw (3)
27!' —00 7
sin w Jw k +o00 .
( —Le 2 ) = / By x(#)e™7“%du (4)
7 -0

where k > 1.
Proof
This is simply an application of the Fourier integral theorem to By k().
|

With Lemma 7, the following interesting theorem can be obtained.

Theorem 14
+oo fginwx\ X k
dr = Byi(=
/—oo ( T ) :z: O’k(2)
where k > 1.
Proof
Let @ = -’.} in Equation 3 and change the variable w to 27 z in the integra-
tion.
|

Since Bo,k(%) can be easily computed by the Cox/de Boor B-spline recur-

+o00 , | k
rence, we have a general formula for the evaluation of / (51%:—”) dz.
- 00

22



An interesting consequence of Theorem 14 is Corollary 2, which says that

too fsinwz\ ¥ | . . . .
dz is rational. Rational values of this integral for 1 < k < 28
—0o T

are given in the Appendix.

Corollary 2

+oo fsinwz\* . .
/ ( ) dz s rational.

—oo T

Proof
By the divided difference definition, Bo,k(g) is the value of a piecewise poly-
nomial with rational coefficients at & = %

The following corollary is given because these integrals are often encoun-
tered in signal processing.

Corollary 3
+00 gi
/ sinwz dr = 1
—-00 nT
400 /gai} 2
/‘ (sm m:) dr = 1
—00 T
Proof
Since BO,I(’;') = Bo,z(l) =1.
[ |

23



Lemma 8 and Theorem 15 are given mainly for the motivation of pro-
viding more information regarding the definite integrals of variants of %
Other definite integrals of variants of 5% can be found in mathematical

handbooks such as Beyer (1981) and Gradshteyn & Ryzhik (1980).

Lemma 8
t-l.k_l
Box(#) = (CES] 0<u<l1
_ a)k-1
Box(#) = (k- 1) k-1<a<k

k- 1)!

where k > 2, if k =1 then the equations are not true at end points.

Proof
By mathematical induction and Theorems 5 and 8.
|
Theorem 15
+oo finwrz) ¥ _ ak-1 _
/;oo( — ) cos(rz(28 — k))dz = F=1 0<u<l1
— a)k-1
= (kT—E)lT k-1<ua<k

where k > 2, if k =1 then the equations are not true at end points.

Proof
Use Lemmas 7 and 8, change the variable w to 27z and note that the
imaginary part of the integration is odd, thus equals 0.

24



The next theorem relates the maximum value of Bg3x(#) and the area
under the curve of By ().

Theorem 16

+00 2
Boa(k) = / Bo(a)da
—00

where k> 1.

Proof
By Rayleigh’s theorem, we have

+o0 400
/ Box(@)?da = / | Box(8)[2da
—00 -—00

_ _}_ +o0 sin% 2 do
27) -0 %
= Bo,2x(k)

The last equality is obtained by changing variable w = 2xz and using The-
orem 14.

Theorem 16 provides an alternative means of evaluating the value of Bg 2x(k)
when By (%) is known. But this is mainly of theoretical interest because

Bo,2k(k) can be efficiently computed from the Cox/de Boor recurrence.

25



7 Conclusion

The results presented in this paper are not new. But the main purpose
of this paper is to illustrate the intimacy between uniform B-splines with
integer knots and repeated convolutions of a rectangle function. It might be
that some are more familiar with the divided difference approach but some
are more accustomed to the convolution approach. If this is indeed the case,
this paper serves to unite these two approaches coherently through the focus
of studying the properties of uniform B-splines. In doing so, many important
properties of uniform B-splines are explicitly proved and their significance
commented. The paper achieves this purpose with one unifying theme and

a single tool—the Fourier integral.
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A

Appendix

This appendix contains information for the following:

1.

10.

