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ABSTRACT

Based on monotonicity conditions, the switching criteria
for an adaptive implicit discretization for two phase
flow in a porous medium with gravity and capillary
pressure are derived. These criteria can be applied to
multi-dimensional flows provided an easily checked con-
dition is satisfied. Use of the monotonicity conditions
is demonstrated for some example problems in one and

two dimensions.

Introduction

Multiphase flow problems in porous media arise in oil reservoir
simulation [1], contamination of groundwater with organic pollu-
tants [2] and geothermal energy extraction. Recently, adaptive
implicit methods have been used to solve reservoir simulation prob-
lems [3-9]. The basic idea of these techniques is to use a fully
implicit discretization only in those cells undergoing large flow
rates, while using an IMPES (implicit pressure, explicit saturation)
method elsewhere. This permits large timesteps with less compu-
tational work than a fully implicit discretization. Full details of
the adaptive implicit method can be obtained in references [5,10].
Various heuristic methods have been used as criteria for switching
from IMPES to fully implicit and vice versa. In reference [5], a
conservative strategy is proposed, based on changes observed over

a timestep, and allowing only switching from IMPES to fully
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implicit. Other authors have proposed an alternative criterin
which permits backward switching [8], but this criteria does not

necessarily give a monotone discretization.

All the above methods for adaptive implicit switching arc
based on the concept of preventing stepwize instability. In other
words, given a fixed grid size, these methods attempt to ensurc
that the solution remains bounded as the number of timesteps
becomes large. However, as will be demonstrated, it is possible to
obtain bounded solutions which produce non-physical local maxima
and minima. This problem can be avoided by using monotonicity

requirements as adaptive implicit criteria.

Note that a true adaptive implicit discretization is used in
[5,8,10]. This is not simply zeroing the elements of the Jacobian as

suggested by several authors [4,6].

The objective of this article is to examine some two phase
flow problems, and to determine the monotonicity conditions. Sta-
bility will generally follow from monotonicity. A monotone discret-
ization will prevent the appearance of non-physical local maxima

and minima.

2. Formulation

Recently, Sammon [11] has used monotonicity arguments to
demonstrate that phase upstream weighting used for one dimen-
sional, two phase flow with gravity but zero capillary pressure,
converges to the physically correct solution satisfying the entropy
condition. Similar arguments will be extended in the following to
determine the monotonicity conditions for two phase flow with
gravity and capillary pressure. Of course, the inclusion of a finitc
capillary pressure means that the system of equations, even in one
dimension, is not purely hyperbolic. However, we are only
interested in adaptive implicit criteria, not convergence issues.

Since these conditions can be applied on a cell by cell basis, it is
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possible to determine criteria for two dimensional problems if cer-

tain tests are satisfied.

For definiteness in the following, we take the two phases to be
oil (0) and water (w). The equations for two phase, incompressible

flow are given by [1]:
d
‘5{(50¢)=V'[>\0VP0—POQVD] (1)
0
57 Su®) =V Pw v Pu=Pug v D]

where:

Se = saturation of phase £ = oil, water
¢ = porosity
A _ KK,
He
K, = relative permeability of phase £
e == viscosity of phase ¢
K = absolute permeability
D = depth
g = gravitational acceleration
P, = pressure of phase £
Pe = density of phase £

The oil and water pressures are related through the capillary pres-

sure, which is a function of water saturation S,,:
Pw=Po+Pc(Sw) (2)

while the relative permeability IC,, is an experimentally deter-
mined function of phase saturation S, [1]. Equations (1) are
discretized using a cell centered finite difference method on a

Cartesian grid [12]. It is assumed that cell edges are perpendicular
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to the line joining the cell centers. With these assumptions, a
compact expression can be obtained for the discretized equations,
which is valid for any number of dimensions. If cell 7 has a set of

nearest neighbours N, then the discretized equations can be writ-

ten as:
N+1__ oN 0; >‘<%'+‘/2 N+1_ pN+1
Soi T —S6i = E A, [(Poj —Py; ) (3)
JEN; $]+|/2
= P09 (Dj—=D;)]
N+1_ oN M, 46 N+1_ pN+1
Swi. —Sui = Z 9]’ A, [(Poj —P,; ) (4)
JEN; Tith
~pw9 (Dj=D;)— (P =P)]
where
’ Vi é
V; = volume of the z’th cell
Ajn = interface area between cell 7 and cell j
Az, = (Az;+ADx;) /2
Ax; = cell width in the direction from cell 7 to cell ;.

