~ Sender: I / ‘ B
Dr. 0. Kaoth |
. Martin-Luther-Universitit | -
-~ Sektion Mathematik - ~
. Universitéteplatz 6 .
~ DDR - Halle
" Deutsche Demokratische Republik -

~—r C - o . R

T A ’.27 ;z 33_&

Q.Dear Q)T (D\M/ _ ezl

» I should greatly apprecmte recemng ‘a repnnt of your papér ',\
g ennﬂed R g , - S

> | Eﬁ/z

,wh1ch appeared in” P% tD Roaa' 2
~ (and- also of any other related pape;s)

| ‘Wa'th many thanks for your klndness

b m

@ XM

Absender:

Cri A.Tomme,
Adw okr DOR,

Inrdtat for Medvaml' ;

PF . G0é
Kort-marx-Hoc

ol lel |l]

GO R

” e e — /\,vvusu 17\

e

.0¢_ﬂcj r.{.m.cnf?,...aﬁ....@mﬁ&fﬁl’

Jeience,
Univevi #9/ of

Wederloo, Orrtosris
Concclo — koenada

Hninn

Woterloo

Kowri- Mearx ~Stoolt. den A3 4969

Dewr Frofessor Cheu

Darf ich Sie héflichst um einen Sonderdruck threr Arbeit bitten:

Je vous serais trés obligé s'il vous était possible de m'adresser un tirage & part de votre publication:
| would be grateful if you could send me a reprint of your article entitled:

Pazpewnte monpocutsh y Bac skcemmusip Bawero tpyaa:

10 Orthogonal cleampon hon of cbnse cunol Jpasic Matrires q
Oh pMuticprocess rs [

Onel othess | ?//;O//’\j/, \
Mit bestem Dank im voraus und vorziiglicher Hochachtung -

Je vous en remercie d'avance et vous prie d'agréer l'expression de mes sentiments trés distingués
Thanking you in advance Yours sincerely
C 6,1aroapHOCTBIO U YBaKeHHEM
{//—-—-\
/}\/ 23239 U

VV Spremberg Ag 310 87 DDR 3092 1208 721 ’ Best.-Nr. 525 46

o g& fon G hrpiir, Clan

Date ['% ‘;? ‘/_
m e m O University of Waterloo
P,&MZ aond ﬂ*ffﬁi' cS-§ @’0(9
' : and
"Orfho?«vnmg DeccmeivW 06/ ewm
Spuwe Maticwe omy Midhipresans” o
/’wfmi WA, 2ty fo Kinean

EMW and f b et /,Vué/wj
AQGMW-C e aﬁwv% CA&,M e
totfe Y the apedl aftn b wad

#M/\Wi.ig o ome e B
pepers .

Thavks o It .

Pnntlng Reqwsmon/ Gra DhLCSerwceS

15073

1. Please complete unshtdod a:eas on
- form as applicable. : :

2. Distribute copies as follows White audw
Yellow to Graphic Services. Retain Pink

T3 on uomple‘uon of ordér the Yellow copy
© . will be retumed wnth the prmted

4. Please direct .,

es, quoting requisi
-tion number and account number to

Copnes for your records. mater |al ex'ensoon 3451,
T.lTI__E OR DESCRIPTION }
cs-88-08 o

DATE REQUISITIONED DATE REQUIRED. i ACCOUNT NO.

August 19/88 ASAP " ya - ‘411;2l411|0|0|6|0|
_REQU|5|T10NER—PRINT PHONE I SIGNING AUFZHORITY
V:;‘lig.A' Geotqe) o d . . : 2

] MAILING NAME DEPT. BLDG. & ROOM NO.) E]é}s‘uvaa :

} INFO- gye DeAngelis C.S. DC 2314 L] Fiew-ue

| héreby agree to assume all respons:bnllty and Ilablllty'for any infringement of copyrights and/or patent rlghts Wthh may arise from

Copyright:
the processing of, and reproduction of, any of the materials herein requested. | further agree to indemnify and hold blameless the
University, of Waterloo from any liability which may arise from said processing or reproducing. | also acknow!edge that matenals
processed as a result of this requxsmon are for educational use only .

 NUMBER NUMBER R B NEGATIVES f

OF PAGES _ 198 OF COPIES 50 i T

’ » : |F1L:M| l R H |

TYPE OF PAPER STOCK —-

K] sono [nek: ~ et [Xcover [|smistoL Rsvevevies [l E L]Ml]\ » ,' J L '
&l . il l ‘l . ‘l

PAPER SIZE : B . RN
. 8L x' 11 O 8} X !41: [:| 11X 17 O : ‘ | F L|M| | % | i li ll J

“PAPER COLOUR INK - ‘ B
R o O NERM]
TPRINTING NUMBERING B R
‘..‘ [t sioe__"res. [K] 2 sioes___pos. - FROM o) lF I\L ‘MI' i -l;lf :;L-;b-k.l.j.i_; ‘

BINDING/FINISHING D Cove o o Teer . -
COLLATING [:I STAPLING ..___PUNCHE:; i PLASTIC RING 1 e S S S g

— : IPIMITI"I FURIRTIIN § BV
+ FOLDING/) CUTTING O
~PADDING - SIZE . |P|M|T‘ | N IZI IJL] :
" Special Instructions . B A

— ~ |P1M1T] L r NI A) A

Math fronts ‘and backs enclosed PLATES RN

-

Pleaae bind

LABGUR

e CODE

: I

1 i\l: ||;

P BINDERY o

18!0|0|0;0|Ox Jl

' OUTS"PE 'SERVICES .~

o || |Jl i l LJ

~TAXES ~ PROVINGIAL [7]

FEDERAL [] - GRAPHIC SERV. “OCT.85 4822 - -

UNIVERSITY OF ATHENS

NEPISTEMIOPOLIS, 157 10 ATHENS
EEEEEE

DEPARTMENT OF MATHEMATICS

SECTION OF STATISTICS, O.R. TEL. (01) 72 43 219
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

péfédfrcA pe/w‘[f ,fecre /dzr7
Eéth"%MWf 6’(@-&4/3‘4/01/ f@i&q[a

{/M;‘verh% D’Z ft/w {W(oo/ /%‘,7 /J’, 19 §p
Wodtorlo,.)
Yo Mador, Q5
J wm[/ ﬁ’léﬁ 7/7' Wo’éév ﬂ/(MVW/?/ 4
1) Pl G{fzm’/é%s ,4« Lt Ef"“f?{;w
m(/(/\e ﬂ’/ff fyh%’l/@7 r\f\(’o h:(L’ ﬁZ/W/J 2; 7
c ¢c. Ch, | N,.BS. [heng,

M / ;
9\) /:MZ[,B%am%(faﬁf?l)ﬂ/(f N, a /L///_J,

‘ 60‘4‘4 QQ{QO’(E(o cel(foy Vv é k f@;jo
o Y, Ijmwafﬂl \/75’*-/%?»/&(2/

) CG} V\K/f 7\ ZM {17 /Lq,é a (}rﬁ)- //"-,//97 ’é{
Czﬁ%ﬂ[”L‘WC"""VZL 7[/94&/.4:,0441[(%\f
| % w]) //2“/6’/1”@ j |)[by To .M-t/é,,?] ,},ZZ(

oblped .
\ 7//6 CLL’MM»Z« %’le

Orthogonal Decomposition Of Dense
And Sparse Matrices On Multiprocessors

Eleanor Chin-hwa Lee Chu
Department of Computer Science

Research Report CS-88-08
March 1988

ORTHOGONAL DECOMPOSITION OF DENSE AND SPARSE
MATRICES ON MULTIPROCESSORS

Eleanor Chin-hwa Lee Chu

A Thesis
presented to the University of Waterloo
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, 1988
(©Eleanor Chin-hwa Lee Chu, 1988

ORTHOGONAL DECOMPOSITION OF DENSE AND SPARSE
MATRICES ON MULTIPROCESSORS

Eleanor Chin-hwa Lee Chu
Department of Computer Science

University of Waterloo

Abstract

In this thesis we propose a number of new parallel algorithms for performing orthogonal
decomposition of dense and sparse square or rectangular matrices. Our target machines are
shared-memory multiprocessors and local-memory hypercube multiprocessors. For dense
matrices, we propose an algorithm for shared-memory multiprocessors, and several algo-
rithms for the hypercube multiprocessors. For sparse matrices, the algorithm we propose is
specific to hypercubes. The paradigms we use in developing these parallel algorithms include
divide-and-conquer, changing the order of computation, asynchronous computation and re-
dundant computation. The algorithms designed for the hypercubes take further advantage
of various topological properties of the network. We provide arithmetic and communication
complexity analyses or implementations for each algorithm to indicate their expected per-
formance. In particular, our analyses show that the parallel algorithms we propose for QR
decomposition of dense (square or rectangular) matrices have lower synchronization cost
or lower communication cost than other known schemes. These results are supported by

numerical experiments.

ii

Acknowledgements

I am deeply grateful to my teacher and thesis supervisor, Professor Alan George, for his
guidance, encouragement and support throughout my graduate studies at the University
of Waterloo. Professor George has inspired my interest in numerical linear algebra and
parallel computing. His insight, enthusiasm and sound advice contributed invaluably to the
completion and presentation of the work in this thesis.

Part of the research was conducted while I was visiting the Oak Ridge National Labora-
tory from October, 1986 to April, 1987. I wish to thank members of the Mathematical Sci-
ences Section, especially Tom Dunigan, Young Etheridge, Al Geist, Michael Heath, Esmond
Ng, Charles Romine and Robert Ward of the Computer Science Group. Their hospitality
and friendship made my visit pleasant and productive, and their generosity in sharing with
me their experience with the parallel computers is greatly appreciated. At a personal level,
I thank Tom for providing me a hypercube simulator on the Sun workstation, which has
facilitated my programming work greatly, and I thank Al, Chuck, Esmond and Mike for
reading various parts of this thesis and offering very helpful comments and suggestions. I
also wish to express my thanks to Professor Joseph Liu for reading an early version of this
thesis and for his valuable advice and suggestions.

I thank Dr. Jack Dongarra and Professors Richard Bartels, Charles Colbourn, Bruce
Simpson and Wei Pai Tang for serving on my committee.

Finally, thanks are due to my family for their love which had sustained me through all
the years I was away pursuing my studies, and to all friends for their moral support.

The financial support of the University of Waterloo, the Natural Sciences and Engineer-
ing Research Council of Canada, and the Science Alliance, a state-supported program at

the University of Tennessee is gratefully acknowledged.

iii

Contents

1 Introduction

1
1.1 The Mathematical Computation 1
1.2 Parallel Computers and Numerical Algorithms 3
1.3 Shared-Memory Multiprocessors oo 6
1.4 Local-Memory Multiprocessors v v v v v v i v v v 9
1.5 An Outline of The Thesis 12

2 QR Factorization of a Dense Matrix on a Shared-Memory Multiprocessor 15

2.1 Introduction

.................................... 15
2.2 The Algorithm e 20

2.2.1 The Independent Annihilation Phase 20

2.2.2 The Cooperative Annihilation Phase 20
2.3 Implementation Issues o o 25
2.4 Analysis of Synchronization Cost 30
2.5 Analysis of Work Load Distribution 31
2.6 Performance Analysis o e 34
2.7 Numerical Experiments e 37
2.8 Concluding Remarks o o 42

iv

3 QR Factorization of a Dense Matrix on a Hypercube Multiprocessor

3.1 Imtroduction. e

32 Algorithm I

3.3 Performance Analysis of Algorithm I

34 Algorithm IT

3.5 Performance Analysis of Algorithm IT
351 Thecasem>n. i v i i i i it e it e et e e e
352 Thecase M <M. . v v v v v i i e e e e e e e e e e e e
3.5.3 Analysis of Storage Requirements

3.6 Numerical Experiments
3.6.1 The Measurement of Serial Time

....................

.........

3.6.2 The Effect of the Aspect Ratio of the Processor Grid
3.6.3 Further Enhancement

..........................

Sparse Orthogonal Decomposition on a Hypercube Multiprocessor

4.1 Imtroduction. e

4.2 Serial Row Merging Scheme
4.2.1 An Example
422 Definitions L e e
4.2.3 The Algorithm

4.3 Parallel Row Merging Scheme

...........................

...............................

..............................
..........................

.....................

4.3.1 Basic Mapping Considerations
4.3.2 A Parallel Submatrix Merging Algorithm

...............

4.3.3 Hypercube Partitioning

.........................

434 A MappingExample
4.3.5 Complexity Analysis of a Model Problem

...............

4.3.6 Generalizing The Parallel Submatrix Merging Algorithm.

......

44
44
46
58
60
71
72
76
82
86
87
89
95

5 Conclusions
5.1 A Summary of Contributions . .

5.2 Further Work and Open Problems

Bibliography

........................

.......................

vi

List of Tables

2.1 Execution time on the Balance 8000.
2.2 Execution time on the Balance 8000.
2.3 The effect of high synchronization cost.
3.1 Numerical solution to f(p,71,2,%) =0.
3.2 Predicted optimal vy when m>mn.
3.3 Numerical solution to f (p, 71, BB =0 .
3.4 Predicted optimal vy whenm <mn.,
3.5 Predicted and actual overhead storage.
3.6 Predicted 7{ and predicted optimal v;.
3.7 Execution times of the sequential Givens algorithm.
3.8 Measured and estimated times of the sequential Givens algorithm.
3.9 Single-precision execution times of Algorithm II.
3.10 Double-precision execution times of Algorithm II.
3.11 Estimated speed-up and efficiency of Algorithm II.
3.12 Estimated speed-up and efficiency of Algorithm II.
3.13 Execution times of the sequential Householder algorithm.

3.14 Measured and estimated times of the sequential Householder algorithm.

3.15 Single-precision execution times of the enhanced Algorithm II.

vii

77
80
81
85
86
88
89
91
92
93
94
96
97

3.16 Double-precision execution times of the enhanced Algorithm II. 98
3.17 Estimated speed-up and efficiency of Algorithm IT. 99
3.18 Estimated speed-up and efficiency of the enhanced Algorithm IT. 100
3.19 Comparing the enhanced Algorithm II with other schemes. 103
3.20 Comparing the enhanced Algorithm IT with other schemes. 104

viii

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Binary hypercubes of dimension 1,2and 3.

Standard Givens sequence [78].
Dongarra et al. [13] and Lord et al. [64].
Greedy Givens sequence [9,66].
Independent annihilation by four processors.
CAP-initial data distribution among four processors.
CAP-after the annihilation of three main diagonals.
CAP-data mapping to eliminate the first superdiagonals.
End of AP -al6x8example.uo......

A multiprocessor model considered in [76].

Column-by-column Givens sequence.o
Wrap mapping of 16 rows to 4 processors.
The d communication steps in the CMP (d=3).
The action of Py in the first elimination stage.
The distribution of local pivot rows at the end of Step 1 (IAP).
The 1% elimination stage. v vt i it

The 27¢ elimination stage. v vt vt e e e e

The 37 elimination stage. v v vt

ix

11

16

55

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

The embedding of a 4 x 4 grid in a hypercube.
The embedding of an 8 x 4 grid in a hypercube.
The wrap mapping of a 16 X 16 matrix to a 4 X 4 processor grid.
The wrap mapping of the submatrix within subcube P(1,%).
Data assigned to processor Pp. oottt i i e e
Data assigned to processor Pi. it
Data assigned to processor Pa. v i it i e e e e e e
Data assigned to processor Ps. it e
The communication channels employed by the subcubes during the IAP.

End of the IAP during the first elimination stage.
Data distribution in subcube P(*,1).
Data to be processed by subcube P(x,1).
Data distribution in subcube P(%,2).
Data to be processed by subcube P(%,2).
The communication channels employed by the subcubes during the CMP. .

Data distribution for the last four elimination stages.

Applying a Givens rotation to two sparserows.
Sparse orthogonal reduction by Givens rotations.
A sequence of row merging operations.
A sparse Givens sequence.
Al6x9example. e
The George-Heath scheme.
The resulting upper triangular factor.
The row merging scheme -step 1.
The row merging scheme -step 2.

The row merging scheme -step 3.

106
106

4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35

4.36

The row merging scheme - the finalstep. 116

The first submatrix. 117
The second submatrix. 118
The third submatrix., 118
The fourth submatrix. 118
TZ[4,{3,6,7,8}]. . . o o e 119
TZ7[3,{5,7,8}], TZ[3,{5,8,9}], TZ[3,{6,7,8}] and TZ[3,{6,8,9}]. 120
The factor R from Figure 4.7 121
The elimination tree associated with the matrix A in Figure 4.5. 121
The row merge tree associated with the matrix A in Figure 4.5 122
The binary row merge tree associated with the matrix A in Figure 4.5. .. 123
The reduced row merge tree of A in Figure4.5. 124
Applying full matrix technique to submatrix merging. 125
Aloop of four processors. 133
X =TZ[6,{1,2,34,56}]. . . .« o 134
Z=TZ[6,{1,2,34,7,8}]. o i 134
Wrap mapping X and Z to a loop of four processors. 134
Asnapshot. 135
The entire submatrix merging process. 136
Embedding loop(s) in a hypercube of dimension 4. 138
Nested dissection ordering of a 3-by-3 grid. 139
The 16 x 9 matrix associated with the grid in Figure 4.31. 139
Nested dissection ordering of a 7-by-7 grid and separators. 140
An example of an elimination tree. 141
The (reduced) row merge tree associated with the 7-by-7 grid shown in Fig-

ure 4.33 . . L e e 145
A bordered subgrid from the 7-by-7 grid in Figure 4.33 146

4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45

Separators along the highest-cost path of a 15-by-15¢grid.
An example of the highest-cost branch on a (reduced) row merge tree. . . .
Subproblems associated with subgrids.
Subproblems and column subscript sets for merging at vertex 37.
The four subgrids induced by the separators.
The submatrices U = T'Z[6,{1,2,3,4,5,6}] and V = T'Z[5,{1,2,7,8,9}].

Merging U = TZ[6,{1,2, 3,4,5,6}] and V = TZ[5,{1,2,7,8,9}].
Merging U and V. i
Merging U and V.

Chapter 1

Introduction

1.1 The Mathematical Computation

In this thesis we are concerned with designing parallel algorithms to perform orthogonal
decomposition of rectangular matrices on multiprocessor computers. We first provide an
overview of the mathematical computation we consider. It is well known that the orthogonal
decomposition process is a basic tool for solving linear or nonlinear least squares problems
and has applications to problems in linear programming, control, and eigenvalue and singu-

lar value computations. The orthogonalization of a rectangular matrix is usually formulated

R
QA= ,
0

where A is an m X n (m > n) matrix with full column rank, @ is an m x m orthogonal
matrix and R is an upper triangular matrix of order n. The three principal methods for
computing the factor R are Gram-Schmidt orthogonalization [2,75], Householder reflections
[5,44,56], and Givens rotations [23,24,25,42,47]. The traditional implementations of both
Gram-Schmidt and Householder compute R by eliminating the nonzero subdiagonal ele-

ments in an entire column of A at each step, whereas Givens rotations create one zero at

a time by accessing a pair of rows. The element being annihilated by Givens rotations can
be at any desired position of either row. These three methods are also different in their
respective operation counts [43].

When A is dense, the choice of orthogonalization methods for implementation on a
sequential computer is usually led by the following considerations. First, it depends on
whether all the entries of A are available and if so whether the entire matrix can be stored
in main memory. Second, we need to know whether the data are generated progressively
during the orthogonalization phase and in what manner they are added to A. Third, the
method’s numerical stability, CPU cost and simplicity of coding must also be taken into
consideration.