Conventions, definitions, and notations

Basic theorems of Fourier integral and convolution

. Cox/de Boor B-spline recurrence

Dirac delta function §(z)

. Replicating/sampling function ¥(z)

. Heaviside unit step function U(z)

11

- Rectangle function II(z) on interval (-3, 3

. Rectangle function pu(z) on interval (0,1)

+o00
. Values of Bo (%) and / Bo(5)2da
—00

Algebraic expressions for By (%)
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Definition

j=v—1 The imaginary unit
a+bj=a—bj Complex conjugate
—-00 < % < 00 Parameter variable for spline basis functions
—00 < w < 0o Independent variable for angular frequency
B« (%) Uniform B-splines with integer knots ¢,---,i + k
(',:) n choose k
f'(z), f™)(2) First and nth derivatives of function f(z)
c* Set of functions with k continuous derivatives
c! Set of functions with a finite number of jump discontinuities

f(z) = 4 (")’:’ (z+) Function value at point of discontinuity z

+oco
f(z) * h(z) = / F(w)h(z — u)du Convolution of f(z) and h(z)
f(z) & F(w) Fourier transform pair
f(2)* = £(2)* Y « f(2) Self convolution
f(z)*° = 6(z)
Ak f(z) = AF? (A(z)) kth unit step central difference
Af(z)=f(z+3) - f(z—3)
(@i, -y Bigr 2 8] F(2) kth divided difference

= lii“'m""“‘“ua(,-'_::ﬁ,-’""a‘“-l:m(‘) if @ # Gigr
I‘Ti‘?f(t)h:‘l.‘ if U=+ = Uitk

[ : £]£(t) = (@)
Rectangle function

c#0 a<z<bd

f@=3 5 z=ap
0 otherwise
1 —} (= . el e .
f(z)= \/2_—3 Fes? , —00<z<00 Gaussian distribution function
o
zf‘,. Truncated power function
0 z<0 0 <0
o __ 1 k __ z
Ty = 1 =0 for k>0, zi =
B AR
z

Table 1: Conventions, Definitions, and Notations
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Theorems of Fourier integral and convolution

Transform and inverse transform

Symmetry
Conjugate functions
Scaling (for any real a # 0)

Shifting (for any real a)

Modulation

Derivatives

Convolution

Parseval’s formula

Rayleigh’s theorem

Moment theorem

Derivative of convolution

Convolution algebraic rules

+oo .
F(w) = f(z)e™7“*dz
+oo i
f(z) =5+ F(w)e’“*dw

F(z) o 27 f(—w)

f(ez) = 1 F (%)

f(z —a) = e’ F(w)
e**f(z) = F(w — a)

f(z) cos(woz) = 1(F(w + wo) + F(w — wo))

(=i2)"f(2) & F™) (w)
F®(2) & (jw)"F(w)

f1(2) * fa(z) & Fi1(w)F2(w)
f1(2)fa(z) & F5Fi(w) + Fa(w)

+oco +oco

fi(2) fa(z)dz = %

~o0o —oo

Fi(w)Fz(w)dw

+oo0 +oo0
/ f@)dz= [ 1FW)dw

—00 —0o0o

+o0

z" f(z)dz

P0) = (i) [

—oo

(f(2)* 9(2))" = £'(2) + 9(2) = f(z) + ¢ (=)

f(z) * g(2) = g(2) * f(2)
f(2) + (9(2) + h(2)) = (f(2) * 9(2)) * h(2)
f(2) * (9(2) + h(2)) = f(2) * 9(2) + f(2) * h(2)
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The following Cox/de Boor B-spline recurrence is taken from Bartels,
etc. (1987) pages 182-183. The definition for B;1(@) is modified at @ =

i, Ui4+1 to conform to our convention for function values at points of discon-
tinuity.

Given knots #@g, -+, U, -+, Um+r Where k > 1:

for any 1 =0,---,m

0 i<y

1 E=
Bip(@)=13 1 ;<8<

3 G=dipn

L0 ©> 4y

and for any r =2,---,k

= -1 - ity — U _
B: =——"" B =% B
i (8) Uippoy — 8 " 1(2) + Uity — Uiyl Bit1r-1(2)

with the convention that

u— U _ . _ _
_——__Bi,r-l(u) =0 if %yr1-%=0
Uitr—1 — Y
and
ﬁi+r - ﬁ _ . - —
:—_B¢+1,r—1(u) =0 if @4y — 841 =0
Uity — Uit

Figure 4: Cox/de Boor B-spline recurrence.
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Figure 5: Graph of §(z).