For convenience, the phase potentials tb” are defined as:
byj = {PNt =PN* —p,g(D; — D;)} /D), (5)
h,; = {PN+! — P+ — Pwg(D; — D;)
- (Pg—Pg)}/ijw/z
The notation:
Ne j4

refers to the value of X\, evaluated at the upstream point, depend-

ing on the sign of the phase potential 9,. Note that in equations
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(3-4), if Vj, M=N, then an IMPES method is used, while if
V5, M=N+1, then a fully implicit discretization is specified.

To avoid a profusion of subscripts, the following convention

will be observed. The notation XA, will be used to signify:
Ne =M (6)

with the sub/superscripts understood. Similarily, the notation P,

will be used to mean:

P, = P*! (7)
and

P; =P}

Ax = Axjyy,

Consequently, if equations (3) and (4) are added together, and not-
ing that:

S,+ S, =1
then:

9.
0=3 == [N +2) (Poj = Pyi) (8)
J

—(pog>‘0+pwg>‘w)(Dj—Di)

—>‘w (ch—Pci)]
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where we have used the notation of equations (6-7). Equations (3)
and (8) are the starting point for further analysis. If the system is

one dimensional, or if the function
No /(R0 + Xy)

is constant over N; (this will be discussed later), then the pressure
can be eliminated from equation (3) using equation (8), and the

system could, in principle, be solved for Sé\i/"'l:

SN = g, (S, SN, sBtY); jEN, (9)

[R) 0J

Consequently, if g; (SY, Sf,\}, Sé\],-“) is a monotone function of its

arguments in the interval [a,b], that is if:
09g; dg; dyg;
"> 04 i >0 —o

a Sy, 9 S,;

_— >0 10
o sttt — (10)

{sk, sh*l, sf} € [a,b]

then bounds for the maximum and minimum values of SN*! are

given by:
max {SN*1} < ¢;(b, b, b) (11)

min {Sg+1 > gi(a, a,a)

(The inequality signs are necessary if the arguments of g; are not
independent). If, for example, an IMPES type discretization is
used, and:

g;i(a,a,a)=a
then:
SN*lela, b] it SN, SN €[a, b]

and hence the discretization is stable.
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The desirability of a monotone scheme is easily demonstrated.

Suppose that an IMPES scheme is being used with:
Sg = Sﬁ- =a
and suppose that:
(Syt)* = g;(a, a, a)
Now consider an initial state with:
Sé\,-’ =a+ o ; S(I,\J/- =a
a<L<<1l, a>0
then:

09;
oSN

SN+L — (gN+1yx 4 o+ 0(c?)

Suppose that g; is not monotone, with:
0 9;
oS

<0

then for a sufficently small:
Sath < (sith*

In other words, a small positive perturbation of Sé\i[ has produced a
value of SN*! which is less than the unperturbed value. This is

physically absurd.

In the following, the conditions for monotonicity will be deter-
mined. As will be demonstrated, a monotone discretization will
generally lead to a stable scheme with desireable properties. It will
also be shown that, under certain assumptions, the fully implicit

method with phase upstream weighting is monotone, as is the
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IMPES method for a sufficiently small timestep. Consequently, we
will attempt to derive switching criteria that will ensure that the

adaptive implicit method also has this same monotonicity property.

3. Monotonicity Conditions

To avoid having to work out the conditions for various special
cases, the most general expressions will be obtained. This requires

somewhat involved but straightforward algebra.

As discussed above, we will need the derivatives of equations
3) and (8) with respect to SM - Differentiating equation (3) and
oK

using the notation of equations (5-7) gives:

05" Sk 6 (12)
_— = 1
5 Sk ik OLN
ST T T oSk 98k
where &, ; is the KKronecker delta, and:
A
X' = 75, s o o Sjemix M (13)
o = o, jt+%

Differentiating equation (8) with respect to Sk gives:

g .
0=% == {0+ N (Poj = Pu) (19)
J
sy 2P o P,
+( o+ w) aScl,}'( —aSg,K

- (>‘olpog + >‘w,pwg) (Dj - Di)
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- >‘w, (ch —Pci)
- >‘w (ch, - Pci,)}

where:

dP,
dS, |5, = sk

P, = Si Spm (15)

It is convenient to define the discrete total mobility:
A =X, + Ny (16)
= )‘%H% + >\1£‘J/{j+‘/é
Note that the discrete \; is not necessarily equal to the continu-

ous A; evaluated at a point, since the upstream point for the
water phase may not be the upstream point for the oil phase.