When A is sparse, regardless of which method is used, some zero entries in A become
nonzero during the factorization process. If these entries are subsequently annihilated, they
are referred to as intermediate fills. If they remain nonzero in the final structure of R, they
are referred to as fills. Since the column ordering of A determines the sparsity structure of
R, the fill in R is essentially independent of the orthogonalization method [28,45]. However,
for any given A, assuming that the columns of A have been appropriately ordered to give
a sparse R, the number of intermediate fills not only varies with the method but also may
vary with different implementations of the same method. Therefore, when A is sparse there
is added concern about the storage requirement and arithmetic operations caused by the
intermediate fill.

The sparse orthogonalization method developed by George and Heath [28] applies Givens
rotations to sparse rows in such a manner that the intermediate fills are always confined
to a single working vector of length n and they suggest a suboptimal row ordering to limit
the number of intermediate fills. Recently Liu proposed a general row merging scheme
using Givens rotations [61]. The general row merging scheme processes the rows of A
in a particular sequence. Experimental results provided in [61] indicate that substantial

reduction in intermediate fills can be achieved compared to employing other heuristic row

orderings. The tradeoff for the gain in execution time is a moderate increase in working
storage [61].

A comprehensive survey of sparse orthogonalization methods developed between 1976
to 1983 is contained in [50]. Further progress made on this subject since 1983 can be
found in [32,34,35,36,37,39,40,41]. Several interesting questions relating to sparse orthogonal

factorization remain open today and this is an area of active current research.

1.2 Parallel Computers and Numerical Algorithms

When the dense or sparse coefficient matrix is large, the orthogonalization process is very
demanding in CPU time and memory space on a sequential machine. For example, a system
of overdetermined nonlinear equations arising from the geodetic least squares adjustment
problem consists of over 6,500,000 equations in over 540,000 unknowns [46]. The general
solution procedure using the Gauss-Newton method involves solving a sequence of linear
least squares problems of the same size [45,46]. Very large sparse linear least squares prob-
lems also arise in earthquake studies, photogrammetry and certain types of finite element
analysis. With the performance of a sequential computer limited by the circuit speed,
the accurate solution of such problems in realistic time limits can only be realized by the
effective use of parallel computers.

The ideal parallel algorithm is expected to solve a problem on a parallel computer having
p processors p times faster than solving the same problem on a sequential machine having
one processor of similar processing power. To achieve this goal on different types of parallel
architecture requires different techniques which take into coﬁsideration the overall organi-
zation of the target machine. The main features of machine architecture that an algorithm
designer should be aware of include: the number and type of processors, memory modules
and input/output channels, and how these are controlled and interconnected. Along with

the development and change of parallel architectures, the design of parallel numerical algo-

rithms has been an active research area in the past two decades. However, since the VLSI
(very large-scale integration) semiconductor technology for implementing the parallel archi-
tecture was not available until the mid-1970s, certain practical limits of the machine were
unfortunately ignored in some early designs and complexity analyses for parallel numerical
algorithms [26]. The survey articles by Heller [54] and Sameh [79] review parallel techniques
for problems in numerical linear algebra developed before 1978. Two more recent surveys
of parallel algorithms in this area are contained in [19] and [77]. A bibliography on parallel
and vector numerical algorithms prepared by Ortega and Voigt [67] was published in 1987.

Since a wide variety of different parallel architectures have been proposed, it is use-
ful to identify some characteristics which can classify them. Flynn’s taxonomy is such a
classification scheme based on how the machine relates its instructions to the data being
processed [20]. He defines a stream as a sequence of items (instructions or data) as executed
or operated on by a processor. Depending on the instructions or data streams being single
or multiple, the designs of parallel architectures fall into two broad categories, for which we

quote the definitions given in [55] below.

SIMD - single instruction stream/multiple data stream. This is a computer
that retains a single stream of instructions but has vector instructions that
initiate many operations. Each element of the vector is regarded as a mem-
ber of a separate data stream hence, ezcepting the degenerate case of vectors
of length one, there are multiple data streams. This classification therefore
includes all machines with vector instructions. It is irrelevant whether the
capability of vector processing is realized by pipelining or by building arrays
of processors. -

MIMD - multiple instruction stream/multiple data stream. Multiple instruc-

tion streams imply the ezxistence of several instruction processing units and

therefore necessarily several data streams. This class therefore includes all

forms of multiprocessor configurations, from linked main-frame computers

to large arrays of microprocessors.

By 1981 several SIMD computers had been offered on a commercial basis. Examples of
pipelined computers are the CRAY-1, CDC CYBER 205 and FPS AP-120B, and examples
of processor arrays are the ICL DAP [55,69] and versions of special-purpose systolic arrays
(3,4,86]. By then it had also been noticed that the ratio between the performance of a
good and a bad parallel implementation of the same serial algorithm could easily exceed
a factor of ten or more on a real machine [55]. Instead of waiting for the “ideal” machine
to be built, programming professionals, algorithm researchers and practising scientists have
since devoted enormous effort to develop new parallel algorithms, parallel languages and
software in order to take advantage of the advance in computer technology. At the same
time, matrix computations continue to be one substantial application area for comparing the
performance of the different designs. The principles of pipelined computers and processor
arrays along with the algorithmic and language aspects of parallelism are well introduced
in the book by Hockney and Jesshope [55]. The review article by Dongarra et al. [12]
examines the common implementations of linear algebra algorithms for dense matrices on
vector pipeline computers. The linear algebra algorithms designed for systolic arrays are
surveyed by Schreiber in [81].

By 1985, several general-purpose multiprocessors became commercially available. They
are all MIMD computers using Flynn’s taxonomy. A finer classification of these machines
based on memory organization distinguishes two major architectures: shared-memory mul-
tiprocessors, and local-memory (or distributed-memory) multiprocessors. Since we are con-
cerned with designing orthogonal factorization algorithms for both shared-memory and
local-memory multiprocessors, in the following sections we shall introduce each type of

architecture and the paradigms for programming them.

1.3 Shared-Memory Multiprocessors

A shared-memory multiprocessor consists of multiple identical processors (CPUs) and a
single common memory. Each CPU is a general-purpose computer which can execute both
user code and operating system code. The shared-memory is typically very large and may
be configured as a number of independent and interleaved memory modules. The full con-
nection between the processors and all of the memory modules is realized by a switching
network or a high-speed system bus. The contention for memory cycles by multiple proces-
sors is a concern in a shared-memory environment. In order to reduce the number of times
an individual processor must use the bus to access the common memory, some systems
equip each processor with both local RAM and cache RAM. They appear to be effective
in supporting the bus architecture when the number of processors is not very large. The
currently successful multiprocessors of this type typically have eight to thirty processors.

The number of processors used for an application is usually specified by the user. Each
processor has an identity number which can be used by programmers to distinguish dif-
ferent actions for individual processors in the code. Therefore, even if the same program
is run on all participating processors, fhe code actually executed by each processor could
be different at times. Since each processor runs its own operating system and supports
multiple pfocesses, it is common to distinguish processors and processes in describing algo-
rithms. However, since we are interested in designing parallel algorithms with all processes
being executed simultaneously, only one process will be assigned to each available processor
and the communication between any two processes are always controlled by two different
processors. There is no chance of confusion between the two here. Therefore, in order to
make explicit the actions performed by different processors, we shall always refer to the
controlling processors in our discussion throughout this thesis.

Because all of the data in the common store are accessible to all processors working

on the same problem, some accessing discipline must be exercised to maintain the data

integrity. To ensure that the parallel algorithm does produce the correct answer, we are
concerned with two aspects of data integrity. First, some data will be modified by multiple
processors as the computation proceeds. Access to such data must only be granted to one
processor at a time. In other words, the code which updates such shared data should only be
executed by one processor at a time. Such code segments are referred to as “critical sections”
in a parallel program. Secondly, the nature of the solution procedure usually requires the
data to be modified in a particular order. The processors cooperating to solve the problem
must synchronize with each other to satisfy such precedence constraints inherent in the
algorithm.

To enable parallel programs to ensure that no two processors write to the same memory
location at the same time, current systems commonly provide hardware support for the
“lock” and “unlock” operations. If we associate with each shared data structure a lock
variable, then a “lock” operation preceding the critical section guarantees that when the
access is granted the processor executing the code in the critical section is the sole processor
which is operating on the data. During this period any other processor executing the “lock”
operation on the same lock variable will simply spin or busy wait. An “unlock” operation
following thé critical section resets the lock variable so that another processor may gain
access to the protected data.

When multiple processors cooperate to solve a problem, it is common that the data one
processor needs to work on at a later stage are produced by a different processor or a number
of different processors at an earlier stage. Therefore, the processors must coordinate their
actions so that the updates to the data are carried out in a correct sequence. Depending on
whether the processors synchronize with each. other ezplicitly or implicitly, we have either
a synchronous algorithm or an asynchronous algorithm. In the former case, the parallel
algorithm is usually expressed as a number of sequential stages which dictate the order the
data are modified or produced, and the parallelism is obtained by having all processors

work on disjoint subsets of data concurrently within each stage. Therefore, if the processors

explicitly synchronize with each other by waiting at the end of each stage until the slowest
processor completes its work for the current stage, it is guaranteed that the data is ready for
the next stage of computation to proceed. A device that is commonly provided in the system
library for explicit synchronization among multiple processors is the barrier function. The
parameter to the barrier function is a counter variable which is initialized by the user to
be the number of processors participating in the explicit synchronization. All processors
stop at the barrier by calling the barrier function with the specified counter variable. The
processors checking in earlier are suspended until the last one checks in. At that time all
processors are released simultaneously to resume the computation.

In the case of implicit synchronization, the readiness of each data structure for a partic-
ular stage of computation is indicated by some global variables in the shared-memory. The
status of such global variables are normally updated by the processor which is currently
operating on the data structure to reflect its readiness for the future stages of computa-
tion. Therefore, there is much freedom in arranging the computations in an asynchronous
algorithm to balance the work load and exploit the parallelism.

An integral part of our research is the complexity analysis of the synchronization cost,
work load distribution and performance of the proposed algorithms. The following assump-

tions are implicitly made about the multiprocessor system in our analytical model.

1. All processors are running at the same speed.
2. The application program is the sole process running on each processor.

3. All processors participating in an application are operational throughout the entire

computation.

4. The arithmetic cost is measured by the number of multiplicative floating-point oper-

ations.

5. The synchronization cost in addition to the arithmetic cost is analyzed separately.

1.4 Local-Memory Multiprocessors

A local-memory multiprocessor differs from a shared-memory multiprocessor in its distri-
bution of memory to individual processors. Each processor on a local-memory machine
executes its own program and operates on its own data out of its private memory. There is
neither globally shared memory nor connection between one processor to another processor’s
memory modules. Instead, the processors are connected by a network of communication
channels and they synchronize with each other by sending and receiving messages over the
network. Depending on the circumstances, the message can either be data for another
processor to work on or status information for every one on the network. This presents a
different set of challenges for both the hardware designer and the algorithm designer.

For the hardware architect, tradeoff must be made between the cost of equipment and the
richness of the connection topology. Networks of various types and topologies are used. They
can be of fixed topology, such as a ring or mesh, or can be packet-switched or circuit-switched
networks. The following examples are given in [21]. The Finite Element Machine [58] is a
mesh-connected lattice of 36 processors. The Cal-Tech Cosmic Cube contains 64 processors
connected as a binary hypercube of dimension 6. The Non-Von (Columbia University) is
a tree of processors. The CHiP architecture is a lattice of processors [82] interconnected
via a circuit-switching network which can be configured as any member of a large family of
graphs. The Boolean Vector Machine (Duke University) is an implementation of the Cube
Connected Cycle network [73]. The hypercube is probably the most common topology
currently in use, and multiprocessors based on it are available from several commercial
vendors.

The challenge to the algorithm designers is to partition the computation and data in
such a way that each processor has the data it needs in its local memory at the time that
it needs it, and that the time consumed by data transmission contributes little to the total

time of the parallel algorithm. Since many networks allow the embedding of a variety of

10

topologies, taking on this challenge on them on one hand permits more freedom in exploiting
the parallelism in the numerical computation and on the other hand, the algorithm designers
are faced with the task of envisioning a communication topology which is most efficient for
the application. A hypercube network is an example in which various topologies (loop,
mesh, tree, toroid, etc.) can be embedded. Since we are primarily interested in designing
parallel algorithms for the hypercube, we shall briefly review the properties of the hypercube
network in the following discussion.

A hypercube of dimension d consists of 2¢ identical processors. Each processor is as-
signed a unique identifier (ID) from the integers in {0,1,2,---,2¢ — 1}, which can each
be represented as a d-bit binary string. A direct communication channel is provided for
every pair of processors whose ID’s binary representations differ in one single bit. Thus,
each processor on a d-dimensional hypercube has exactly d neighbours, and a (d + 1)-
dimensional hypercube is constructed by the pairwise connection between the processors of
two d-dimensional hypercubes. We depict in Figure 1.1 hypercubes of dimension 1, 2 and
3. The processor ID is used to specify the receiver of the message and distinguish code
segments for different processors. If the specified receiver is not a neighbour of the sender,
the message will be forwarded by the intermediate nodes. Letting p denote the total number
of node processors on a d-dimensional hypercube, the longest communication path between

two arbitrary nodes is d or log, p.

Operating systems for local-memory multiprocessors normally provide message-passing
primitives for sending and receiving data and synchronization information over the network.
The two primitives which are most commonly used in coordinating the asynchronous actions
by different processors are the non-blocking send and the blocking receive. Execution of a
send does not cause the sending processor to wait for a reply. On the other hand, execution
of a receive causes the processor executing it to be suspended until the message is received.
Messages that arrive at the destination processor before the execution of the receive are

placed in a queue until needed. They are the only message passing primitives we assume in

11

—e

° 1 00 o1 060 oe1

d=1 d=2 ' d=3

Figure 1.1: Binary hypercubes of dimension 1, 2 and 3.

developing the parallel algorithms for hypercubes in this thesis.
To analyze the communication cost and arithmetic cost of the algorithms we propose

and implement on the hypercube multiprocessor, we model the system by the following

rules.

1. The p = 2¢ processors of a d-dimensional hypercube are operational throughout the

entire computation.
2. All processors are running at the same speed.
3. Each multiplicative floating-point operation takes = units of time.

4. When processor P; sends a message of n floating-point numbers to a directly connected

neighbour P;, the message is received by P; after

B+ nA

units of time, where § is the start-up time and X is the time for sending one floating-

point number across one link in the network.

12

5. When two neighbouring processors exchange messages of size n; and nj, the time for

the exchange is modeled as sending two messages sequentially across one link, namely
28+ (ni + nj)A
units of time.
6. The ratio 7/ is a hardware-dependent parameter in our model.
7. The time for data transmission is not overlapped by computation.

Since the commercial availability of hypercubes in 1985, there has been a conference
devoted specifically to its architectures, programming environments and applications each
year. The proceedings entitled “Hypercube Multiprocessors 1986” [48] and “Hypercube
Multiprocessors 1987” [49] contain a hundred papers given at the first two conferences. The
wide range of topics covered include architectures, operating systems, programming lan-
guages, algorithms, data structures, and applications. Special emphasis was given to matrix
computations and partial differential equations in [49]. With the continued advancement
in technology, the future generations of hypercubes are expected to have more powerful
processors (and many more of them), larger memories, faster internode communication and
external I/O capacity within each individual processor. Developing efficient algorithms
and programming methodology to realize the supercomputer potential of this continuously

evolving architecture is currently at the forefront of parallel processing research.

1.5 An Outline of The Thesis

In Chapter 2 a new algorithm for computing the orthogonal decomposition of a rectangu-
lar m X n matrix A on a shared-memory multiprocessor is described. The algorithm uses
Givens rotations, and has the feature that its synchronization cost is low. In particular, our

analysis indicates that the upper bound of the synchronization cost is independent of m,

13

the row dimension of the matrix A. This is important for machines where synchronization
cost is high, and when m > n. The work load distribution and the expected performance
of the proposed algorithm are both analyzed. The algorithm is implemented in FORTRAN
and tested on a Sequent Balance 8000 parallel computer, which is a bus-connected multi-
processor having 8 processors and 8M bytes of global memory. Timing results are provided
for comparing synchronous and asynchronous implementations of the proposed algorithm,
and our implementation of the pipelined Givens method proposed in [13].

In Chapter 3 we describe a new algorithm for computing the Q R factorization of a rect-
angular matrix on a hypercube multiprocessor. The scheme involves the embedding of a
two-dimensional grid in the hypercube network, where each row or column of the grid is an
embedded subcube. We employ a global communication scheme which uses redundant com-
putation to maintain data proximity, and the mapping strategy is such that the processor
idle time remains constant (for square matrices) or small (for rectangular matrices) when
the number of processors is fixed regardless of the size of the matrix. A complexity analysis
tells us what the aspect ratio of the embedded grid should be in terms of the shape of the
matrix and the relative speeds of communication and computation. Numerical experiments
performed on an Intel Hypercube multiprocessor support the theoretical results.

In Chapter 4 we consider the QR decomposition of a class of large sparse matrices on a
hypercube multiprocessor. The proposed scheme is essentially a parallel implementation of
the general row merging scheme developed by Liu in [61] for sparse Givens transformations.
We show how multiple loops of different sizes can be embedded in the hypercube network and
how this novel topology is employed in the proposed algorithm. The performance of the pro-
posed algorithm applied to a model problem is analyzed and computation/communication
complexity results are presented.

The analyses given in Chapters 2, 3 and 4 were aided significantly by the use of MAPLE,
an algebraic manipulation system developed at the University of Waterloo [7].

Chapter 5 contains our concluding remarks and a discussion of some related future

research problems.

14

Chapter 2

QR Factorization of a Dense
Matrix on a Shared-Memory

Multiprocessor

2.1 Introduction

In this chapter we present an algorithm for reducing an m x n (m > n) matrix to upper
triangular form on a shared-memory multiprocessor having p identical processors. The
use of Givens rotations has been studied for parallel implementation on shared-memory
multiprocessors by other researchers in [9,13,64,66,76,78]. Since the parallel algorithm we
describe is also based on Givens rotations, a brief review of their schemes will provide useful
background information.

It is well-known that there is much freedom in the order of applying the Givens rota-
tions. For a particular Givens ordering, the theoretical minimum number of parallel steps is
obtained by assuming that all independent (or disjoint) rotations can be computed simul-

taneously in one step. The parallel algorithms presented in (9,13,64,66,76,78] are all based

15

16

on “Givens sequences”, that is, sequences of Givens rotations in which zeros once created
are preserved. The question of whether temporarily annihilating elements and introducing
zeros that are destroyed later can lead to any additional parallelism is discussed in [9]. The
odd-even ordering used in the rotation method proposed by Luk in [65] has this property
of creating redundant zeros.

Figures 2.1-2.3 illustrate the different Givens sequences used in [9,13,64,66,78] for an
8 X 8 matrix. For each sequence illustrated, the disjoint rotations are identified by the same
step number. Since the elimination order is from left to right for all three Givens sequences,
the first k£ (k < 8) columns of each matrix illustrate the annihilation ordering for an 8 x k

rectangular matrix.

(X X X X X X X X \
7 X x X X xX X X
6 8 x x x x x x
5 7T 9 x X x X x
4 6 8 10 x x x x
3 5 7 9 11 x x x
2 4 6 8 10 12 x x

\ 1 3 5 7 9 11 13 x}

Figure 2.1: Standard Givens sequence [78].

For the Givens sequences illustrated in Figures 2.1-2.3, m/2] processors are required
to factor an m X n matrix using the minimum parallel steps. The availability of |m/2]
processors is assumed in the algorithm analyses in [9,66,78], and the optimality of the greedy
Givens sequence is established in [9] under the same condition. The parallel algorithm
proposed by Sameh and Kuck [78] is based on the standard Givens sequence (Figure 2.1),

for which (m + n — 2) steps are required to factor an m x n matrix using up to lm/2]

17

X

X

8 9 10 11
\ 7 8 9 10 11 12 13 «x

7

6

Figure 2.2: Dongarra et al. [13] and Lord et al. [64].