Dirac delta function §(z)

Fourier transform pair §(z) @ 1 o 276w)
+00
Unit area / §(z)dz=1
Sampling £(2)5(2) = £(0)3(2)
+o00
Sifting / f(2)8(2)dz = £(0)
Shifting f(z)*6(z—a)= f(z - a)

f(bz) % 6(z — a) = 6(b(z — a))

Convolution identity f(z) *6(z) = f(=z)
Derivative of U(z) U'(z) = (=)
Derivative of u(z) p'(z) = 6(z) — 6(z—1)
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0 T

00
Figure 6: Graph of ¥(z) = ) 6(z—iT).

t=-00

Replicating/sampling function ¥(z)

Fourier transform

Almost zero everywhere

Local unit area

Sampling

Replicating

f: 8(x—1T) & wo f: 8(w — fwp)

t=—o00 t=—o00
where wg = ZT-."—'

U(z)=0 =z#:T

V)@ = 3o [GT)6(—iT)

t=—00

W)+ f@)= Y flz—iT)

t=—00
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. 4
™

Figure 7: Graph of U(z).

Heaviside unit step function U(z)

Fourier transform U(z) & nb6(w)+ le
Differentiation U'(z) = §(z)
Divided difference U(z) - U(z — 1) = p(z)
Truncated power function 2 =U(z)
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1
* 2 ®
1 1
2 0 2

Figure 8: Graph of II(%).

Unit rectangle function Il(z)

in W
sin 2

Fourier transform (z) < o

Differentiation N'(z)=6(z+1)-6(z- 1)
Translation (z) = p(z) * 6(z + )

B-spline II(z) = Bo(z + %)
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4
[ U
L

Figure 9: Graph of u(z).

Unit rectangle function u(z)

in W
. siny _jw
Fourier transform p(z) & —Le 2

2

Differentiation u'(z) = 8(z) — 6(z — 1)
Divided difference | u(z) = U(z) — U(z - 1)
Translation u(z) =T(z) *6(z — 1)

B-spline p(z)** = Box(z) k>1
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Foo Foo
x B, k(5)=/ (’"‘") dz By 2k(k)=/ Bg g (2)2da
2 "z ) y
—oo —o
1 | 1.00000 1 1.00000 1
2 | 1.00000 1 0.66667 §
3 | 0.75000 3 0.55000 i3
4 | o.e6667 § 0.47937 ¥
5 | 0.59806 H 0.43042 iesle
6 | 0.55000 i 0.39393 SEELTT
7 | o.51102 #5855 0.36537
8 | 0.47937 #4 0.34224
o | 0.45202 $5%123 0.32301
10 | 0.43042 T 3111 0.30669
11 | o.41008 s8N 0.29262
12 | 0.39303 i 0.28033
13 | 0.37884 #os42000108 0.26946
14 | 0.36537 #1985381 0.25077
15 | 0.35324 PSRRI 0.25105
16 | 0.34224 2335851041 0.24315
17 | 0.83221 LED204293 10020441, 0.23596
18 | 0.32301 1151111488 0.22037
19 | 0.31453 SATEREBIE L ABI042008 0.22330 coT8
21 | 0.29041 0000845355001 0s 0.21248 —
22 | 0.20262 LEOTBAAOSEITOTEA00. 0.20763 —
23 | o0.28628 188702825448320338044300177 0.20310 —
24 | 0.28033 JSAB0L58000403522040. 0.10885 —
25 | 0.27473 | 2850704140 516804710550, | 0.19485 —

Table 2: Values of Bo k(%) and [¥5y Bok(2)2d & by the Maple algebraic com-
putation system (Char, Geddes, Gonnet, & Watt 1985).

36




0 <0
1 @=0
Bo,](ﬁ)= 1 0<u<l
% g2=1
0 a4>1
0 <0

0 >2
<0
0<a<l1
Bos(@)=4{ -4*+3i-3% 1<ua<?
9
3

@ 0<a<l1
Boa(@) = =
0.2(8) [-a+2 1<a<?2
0
1
2

2<a<3
@>3
<0
0<a<l1
Bou() = 4 -je*+2e-2e+3 1<a<?2
’ @ -42’+106-%2 2<a<3
-la*+2a®-8a+32 3<a<4

L o a>4
(0 4<0
at 0<a<l1
—lat+tet -+ tu-f 1<a<?2
Bos(#)=q 1u*-2a®+Pa®-La+ 12 2<ua<3
—jet+3et - e+ Q- s3<u<4
St -5+ g2 12854 8% 4<ac<s
[ o g>5

Figure 10: Algebraic expressions for the constituent polynomials of By (%)

by the Maple algebraic computation system (Char, Geddes, Gonnet, & Watt
1985).
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