In one dimension, each term of the sum in equation (14) is

identically zero, since equation (8) is a difference form of:
vV;=0
Vi=X\ V P,—(PogNo+pPugry) v D
—X\y V P,
and hence implies that V, = constant, and thus:

aV,
o SsM
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Consequently, in one dimension, we can multiply each term of

equation (14) under the summation sign by:
Joi=Xo/No M) (17)
=205n /N Gn + M)
to obtain:

oP,; 0P,
0 Sk 3%%

J

N,
=3 Z_—x_ {(X"Pog+X"Pyg) (D;=Dy)
J

—(>‘o,+)\w,) (Poj_Poi)
+>‘w’ (ch_Pci)
+ X —P;')}

In two or more dimensions, equation (14) cannot in general be
multiplied under the summation sign by f,; (equation (17)), since
each term of the sum in equation (18) is not necessarily zero, nor is
fo; a constant independent of j. However, in two or more dimen-
sions, the monotonicity condition (for backward switching) will not

be applied unless:
max {fo, ju p—min {fo jrn} [<B ; (19)
B<<1; jEN;
which implies that:
fo j+w ~ constant ; j €N

In practice, this is not unduly restrictive, since foj represents the

discrete fractional flow. If f,; is rapidly changing over the set of
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neighbour cells, then this indicates the presence of a shock front,
and hence an implicit treatment will almost certainly be required.
On the other hand, ahead or behind the shock, f, ;;, will be sen-

sibly constant over the set of nearest neighbour cells.

Note that in general:

p) Sé\,-[+1

—2__#0; K ¢ N;
o sM '

since the pressures Pé\]/-“, Pé\,-’“ will depend on saturations not in

N;. However, if the system is one dimensional, or if equation (19)
is satisfied, then ,S»'(l,\,-’+l does not explicity depend on SM., K ¢ N;.

oK »
Consequently, assuming that multiplication of equation (14)
by fo, j+% Wwithin the summation sign is valid, then equation (18)
can be used to eliminate the pressure derivatives from equation

(12). This gives a compact expression for the derivatives:
0 Sé\!ﬂ ) ) (20)
P SOLK = Y% K YLN =~

>‘o’>‘w ‘woj >‘w,>‘o wwj

+(ch'_Pci’)/Ax}
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Noting that:
INEPEDINLR Y
=)\é\§ max (0, ;)
+)\% min (0, ¥ ;)

which follows from the definition of upstream weighting then:
d N

8 Sk
=(\MY max (0, %) 6,k 61 ar

+(\MY min (0, %) 8, g 61 s

Yej Ne'= Ve

Consequently, it is easy to evaluate equation (20) for the various
derivatives of interest. For example, if cell ¢ is an IMPES cell,
then

9 Sé\i,-‘-l

5 SM JEN; j#i (21)

= E 6, {>‘oj,>‘w max (,;,0) /N

—>\wj’)\0 max (zpwj, 0)/X;

Physically realizable relative permeabilities and capillary pres-

sure curves obey the following conditions [1].
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o S0
ds, =

d\,
<o
ds, =

dP,
>0
ds, =

Consequently, from equation (21):
9 Sé\z']+l
i = 0
0 S,;
j eNz ’ .7. 7& T

_\WN N+1
)\Zj_>\llj1 >\£j ’ >\II'

If cell 7 is an implicit cell then:

Consequently:

asé:_f+l asg\i]+1

3_,5'01\1.’_ =1+ B_Sg % (9j {)\o')\w min (0, woj)/)\t

— Ay’ X, min (0, Vi) /N
—Pci’/Ax}

13

Recalling equation (22), all the terms multiplying 8, in equation

(24) are always negative or zero. Consequently:
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05! > 0 (25)
osN = 7 -