X

4 7 x

2

X

3 6 8 x

1
1
1
1

X

3 5 7 9

X

X

2 4 6 8 10
2 3 5 7

llx/

9

Figure 2.3: Greedy Givens sequence [9,66].

18

processors. A parallel algorithm based on the greedy Givens sequence (Figure 2.3) was
proposed independently by Modi et al. [66] and Cosnard et al. [10]. While there is no
exact analysis, by assuming m goes to infinity with n fixed, Modi and Clarke’s approximate

analysis in [66] gives the asymptotic complexity of
log, m + (n — 1)log, log, m

parallel steps. Although the reduction in the number of steps from (m+n-2)to
(log; m + (n — 1)log, log, m) is impressive, the efficiency of this algorithm is not satisfac-
tory since |m/2] processors are used. For n fired, m — oo, Cosnard et al. [9] derive an
efficiency of

2n/log, m + o(1/logy, m).
They assume that all rotations in the serial Givens scheme or in the parallel scheme take
the same amount of time.

Cosnard et al. also derive the asymptotic complexity of 2n parallel steps for the case
m/n? tending to zero as m and n go to infinity. In view of the relatively small number of
processors on a shared-memory multiprocessor, it is unlikely that the assumption of |m /2]
available processors will hold for any problem of reasonably large size. Therefore, these
complexity results are mainly of theoretical interest.

The parallel algorithms proposed in [13] and [64] are designed for a shared-memory
multiprocessor with low synchronization overhead. The parallel ZIGZAG scheme proposed
by Lord et al. in [64] can be viewed as implementing the Givens sequence shown in Figure 2.2
on a square matrix of order n using |n/2| processors. The asymptotic efficiency of this
algorithm is 44.4%. For n = 17, the actual efficiency of 45% approaches the asymptotic
value [64]. Thus, the predicted (and actual) efficiency of this algorithm is low, although this
is not surprising given the large number of processors employed. The COLSWP (column-
sweep) Givens scheme proposed in [64] and the pipelined Givens method proposed in [13]

assume a relatively small number of processors; i.e. , the number of processors is assumed

19

to be much less than n. When p, the number of processors, is much less than |m/2], the
parallelism allowed by a particular Givens sequence can be exploited in a variety of ways.
Indeed the COLSWP algorithm can be viewed as implementing the Givens sequence shown
in Figure 2.2 in a column-by-column manner so that the zero elements in each column are
created by the same processor. For the pipelined Givens method, the same Givens sequence
is implemented in a row-by-row manner so that the zero elements in each row are created
by the same processor.

As discussed in Chapter 1, on a shared-memory computer with multiple processes run-
ning in parallel, the processes must be synchronized in order to prevent their simultaneously
updating shared data and thereby corrupting it. This synchronization can be achieved
through the use of “locks”. A lock ensures that only one process at a time can access a
shared data structure. A lock has two values: locked and unlocked. Before attempting
to access a shared data structure, a process waits until the lock associated with the data
structure is unlocked. The process then locks the lock, accesses the data structure, and
unlocks the lock. In our analysis in section 2.4, we assume a fixed overhead for acquiring
and releasing a lock and measure the synchronization cost by the number of times a lock is
accessed. We do not include the time a processor mé.y be waiting for the lock to be unlocked
in the synchronization cost because such waiting time is accounted for in the performance
analysis of the parallel algorithm given in section 2.6.

The synchronization cost of the parallel schemes in [13] and [64] is not analyzed. This
is reasonable because low synchronization overhead was assumed. Our analysis of the
pipelined Givens algorithm in [13] shows that its synchronization cost is a function of m, n,
and p. The dependence of the synchronization cost on the row dimension m is undesirable
when m > n, which is not uncommon. This prompted us to devise a parallel algorithm for
which the synchronization cost is independent of the row dimension m. Such a scheme is
particularly suitable for multiprocessors whose synchronization overhead is significant.

The algorithm we are going to propose in the next section is similar in several aspects

20

to Sameh’s 2-stage orthogonal factorization algorithm in [76]. After our algorithm is de-
scribed and analyzed, we shall compare and contrast the two in the section containing our

concluding remarks.

2.2 The Algorithm

The algorithm we propose has been designed for shared-memory multiprocessors. The main
objective of our design is to reduce the synchronization cost and processor idle time by
assigning the processors to work on disjoint sets of rows as much as possible. The algorithm
has two phases: an independent annihilation phase (IAP) and a cooperative a.rinihilation
phase (CAP). For ease of exposition, we first describe the algorithm for factoring an m x n
matrix A using p processors, where m and n are integral multiples of p, and m /p > n. For

example, assuming p = 4, a matrix of dimension 32 x 8 satisfies the above condition.

2.2.1 The Independent Annihilation Phase

In the IAP, each processor is assigned a block of m/p consecutive rows of A. Each processor
reduces its own block of rows to an upper triangular submatrix of order n (n < m/p by
assumption). Figure 2.4 depicts the action by four processors on a 32 X 8 matrix.

For this example, each processor performs 28 rotations independently and simultane-

ously. In the IAP, each processor does equal work, and there is no idle time or synchro-

nization cost.

2.2.2 The Cooperative Annihilation Phase

In the CAP, the rows in the p upper triangular submatrices are assigned to groups by
collecting the rows with leading nonzero in column j into a group Gj ,1< 3 <n. For the
case m/p > n, at the end of the IAP we have exactly p rows in each Gjfor1 <j<n.

The collection of rows in G; can be viewed as a p X (n — j + 1) rectangular submatrix.

w »n W X X

10
11 12 13 14
16 17 18 19
22 23 24 25

10
11 12 13 14
16 17 18 19
22 23 24 25

Figure 2.4: Independent annihilation by four processors.

X X X X X

X X X X X

15
20
26

X %X

N—

—

21

22

If a Givens rotation is applied to the i** row and the j* row to annihilate the leading
nonzero a; in the jt* row, row i is referred to as the “pivot row”. By choosing one row in
each group as the pivot row, the task of eliminating the leading nonzeros in the remaining
(p — 1) rows in one group is independent of the same task in another group. We shall
arbitrarily choose the lowest numbered row in each group as the pivot row. In order to have
these independent tasks performed by the p processors simultaneously, and also maintain
the work load balance, we assign groups Gy to G, to the p processors in order, with the
assignment of group G,41 “wrapping around” to processor 1. Figure 2.5 illustrates the
initial data assignment for the example in Figure 2.4. The matrix elements assigned to the

ith processor are labelled by P;.

The “top” submatrix in Figure 2.5 contains the pivot rows, and the main diagonals of the
remaining (p — 1) submatrices correspond to the nonzero elements which can be eliminated
by the p processors independently and simultaneously. Recall that using the wrap mapping,
each processor is assigned n/p groups, and each group has (p — 1) leading nonzeros to be
eliminated. Therefore, after the p processors each perform n(p—1)/p rotations (in parallel),
we have eliminated the (p—1) main diagonals of the “bottom” (p—1) triangular submatrices.
The remaining nonzeros are depicted in Figure 2.6. We then apply the same idea to eliminate
the elements along the first superdiagonal in each of the (p— 1) submatrices, using the rows

in the top submatrix as the pivot rows.

The elimination of the diagonals can be implemented in several ways. In the implemen-
tation we describe in the next section, the pivot rows in the top submatrix are statically
assigned to the p processors using a wrap mapping as explained earlier, and the remaining
data are accessed in groups by each processor. To be accurate in what follows, we redefine
group Gj initially to contain (p—1) rows with leading nonzero in column j excluding the jth
pivot row. We adopt the convention of labelling the elements of pivot rows by P; if they are

assigned to processor P; in the static mapping, and the remaining rows are labelled by their

P
[A n

P P]
1
12

P, P;
1 1
P2

P P]
1
]2

b p IS.
T
ng
d esSSO
laal
111
A.P
2 5

Py
P
P

P,
P,
P

P,

Py

P

Py

P,

e

P,

b lie Bl

P,

I P
el
d P

P,

P
P,

P,
P,
P
P,
P,

Py
P

P,
P,

Py

P,

P,

P
P,
P,

P,
P,
P
P,
P,

P,
P,

P,
P
Py

Py
P,

Py

P

P,
I 5

P
P,
Py
Py
I 1

Py

Py
P

Py
P,
P,
Py

o lie o
FP I

Py
Py
P
Py

F ¥

Py
Py
Py
P,

P
P,
P
P,
P

P
Py
Py
P,

S P
ol
¥

P,

P,
P

P,
P,
P

P
P,

I I

P,

23

(P A B R
PR B P
P P

P,

0 X
0 x

X

0

0 x x
X

X

0

0 x
0 x

X

0

Figure 2.6: CAP-after the annihilation of three main diagonals.

P
P,
P
P,
P

o X X X X o X X X X

o X X X X

Py
P,
P
P
I3

o X X X X X o X X X X X

o X X X X X

51
P,
P
P,
P

o X X X X X X o X X X X X X

o X X X X X X

o X X X X X X X © X X X X X X X o X X X X X X X

24

25

respective group number G;. Referring to Figure 2.7, we see that after the annihilation
of main diagonals, the leading nonzero position in group G; becomes (j + 1). Therefore,
the processor which is assigned the j% (j > 1) pivot row will now access group G;_; to
eliminate the current leading nonzero elements in column j. We illustrate this mapping in
Figure 2.7, where the three superdiagonals correspond to the elements to be eliminated in

this step.

After the elements on the first superdiagonals are eliminated, the processor which is
assigned the j** (j > 2) pivot row can now annihilate the current leading nonzero elements
in group G;j-2. The elements to be eliminated in this step lie on the second superdiagonals.
Thus, it is clear that if the p processors simply synchronize with each other before starting
annihilation of elements along each diagonal, the (p — 1) submatrices are eliminated one di-
agonal at a time without any other synchronization cost. In particular, all processors access
disjoint sets of pivot rows and disjoint groups when eliminating elements along the same
diagonal. Thus, there are no shared data. Since each n X n upper triangular submatrix has
n diagonals, the synchronization cost for the parallel algorithm is clearly O(n). Such an
implementation is particularly suitable for a machine with high synchronization overhead.
We refer to this version of implementation as the synchronous implementation. In the next
section we discuss some implementation details and describe an asynchronous implemen-
tation which can further reduce the processor idle time by increasing the synchronization

cost to O(n?/p).

2.3 Implementation Issues

The implementation of the independent annihilation phase (IAP) is straightforward. We
therefore concentrate on the implementation of the cooperative annihilation phase (CAP)
in this section. The data accessed by each individual processor during the entire elimination

process is dictated by the initial static allocation of pivot rows. For example, if processor

P P P
/ P, P
P

0 G Gy
0 G2

0

0 Gi Gi
0 G2

0

0 Gi Gy
0 G

0

g ol o pp g p da.gO ais.
C
1gu

P,
P
P
P,

Gy

G3

Gy
G2

Py
P,
P
P,
R

Gy
G,
Gs

Gy
G2

Gy

51
P,
P
P,
I51

G2
Gs
G,
Gs

G2
Gs
G4
Gs

51
P,
P
P,
P,

Py

Gy
G2

Gy
Gs

Gy

Gs

Gy

Gs

Ge

G

Gs

Gs
Gs

Gy
0

26

27

P; is assigned pivot rows
{k1,k2,. .. Ky},

processor FP; participates in eliminating the elements along the main diagonal by accessing
data in groups

{Gk,,Gry»- -, G, }-

To eliminate elements along the j** superdiagonal, processor P; accesses data in groups
{Gri-j, Gry=js - - - ,Gk"',_j}.

Encountering a group G, with p < 0 simply indicates that there are no more rows with
leading nonzero in the same position as the corresponding pivot row. For example, if
(k1 =) < 0, the pivot row k; is not be modified any more and is row k; of the upper
triangular factor R.

Observe that the group G, must be eliminated against pivot rows p,p+1l,...,nin
strict order. Whether G, can be reduced against pivot row (p + 1) can be determined by
simply checking whether the current position of its leading nonzero elements is in column
(p + n). Therefore, if we associate with each group G; a shared variable first[j] to indicate
the current position of its leading nonzeros, all processors can proceed by themselves to
complete their share of work in the entire CAP process using the following synchronization
mechanism. For convenience in describing the algorithm, we assume that processor P; is
assigned pivot rows {ki,k2,---,k,}. The pivot row numbers for P; are stored in a local
array pvts[j],1 < j < pi. We also need a global array first to record the current position of
the leading nonzeros for each group, and a local array map to identify the groups which are
currently due to be processed by each individual processor. Note that first is shared among
multiple processors. Therefore, our implementation must ensure that only one processor can
update first at a time. The basic algorithm executed by processor P; can now be expressed

in the following form.

28

for j=1,2,...,u; do
puts[j] « k;
map(j] — k;
jstrt « 1
while jstrt < u; do
for j = jstrt,jstrt +1,...,u; do
p «— map(j]
wait until first[p] = puvts[s]
reduce rows in group G, using pivot row puts(j]
first[p] «— first[p] + 1
map(j] — map[j] - 1
if map[jstrt] = 0 then
jstrt — jstrt + 1

The algorithm and its implementation can easily handle the case where m/p < n. For
P = 4, a matrix of order 16 x 8 is such an example. For this example, in the IAP each
processor will reduce its block of rows to an m/p by n upper trapezoidal submatrix. The
number of rotations performed by each processor is (m/p—1)m/2p. The remaining nonzero

elements are shown in Figure 2.8 for an 16 X 8 example.

When m/p < n, the top upper trapezoidal submatrix does not contain a full set of pivot
rows. For the example in Figure 2.8, the pivot rows 5, 6, 7, and 8 are all to be generated
during the elimination process in the CAP. An important observation which facilitates a
clean implementation is that the currently non-existent pivot rows will each be generated
from the data in an existing group. Therefore, we can still statically assign n pivot rows
to the p processors and record them in the puvts and map arrays as before. In addition,

each processor records whether group G; exists for 1 < i < n. For each entry in mapl(i],

(P, P,
Py

G2

G2

<O p]. .
X e
I 8

P,
P,
P;

G1
Gs
G3

Gy
G2
Gs

G
G2
G3

Py
P,
P;
Py
G
G,
Gs
Ga
Gy
G2
Gs
Gy
G
G,
Gs
G4

P,
P,
P
Py
G
G
Gs
Gs
Gy
G,
Gs
Gy
G
G2
Gs
G4

Py
P,
P;
Py
G
G,
Gs
Ga
G
G2
Gs
G4
G
G2
Gs
G4

Py
P,
P
Py
G
G2
Gs
Ga
G
G2
Gs
G4
G
G2
Gs
Gy

29

30

the processor processes Gy if it exists, and does nothing other than updating mapl[i]
to be (map[i] — 1) if Gpqpp) does not exist. Since map[i] is updated each time, eventually
G map[i] Tefers to existing data with leading nonzero in position pvts[i]. One row is now taken
from G qp(i to become the pivot row, and the remaining rows (if there are any) are further

reduced.

2.4 Analysis of Synchronization Cost

The actual implementation of the synchronization mechanism for the general case (m/p < n
or m/p > n) needs to maintain two attributes for each group G;, namely first[i], the
current position of the leading nonzero elements in G;, and nrows[i], the current number
of rows in G;. Both items are shared data to be updated and read by multiple processors.
The exclusive access of these two items is ensured by a lock associated with group Gj,
namely gplock[i]. We let 8 denote the total time of acquiring and releasing a lock. The
synchronization mechanism described in the last section requires 8 time for each updating
of the array first. For the general case, nrows[i] can be updated together with first[i] under
the same lock.

We now analyze the synchronization cost for the cases m/p > n and m/p < n separately.
For convenience, we assume m and n are integral multiples of p. If m/p > n, we have n
pivot rows and n groups of data. Since the i** pivot row is used to eliminate the leading
nonzero elements in groups G;, Gi_1, ..., and G; in strict order, there are exactly i groups
to be processed by the it* pivot row. The synchronization cost associated with the it pivot
row is therefore i3. Recalling that the pivot rows are assigned to the p processors using a
wrap mapping, we can therefore compute the synchronization cost of processor P by

2_y

S(P) = A3 (k+p0)

=0

31

2

n n n

where 1 < k < p. For the case m/p < n, the synchronization cost associated with the
first m/p pivot rows is i3, where 1 < i < m/p. For m/p < j < n, the synchronization
cost associated with row j is at most Sm/p. Assuming further that m/p is also an integral

multiple of p, the synchronization cost of processor Py is as shown in (2.2).

ﬁ--l
5Py < B| X (k+p0) +ﬂ(mw>

=0 ¥4 p
mn m2 m m o
"(Tz‘%ﬁ*’“?'%)' (22

2.5 Analysis of Work Load Distribution

We now examine how the computational work is distributed among the p processors in the
CAP. We denote the work performed by the k** processor by Wy(Pr), 1 < k < p, and first
consider the case m/p > n. Processor P is assigned the set of pivot rows {k,k +p, k +
2p,-+-,n — k + p}. As shown in the last section, the number of groups to be processed by
the it* pivot row is exactly ¢, and there are (p — 1) rows in each group. The elimination of
one of the (p — 1) leading nonzeros in column i requires one rotation applied to a pair of

rows of length (n — i + 1), which amounts to 4(n — i + 1) multiplicative operations. Thus,

z_y
P
Wo(Pe) = 4(p—1) Y (k+Lp)(n—k—tp+1)
£=0
= ___(p; 1) (%na +2n2 —n <2P + %Pz — 4k — 4kp + 4"72))) (2.3)

where 1 < k < p. The total serial work in the CAP can be computed by assuming that the

(p— 1) upper triangular submatrices are eliminated by a single processor one submatrix at

32

a time, using the rows in the top submatrix as pivot rows. This yields

W1 = 4(p-1) ‘:: z(—zgﬁ
=1
= (p-1) (%ns +2n% 4+ %n) . (2.4)

The optimal work load distribution is thus

L4 (p—1) <§n3 +2n2 + %n) . (2.5)

Comparing equations (2.3) and (2.5), we see that the work distribution of the CAP differs
from the optimal distribution in only the low order O(n) terms.

For the case m/p < n, we further assume that m/p is an integral multiple of p, and that
n = 3%, where s is an integer in [2, p]. The following observations are useful in deriving

the work load of processor Pg.

Observation 1. Z<nandn= s% imply that 2 pivot rows exist at the beginning of
the CAP, and that the other (s — 1)2 pivot rows are to be taken from the remaining
2(p — 1) rows during the CAP.

Observation 2. The wrap mapping dictates that pivot rows
{ 3+EZ+p+k- 2 +(B-1p+k,

(3—1)%+k,(8—1)%+p+k,“°,(8-1)%-‘-(3—l)p-{-k }

are to be generated by processor Pj.

Observation 3. The total number of rows to be reduced by processor P by pivot row

(i’—;*+£p+k) is (%(p—i)—fp—k),andthelengthofeachrowis (n—i% -lp—-k+ 1).

33

Applying these observations, we obtain

;’-3—1
Wo(Pe) = 4(p—1) D (k+pt)(n—k—pl+1)+
£=0
s—1m/p*~1 m
42 Z ((p—1)—tp- k> (n-—i——lp—-k+1)
i=1 =0 p
= (22— 2)”1_3_2323 ™ _gem?
= (23 2.s+3 3 p + (4s 2)p2 2s P
+0(m). (26)

The total CAP serial work for the case m/p < n can be computed by subtracting the
total IAP serial work from the total work:

W, = 4Z(m—z)(n—z+1) 4Zp(——)(n-—i+1)

i=1
2 m2n 2 m3 m?
= 2mn? — 253 —2-——-+4mn—2n 4+ -——-2—
3 p 3 p? P .
4
+§(m—n). (2.7)

The optimal work load distribution is W /p. In order to compare with W,,(P;), we simplify
W1/p by substituting n = s%. This yields

m_(2 g)ms 2 ym? am?
, = 2s 2.s+3 o 33 - + (45—) —23)
+0(m). (2.8)
Comparing Wy,(Px) with W /p shows that
W,
W,o(P:) — ?1 = O(m). (2.9)

Thus, for both cases (m/p < n, m/p > n), W,(Px) and W, /p differ only in their low order

terms.