V0. 5 N =2

] b
If cell 7 is implicit, then equation (21) becomes:

o Sé\i/+l
855\]4 JEN;, j#1

=33 6 (oM max (4,;.0)/N

_>‘wj'>‘o max ( wy )/>‘t

+PCJ~'/Aa:};
asN+l
+—FF 8SM 2 9 {Xo'Xy min (0, 1b0])/>\

— Ay’ X, min (0, 'tpwj)/)\t
_Pci,/Ax}

using equation (22), the above equation also implies that:

9SS N+1
——>0JEN , JF
o SM

VGJ ; >\Ki=>\é\z['+l

If cell 7 is an IMPES cell with
Nei = Ny
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then:

9 Sy*!

ot

5N 14+ 3 6, {\,'x, min (0, oj ) /N (26)
ot j

— Xo'XNo min (0, ¥, ) /N
_Pci’/Ax}

Since all terms multiplying 0]« in equation (26) are negative, the

montonicity condition is:

Z 8, {X\»'Xy min (0, Vi) /N (27)
j

— X' X min (0, ,;) /X,

—P;'/Az} | <1

4. Application of Monotonicity Conditions

The results from Section 3 can be summarized as follows:

055" >0
— 28
asM = (26)
J#1; M=N,N+1; V 6,
If cell ¢ is a fully implicit cell, then:
i Sf{“ >0 V46 (29)
asN = ! B

and if cell 7 is an IMPES cell, then:
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9 SN+1
o1 .
EG o)
ot

if equation (27) is satisfied. In more than one dimension, these

conditions are valid if:

fo j+w ~ constant , J €N, (31)

In the following, we will assume that the flow is either one dimen-
sional or equation (31) holds. Consequently, a fully implicit cell
.ys gives rise to a monotone discretization, while an IMPES cell
so monotone for a sufficiently small timestep (from equation
). We will require that the selection of fully implicit-IMPES
cenw in the adaptive implicit method also ensures that the discreti-
zation is monotone. We will demonstrate an important property of

a monotone discretization in the following.
Recalling that .S’(I,\,-[’H can, in principle, be written as:
St = g; (S5, 505, So5tY)
then if:
Spin = min {Sf,\f, S(I,}[
JEN;; M=N,N+1
S oy = Max {Sff, SN

JEN;; M=N,N+1

and if ¢; is a monotone function of its arguments in [Spyn, S max) s

then:
g; (Smin"") S Scj)l']+l S g; (Smax7°")

In the case of an IMPES cell (A,; =\2), the bounds can be

determined by setting:
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SN=g8*% = constant

and setting all functions of Sg and ng to constants in equations
(3) and (4). This gives:

Ao A 6,

oM J

Sot =SSt (bu=po)e Bz (D=0 (32)
2 A

On a regular cartesian grid, the sum:

0;
D xNg Di=Di) (33)

J
vanishes for all interior cells. Consequently, for these cells:

Smin S S¢11\1'1+1 S Smax (31)

In the case of a fully implicit cell (A,; =\Y*1), the bounds

can be determined by setting:
SN=8%=constant (35)

and setting all functions of SY and Sff to constants in equations

(3) and (4), as for the IMPES case. However, in this situation, we

have an implicit equation for Sé}""l since:

N+1 N+1 N+1
>‘oz’ ’ >‘wi ’ Pcz’

are functions of Sé\,-["'l. Assuming that equation (33) is identically

zero, then one solution for SN*1 is clearly given by:
01 Yy g Yy

Sé\z'[+l=so*
as for the IMPES case (this is verified by direct substitution). If

the system is one dimensional, or [, = constant, Vj, j EN;,

then equation (3) can be written as:
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So Tt =SH+(55"", So7) (36)

where we have imagined using equation (4) to eliminate the pres-

sure. From equations (12) and (24) it follows that:

_9q
8 Sé}’-f-l —_

so that the right hand side of (36) is a decreasing function of

SN*1 and the left hand side of equation (36) is a straight line

function of SN*!, so that there is at most one solution for SN+,
Consequently, equation (34) is valid for interior implicit cells, as
well as IMPES cells.

Note that S, and Sp,, can contain values of Sé\][~+1, as can
condition (27). These are, of course, unknown values at the begin-
ning of a timestep. However, as will be discussed later, estimates
of these quantities are easily obtained in an adaptive implicit

method.
Equation (34) implies that the values of SN+1 is bounded by
the maximum and minimum value of {Sﬁ, ng .

means that in the absence of source terms, no new local maxima or

This property

minima can appear during the time evolution of the system.