34

2.6 Performance Analysis

To analyze the performance of the parallel algorithm in the CAP, first note that the nonzero
elements in the same group are eliminated by different processors in strict order. It is clear
that when p groups of data are processed in parallel, the time is bounded by the processing
time of the group which requires the largest amount of computation. We consider the
parallel time (in units of multiplicative operations) for factoring an m X n matrix using p
processors. As usual we assume m and n are integral multiples of p.

We first consider the case m/p > n. In this case, there are n groups of data, each of
(p — 1) rows, to be eliminated entirely in the CAP. Because the n groups are assigned to
the p processors using a wrap mapping, an upper bound of the CAP parallel time T, is
given by assuming that the nonzeros in groups G4, Gp+15 G2p41, + vy Gnopy1 are eliminated

sequentially. Letting A(Tp) denote the upper bound of T, we obtain

AT = 4p-1)Y 2n-ptn—pe+ 1)
{=0
- (2;_1_) (.i.ns) +pn? — % +0(n). (2.10)

Note that T, = A(T}) for the synchronous implementation of the CAP.

For the asynchronous implementation described in detail in Section 3, when P, is pro-
cessing group Gn—p+1 to eliminate its leading nonzeros in the j** column, it is possible for
a different processor P, to start its processing of group G to eliminate its leading nonzeros
in the (j + 1)°* position. We thus expect T}, < A(Tp). Nevertheless, when m/p > n, the
serial time for the CAP is given by

2
T = (p-1) (30°) + 0%,
and A(Ty) is thus optimal in its leading term. We therefore cannot expect dramatic improve-

ment in T, using the asynchronous version of the implementation. Experimental results

given in Section 2.7 confirm this expectation.

35

For the case m/p < n, we again assume that m/p is an integral multiple of p, and that
n = sZ, where s is an integer in [2, p]. The following observations are helpful in analyzing

the performance of the algorithm.

Observation 1. % <mand n = s-'pﬁ imply that (s — 1)% pivot rows are absent at the

beginning of the CAP.

Observation 2. Since processor Py is assigned pivot rows
m
{kak'{'pa"”; _p+k})

the (p — 1) rows in group G'z;; will initially be reduced by processor P, and have the
position of their leading nonzeros updated to be first (%) = % + 1. Because pivot
row (-’z’f + 1) does not exist, when group G% is next processed by processor P;, one
row will be taken to serve as the pivot row. In general, the wrap mapping dictates
that the first (p — 1) pivot rows are taken from group G’z’z}, and the next (p— 1) pivot

rows are taken from group G’%t._l, and so on, until all of the pivot rows are present.

O.bservation 3. Based on observation 2, an upper bound for the parallel time of the CAP
is the total time to process the groups G1, Gp+1, G2p+1, - - - and ng —p+1 Sequentially.
The number of rows in each group could change dynamically during the CAP, and
hence we have to keep track of the actual number of rows in our analysis in order to

have a sufficiently tight upper bound.
The following lemmas are needed to prove Theorem 2.4.

Lemma 2.1 If all of the n pivot rows are already present, then the total number of multi-
plicative operations required to eliminate the nonzeros in groups Gi, Gp41, Gaop+1, ++- and
G'z;;_p_,_l is given by

&1

T, = 4(p-1)'Y Hn-p)n—pt+1)
£=0

36

mn? min 2md 2 2 1
= 29— _ 9 fudibhdit S — — 4= —
» 2 +3 3+2mn+3m » +3pm
2 2 2 3
2n;n_2mn+2mn+m _m_2m4
P p? o P p 3p
2 .m3 2 m3
= (@ -2s43) 5 - (2 -2+)5 +0 (m?). (2.11)

Lemma 2.2 If we assume for convenience that u = %}_)l-ii is an integer, then (u—1)(p—1)
pivot rows will be taken from groups G.v;_n_p+1, G%_gp.'_l, co-, and Gm D (u-1)p+1 in order.
Moreover, the size of the £* row taken from group Gm_jpt is given by
P
. m .
f(mynvz’p7£)=n";_(p— 1)2_(1—1)(P—1)P—£+1.

Proof: This follows directly from observation 2. a
Lemma 2.3 The number of multiplicative operations to be saved by not eliminating a row
of size n is n(n+ 1)/2.

Theorem 2.4 An upper bound for the parallel time for the CAP is given by

ANTp) = (232—2s+§)%;—§s3m +O()

Proof: From Lemmas 2.1 to 2.3, we have

u—lp—l
AMTy) = T,-43233 % (o, ,€) (f(my ey p,0) + 1),
t—ll—l
= (23 —25 4=)%;—g E:—+O(m2). (2.12)

a
The total CAP serial work W; for the case m/p < n was derived in the last section. We

use it here to represent the serial time 77. Comparing A(7}) in Theorem 4 with T} /p from

equation (8), we have

A(Tp)—% = 0(m?). (2.13)

37

Since T, < A(Tp), we have shown again that the CAP parallel time T, is optimal in its
leading term. The actual performance of the algorithm is reported in the next section.
We now explain why A(T}) has included the time a processor may spend waiting for
a lock to be unlocked. Recall that the p processors take turns processing each group of
data. The lock associated with each group is thus accessed by two different processors in
any two consecutive times. Let us consider any one particular group in G, Gpt+1, Gapt1,
-+s Gn—p+1, say Ga, and suppose that processor P, is currently processing this group. We
can immediately infer from our data mapping strategy that the next processor to process
group Gq is P¢, where § = v+ 1if vy < p, or £ = 1 if v = p. To determine the time Py
may be waiting on the lock associated with G, recall that in computing A(T,) we assume
that the nonzeros in groups G1, Gp41, Gapt1, - - -, Gn—pt1 are eliminated sequentially. This
assumption implies that P waits until group G, is completely processed by P, i.e., the

maximum possible waiting time has been included in A(T},).

2.7 Numerical Experiments

Our experiments were performed on a Sequent Balance 8000 parallel computer having 8
identical processors and 8M bytes of global memory. All processors and memory modules
are linked by a high speed bus. The parallel algorithms described in this chapter were
implemented in FORTRAN. Since the use of Givens rotations is row-oriented and a two-
dimensional array is stored column by column in FORTRAN, the transpose of the coefficient
matrix was stored and operations on the matrix were done in a column-oriented manner.
The execution times reported below exclude only the time for generating the coefficient
matrix. In particular, for the parallel algorithm, the execution time includes the overhead
in creating multiple processes. Since spawning a child process on the Balance 8000 is an
expensive operation (30-50 milliseconds), this overhead is significant for small problems and

large numbers of processes.

38

The execution times (in seconds) of the serial and parallel algorithms are denoted by T,
and T respectively, and as in previous sections, p denotes the number of processors. T and
T should not be confused with T} and T}, in our performance analysis section, because the
latter two represent the serial and parallel time for the CAP only.

Table 2.1 gives some timing results of the serial algorithm and the asynchronous imple-
mentation of the parallel algorithm. The entries of the m X n test matrices were generated

using a random number generator. The reported efficiency is computed using

3

pxT"

efficiency =

Table 2.2 compares the execution time of the asynchronous implementation with the
synchronous implementation for the same set of matrices. The results show that the former
is slightly faster than the latter for all test matrices. This is not surprising because the
synchronization overhead on the Balance 8000 is very low, so the saving from reducing
synchronization cost is evidently less significant than the saving from reducing idle time.

However, as our analysis in Section 2.6 predicted, the difference is not very great.

To study the effect of high synchronization cost, we simulated that situation by executing
a dummy assignment statement five hundred times whenever a lock was accessed. We
then compared the asynchronous implementation, the synchronous implementation, and our
implementation of the pipelined Givens method given in [13] for problems of three different
sizes. For the 1000 x 100 matrix, since m > n, the effect of high synchronization cost would
be expected to be most dramatic for the pipelined Givens method, since its synchronization
cost can be shown to be O(mn/p). The difference between the pipelined Givens method
and the asynchronous Givens method would be expected to diminish as m approaches n.
Table 2.3 supports these expectations. The synchronous Givens algorithm has the lowest
synchronization cost, and performs best among the three when the synchronization cost is

high and m > n.

I'_lz n_J_pI E_I _T eﬂic_iency
—1;)-0 1(;0—— 1 477? - -
2 24.07 98%
3 16.25 97%
4 12.13 97%
5 9.82 96%
6 8.47 93%
7 7.63 88%
200 | 200 | 1 | 368.95
2 187.80 98%
3 125.60 98%
4 93.90 98%
5 75.20 98%
6 63.60 97%
7 54.70 96%
200 | 40 | 1| 22.80
2 11.63 98%
3 7.87 97%
4 5.98 95%
5 4.85 94%
6 4.18 91%
7 3.68 89%
500 | 100 | 1 | 336.30
2 168.90 99.6%
3 113.00 99.3%
4 84.80 99.3%
5 67.90 | 99.0%
6 57.27 97.8%
7 49.30 97.5%

Table 2.1: Execution time on the Balance 8000.

39

m n | p | Asynchronous T | Synchronous T
100 | 100 | 2 24.07 24.10
3 16.25 16.73
4 12.13 12.87
5 9.82 10.87
6 8.47 9.82
7 7.63 8.88
200 | 200 | 2 187.80 188.42
3 125.60 127.07
4 93.90 96.88
5 75.20 79.38
6 63.60 69.13
7 54.70 61.50
200 | 40 | 2 11.63 11.65
3 7.87 7.97
4 5.98 6.07
5 4.85 5.03
6 4.18 4.48
7 3.68 3.95
500 | 100 | 2 168.90 168.70
3 113.00 113.27
4 84.80 85.37
5 67.90 69.02
6 57.27 58.58
7 49.30 51.62

Table 2.2: Execution time on the Balance 8000.

m = 1000,n = 100, p = 5, T, = 696.8 sec

Synchronous Givens

Parallel Algorithm | Execution Time | Efficiency
Pipelined Givens 211.80 sec 66%
Asynchronous Givens 144.03 sec 97%
141.77 sec 98%

m = 500,n =100, p =5, T, = 336.3 sec

Synchronous Givens

Parallel Algorithm | Execution Time | Efficiency
Pipelined Givens 101.57 sec 66%
Asynchronous Givens 71.58 sec 94%
70.52 sec 98%

m =100,n =100, p =5, T, = 47.2 sec

Synchronous Givens

Parallel Algorithm | Execution Time | Efficiency
Pipelined Givens 13.87 sec 68%
Asynchronous Givens 10.52 sec 90%
11.60 sec 81%

Table 2.3: The effect of high synchronization cost.

41

42

2.8 Concluding Remarks

The algorithm we propose in this chapter is similar in spirit to Sameh’s 2-stage algorithm
described in [76]. In Sameh’s brief survey article, he suggests a parallel algorithm to realize
orthogonal factorization on a multiprocessor consisting of clusters of tightly-coupled pro-

cessors. The multiprocessor model he considers has the form shown in Figure 2.9, where,

GLOBAL MEMORY

GLOBAL NETWORK

Figure 2.9: A multiprocessor model considered in [76].

for factoring an m X n matrix, he assumes that (i) each of the p units in the multiproces-
sor model is a cluster consisting of n processors interconnected in the form of a tree, and
(i) the communication cost between one cluster and another far exceeds that between two
processors in one cluster.

The algorithm proposed in [76] consists of two stages. In the first stage, A is partitioned
as AT = (AF{',A%',...,Ag). Each cluster k (tree of n processors) obtains the orthog-
onal factorization QyAx = (R{,O)T, where each Ry is either upper triangular or upper
trapezoidal. The first stage is thus similar to the independent annihilation phase of our
algorithm.

The second stage of Sameh’s algorithm is different from our algorithm. The differences
are necessary because the two algorithms are targeted for very different architectures. The

multiprocessor considered in [76] is subject to the assumption that each cluster has its

43

local memory and the data movement between clusters is very expensive. Due to such
concern, the computational work in the second stage of Sameh’s algorithm is performed
within each cluster with respect to its local data. Sameh describes the second stage for the
case m/p > n only. In this case each R} is upper triangular. To allow cluster k to eliminate
R, 2 < k < p, locally, the rows of R; serve as pivot rows and they are transmitted to the
p — 1 other clusters in a “pipelined” manner. Consequently, the n processors in cluster 1
will not share the computational work in the second stage.

However, in our multiprocessor model, all data are stored in the common memory acces-
sible to all p processors via a high speed bus. Our goal is to have all p processors gainfully
employed throughout the entire computing process. Therefore, in our design of the coop-
erative annihilation phase, each processor not only works on data different from the first
phase, the data each processor is assigned also change dynamically during the CAP. In
addition, our algorithm and its implementation are general including the cases m/p > n

and m/p < n. Our analysis and numerical experiments indicate that our goal is achieved

in both cases.

Chapter 3

QR Factorization of a Dense
Matrix on a Hypercube

Multiprocessor

3.1 Introduction

In this chapter we present an algorithm for factoring an m X n matrix using orthogonal trans-
formations on a hypercube multiprocessor. When m > n, the mathematical computation

we consider is usually formulated as

Q()

where A is an m X n matrix with full column rank, @ is an m x m orthogonal matrix and

R is an upper triangular matrix of order n. When m < n, we have

QA=(RS),

44

45

where A is an m X n matrix with full row rank, @ is as defined above, R is an upper
triangular matrix of order m, and S is an m X (n — m) rectangular matrix.

Our scheme involves the embedding of a two-dimensional grid in the hypercube network.
For easy exposition, we first describe a special case of the algorithm in order to explain some
basic strategies for data mapping and inter-processor communication on the hypercube. We
refer to the special case as Algorithm I, and the general algorithm as Algorithm II. Finally
we propose a further enhancement to reduce both arithmetic and communication costs of
Algorithm II. This version of the algorithm is referred to as the enhanced Algorithm II.

Algorithms I and II reduce A to R or (R S) by forming @ as the product of Givens
rotations. Since there is much freedom in the order of applying the Givens rotations, the
elements of A can be eliminated by many different orderings. The independent (or disjoint)
rotations induced by a particular ordering can be computed simultaneously provided there
are enough processors available. While the number of independent rotations increases with
the problem size and changes during the factorization process, the number of processors
on a parallel computer is fixed. Therefore, the independent rotations must be statically or
dynamically allocated to the processors in some way. The choice of a different ordering and
the particular strategy of assigning independent rotations to processors give rise to different
parallel algorithms. A number of them have been studied in literature for implementation
on hypercube multiprocessors [6,18,71,72].

There are five parallel Givens algorithms proposed in [6,18,71,72]. They are all based on
“Givens sequences”, which are sequences of Givens rotations where zeros once created are
preserved. The two new parallel algorithms proposed in this chapter can be viewed as dif-
ferent implementations of a particular Givens sequence on the hypercube. Both algorithms
take full advantage of the hypercube topology and require only nearest-neighbour commu-
nication. They differ from the algorithms in [6,18,71,72] in communication schemes, data
mapping schemes, arithmetic/communication complexities, and work load distribution. In

particular, we show how redundant computation can be incorporated into the communi-

46

cation algorithm to maintain data proximity so that all processors in the hypercube can
simultaneously exchange data with their neighbouring processors. In addition, we show in
the second algorithm how the hypercube topology can be used to reduce the computational

cost as well as the communication cost of a parallel algorithm.

3.2 Algorithm I

The first algorithm we propose is based on the Givens sequence illustrated in Figure 3.1
by a 16 X 8 matrix. That is, the nonzero elements below the main diagonal of an m-by-n
matrix are eliminated column by column in the order indicated in Figure 3.1, where the
(i,k) entries to be zeroed in the k** elimination stage are labelled by the integer k. In the
parallel algorithm, the p processors cooperate to annihilate the m — k nonzero elements in
column k during the k* elimination stage. If a Givens rotation is applied to the t* row
and the j** row to annihilate the leading nonzero aj in the j** row, then row ¢ is referred

to as the “pivot row”.

As usual with parallel algorithms, we would like to achieve a balanced distribution of
work load and a low volume of data movement and communication. A uniform work load
distribution and a low communication cost contribute directly to the speed-up, which is the
ultimate goal of a concurrent algorithm.

Since there is no globally shared memory in the hypercube, the data must be distributed
among the processing nodes in some way, typically by rows if the computation is row-
oriented, or by columns if the computation is column-oriented. In either case, there is a
decision to be made concerning the way in which the rows or columns are mapped onto
the processors. For example, given an m-by-n matrix A and p processors Py, P, Py, - --,
Py1, block-mapping may be used, where the first m /p rows (or n/p columns) are assigned

to processor P, the next m/p rows (or n/p columns) are assigned to processor P, and so

on. Alternatively, wrap-mapping may be used, where consecutive rows (or columns) are

47

/xxxxxxxx\

X X X X

X

X

Figure 3.1: Column-by-column Givens sequence.

48

assigned to consecutive processors, with assignment “wrapping around” to processor P,
after a row (or column) is assigned to processor P,_;.

Discussion about various mapping strategies for matrix computations can be found in
[11,22,51]. For our purpose, it suffices to observe that if block-mapping is used to assign
rows or columns of A to the p processors, then processor Py will become idle when the first
m/p rows or the first n/p columns of A do not need to be modified any more. The other
p — 1 processors could become idle one after another subsequently for the same reason.
On the other hand, the rationale behind the wrap-mapping is to assign the data to the
p processors in such a manner that every processor will be doing approximately the same
amount of computation and communication throughout the entire process except for the
last p steps. Although the p processors become idle one after another in the last p steps,
the idle time so incurred is not significant if the work involved for each of these p steps is
only a tiny fraction of the total work.

For Algorithm I, we allocate the m rows to the p processors using a wrap-mapping.
Although wrap-mapping is not essential for the correctness of the algorithms we propose,
it is important for efficiency because the latter depends very much on whether a balanced
work load distribution can be maintained throughout the computing process. Figure 3.2

illustrates the wrap mapping of sixteen rows to four processors.

For a given m X n matrix, Algorithm I has n stages, each stage consisting of nine
steps. The nine steps of the k** stage are devised to annihilate the m — k nonzero elements
in locations (k + 1,k), (k + 2,k), ..., and (m,k). Steps 1 to 9 of the k** stage of the
algorithm can be divided into two distinct phases, namely an Independent Annihilation
Phase (IAP) and a Cooperative Merging Phase (CMP). The IAP corresponds to Step 1,
where each processor operates on its assigned data without communicating with other
processors in the network. The CMP corresponds to Steps 2 to 9, where it is necessary

for each processor to exchange data with its d neighbours if a hypercube of dimension d

(

Figure 3.2:

P
Py
P
P
Py
P,
P,
Py
Py
P,
P,
P
b
P
P,
Py

appin rows to 4 processors.
4 proc
f 16 st
ing o
pping
Wrap m

Py
P
P,
P
P
P
P,
Ps
by
P,
P,
P
Py
Py
P
P

Py
Py
P,
P,
Po
Py
P,
Py
P
P
P,
Py
Py
Py
P,
Py

Py
P
P,
Py
Py
Py
P,
Py
P
P
P,

Py
py
P,
P,

Py
P,
P,
P
P
P
P,
Py
B
P
P
Py
P
P,
P,
P;

P
P,
P
P,
P
P
P,
Py
Py
P,
P,
Py
Py
Py
P,
Py

B
B
P,
P;
P
Py
P,
P;
Py
By
P,
P
Py

P,
P,

P\
P
P,
Py
Py
P
P,
P
P
P
P,
P
By
P,
P,

P)

49

50

is employed. Using a hypercube of dimension d = 3, we illustrate in Figure 3.3 the 3
communication steps in the CMP of each stage. We use “by_1bq_5---by” to denote the d-
bit binary representation of a processor id. To accomplish the d exchanges, each processor
pairs with another processor whose id is different in bit by, £ = d, d — 1,..., 1. For
example, processor Py accomplishes the 3 exchanges by communicating with processors P;,
P, and P; sequentially. The processor id’s of the latter three processors are 100, 010 and
001 respectively. During each communication step, the p/2 pairs of processors exchange
data using p/2 disjoint channels. In our description of Steps 2 to 9 below, it will become
apparent that in the CMP of the k** stage, the data to be exchanged between each pair of
processors always consist of (n — k + 1) floating-point numbers. It also turns out that the

computational work performed by each processor after each exchange of data is the same.