If the values of SY are bounded by:
o< sy, s <1

o1

and M =N in equation (34), then equation (34) obviously implies
stability. If Sé\](“ appears in equation (34), then cell j is an impli-
cit cell. Assuming that:

X, =0, S, <0

Ap =0, S, <0

then if equations (3) and (4) are written for cell j, and if:
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SN, SNk €[0,1], VK

then it is impossible to solve equations (3) and (1) unless:
SNt €lo, 1

consequently, the extreme values of S_;, and S, appearing in
equation (34) are bounded by [0, 1], and hence monotonicity
implies stability.

Equation (33) does not vanish for edge cells on a regular carte-
sian grid. For these boundary cells, it is not possible to obtain a
“maximum’’ principle as given by equation (34). Of course, this is
because physically, new local maxima and minima can appear in
boundary cells. (Imagine a trivial example with two vertical cells,
each with SY=.5, and oil less dense than water). However, we
would still like to ensure that the adaptive implicit method is
always monotone, since the fully implicit method is always mono-
tone, and the IMPES method is also monotone for a sufficiently

small timestep.

As far as stability for edge cells is concerned, if equation (27)

is satisfied for SY, Sg € [0, 1], then since
J
No Ny E E‘ (Dj—Di)=0
J

at S,=0or S,=1, then SN*! €[0, 1]. However, satisfying equa-
tion (27) (for IMPES cells) over the entire range [0, 1] will be quite
restrictive in general for practical problems. Of course, applying

such a test over [0, 1] would also be computationally expensive.

An alternative for edge cells would be to apply equation (27),
and then check that the bound on SN*! given by equation (32) is
in [0, 1]. However, this bound is quite crude, and will probably be
too pessimistic. Unfortunately, it is not possible to obtain sharper

bounds for edge cells without additional assumptions.
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The results derived above will be used to aid in the develop-
ment of switching criteria. Some heuristic reasoning is required to

develop practical tests. This will be described in the next section.

5. A Practical Stability Test

The whole idea of the adaptive implicit method is to produce
a stable, physically reasonable solution while saving computational
work. Consequently, a simple, inexpensive method of applying the
tests derived in this article is required. As discussed elsewhere [5],
an extremely cautious approach is necessary for practical problems.
In other words, it is desireable to err on the side of too much

implicitness, rather than too little.

The following method is used to switch cells from fully impli-
cit to IMPES. After each Newton iteration, only cells which
satisfy:

| max (f, j4u)— min (fo;40) | <toly; jEN;  (37)
max |Sé¥—5£f | < toly; 7 EN; (38)

| SN+1_sN | < toly (39)

are considered as candidates for switching from fully implicit to
IMPES. Equation (37) ensures that multiplication of equation (14)
by f, j+» under the summation sign is valid (this is required only

for multi-dimensional problems). Equation (38) ensures that:
|Smin_Smax l < t012

so that equation (27) does not have to be evaluated over a range of
saturation values. After each Newton, iteration, condition (27) is
evaluated for fully implicit cells satisfying the above conditions.
Note that the most recent estimates of )\évjtrlyz are available if
required in equation (27). If equation (27) is satisfied, then the cell

is switched to the IMPES state. For edge cells where the gravity



Adaptive Implicit Criteria 21

sum (equation (33)) is non-zero, the switched cell is monitored for
the next few iterations to ensure that equation (39) is satisfied.
The philosophy behind this latter check can be stated as follows:
in implicit edge cells, if equation (39) is satisfied, this indicates
that gravity equilibration has occurred. Consequently, if large
changes are observed after switching to IMPES, this is symp-
tomatic of non-physical overshoot and possible instability. This
approach is preferred since equation (32) tends to be unduly pes-
simistic.

The method for switching from IMPES to fully implicit is a
combination of the method used previously [5] and the montonicity

condition described in this work. If either:

|SN+1_ s | > tol, (40)

or condition (27) is violated, then the cell is switched to a fully
implicit state. The tolerance in equation (40) is set to a fraction of
the timestep selector norm [5], and will catch rapidly growing
instabilities. Condition (27) indicates a physically unreasonable
non-monotone discretization, which can be avoided by using a fully
implicit method. Note that condition (27) is rigorously correct
only in one dimension, or if equation (37) is satisfied. However, in

accordance with our cautious approach, condition (27) is always

checked.

Consequently, the strategy used previously [5] is augmented
with an additional check to trigger IMPES to fully implicit
switches. As well, a new capability is added to switch from impli-
cit to IMPES. The switch from implicit to IMPES occurs only

when the discretization is monotone.
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6. One Dimensional Example

Consider the one dimensional slab shown in Figure 1, with the
physical properties given in Table 1. The slab has an initial water
saturation of S, =.2, which is the critical saturation. Water is
injected halfway up the slab, so that initially some of the water
flows downward, while oil flows upward, establishing a counter
current flow regime. The domain of Figure 1 was discretized with

20 cells in the vertical direction.

Two runs were carried out. One run used the switching cri-
teria described in a previous article [5]. In this case, a timestep
selector norm of 20% (saturation change) was specified, while the
implicit trigger (tolg) was set at 5%. A norm of 20% would be
typical for a problem of this type.

The saturation profile after ten days of injection is shown in
Figure 2a. The local maximum at a depfh of 10m is due to the
injection of fluid at this point. However, the local maxima at
depths of 4 and 16m are clearly non-physical. These cells are just
on the boundary of the fully implicit region. If the run is contin-
ued, these local maxima (which are at the 4% level) persist. The
existence of these local maxima is easily explained. The large
derivatives of the capillary pressure curve near S, =.2 (see Table
1a) results in a non-monotone IMPES discretization (from equation
(27)). After a small local maximum evolves, the strongly non-linear
capillary pressure curve has a much smaller derivative, and hence
the discretization becomes monotone, and the solution remains
bounded. A similar effect can also be observed in problems where
the fractional flow curve has a large derivative over a small satura-
tion range. This occurs in any problem where the ratio of the
viscosities of the two fluids is large. Consequently, there is no
disastorous instability in the stepwise sense; the variables always
remain bounded due to the non-linear nature of the problem.

However, the non-physical saturation maxima remain. Eventually,
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if a large enough timestep is taken, an implicit switch is triggered

for the cells in question, and a better behaved solution is obtained.

Figure 2b shows the simulation results for a run using the cri-
teria suggested in this paper. Note the disappearance of the non-
physical local maxima. In this case, condition (27) was violated by
an order of magnitude for the non-monotone cells, and hence an
implicit method was used. The results were in good agreement
with a fully implicit (in all cells) run. The values used for the

tolerances in equations (38-39) were tol; =toly=.20.

The relative permeabilities and capillary pressure curves used
were typical of those found in non-aqueous phase groundwater con-

tamination [13].

7. Waterflood Example

A one quarter five spot [1], two phase, incompressible water
injection problem is shown in Figure 3. The relative permeabilities
and capillary pressure data are taken from reference [8]. Water is
injected at a constant rate in the top left corner, and a constant
pressure is specified in the lower right corner. The initial water
saturation is the critical saturation. A 10X 10 grid is used for this
run. Other pertinant data are given in Table 2.

Figure 4 shows the location of the implicit cells at various
times, using the switching criteria developed in this work. The
implicit region tracks the water front quite closely as it moves
through the reservoir. Table 3 gives the run statistics for a fully
implicit, adaptive implicit (forward switching only), and an adap-
tive implicit simulation with forward and back switching. Both
adaptive implicit runs used the criteria of this work. Note that
the average degree of implicitness was 26% for the run with for-
ward and back switching, which is significantly smaller than the
51% obtained using forward switching only. A reasonable reduc-

tion in CPU time is also obtained. This reduction should be larger
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for finer grids since a smaller proportion of the total number of

cells will be required to track the front.

The backward switching was particularly useful when water
broke through to the producer. Because of the large non-linearity,
small timesteps were required. Consequently, almost all cells,
except those near the producer, reverted to the IMPES state. This
makes the small timesteps during water breakthrough compara-
tively cheap. After breakthough, the timesteps quickly increased,

and cells became fully implicit again.

All three runs gave very similar results for saturations and oil

production versus time.