Po P1 P2 P3 P4 PS PG P7
000 001 010 011 100 101 110 111
000 001 010 011 100 101 110 111
000 001 010 011 100 101 110 111

Figure 3.3: The d communication steps in the CMP (d = 3).

51

We now describe the steps for the k* stage. An example is used along the way to help
explain each of the nine steps. After the details for the k** stage are given, we shall use an
example to demonstrate how the entire algorithm works and summarize the features of the

communication algorithm we propose.

Step 1 (IAP) Among all of the rows with row number i > k, each processor uses the lowest
numbered row as the pivot row to eliminate all of the off-diagonal nonzero elements

in the k*» column of its remaining rows by Givens rotations.

Using the example in Figure 3.2, the action of processor P, in the first elimination stage
is illustrated in Figure 3.4. The leading nonzeros in rows 5, 9 and 13 are annihilated
by applying Givens rotations sequentially to the three pairs of rows, namely {row 1,

row 5}, {row 1, row 9} and {row 1, row 13}.

a1 ayz2 - aig ayn Gr2 -+ dig
asy; Gs2 - asg . 0 @53 - asg
@91 Q93 -+ Qg3 0 dgp -+ Gdog
a13,1 @132 --- G133 0 Gi32 -+ di3s

Figure 3.4: The action of P in the first elimination stage.

Therefore, no communication is needed in the IAP. At the end of this step, every
processor has one row with a nonzero in the k** column. We refer to this row as
the “local pivot row”. The (i, k) nonzero entries in these local pivot rows (except for
element (k,k)) are to be annihilated at Steps 2 to 9 in the CMP. Figure 3.5 displays
the remaining nonzero elements at the end of Step 1 for a 16 x 8 example when p=4
and k = 1. The elements of each local pivot row are marked by its assigned processor

P;, 0 <1< 3. The entries (2,1), (3,1) and (4,1) are to be zeroed in the CMP.

(P, P, P, P, o P, P, P
P P P P PP P P P
P, P, ., P, , P, P, P
Py, P, P, P P P P3 P
0 x x x X xX X x
0 x x x X x x x
0 X X X X X xX x
0 x X x X x x x
0 x x X X X x x
0 X X X X X X x
0 X X x X X X X
0 X X X X X X X
0 X x X X X x X
0 x X X X X x x
0 x X X X X x X
0 X x x X X X x
0 X X X X X X X

\ 0 X x X X X X x }

Figure 3.5: The distribution of local pivot rows at the end of Step 1 (IAP).

52

53

Step 2 (CMP) £ « d, where d is the dimension of the hypercube.

Step 3 (CMP) Every processor sends its current local pivot row to the processor whose id

differs in bit by_;. It also receives a row from the other processor.

For the example in Figure 3.5, when k=1, £ =d = 2, rows 1 and 3 are thereby made
available to both Py and P;, and rows 2 and 4 are thereby made available to both P,
and P3 at the end of this step. We shall denote this pair of rows as @,, . and @,, .,

where p1 and p; are their respective row numbers in the matrix A, and p; < ps.

Step 4 (CMP) Each processor computes a Givens rotation to eliminate the element Gpy k

by executing the following algorithm.

if |G, k| > @, x| then
b ap kl/|py kl
Sppk — 1/v/1+¢2
Copk — Spo k X T

else

t—]&m,kl/lam,kl
Copk — 1/V1+ 12

Spok — Cppk Xt

If row p, is originally assigned to this processor, then row p;, row p,, Cpp k and s,

are saved so that row p; can be updated in Step 9.
For the given example, when k£ = 1 and £ = d = 2, P, saves row 1, row 3, c31 and

83,1, and P3 saves row 2, Tow 4, ¢4; and $4,1.

Step 5 (CMP) Each processor “updates” row p; by executing the following algorithm. The

updated row p; becomes the “current” local pivot row.

54

for j=k,k+1,...,n do

Qpy,j < Cpy kpy,j + Spg kGpy,j

For the example in Figure 3.5, when k = 1 and £ = 2, row 1 is modified to become
the current local pivot row in P, and P,, whereas row 2 is modified to become the

current local pivot row in P; and P3. Note that redundant computation is performed.
Step 6 (CMP) £ — £ —1.
Step 7 (CMP) If £ > 1 then go to Step 3.

Step 8 (CMP) Each processor sends its current local pivot row to the processor whose id

differs in bit bg.

Step 9 (CMP) The processor which was originally assigned row k executes the algorithms
given in Step 4 and 5 to update row k. Each other processor modifies the row originally
assigned to it by executing the following algorithm. (Note that this row is either the

higher numbered row currently received or the one saved at Step 4.)

for j=k,k+1,...,ndo

ap21j - sz»kapl ’j - sp21kap21j

For the given example, when ¥ = 1 and £ = 1, processors Py, Py, P, and P; will

modify respectively rows 1, 2, 3 and 4 simultaneously in this step.

To demonstrate how Steps 2 to 9 in the CMP work in general, we trace the pair of rows
(P1,p2) for three elimination stages in Figures 3.6-3.8, where a hypercube of dimension 3
is employed. The rows to be finally updated in Step 9 are quoted in Figures 3.6-3.8. Note

that each processor has exactly one quoted row during each elimination stage.

Processors | £ =3 £=2 £=1 Step 9
(p1,p2) | (p1,p2) | (P1,p2) | p1 oOF p2

Py 1,5) | (1,3)](1r,2) ‘v

P (2,6) | (2,4) | (1,2) ‘2’

P, B, 7) | (1,43) |1 (1,2) 3

Py (4,8) | (2,4) | (1,2) ‘4’

Py (1,9 | (1,3) | (1,2) ‘5’

P; (2,6) | (2,4) |(1,2) ‘6’

Ps 37 1 (1,3) | (1,2) ‘v

P; _ﬁl_,_‘_S’) (214) (1,2) ‘8’

Figure 3.6: The 1*! elimination stage.

Processors | £ =3 £=2 £=1 Step 9
(p1,02) | (p1,p2) | (p1,02) | p1 or p2

Py (559 | (3,5) | (2,3) ‘9’

P, (2,6) | (2,4) | (2,3) 2’

P, 3,7)](3,5)](2,3) ‘3

P; 4,8) | (24) [(2,3) ‘4

P, (5,9)] (385" | (2,3) ‘5’

P (2,6”) | (2,4) | (2,3) ‘6’

Ps 3,7) | (3,5) [(2,3) ‘7

Py (4,8") | (2,4) | (2,3) ‘8’

Figure 3.7: The 2™ elimination stage.

56

Processors | £ =3 £=2 =1 Step 9]
(p1,p2) | (p1,p2) | (p1,p2) | p1 o1 p2
Py 5,9 | 3,5)(3,4) ‘9’
Py (6,10°) | (4,6) | (3,4)| 0o
P, B,7) | 3,5)](3,4) ‘3’
P3 (4,8) | (4,6) | (3,4) ‘q
P, (5,9) | (3,5") |(3,4) ‘5’
Ps (6,10) | (46" | (3,4)|
Ps G, | (3,5)](3,4)] ‘
P (48] @6) (3, 4)] ¥ |

Figure 3.8: The 37¢ elimination stage.

We summarize the features of the proposed communication algorithm below.

1. Given a hypercube of dimension d, each processor has d neighbours and the commu-
nication algorithm executed at each elimination stage involves exactly d steps. At
each of the d steps, each processor in the hypercube exchanges a message of the same
length with a neighbouring processor. Since the p/2 exchanges at each step involve
p/2 distinct pairs of processors and use p/2 separate communication channels, they

can occur simultaneously.

2. Each processor communicates with all of its d neighbouring processors in ezactly the
same order at every elimination stage. For example, in Figures 3.6 to 3.8, processor

Py always communicates with processors Py, then P,, and lastly P,.

3. It is clear from our description of the algorithm and from Figures 3.6 to 3.8 that some
rows are redundantly updated by more than one processor concurrently. For example,

in Figure 3.6, when £ = 3 row 1 is redundantly updated by processor P;, when £ = 2

57

row 1 is redundantly updated by processors Py, Py and Ps.

The redundant computation allows us to use the same communication algorithm for
every elimination stage regardless of which processor owns the lowest numbered row.
For example, in Figure 3.7, among all the rows with row number i > 2, the second
row of A is the lowest numbered row which needs to be modified last and the greatest
number of times. Although the lowest numbered row is now located in processor
P, instead of processor Py as in the first elimination stage, the same communication
algorithm combined with the redundant computation makes sure that row 2 is properly
updated, as are the other rows. In addition, the data each processor needs are always

located in a neighbouring processor in the hypercube.

4. The proposed communication algorithm can be easily generalized for Algorithm II

which we shall present in section 3.4.

5. When k > n — p + 1, the processors run out of rows one by one. Because the al-
gorithm above requires all processors to participate in maintaining data proximity
in the remaining stages, a uniform treatment of all cases can be achieved by simply
assigning dummy data to processors which would otherwise finish earlier. With this
technique the algorithm we described for the k** elimination stage can remain the

same for 1 < k < n.

It is appropriate to point out that Algorithm I differs from the distributed Givens algo-
rithms proposed by Chamberlain and Powell [6] and Pothen et al. [71,72] in the communica-
tion algorithm we employ for merging the local pivot rows. According to the timing results
to be discussed in section 3.6, our idea of using otherwise idle processors to perform redun-
dant computation appears to be effective in keeping the communication algorithm simple,

efficient and versatile for use in a generalized version of Algorithm I and other algorithms.

58

3.3 Performance Analysis of Algorithm I

In this section we analyze the performance of Algorithm I in factoring an m X n matrix
using a hypercube of dimension d. Letting p denote the total number of processors, we
have p = 2¢. For convenience we assume that m and n are integral multiples of p. In our
analysis we assume that the time required for a multiplicative floating-point operation is
7, and that the time required to transmit n floating-point numbers from one processor to
a neighbouring processor is A + 3, where is the start-up time for sending a message and
A is the time needed to transmit a floating-point number across one link between adjacent
processors in the hypercube.

We shall compare the performance of Algorithm I with the sequential Givens algorithm,
for which the total arithmetic cost is given by

Ts(m,n) = 4r zn:(m -k)n—-k+1)
k=1

2n%(3m — n)

3 T+ 2mnr — 2027 — %n‘r , (3.1)

when m > n, and

T,(m,n) = 4r i(m —-k)n—-k+1)
k=1

M'?%——m)r - 2mnr 4 2mir - %mr , (3.2)
when m < n.

The wrap mapping of rows of the matrix to the p processors dictates that the size of the
largest submatrix in an individual processor is (m/p) x (n — k + 1) for the k** elimination
stage when k = 1,2,---,p,and (m/p—1)x (n —k +1) when k = p+ 1,p+2,---,2p, and
so on. When m > n, the arithmetic cost of Algorithm I is thus given by
n/p p

TA(m,n,p) = 41'22(% —k) (n=p(k—1)—j+1)

k=1j=1

59

+21'Ed(n—k+1)

k=1
2 _ 2
2n%(3m n)r+n2dr—n2r+ <2mn n)T
3p p
+ O(np), (3.3)

where d = log, p. For each of the n elimination stages, d “nearest-neighbour” exchanges
are required, involving in the k*h stage a row of size (n — k + 1). The communication cost

is therefore given by

TE (n,p) = ﬁzn:2d+,\zn:2d(n-—k+l)

k=1 k=1
= 2ndB+ (n? +n) dA. (3.4)
When m < n, we have
_ m/p p m
Th(mnp) = 413 Y (Z-k) (- p(k=1) =5 +1)
k=1j=1

+2r2d(n—-k+1)
k=1
_ 2m?(3n—m) 9 9
= —T—T-l- (2mn—m)dr— (2mn—m)T
m2
+ —p—r + O(mp) (3.5)

and
T (m,n,p) = ﬂi2d+ ,\iw(n -k+1)
k=1 k=1
= 2mdp + (2mn -m? 4 m) dX. (3.6)
When m = n, we can further simplify equations (3.3), (3.4), (3.5) and (3.6) as

T?(nan7p) = T?(n7n’p)
4n® 2 n?
= -gr + n? (log, p) 7 — n21 + 71' + O(np) (3.7)

60

and

Tf (n, p) Tf (n,n,p)

= 2n(log; p) B + n® (logy p) A + n (log, p) . (3.8)

Each processor does the same amount of arithmetic, performs the same number of sends
and receives, and sends and receives the same amount of data using separate communication
channels at every step. Thus, the work load balance of this scheme is guaranteed. The wrap
mapping of the upper triangular or trapezoidal factor is also maintained.

Comparing the parallel time (Tj“ +TIC) with the optimal time (7,/p) for the case
m > n, and (Tf‘ + T‘IC) with the optimal time (T,/p) for the case m < n, we conclude

that Algorithm I is optimal in its leading term.

3.4 Algorithm II

Algorithm II exploits an embedding of a 41 X vz rectangular grid within the hypercube.
The objective of this embedding is to map the processors to a grid so that the processors in
each column or each row of the grid form a subcube. Such a mapping allows us to apply the
communication algorithm employed in Algorithm I to each subset of processors which form
either a row or a column in the embedded grid. If we let d = dy + dp, y; = 2% ,and v, = 2%,
this objective is achieved by requiring that the ¢d’s of the processors in the same row differ
in only the right-most d bits, and that the id’s of the processors in the same column differ
in only the left-most d; bits. Note that the communication algorithm we shall propose
requires only a subcube topology in each column and each row of the grid. Therefore, the
adjacent processors in the embedded y; X 7, grid are not required to be neighbours in the
hypercube, and the embedding can be done by mapping processors to the grid row by row
or column by column following the natural order of their processor id. Figure 3.9 displays

a 4 x 4 grid consisting of 16 processors, and Figure 3.10 displays an 8 x 4 grid consisting of

32 processors.

0000
0100
1000

1100

Figure 3.9: The embedding of a 4 X 4 grid in a hypercube.

0001

0101

1001

1101

0010

0110

1010

1110

0011

0111

1011

1111

Py

Py

Py
P
Py

Py3

p,
Ps
Py

Py

61

From now on, we shall refer to the processor in the (%,7) position of the grid by P(i,5)

or by its id. We shall use P(i, *) to denote the subcube consisting of the processors assigned

to the it row of the grid, and P(*,7) to denote the subcube consisting of the processors

assigned to the j** column of the grid.

Algorithm II is based on the same Givens sequence employed in Algorithm I. In Algo-

rithm II, the data mapping strategy can be understood as wrapping the rows of the m x n

matrix around the 7; subcubes, namely P(1,*), P(2,%), --

-, and P(v1,*). Within each

subcube P(3,*), the elements of each allocated row are wrapped around the Y2 processors

according to their column subscripts. Figure 3.11 illustrates this data mapping strategy for

a 16 X 16 matrix on a 4 X 4 processor grid.

00000

00100

01000

01100

10000

10100

11000

11100

Py
Py
Pg
Py2
Py
Py
Pg
P12
Po
Py
Pg
Py
Py
Py

Pg
\ P12

Figure 3.10:

Py

Py
P13
Py
Py
Py
Py3
P
Ps
Py
Py3
P

Py
P13

00001

00101

01001

01101

10001

10101

11001

11101

P, P
Pg Py
P Ppy
Piy Pyg
P, P
Pg Py
Pio Ppq
Py Py
P, P
Pg Py
Pig Ppg
Py Pyg
Py P3
Pg Pq
P Ppy
Piy Pig

00010

00110

01010

01110

10010

10110

11010

11110

00011

00111

01011

01111

10011

10111

11011

11111

Py

P

Pyg
Py
Pyy

Pyg

Py
Py
Py
Py3
Pz
Py
Pys

Py

P,
Ps
Py
Py
Pig
Pa
Pss

Py

The embedding of an 8 x 4 grid in a hypercube.

Po
Py
Py
P2
Py
Py
Pg

)
Py
Py

Py
Py
Py
Py

Py
Py
P13
Py
Py
Py

Py
Py
Py
Py3
Py
Py
Py

P
Pg
Pyo
Pyy

Py

Po
Py
Py

Py
Py
Py
Py

Py
Pg

0]
Py
Py
Py

Pg Pg
Py Py
Pi3 Py
Py P
Ps; Pg
Py Py
Py3 Py
P PR
Py Pg
Py Py
Pz Py
Py P
Ps Pg
Py Py
P13 Py

Pig

Py
Pg
P2
Po
Py
Pg
Py2
Py
Py
Py
Pya
Py
Py
Pg
Pi2

Py

Py
P13
Py
Py

P13
P
Py
Py
Pi3
Py
Py
Py
Py

Ps

Figure 3.11: The wrap mapping of a 16 x 16 matrix to a 4 X 4 processor grid.

62

63

Algorithm II has n stages, each consisting of two phases. In the Independent Annihi-
lation Phase (IAP) of the k™ elimination stage, each subcube P(%,*) independently anni-
hilates the nonzero elements below the main diagonal in the k** column using its lowest
numbered row as the local pivot row. The algorithm for the IAP requires no communication
between the processors in different subcubes P(i1,*) and P(iq,*), where i; # i, whereas
the processors consisting of each subcube P(i,*) need to communicate among themselves
during the IAP. We assume in the example of this section that a 4 x 4 processor grid is
embedded in a hypercube. Figure 3.12 displays the data assigned to the subcube P(1,%),
which is a submatrix consisting of rows 1, 5, 9 and 13 of a 16 x 16 matrix A. Within the
subcube, the columns of the assigned submatrix are wrapped around the -y, processors of
P(1,%). Letting a;; denote the (i,5) element of matrix A, Figures 3.13-3.16 display the
data assigned to processors P(1,1), P(1,2), P(1,3) and P(1,4) respectively.

(Pp P, P, Py Py Py P, Py Py P, P, P, Py P, P, P \
x x x X x x x x x x x x x x x x
x x X X X x x X x X x X x X X x
X x X x x X x X x X x X x x x x
Po P P, P3 Pp P P, Py Pp P P, P3 Py P P, Py
x X X x x X x x X X x x x X x x
x x X x X x X x x x X x x x X x
x x x x X x X x x x x x x x X X
P P P, P P P P, P3 Bp P, P, P Ph P P P
X x x x x x x X X x x x x x x x
x X x x x x x x x x X x x x X x
X x x X x X X X X x x x X x X x
Py Py Py Ps Py Pl Py P3 Py Pl Py P3 Py Pl P2 Py
x x x x x X x x x x x X x x x
x X x x X X x x X x x x X x X X

\ x x X x x X X X x x x X x X x }

Figure 3.12: The wrap mapping of the submatrix within

subcube P(1,).

a1 a15 a9 @113
as1 ass as9 4513
ag,1 G955 G99 A9,13

ai3,1 @135 @139 @13,13

Figure 3.13: Data assigned to processor Py.

a2 4416 G110 41,14
as2 Q4se a510 G514
ag2 Q496 Q910 Q9,14

ai32 Q136 41310 a@13,14

Figure 3.14: Data assigned to processor P;.

a3 a7 @111 Qa115

as3 4as7 G531 Q515

ag3 ag9,7 Q931 A9;15

a13,3 0a13,7 @13,11 @13,15

Figure 3.15: Data assigned to processor P;.

a4 018
as4 Q58
ag4 Qagg
ai34 4041338

Figure 3.16: Data assigned to processor Ps.

ai,12
as,12
ag,12

a13,12

ai,1e
as,16
ag,16

ai3,16

65

To eliminate the nonzeros as,1,a9,1, and ai3;1, processor Py computes the multiplier

pairs {c,1, 3,1} for p = 5,9,13 and updates the “local pivot‘element”, a1, by the following

algorithm.

if |a,1]| > |a;1| then
t — lar1l/lapal
o1 — 1/V1+8
Cp1 — 8p1 X1
a1 «— |‘11,1|m

else

t — lapal/laa]
cp,l — 1/\/ 1 + t2
Sp,1 — €p1 X 1

ai |a1,1|v 1 + t2

A message containing the “updated” a,; and all of the computed multiplier pairs is

then made available to every processor in the subcube P(1,) using the following recursive

exchange algorithm. Recall that the id’s of processors in each subcube P(i,«) differ only

in their right-most d; bits. Suppose every processor has a message which must be made

66

available to every other processor in the subcube, the basic recursive exchange algorithm

works as follows.

L — dy
while £ > 0 do
send (my message) to processor with id different
from my id in bit be_;.
receive a message

L—L(-1

To broadcast the multiplier pairs and the local pivot element to all processors within each
subcube P(i,*), we modify the basic recursive exchange algorithm in the following manner.
The processor which has the pivot column composes a message consisting of the computed
multipliers and the local pivot element, whereas the other processors simply prepare a

dummy message. The modified algorithm works as follows.

L~ d,
while £ > 0 do
send (my message) to processor with id different
from my ¢d in bit b,_;.
receive a message
if (my message) is (dummy message)
(my message) « (received message)

L—£{-1

The subcubes P(1,*), P(2,*), P(3,*) and P(4,*) each perform essentially the same IAP

task with respect to their own data independently and simultaneously. The communication

67

Figure 3.17: The communication channels employed by the subcubes during the IAP.

channels employed by the four subcubes are displayed in Figure 3.17. Therefore, after dy -
exchanges within each subcube, all processors have the multipliers they need to update the
remaining elements independently. The resulting matrix has at most 4; rows with a nonzero
in the k** column. For k = 1, Figure 3.18 illustrates the mapping of the v; local pivot rows
at the end of the IAP.

(Po P P, P5 P P P, Py P P P, P P P P P \
P, P Pg P P, Py P P P, Py Pg P P, Ps Py P
Pg P Po Py Pg Py Pg Py P3 Py Pg Py Py Py Py Py
Piz P35 Py Pis Py P3 Py Py P P3 Py Py Py P33 Py Py
[] x X x x x x x x X x X x x X x
0 X x x x X x X x x x X x x X X
0 x X x x X x x x X x x x X X X
1] x x x x x x X x x x x x X x X
0 X x X X X X X x X X x x x X x
0 x x x x X x X x x x x x x x X
(4] x x x x x x x x x x x x x x x
0 x x x x x x x x x x x x X x x
0 x X X X X x X x X x x x x x X
0 x X x X X x x x x x X x x x x
V] x x x X X x x x x x X x x X x

\ 0 X x X x X x X x x X x x X x X

Figure 3.18: End of the IAP during the first elimination stage.

68

The remaining off-diagonal nonzero elements in the first column can now be eliminated
by the y2 subcubes P(%,3), j =1,2,---,7,, independently and simultaneously. Figure 3.19
displays the data to be affected in the subcube P(x,1) = {P,, P4, Ps, P12}.

/ Py X X x P X x x Py X xX x P X x x \
Py X X X P4 X X x Py X X X Py X X X
Pg X X x Pg X X X Pg X X x Pg X x X
Pi2 x x x P2 x x X P2 X x x Pg x x x
1] X x X X X X x X X X x x X x X
0 X X x X X X X X X X X X X x x
0 x X x X X X X X X X X x x X X
(1] X X X X X x x X X X X X X x x
0 X X x X X X x x X X X X X x x
0 X X x X X X x X X X X X X X X
0 X X X x X X x X X X x x x X X
(4] X X X X X X x X X X X x X x X
0 X X X X X X x X X X x X X x X
0 X X % x X X X X X X X X X X X)

\ (1] X X x X X X X X X X x X X x X

Figure 3.19: Data distribution in subcube P(*,1).

Comparing Figure 3.19 with Figure 3.5, clearly the task to be performed by the subcube
P(#,1) is essentially Steps 2 through 9 of Algorithm I. Of course, the data now refers to
the submatrix in Figure 3.20, and the subcube P(x,1) is of dimension d/2, and the id’s of

the processors in this subcube differ only in their left-most d/2 bits. It is straightforward

a1 ai5 a9 4133
az1 a5 a9 G213
as1 ass aszg as;s

a4,1 Q4,5 Q49 0a4,13

Figure 3.20: Data to be processed by subcube P(x,1).

69

to modify Step 2 through 9 of Algorithm I to reflect these differences. Recall that during
the IAP, each updated local pivot element was sent to all processors in the respective
subcube together with the multipliers. When & = 1, {a1,1,a2,1,a3,1,a4,1 } are thus available
in subcube P(*,j) for all j. Figure 3.21 displays the data distribution in the subcube
P(*,2). Each processor in the subcube P(*,2) has one more element in addition to the

data originally assigned.

(Py Py X X x P X X x P X X x P X x \
Py Py X X X Py X X x Pg X X X Py X X
Py Py X X xX Py X X X Py X X x Py X X
Pij3g P3 x x x P33 x x x Pz X x x Pz x x
0 x x X X X X X X X X X X X X x
1] x X x X X X X X X X X X x X x
0 x X X x x X X X X x x X X x x
0 x X x X Xx X X X X X X x x x X
0 x X X x x X X X X X X X x L
0 x X X X X X X X X X x x X X X
(1] x X X X X X X X X X X X X X X
0 x X X X X X X X X x x X X X x
0 x X x x X X X x X X X X X X X
] x x x X X x X X X x x X X x x
0 X x X X X x X X X x X X x x x

\ 1] x X X x X X x X x X x x X X X)

Figure 3.21: Data distribution in subcube P(x,2).

Comparing Figure 3.21 with Figure 3.5, observe that the task to be performed by the
subcube P(%,2) is again essentially the same as described in Steps 2 through 9 of Algorithm
I. The data now refers to the matrix in Figure 3.22. The elements {a11,02,1,0a31,a4,1}
are needed in Step 4 to compute the multipliers. Therefore, the strategy of sending the
“updated” local pivot elements together with the multiplers in the IAP is the most economic
way to make these elements available to the respective processors. Similar arguments apply
to the subcubes P(*,3) and P(x,4). The communication channels employed by the four
subcubes during the CMP are displayed in Figure 3.23.

70

a1 ai2 a6 @110 Q1,14
az1 G222 Ga26 G210 az14
asz1 daz2 asze as, o0 asi4

a4,1 Q42 G466 Q430 Qa4,14

Figure 3.22: Data to be processed by subcube P(x,2).

P(*,1) P(x,2) P(x,3) P(*,4)

Figure 3.23: The communication channels employed by the subcubes during the CMP.

71

Figure 3.24 displays the remaining elements of A after n — v, elimination stages, where
p = 16 and 72 = 4 in this example. Since (1 + 72 — 2¢ — 1) more processors will become
idle at the end of each of the last v2 elimination stages, where 0 < i < (y2 — 1), the idle
time is proportional to the amount of work each processor is assigned for one stage. When
m = n and y; = 72, each processor has exactly one element to be zeroed or modified in
the last 7, elimination stages. The idle time thus remains constant regardless of the size
of the matrix. When m > n, 7, processors would become idle after each of the last 7,
elimination stages. Because the elements remaining in each processor after n — v, stages is
proportional to (m - n)/71, the idle time grows linearly with m for fixed v, if (m —n) > n.
When m < n, because y2 processors would become idle following each of the last v, stages,
the idle time grows linearly with n for fixed v; if (n — m) > m. As we shall see in the
next section, 71 and 72 are to be chosen according to the shape of the matrix so that
the performance of Algorithm II is optimized. The possibility of choosing 7; and 7, in
proportion to m and n implies that the linear growth rate represents the worst case. Note
that in the actual implementation of Algorithm II, the communication algorithms in both
IAP and CMP phases require all processors to participate regardless of whether there is
any computational work remaining for a particular processor. The idle time we mentioned
above refers to the duration of time from the moment a processor has completely processed
the assigned data of matrix A to the moment the parallel program ends. Thus the time

such a processor spends working on dummy data is considered as idle time.

3.5 Performance Analysis of Algorithm II

In this section we analyze the performance of Algorithm II in factoring an m x n matrix
on a y1 X 72 grid embedded in a hypercube of dimension d, where d = d; + dq, 7; = 2%
and 72 = 2%. Letting p denote the total number of processors, we have p = 1172 = 2¢. As

before, we assume that m and n are integral multiples of p. The definitions for =, 3 and A

72

(x x x X X x X x x x x x x x x X \
x x x x x X x x x X x x x x x
x X x x x x x X X x x X x X
X X x x x X x x x x X X x
x X x x x X x x x x x X
X x x X x X x X x x X
x x x X x x X x x X
X x x X x x X x x
X x x x x x x x
x x X x x x x
x x x x x x
x X x x X
P P P P
P, Ps Pg Py
Pg Py Pig Ppq
\ P12 P13 Py Py)

Figure 3.24: Data distribution for the last four elimination stages.

are as given in section 3.3.

3.5.1 The case m>n

When m > n, we first consider the case 43 > v2. To analyze the total arithmetic cost
of Algorithm II, let us consider the k** elimination stage. During the IAP phase, the v;
subcubes P(1,*), P(2,%), -+, P(v1,*) are performing essentially the same task on the T
different submatrices independently and simultaneously. Within each subcube P(i,*) the
submatrix is further divided among the y2 processors conmsisting of the subcube. Letting
(71/72) = @, the wrap mapping of rows and columns of the matrix to the processor grid
dictates that the size of the largest submatrix in an individual processor is (m/;) x (n/72)
for k =1,2,---,72, (m/m) X (n/y2 = 1) for k=12 + 1,72+ 2,--,272, -+, and (m/y; —
1) X (n/y2—a) for k=7 4+ 1,91 +2,--+,91 + 72, and so on. The total arithmetic cost for
the TAP is thus

TﬁlP(m’n77l772) = d4r E -nl—k) (E—Q(k_]_)_]‘_*_l)

Y2

73

2n%(3m — n)T 2mn 2 (71 + 72) i
T72

2n%(3m — n)T N 2mn 2 (71 + 72) .

Recall that the multiplier pairs together with the updated local pivot element must be made
available to the 7, processors within each subcube P(i,*) using the recursive exchange

algorithm. The total communication cost for the IAP is thus given by

nfn m
Tip (m,n,71,72) ﬁ22d2+,\222d2 (——k+1)

k=1 j=1

.2
2mn = n +n> da) . (3.10)

ps!

2nd,p + (

In the cooperative merging phase (CMP) following the IAP, the 7; processors in each
subcube P(*,5), 1 < j < 72, perform essentially Steps 2 through 9 of Algorithm I. When
k = 1, every processor applies a Givens rotation d; times to a row of size at most (n/y2+1),
and exchanges a row of the same size with a neighbouring processor d; times. The longest
row in an individual processor is (n/yz + 1) for k = 1,2,--+,7,, and (n/7;) for k = v, +
1,v2+2,---,2v2, and so on. We thus have

n/v2 ¥
Té'qMP (ny71,72) = 27 Z Zdl (_ -k+ 2)
k=1 j=1

n2
= |;t3n)dr (3.11)
Y2

and

n/v v
TgMP(na7la72) = ,322(11 + A Z Z2d1 (— - k+2>

k=1 j=1

2nd, 8 + (7— + 3’n) di . (3.12)
2

74

The total arithmetic and communication costs for Algorithm II are thus given by

TIAI(m’na71’72) = TﬁAP (mvn)71a72)+Té’4MP(n77l772)

2 _ 2
2n%(3m n)T_l_n_le_ 2mnr_n2 (71+72)T
3p Y2 T P
+ O(ndy) (3.13)

and

TIC} (ma n77l,72) = TICAP (mv n, 71772) + TgMP (n’ 71,72)

2 —n2 2
= 2ndfB + %”—dzx + -Z—dlA +O(nd). (3.14)
1 2

Since 7172 = p, the parallel time of Algorithm II can be expressed as a function of

m,n,v and p as given in equation (3.15).

TII (mvn77lvp) = TII} (m) "071772) + TIC} (m’n77l772)

2 - —n2 2
_ 2 (3;n n)T+2mn n d2/\+zz—-d1(r+,\)
p N 72
+ 2_17}21_ —n? (11-*-—72> T + O(nd)
N p
2n2(3m —n) 2mn — n? n?
= T+ d—di)A+ —ydi(t+ A
3p " (v p i)
2mn n+p
+ T—n?|—=|74+0(nlo . 3.15
" (m (nlog, p) (3.15)

If v1 < 72, Tf4p, Tépp and TSy p remain the same as given by equations (3.10), (3.11)

and (3.12), whereas T#}p is now computed by equation (3.16), where we use & to denote
T2/ m-

nfv2 & m

m . n
Tf}‘if’ (m,n)71’72) = 4r Z ZE ("' - a(k - 1) —]) (— -k+ 1)
k=1 j=1i=1 N 72
2n2(3m - Tl/)T + 2mnT _ n2 (‘y]_ + 72) -
3p g! Y172

n ‘72)
—-—nr—-=\|=]T. 3.16
3 (71 (3.16)

75

Comparing (3.16) with (3.9), we see that they differ only in one of the low order terms.
Therefore, for m > n, we shall use (3.15) to compute Trr(m,n,71,p) for all values of ;.
Our analysis of the communication cost, as summarized by equation (3.14), indicates that
the total number of messages exchanged between each pair of processors is independent of
the choice of 7;. Accordingly, the contribution of start-up time to the communication cost
of Algorithm II remains the same for all values of 7;.

One objective of our analysis is to find the value of 7; which minimizes the cost of the

parallel algorithm. To find v;, we set

aTII(ma n,‘Yl,P) =0
omn

and obtain
m T T T m
f (P,’Yl,;', 'X) = a (X + 1) (Inyy +)72 = (—):) 1%+ ap (2; - 1) Iny;

T m
—p(x +log2P+a> (27 - 1)

= 0, (3.17)

where a = 1/(In 2).

Therefore, for fixed p, 2 and %, the value of y; which minimizes Ti(m,n,v1,p) can

n
be obtained by finding the solution to f(p,71,2,%) = 0, which is a nonlinear equation
in the variable v;. Since 7; must be an integral power of 2, we choose y; = 2* for 0 <
k < log, p, with 2% as close as possible to the solution of f (,71,2,%) = 0. Although
the “optimal” +; chosen in this manner does not necessarily minimize Trr(m,n,v1,p), the
numerical experiments to be presented in Section 7 indicate that for each test problem, the
execution time of Algorithm II using the chosen v, either achieves or is very close to the
actual minimum over all possible values of 7;.

In order to see how the optimal v, varies with the ratio 7/), we list in Table 3.1 the

numerical solution to f (p, 1, =, %) = 0 for different values of 7/\ when p and m/n remain

fixed. The optimal ¥;’s chosen based on these numerical solutions are displayed in Table 3.2.

76

From Tables 3.1 and 3.2 we observe that the optimal v; appears to be very insensitive to

the ratio 7/A.

||

Numerical solution to f (p,71,2,%) =0

" m>n Different value_s_ of (_
p | m/n 1000— 10 5 1 B O.; a 0.0
16 1.0] 286 | 3.06 | 3.20 3.62 3.89 3.94 4.0
16 1.5 3.71| 3.95| 4.11 4.63 4.97 5.03 5.11
16 19.8 | 12.33 | 12.58 | 12.76 | 13.35| 13.76 | 13.83 | 13.92
64 1.0| 486 | 5.42| 5.80 6.95 7.70 7.84 8.0
64 15| 641 | 7.11 | 7.58 9.04 | 10.01 | 10.19| 10.39
64 19.8 | 22.41 | 23.79 | 24.78 | 27.96 | 30.13 | 30.54 | 31.00
128 1.0| 642 7.30| 7.89 9.68 | 10.85 | 11.06 | 11.30
128 15| 853 | 9.64 | 10.38 | 12.67| 14.19 | 14.47 | 14.79
128 | 19.8 | 30.38 | 32.87 | 34.62 | 40.24 | 44.08 | 44.81 | 45.63
256 1.0 853 | 9.8910.78| 1350 | 15.29 | 15.62 | 18.54
256 1.5 (1141 | 13.13 | 14.27 | 17.78 | 20.11 | 20.55 | 21.04
256 | 19.8 | 41.30 | 45.52 | 48.44 | 57.77 | 64.16 | 65.37 | 66.74
1024 1.0 1 15.34 | 18.41 | 20.40 | 26.41 | 30.40 | 31.15| 32.00
1024 1.5 | 20.69 | 24.64 | 27.23 | 35.10 | 40.35 | 41.35 | 42.47
1024 | 19.8 | 76.92 | 87.78 | 95.15 | 118.41 | 134.34 | 137.39 | 140.82

Table 3.1: Numerical solution to f (p,71,2,%) = 0.

3.5.2 The case m<n

Similarly, when m < n, we have the cases v; > 72 and 7; < 7;. Although our derivation

below is for the case 7; < 79, Tﬁp is different only in one of the low order terms when

Predicted Optimal v,

H

m>n Different values ci /A __ﬂ

m/n|1000]10] 5] 1]o02]01] o
16 1.0 21 4| 4 4 4 4 4
16 1.5 41 4| 4 4 4 4 4
16 | 19.8 16 (16 (16| 16| 16| 16| 16
64 1.0 41 4| 4 8 8 8 8
64| 1.5 8| 8] 8 8 8 8 8
64 | 19.8 16 (16 (32| 32| 32| 32| 32
128 | 1.0 8| 8] 8 8 8 8 8
128 1.5 8| 8| 8| 16| 16| 16| 16
128 | 19.8 32132(32) 32| 32| 32| 32
256 1.0 8| 8| 8| 16| 16| 16| 16
256 1.5 8116 | 16| 16| 16| 16| 16
256 | 19.8 32 (32)64| 64| 64| 64| 64
1024 | 1.0 16116 |16 | 32| 32| 32| 32
1024 | 1.5 16 (16 32 32| 32| 32| 32
1024 | 19.8 64 | 64| 64| 128 | 128 | 128 | 128

Table 3.2: Predicted optimal 4; when m > n.

7

78

41 > 72 and Tﬁ P> TCAMP and TCCMP remain unchanged. We shall therefore use the following

formula for all values of v;. Letting (72/71) = &, we have

Tfap (myn,71,72) = 47'%20[:2(——0:(&:—1) g) (——k+1>

k=1 j=1:i=1
2mi(3n—m) m? m?-2mn
= TR e
3p gb! 72
+O0(m), (3.18)
m/m mn

TIC:‘lP(man,‘yla72) = ,Bz2d2+A Z 22d2 (—_..k.{,.l)

k=1 j=1
2

= 2mdyf + (-7— + m) da) (3.19)
1

. m/v v n
TCAMP(m7na71’72) = 27 Z de <% —k+2)

k=1 j=1

2
IR T 4 3m) dyr (3.20)
T2

and

Il

m/v ¥
TgMP(m,n’7l,72) ﬂz2dl+A Z Zle (—_k+2)

k=1 j=1

- 2
= omdf + (L’; i +3m)). (3.21)
2

The total parallel arithmetic cost and communication cost are thus given by

le} (m,n,71,72) = TﬁlP (m,n,71,72) + TgMP (m,n,y1,72)

2m?(3n — m) <2mn - m2> m?
T+ AT+ —r1
3p 2!

Y2
m?2 — 2mn
W= /71O (mdy) (3.22)
2

and

TIC} (man, 71a72) = TIC:‘QP (m7n,71’72) + TgMP (m, n, 71,72)

79

72
+ O (mlog, p) . (3.23)

2 2
= 2ndg+ (M> di\ + ’;’—dg,\
1

When m < n, the parallel time of Algorithm II can again be expressed as a function of

m, n, 71, and p as given in equation (3.24).