8. Conclusions

Previous switching criteria for adaptive implicit methods were
based on attempting to detect stepwize instability, and ensuring
that the solution remained bounded. Wohile this approach can
detect extreme instabilities, it is unable to detect a non-monotone
discretization which can give rise to a bounded but nonphysical

solution with new local maxima.

The monotonicity conditions for two phase, incompressible
flow with gravity and capillary pressure were developed in this
work. This criteria is rigorously valid for one dimensional flow,
and for multi-dimensional problems provided the discrete fractional
flow is constant over the set of neighbour cells. For cells which
are not on the domain boundaries, the monotonicity condition

ensures that non-physical local maxima and minima cannot occur.

Some approximations were introduced in order to yield a prac-
tical monotonicity test. The test was demonstrated for both one
and two dimensional example problems. The one dimensional
example demonstrated the advantages of detecting non-monotone,

non-physical behaviour, while the two dimensional example showed
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the benefits of being able to switch cells from IMPES to fully
implicit, and vice versa.

In many situations, an implicit method is required only near
sharp fronts. This makes the adaptive implicit method, with the
criteria developed here, extremely attractive for two phase flow
problems. Note that phase upstream weighting is used in this
study. This gives a monotone discretization in counter current (oil
phase flowing in opposite direction to water phase) flow situations.
Many groundwater contamination problems can be reasonably
approximated by two phase flow [14], so the methods developed

here may be used unchanged for this application.

For full three phase flow problems encountered in oil reservoir
simulation, in many cases the problem domain can be divided into
regions where only two phases are active. However, the full three

phase monotonicity conditions await further analysis.
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Figure Captions

Region for one dimensional example.

Saturation profile at ten days, old switching criterion [5].

Saturation profile at ten days, new switching criterion.

One quarter five spot water injection problem.

Implicit map for water injection problem, .10 pore

volumes injected.

Implicit map for water injection problem, .30 pore

volumes injected.

Implicit map for water injection problem, 1.0 pore

volumes injected.
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Table 1

Data for one dimensional example.

Absolute permeability, IX 10712 m?
Porosity, ¢ 3

Initial saturations

Sw=

S,=.8
Discretization

nr=1 Ax=1.0m

ny=20 Ay=1.0m
Densities

p, =864 Kg /m®

P, =1000 Ky /m3
Viscosities

Mo =1cp

My =1cp

Initial Pressure 100 kpa
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Table 1a

Relative permeability and capillary pressure data for

one dimensional example.

S K,y K, Peow (Icpa )

2 0.0 .68 103.0

i 44 12 7.30

.8 .60 .05 717

1.0 1.0 0.0 6.89
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Table 2

Data for one quarter five spot problem.

Absolute permeability, I<

Porosity, ¢

Initial saturations

Discretization

Depth

Densities

Viscosities

10713 2

3

S, =.15
=.85

nr=10 Ax=25m
ny=10 Ay=25m
nz=1 Az=10m

D =1000—(i —1)2.5+(j—1) 2.
cell (1,1) is injector

p, =864 K, /m?
P, =1000 Kg/m3

M, =1cp
My =1cp
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Table 2a

Injection/production data for one quarter five spot.

Injection 500m? /day
Production constant pressue
P,=1000kpa

Relative permeability and capillary pressure from reference 8]
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Table 3

33

Run statistics for the one quarter five spot water flood.

Adaptive
Implicit
Fully Forward Switching | Forward and Back
Implicit Only Switching
Average degree of 1.0 51 .26
implicitness
Total Newton 180 187 174
Iterations
Normalized 1.0 .79 .63

CPU time
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(2a) Saturation profile at ten days, old switching criterion [5].



0.19 0.21 0.23 0.25
|

SATURATION

0.17

|

0.15

]

Figure 2b

0.0

l | l | |
40 8.0 12.0 16.0 20.0

DEPTH (M)

(2b)  Saturation profile at ten days, new switching criterion.
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Water injection

=

Constant Pressure Production

Figure 3

(3) One quarter five spot water injection problem.
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I-implicit cell

I 1
I 1T 1
I T 1
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I
Figure 4a

(4a) Implicit map for water injection problem, .10 pore volumes injected.
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I-implicit cell
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Figure 4b

(4b) Implicit map for water injection problem, .30 pore volumes injected.
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I-implicit cell
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Figure 4c

(4¢) Implicit map for water injection problem, 1.0 pore volumes injected.
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