TII (mvn,717p) = TIAI (m’n,7l772) + TIC} (m7n77l772)
2 _ _ 2 2
_ 2m (3n m)T+(2mn m>d1(1'+/\)+ﬁ(r+d2,\)
3p Y2 T

2 ——
+ (m—;——fmn) T+ O (mlog, p)

2m?(3n — m) 2mn — m?
= d A
3p T+ (» 1m(T + A)

2 2_9
P d=d)N) + (u) 2
a1 p

+ O (mlog, p) . (3.24)

The value of 4; which minimizes 77y (m,n,v1,p) can now be found by setting

aTII("”, n7717p) =0
3‘71 ’
from which we obtain
7 T - T r_ 2_T (9P _ 2
Flomms) = o(5+1) (25 -1) mm+vm? - (22 1)
T
+ap(lny1) —p (X +log; p+ a)

= 0. (3.25)

Similarly, for fixed p, & and £, the value of 7; which minimizes T77(m, n,71,P) can be

obtained by finding the solution to f' (p,11, z, §) = 0. As before, 71 must be an integral

power of 2, and we choose it as close to the solution of equation (3.25) as possible.

80

In order to see how the optimal y; varies with the relative speeds of computation and
communication, we list in Table 3.3 the numerical solution to f (2,71, 2L Z) = 0 for different
values of 7/A when p and n/m remain fixed. The optimal 7;’s chosen based on these
numerical solutions are displayed in Table 3.4. Again, the optimal v, is quite insensitive to

the ratios of 7 to A.

Numerical solution to f (p,1, 2.3)=0

m<n Different values of 7/

p | n/m| 1000 10 5 1 0.2 0.1 0
16 1.0 286 3.06| 3.20| 3.62| 3.89| 3.94 4.0
16 15| 224 | 240 | 251| 2.84| 3.05| 3.09| 3.13
16 19.8 | 098] 1.02| 1.04| 1.10| 1.14| 1.14| 1.15
64 10| 486 | 542| 580 | 6.95| 7.70 | 7.84 8.0
64 1.5 3.71| 416 | 446 | 535| 593 | 6.04 | 6.16
64 | 198 | 1.37| 1.51| 1.59| 1.85(2.01 | 2.03 | 2.06
128 10| 642 730| 7.89| 9.68 | 10.85 | 11.07 | 11.31
128 15| 486 | 556 | 6.02| 740 830 | 847 | 8.65
128 | 198 | 1.68| 1.90| 2.04 | 246 | 2.71| 2.75| 2.81
256 10| 853 | 9.89|10.78 | 13.50 | 15.29 | 15.62 | 16.0
256 15| 6.42) 7.48 | 8.18|10.26 | 11.63 | 11.88 | 12.17
256 | 19.8| 2.10| 245 267| 3.30| 3.69| 3.76| 3.84
1024 | 1.0 { 15.34 | 18.41 | 20.40 | 26.41 | 30.40 | 31.15 | 32.0
1024 | 1.5 11.42 | 13.79 | 15.32 | 19.90 | 22.91 | 23.47 | 24.11
1024 | 19.8| 3.46 | 4.23| 4.70| 6.07| 6.93| 7.09| 7.27

Table 3.3: Numerical solution to f (»,n, 2 5)=0.

Predicted optimal 7,

m<n Different values of 7/ L

__1; n/m | 1000 (10| 5| 1|0.2]0.1 _0—
16 1.0 4 4| 4 4 4 4
16 1.5 21 2] 2 2 4 4 4
16 19.8 111 1] 1 1 111
64 1.0 4|1 4| 4| 8| 8| 8| 8
64 1.5 4 4| 4| 4 4 81 8
64 19.8 1 21 2] 2 2 21 2
128 1.0 8| 8] 8| 8| 8| 8| 8
128 1.5 8|1 8| 8| 8| 8| 8| 8
128 | 19.8 21 2| 2] 2 2 2 2
256 1.0 8| 8| 8|16| 16| 16| 16
256 1.5 8|1 8| 8| 8| 8| 8|16
256 | 19.8 21 2] 2| 4 4 4] 4
1024 | 1.0 16 |16 | 16 | 32| 32| 32| 32
1024 1.5 8116|1616 | 16 | 16 | 32
1024 | 19.8 41 4| 4| 8 8 8] 8

Table 3.4: Predicted optimal 7; when m < n.

81

82

Comparing the leading term of Tr;(m, n,v1,p) with the leading term of Ts(m,n)/p for
the case m > n, and from comparing the leading term of Ty;(m,n, 71,p) with the leading
term of of Ts(m, n)/p for the case m < n, it can be concluded that Algorithm II is optimal

in its leading term.

3.5.3 Analysis of Storage Requirements

According to our data mapping strategy for Algorithm II, the rows and columns of a given
matrix are wrap-mapped to y; and ; processors respectively. Therefore, the processors run
out of rows and/or columns one by one in the last 4; or 7, elimination stages. As explained
earlier, our communication algorithm requires all processors to participate in maintaining
data proximity in every stage. We thus adopted the strategy of assigning one more row of
all zeros and one more column of all zeros to each processor. The largest submatrix assigned
to a processor is therefore [-,;"T + 1] by [-% + 1] . In addition to storing the submatrix, each
processor also needs buffer space for sending and receiving the multipliers (in the IAP) and
sending, receiving and saving the pivot row (in the CMP). There are also integer overhead
incurred by choosing particular data structures which facilitate a clean implementation.
Such overhead amounts to (2m/y; + n/y2 + O(p)) more integers in our implementation. In
the analysis below we consider the total storage requirement on a single processor as the
sum of the primary storage for data and the overhead storage for buffers, the extra zero
row and column, and the integer overhead. The low order terms which neither vary with m
nor vary with n are ignored. The total storage is thus a function of m, n, 71 and 2. Since
72 = p/m, for a given m X n matrix it is desirable to find the value of 4; that minimizes
the total storage. We assume that the space for storing an integer is the same as the space

for storing a floating-point number in the following analysis.

83

Lemma 3.1 For any givenm, n, and p = 71 X7, the total storage requirement of Algorithm

II on each node processor is given by

m+7-’3+4—"—+7,z‘f2(ﬂ+1) > 41,
p T Y2 N Y2

and
%+37—n:+67—7;+5,if2(%+1) < %+1.

Proof: As noted earlier, each processor is assigned a submatrix of size (m/vy; + 1) X
(n/¥2 +1). The buffer space for sending and receiving the multipliers is twice the size of
the largest set of multipliers, i.e., 2 X 2(m/y; + 1). Similarly, the buffer space for sending
and receiving the pivot row is twice the row length of each submatrix, i.e., 2 x (n/y2+1).
Since the buffer space for multipliers can be re-used for sending and receiving pivot rows,
it is sufficient to have enough storage for the larger one of these two buffers. In addition to
the buffer space for sending and receiving the pivot row, in the CMP we need extra buffer
space of 2 X (n/v2 + 1) floating-point numbers to save the pair of rows in case the updating

is delayed. Summing up the data storage, buffer storage and the integer overhead given

above we obtain the results in the lemma. o

Theorem 3.2 For any given m, n and p, the storage requirement of Algorithm IT is min-

imized by v, = 2%, where k € [0, log, p] is chosen so that v, is as close as possible to
2

Tmp
6n °

Proof: Assuming that the buffer space for the multipliers and the pivot row cannot be

overlapped, we seek 4; to minimize
mn _m n
S(m,n, v) =—4+T—+6—+7T.
(m,n,71,72) p T o

Substituting 72 = p/71, and setting

BS(m, n, 71,72) —
o

0,

84

we obtain

T

[Tmp
6n °

Recall that the data of the coefficient matrix only require storage for mn /p floating-point

O

numbers per processor. Thus it is necessary to address the question of whether the overhead
storage is a significant fraction of the primary storage for the chosen 7;. In Corollary 3.3,

we give the formula for computing the ratio of the overhead storage to the primary storage

mn/p when v, = \/Tmp/(6n).

Corollary 3.3 When 1 = 4/ 7:5’:1 , the ratio of the overhead storage to the primary storage

is given by
10.8\/ +7-—- zf2()21+1,
Y2
and
9.3 —’1-+sl,if2(-"1+1)gl+1.
mn mn T 72

Proof: Substituting 1 in Lemma 3.1 by \/7mp/(6n) and 72 by p/7;, we obtain

S(m,n,v, ——+108 +7
(171,P) \/ "

5 m,n, —+93‘/ +5
(71,P) = .

The results in the corollary are obtained by computing

and

S(ma n, 71ap) _ (mn/p)
mn/p

and

‘g(my n, 717?) — (mn/p)
mn/p)

85

Since 71 is unlikely to be exactly equal to \/mz-)/(Tn) in practice, we computed the
actual overhead storage and compared with the results obtained from the formula given by
Corollary 3.3. Letting 4{ denote the 4; chosen by Theorem 3.2, we list in Table 3.5 the
values of /7mp/(6n), 7{ and the predicted and actual ratio of overhead storage to primary
storage for a set of matrices. The two ratios given as the predicted percentages are obtained
by substituting v1 = +/7mp/(6n) in each of the two formulas given in Corollary 3.3. The
actual percentage given in the last column is computed by substituting the chosen ¥ into

the appropriate formula in Lemma 3.1.

P m n | /Tmp[(6n) | predicted percentage 71 | actual percentage
16 | 500 | 500 4.32 7.5%-8.7% 4 8.8%
16 | 600 | 400 5.29 7.6%-8.9% 4 9.7%
16 | 400 | 600 3.53 7.6%-8.9% 4 8.7%
64 | 1000 | 1000 8.64 7.5%-8.7% 8 8.8%
64 | 1200 | 800 10.57 7.6%-8.9% 8 9.7%
64 | 800 | 1200 7.05 7.6%-8.9% 8 8.7%
64 | 1980 | 100 38.44 16.9%-19.6% 32 20.7%
64 | 100 | 1980 1.93 16.9%-19.6% 2 19.5%

Table 3.5: Predicted and actual overhead storage.

For easy comparison, we give in Table 3.6 the value of 7§ as well as the predicted optimal

~1 for the set of matrices listed in Table 3.5.

Corollary 3.3 implies that the overhead storage will be insignificant if m, n are large

and p < min{m, n}.

86

Different values of /)

1000110 5|1 1 (02]01] 0
| p| m n|Y | mininin|in|mn|
(16] 500] 500 4| 2 |4]a|4a] 4] 4]a
16 | 600 | 400 | 4 4 4 1 4] 4 4 4 4
16 | 400| 600 | 4 2 2121214 4 4 4
64 | 1000 [1000 | 8 4 4 14| 8| 8 8 | 8
64 [1200 | 800 8 8 81 8| 8] 8 8 | 8
64 | 800 1200 | 8 4 4 14141 4 8 | 8
64 11980 | 100(32| 16 |16 (32|32 32| 32| 32
64 | 100 | 1980 | 2 1 21242 2 2 2

Table 3.6: Predicted v and predicted optimal 7;.
3.6 Numerical Experiments

Our experiments were performed on a 64-processor Intel iPSC Hypercube. The node pro-
cessors employ Intel 80286/80287 chip sets which run at 8 MHz. Each node has 512K
bytes of memory. The Intel hypercube is presently a single-user subsystem. Algorithm II
was implemented in FORTRAN. Algorithm I is a special case of Algorithm II when the
two-dimensional processor grid is chosen to be of dimension p by 1. The programs were
compiled using the Ryan-McFarland FORTRAN compiler. We provide timing results for
single-precision and double-precision implementations. The maximum run time over all
the node processors is reported as the parallel execution time for each test problem. The
factorization time reported does not include the time for initialization and data generation.

The execution times (in seconds) of the serial and parallel algorithms are denoted by
T, and T respectively, and as in previous sections, m and n denote the number of rows

and columns of each test matrix and v; and v, denote the number of processors along each

87

dimension of the two-dimensional grid embedded in the hypercube.

Our experiments were designed to measure speed-up, and demonstrate how the aspect
ratio of the processor grid affects the performance of Algorithm II. We show that when the
predicted optimal aspect ratios are used, the execution time and the storage requirement
either coincide with or are very close to the actual minimum as the theory developed in

previous sections predicts.

3.6.1 The Measurement of Serial Time

Table 3.7 reports the serial time T, for each randomly generated test matrix. When 7 =
72 = 1, the two-dimensional processor grid degenerates to a single processor, and Algorithm
II involves only the independent annihilation phase (IAP) on a single processor. Since inter-
processor communication is not needed during the IAP, the code for the IAP running on
one node indeed implements the sequential Givens algorithm. We thus measure T, by the
execution time of the parallel code running on a 1 x 1 grid.

Due to the limited memory on a single node, the largest matrix we could factor using
one processor was about 200 by 200 in single precision or 150 by 150 in double precision.
In order to measure the speed-up and efficiency of the parallel algorithm, we needed to
estimate the serial factorization time of much larger matrices. For any square matrix of

dimension n, we approximated the factorization time using the formulae
Ty(n) = c1n® + con? + ean + ¢4, (3.26)

where ¢y, ¢z, ¢3 and ¢4 were obtained in the following manner. First note that by equating
Ts(n) to the known execution times for n = 100,125, 150,175 and 200 (for single-precision
implementation) or n = 50,75,100,125 and 150 (for double-precision implementation),
we obtain five equations and four unknowns. By finding the least-squares solution to the
overdetermined system of equations we obtain the coefficients {c1,¢2,¢3,¢4}. The estimated

Ty(n) are compared with the actual execution times in Table 3.8. Since the node Processors

The Sequential Givens Algorithm

Single Precision

Double Precision

m| n|Ts(sec) | m| =n|Ts(sec)
100 | 100 | 67.500 | 50| 50| 10.800
125 | 125 | 130.465 | 75| 75| 35.400
150 | 150 | 223.890 || 100 | 100 | 82.600
175 | 175 | 353.760 || 125 | 125 | 160.000
200 | 200 | 526.095 || 150 | 150 | 274.800
90| 60| 26830 60| 40| 10.100
120 | 80| 62.010| 90| 60| 32.640
135 | 90| 87.550 | 120 | 80| 75.700
160 | 120 | 174.600 || 135 | 90 | 107.020
240 | 160 | 477.510 || 160 | 120 | 213.905
60| 90| 25300 40| 60| 9.360
80| 120 | 59.300 | 60| 90| 30.995
90 | 135 | 84.200 | 80| 120| 72.800 |
120 | 160 | 170.600 | 90 | 135 | 103.310
160 | 240 | 467.000 || 120 | 160 | 209.510

Table 3.7:

Execution times of the sequential Givens algorithm.

88

89

on the hypercube do not support multiprogramming, the execution times measured on a
node are consistent and reproducible. This feature allows us to obtain accurate estimates

based on a relatively small set of samples.

The Sequential Givens Algorithm

Single Precision Double Precision

m n | T, (sec) | Estimated T, || m n | Ts (sec) | Estimated T,
100 | 100 | 67.500 67.500 sec | 50 | 50 | 10.800 10.806 sec
125 | 125 | 130.465 130.467sec || 75| 75| 35.400 35.377 sec
150 | 150 | 223.890 | 223.887 sec || 100 | 100 | 82.600 82.634 sec
175 | 175 | 353.760 353.762 sec || 125 | 125 | 160.000 159.977 sec
200 | 200 | 526.095 526.095 sec {| 150 | 150 | 274.800 274.806 sec

Table 3.8: Measured and estimated times of the sequential Givens algorithm.

3.6.2 The Effect of the Aspect Ratio of the Processor Grid

In this section we present numerical experiments to demonstrate the effect on the execution
time of Algorithm II induced by varying the aspect ratio of the processor grid. Table 3.9
gives the timing results obtained from the single-precision implementation of Algorithm II.
Table 3.10 gives the double-precision timing results. The minimum execution time for each
test matrix is marked by an asterisk (*).

Recall that for given m, n and p, the predicted optimal v, varies for different values of
7/A. In Table 3.2 and Table 3.4 we computed the predicted values of the optimal v, for the
ratios of 7/ ranging from 0 (7 < A) to 1000 (7 >>). For easy comparison with the actual
optimal execution time T*, we let 4/ denote the smallest predicted optimal 71, 7} denote
the largest predicted optimal 7;, and label the execution time corresponding to vf or 7} as

T, or T,, respectively for each test matrix in Tables 3.9 and 3.10.

90

Some timing results are missing in the tables. In some cases, we did not obtain the
execution time because of storage limitation. In particular, the maximum number of bytes
that may be sent in a single message on the hypercube is 16K bytes (4000 single-precision or
2000 double-precision floating-point numbers) and this limit was exceeded for some choices
of y1 and 2. In other cases, for the very large test problems whose factorization is very
expensive, we only provide the timing result for the optimal choice of y; X 72 because the
effect of the shape of the grid on speed-up and efficiency has been well demonstrated on
smaller problems. |

Since it may be equally important to minimize the storage requirement on each node
processor, it is desirable that 47 in Theorem 3.2 coincides with the choice of 4; which
minimizes the execution time. In order to see how Algorithm II performs in this aspect,
we label the execution time corresponding to 4§ as T} for for each test matrix in Tables 3.9
and 3.10.

It is interesting to see that T}, T; or T, either coincide with or are very close to the
actual optimal T* for all test matrices in Tables 3.9 and 3.10. It is also worth noting that
by embedding an appropriate processor grid we not only minimize the storage usage and
communication/computation cost of the parallel algorithm, but also help balance the work
load and reduce processor idle time. The 1980 x 100 and 100 x 1980 matrices are examples
to demonstrate how a proper choice of 74; can reduce the processor idle time. Clearly the
choice of a 1 X 64 grid for the 1980 x 100 matrix is equivalent to wrapping the 100 columns
around the 64 processors where each processor is assigned one column or two columns. In
contrast, the choice of a 64 x 1 grid for the same matrix will assign 30 or 31 rows to each
processor. In the former case, because only 36 processors are assigned two columns, starting
from the 37 elimination stage, the 64 processors will become idle one by one after each
following elimination stage. In the latter case, since only one row from the 30 rows or two
rows from the 31 rows could be the pivot rows, each processor has 29 to 31 rows of data

to process at each of the 100 elimination stages. The reduction of idle time is thus quite

91

significant while using a 64 x 1 grid for this example. A similar argument applies to the

100 x 1980 example.

Algorithm II

Single-precision Execution Times (sec), 71 X 72 = 64

m n|{64x1]|32x2|16x4| 8x8 |4x16|2x32|1x64
1000 | 1000 | 1493 | 1250 | 1155 | 11467, | 1185, | 1304 | 1579
1700 | 1700 5258 ,
1200 | 800 | 1224 | 1075 | 1021* | 1041;,, | 1103 | 1264 | 1628
800 | 1200 | 1493 | 1178 | 1051 | 1007}, | 1028, | 1096 | 1270
1980 | 100 | 43.8* | 44.8;, | 48.7, 60.3 85.4 | 138.9 | 251.6
100 | 1980 | 196.9 | 102.4 | 62.7 46.7 41 39.4%, | 40.1,

Table 3.9: Single-precision execution times of Algorithm II.

Tables 3.11 and 3.12 report the estimated speed-up and efficiency for a set of test

matrices. The speed-up and efficiency are each computed using

FEstimated T,
speed-up = —F
and
. ed-
eﬁczency — M s

where p is the total number of processors employed, and p = 1; X 2. Observe in Table 3.12
the 19% decrease in efficiency when a 1000 x 1000 matrix is factored on a 64 x 1 grid
compared to factoring a 500 x 500 matrix on a 16 x 1 grid. This is in contrast to the 3%
decrease in efficiency when the 16 processors and 64 processors are employed as a 4 x 4 grid
and an 8 x 8 grid in factoring the same pair of matrices. The observation above indicates
that in this case the choice of the optimal aspect ratio also helps the parallel algorithm to

scale to a large number of processors.

Algorithm II
Double-precision Execution Times (sec), y1 X y2 = 16
m n 16 x 1 8x2 4x%x4 2x8 1x 16
500 | 500 729 680 | 676.57, | 702 779
600 | 400 631 605* | 615:4, 656 757
400 | 600 686 617 599% ,, 610, 657
Double-precision Execution Times (sec), y1 X v, = 64
m n|64x1]32x2|16x4| 8x8 |4x16|2x32|1x64
1000 | 1000 | 1858 1549 1423 | 14023, | 1448, | 1586 1918
1200 | 1200 23573,
1200 | 800 | 1517 1326 | 1256 | 12704y,
800 | 1200 | 1861 1302 | 12387, | 1259,
1980 | 100 | 52.1* | 52.64, | 57.6, 71.0 101.5 | 164.4
100 | 1980 | 249.6 | 129.8 | 784 57.9 49.9 |47.07, | 48.1,

Table 3.10: Double-precision execution times of Algorithm II.

92

The Estimated Speed-up and Efficiency of Algorithm II

Single Precision

p=64, m =n = 1000

Ts =~ 64,377 sec = 17 hr 52 min 57 sec

Y1 X Y2 64x1]32x2|16x4| 8x8 |4x16|2x32|1x64
T (sec) 1493 | 1250 | 1155 | 1146* | 1185 | 1304 | 1579

speed-up 43.1 51.5 55.7 | 56.2* | 54.3 49.4 40.8

efficiency | 67% 81% 8% | 88%* | 85% 77% 64%

p==64, m=n=1700
T, ~ 315,578 sec = 3 days 15 hr 39 min 38 sec

71 X v2 64x1132x2|16x4| 8x8|[4%x16]|2x32]|1x64
T (sec) 5258*

speed-up 60.0*

efficiency 94%*

Table 3.11: Estimated speed-up and efficiency of Algorithm II.

93

The Estimated Speed-up and Efficiency of Algorithm II

Double Precision

p=16, m =n = 500
T, =~ 9,962 sec = 2 hr 46 min 2 sec

) 16 x 1 8x2 | 4x4 | 2x8 1x16
T (sec) 729 680 | 676.5% | 702 779
speed-up 13.7 14.7 | 14.7* | 14.2 12.8
efficiency 86% 92% | 92%* | 89% 80%

p =64, m =n = 1000

T, ~ 79,318 sec = 22 hr 1 min 58 sec

11X 72 64x1132x2|16x4| 8x8 |4x16|2x32|1x64
T (sec) 1858 | 1549 | 1423 | 1402* | 1448 | 1586 | 1918
speed-up 42.7 51.2 55.7 | 56.6* | 54.8 50.0 41.3
efficiency | 67% 80% 87% | 89%* | 86% 8% 65%

p==64, m=n = 1200

T, ~ 136,953 sec = 1 day 14 hr 2 min 33 sec

71 X v2 64x1|32x2|16x4| 8x8 |4x16]|2x32|1x64
T (sec) 2357*
speed-up 58.1%
efficiency 91%*

Table 3.12: Estimated speed-up and efficiency of Algorithm II.

94

95

3.6.3 Further Enhancement

In [71] Pothen and Raghavan proposed a hybrid algorithm for performing orthogonal decom-
position of a rectangular matrix on local-memory multiprocessors. The hybrid algorithm
proposed in [71] can be viewed as a variant of Algorithm I. The difference lies in the follow-
ing two aspects. In the IAP the hybrid scheme uses Householder transformations instead
of Givens rotations to reduce the arithmetic cost. In the CMP the hybrid scheme used a
different communication scheme in merging the local pivot rows. Since Algorithm I is a
special case of Algorithm II when a p-by-1 grid is embedded in the hypercube, the strategy
of applying Householder transformations in the IAP can be used to reduce the arithmetic
cost of Algorithm II regardless of the choice of 4;. Furthermore, when 72 > 1, the use of
Householder transformations during the IAP can also reduce the communication cost of
Algorithm II because there are only half as many multipliers to be communicated within
each subcube. In terms of message length, each message to be sent and received during the
IAP is reduced by a factor of 2 when Householder transformations are used.

As far as our implementation of Algorithm II is concerned, the code for the IAP in-
volves one single subroutine implementing Givens rotations. Therefore, an enhanced ver-
sion of Algorithm II is immediately obtained by recoding this subroutine using Householder
transformations. Our communication algorithms and the entire CMP of Algorithm II re-
main unchanged. In this section we report timing results of the enhanced Algorithm II and
compare its performance with other schemes.

When 71 = 72 = 1, the enhanced Algorithm II involves only the IAP phase on one
node and thus implements the sequential Householder algorithm. The serial time 7, based
on Householder algorithm is therefore measured by the execution time of the parallel code
running on a 1x1 grid.

Table 3.13 reports the execution times T, of the sequential Householder algorithm for

some randomly generated test matrices. We again estimated the serial factorization time

96

T, for large n-by-n matrices by choosing the coefficients for a cubic polynomial T,(n) as

explained earlier in this section. We compare the estimated T;(n) with the actual execution

times in Table 3.14.

The Sequential Householder Algorithm
Single Precision Double Precision
m| n|Ts(sec)| m| n|T, (sec)
100 | 100 60.1 1 50| 50 9.2
125 | 125 1153 || 75| 75 29.3
150 | 150 196.9 || 100 | 100 67.5
175 | 175 310.1 || 125 | 125 129.6
200 | 200 460.0 || 150 | 150 2214
90 | 60 239 60| 40 8.5
120 | 80 54.7)| 90| 60 26.8
135 90| 77.0| 120 80 61.4
160 | 120 153,0 | 135 | 90 86.5
240 | 160 415.6 || 160 | 120 172.0
60 | 90 232 40| 60 8.1
80 | 120 53.5 | 60| 90 26.1
90 | 135 75.5 || 80| 120 60.1
120 | 160 151.3 | 90| 135 84.8
160 | 240 411.0 || 120 | 160 170.1

Table 3.13: Execution times of the sequential Householder algorithm.

In Table 3.15 and 3.16 we show that the aspect ratio of the processor grid has a similar

effect on the enhanced Algorithm II. An analysis similar to the one in Section 3.5 can be

done in order to obtain reliable estimates for the best v; to use in conjunction with the

The Sequential Householder Algorithm
Single Precision Double Precision
m n | T, (sec) | Estimated T, m n | Ts (sec) | Estimated T,
100 | 100 60.1 60.1 sec [50 | 50 9.2 9.2 sec
125 | 125 115.3 1153 sec || 75| 75 29.3 29.3 sec
150 | 150 196.9 196.9 sec || 100 | 100 67.5 67.5 sec
175 | 175 310.1 310.1 sec || 125 | 125 129.6 129.6 sec
200 | 200 460.0 460.0 sec || 150 | 150 221.4 221.4 sec

Table 3.14: Measured and estimated times of the sequential Householder algorithm.

97

enhanced version of algorithm II. Tables 3.17 and 3.18 report the “estimated” speed-up and

efficiency for a set of test matrices.

The Enhanced Algorithm II

Single-precision Execution Times (sec), 11 X y2 = 64

m n|{64x1|32x2[16x4| 8x8|4x16|2x32]|1x64
1000 | 1000 | 1557 | 1215 1060 | 1011* | 1017 1084 1257
1700 | 1700 4580*

1200 | 800 | 1231 1012 922 905* 930 1030 1265
800 | 1200 | 1618 1183 986 907 891* 924 1030
1980 | 100 | 41.7 | 39.8* | 42.0 48.5 64.4 99.6 175.0
100 | 1980 | 221.5 | 125.1 | 75.7 50.8 41.0 36.6 | 36.1*

Table 3.15: Single-precision execution times of the enhanced Algorithm II.

The Enhanced Algorithm II

Double-precision Execution Times (sec), 71 X 72 = 16

m n 16 x 1 8x2 | 4x4 | 2x8 1x 16
500 | 500 653 572 542* 551 596
600 | 400 549 500 | 488* 509 571
400 | 600 639 534 488 485% 508
Double-precision Execution Times (sec), 71 X 72 = 64
m n|64x1|32x2|16x4|8x8[4x16|2x32|1x64
1000 | 1000 | 1819 | 1399 | 1214 | 1138* | 1148 | 1224 | 1424
1200 | 1200 1905*
1200 | 800 [1429 1049 | 1021* | 1051
800 | 1200 | 1915 1031 | 1006* | 1043
1980 | 100 | 46.9 | 43.7* | 45.7 | 54.5 72.0 | 1134
100 | 1980 | 274.5 | 152.8 | 89.3 | 60.6 | 45.8 40.8 | 40.4*

Table 3.16: Double-precision execution times of the enhanced Algorithm II.

98

The Estimated Speed-up and Efficiency of
The Enhanced Algorithm II

Single Precision

Ts =~ 55,464 sec = 15 hr 24 min 24 sec

Y1 X Y2 64x1|32x2|16x4|8x8(4%x16|2x32|1x64
T (sec) 1557 1215 1060 | 1011* | 1017 1084 1257

speed-up | 35.6 | 45.7 52.3 | 54.9%* | 54.5 51.2 44.1

efficiency | 56% 1% | 82% | 86%* | 85% 80% 69%

p==64,m=n=1700
T, ~ 271,428 sec = 3 days 3 hr 23 min 48 sec

Y1 X 72 64x1]132x2|16x4| 8x8 |4x16|2x32|1x64
T (sec) 4580*

speed-up 59.3*

efficiency 93%*

Table 3.17: Estimated speed-up and efficiency of Algorithm II.

99

100

The Estimated Speed-up and Efficiency of
The Enhanced Algorithm II

Double Precision

p=16, m =n = 500
T, = 7,873 sec = 2 hr 11 min 13 sec

Y1 X 72 16x1 8X2 [4x4 | 2x8 1x16
T (sec) 653 572 | 542*% | 551 596
speed-up 12.1 13.8 | 14.5% | 14.3 13.2
efficiency 76% 86% | 91%* | 89% 83%

p =64, m =n = 1000
T, ~ 62,426 sec = 17 hr 20 min 26 sec

Y1 X Y2 64x1|32x2[16x4|8x8|4x16|2x32|1x64

T (sec) 1819 1399 1214 | 1138* | 1148 1224 1424

speed-up 34.3 44.6 51.4 | 54.9%* | 54.4 51.0 43.8

efficiency | 54% 70% 80% | 86%* | 85% 80% 67%
p=64, m=n=1200

Ts = 107,711 sec = 1 day 5 hr 55 min 11 sec

Y1 X Y2 64x1[32x2]|16x4|8x8|4x16]2x32|1x64
T (sec) 1905*
speed-up 56.5*
efficiency 88%*

Table 3.18: Estimated speed-up and efficiency of the enhanced Algorithm II.

101

We next compare the performance of Algorithm II and the enhanced Algorithm II in
Tables 3.19 and 3.20. The enhanced version of Algorithm I can be viewed as a FORTRAN
implementation (with a different communication scheme) of the hybrid algorithm proposed
in [71]. In [71] Pothen and Raghavan implemented the hybrid algorithm in the C language
and compared its performance with four other schemes including one based on the greedy
Givens sequence. The latter can be viewed as a variant of Algorithm I with a different
communication scheme.

The timing results listed in Table 3.19 indicate that the enhanced Algorithm II coupled
with the optimal choice of 7, has the fastest execution time. The possible improvement
in execution time by the hybrid scheme over Algorithm I can be seen by comparing the
data in column 1 with the data in column 2. Note that when m/p < n (e.g. p = 64, and
m X n = 800 x 1200 or m X n = 100 x 1980), the hybrid scheme could become less efficient.
The factor contributing to the longer execution time of the hybrid scheme is that in this
case each submatrix to be reduced by Householder transformations has dimension (m/p) x n
and when (m/p) < n, the saving by Householder transformations is relatively small and is
less than the different overhead caused by employing Householder transformations instead
of Givens rotations. This is not likely to happen when 7; X 7, is chosen according to the
shape of the matrix as demonstrated by the results for the Enhanced Algorithm II shown in
the same Table. The possible improvement by the enhanced Algorithm II over Algorithm II
can be seen by comparing the data in column 3 with the data in column 4. As noted earlier,
when vy = 1, the hybrid scheme has lower arithmetic cost but the same communication
cost compared to Algorithm I; when v; > 1, the enhanced Algorithm II not only has lower
arithmetic cost but also has lower communication cost compared to Algorithm II. This
observation is supported by the timing results in Table 3.19.

In Table 3.20 we list the storage requirement for each of the four schemes. The storage
requirement of the enhanced Algorithm II is either the minimum or different from the

minimum for less than 0.1%.

102

Finally, in view of the improvement in execution time and storage requirement by em-
ploying Householder transformations in the Independent Annihilation Phase of Algorithm
11, the saving by reducing the length of each message in the IAP by a factor of 2 appears to
be quite significant. Thus, instead of employing Householder transformations in the IAP,
we might reduce the execution time and storage requirement of Algorithm II by simply stor-
ing the multiplier pair corresponding to each Givens rotation as a single real number using
the economical storage technique proposed by Stewart in [84]. At the cost of compressing
and retrieving the rotations, the parallel algorithm employing Givens rotations would have
the same communication cost and storage requirement as the one employing Householder

transformations in the IAP phase, and their performances would be comparable.

Single-Precision Execution Times (sec)

p m n MmMXy2=pxl 71 X 72 = optimal choice

Algorithm I | Hybrid || Algorithm IT | Enhanced II

64 | 1000 | 1000 1493 1557 1146 1011*

64 | 1700 | 1700 5258 4580*

64 [1200 | 800 1224 1231 1021 905*

64 [1980 | 100 43.8 41.7 43.8 39.8*

64 [800 | 1200 1493 1618 1007 891*

64 | 100 | 1980 196.9 221.5 39.4 36.1*

Double-Precision Execution Times (sec)
P m n M1X712=pXx1 71 X 72 = optimal choice

Algorithm I | Hybrid || Algorithm IT | Enhanced II

16 | 500 | 500 729 653 676.5 542*

64 | 1000 | 1000 1858 1819 1402 1138*

64 | 1200 | 1200 2357 1905*

16 | 600 | 400 631 549 605 488*

64 | 1200 | 800 1517 1429 1256 1021*

64 | 1980 | 100 52.1 46.9 52.1 43.7*

16 | 400 | 600 686 639 599 485*

64 | 800 [1200 1861 1915 1238 1006*

64 | 100 | 1980 249.6 274.5 47.0 40.4*

Table 3.19: Comparing the enhanced Algorithm II with other schemes.

103

Storage Requirement (in 4-byte words)

Single-Precision Implementation

p m n MX72=px1 71 X 2 = optimal choice

Algorithm I | Hybrid || Algorithm II | Enhanced II

64 | 1000 | 1000 22606 22606 17808 17546*

64 | 1700 | 1700 56750 56750 48258 47822*

64 | 1200 | 800 20618 20618 17246 16946*

64 | 1980 | 100 4366 4366 4366 4212*

64 | 800 | 1200 23394 23394 17108* 17121

64 | 100 | 1980 16390 16390 4313 4296*
Double-Precision Implementation

p m n MXv2=px1 71 X 2 = optimal choice

Algorithm I | Hybrid || Algorithm II | Enhanced II

16 | 500 | 500 38508 38508 34784 34260*

64 | 1000 | 1000 45212 45212 35616 35092*

64 | 1200 | 1200 61236 61236 50016 49392*

16 | 600 | 400 35756 35756 33660 33060*

64 | 1200 | 800 41236 41236 34492 33892*

64 | 1980 | 100 8732 8732 8732 8424*

16 | 400 | 600 38860 38860 33384* 33410

64 | 800 | 1200 46788 46788 34216* 34242

64 | 100 | 1980 32780 32780 8626 8592*

Table 3.20: Comparing the enhanced Algorithm I with other schemes.

104

Chapter 4

Sparse Orthogonal Decomposition

on a Hypercube Multiprocessor

4.1 Introduction

Let A be a large sparse m X n (m > n) matrix with full column rank. We consider the
problem of reducing A to upper triangular form using orthogonal transformations on a hy-
percube multiprocessor. Givens rotations are widely used in the orthogonal decomposition
of large sparse matrices on sequential machines [17,25,28,43,50,68]. For parallel computers,
Heath and Sorensen [53] have adapted the pipelined Givens algorithm proposed in [13] for
implementation on a shared-memory multiprocessor, and they report computational results
for the Denelcor HEP computer.

When A is sparse, some zero entries in A may become nonzero during the computing
process and therefore appear in the final structure of R. Because these nonzero elements do
not exist in A, they are commonly referred to as fill in sparse matrix literature. Suppose
we apply a Givens rotation to two sparse rows with leading nonzeros in the same column.

The first nonzero of one of them will become zero and except for that element, the structure

105

106

of the two transformed rows becomes the union of their original structures (16,25,43,50,68].
An example is given in Figure 4.1, where the leading nonzero element of the second row is
annihilated by the transformation. The first row in Figure 4.1 is said to be the “pivot row”

of the applied rotation.

Figure 4.1: Applying a Givens rotation to two sparse rows.

When Givens rotations are applied to a sparse matrix A to reduce it to upper triangular
form, we can distinguish two kinds of fill. We explain this using an example. In Figure 4.2
we display the entire process of reducing a 3 x 3 sparse matrix to its upper triangular form.
The zeros in positions (2,1), (3,1) and (3,2) are introduced by applying Givens rotations

to the pair {row 1, row 2}, {row 1, row 3} and {row 2, row 3} in order. Referring to

x 0 x x f x x f x x f x
X x 0 — 0 x f — 0 x f —_— 0 x f
x 0 x x 0 x 0 ¢ x 0 0 x

Figure 4.2: Sparse orthogonal reduction by Givens rotations.

Figure 4.2, the (¢,7) positions marked “f”are fill in the final structure of R, and the (4, 7)

position marked “”

denotes an intermediate fill which is subsequently annihilated at a
later step. The decomposition process above can be viewed as rotating or merging each
row into a gradually computed upper triangular matrix as illustrated in Figure 4.3. Each
“row merging” operation annihilates as many nonzero elements as possible in the incoming

row. For example, in Figure 4.3 when row 3 is merged into the partially computed upper

107

triangular matrix, two Givens rotations must be applied to annihilate the nonzero in the
(3,1) position and the intermediate fill-in thus incurred in the (3,2) position. Since each
single row can be viewed as a partially computed upper triangular matrix, in some contexts
we refer to the row merging operation as applying a Givens rotation to a pair of rows.
Therefore, in general a “row merging” operation may annihilate none, one or more than
one nonzero elements depending on the structure of the partially computed R and the
structure of the incoming row. The collection of rotations which merge more than one row

into a non-null submatrix is termed “submatrix merging” in [61]. The rotation sequence

(000\ (xOx\ /xfx\ (xfx
0 0 0 0 f x f
0 0 0 X
0 x

X x 0 x x 0

\xOx} \xOx} \xOx/ \

Figure 4.3: A sequence of row merging operations.

corresponding to the row by row merging process in Figures 4.2 and 4.3 is given in Figure 4.4.

Note that if we view row 1 as a submatrix, and view the collection of row 2 and row 3 as

X 0 x x [x
x x 0 — 1 x f
X 0 x 2 3 x

Figure 4.4: A sparse Givens sequence.

another submatrix, then the rotations 1, 2 and 3 comprise a submatrix merging operation.

Rotation 3 is necessary because of the occurrence of the intermediate fill at the (3,2) position

108

when the nonzero element at the (3,1) position was annihilated by rotation 2. Although
intermediate fill does not occupy storage in R, it causes higher arithmetic cost. Therefore,
the serial sparse Givens algorithms usually aim at reducing both kinds of fill.

In order to obtain a sparse R, George and Heath [28] make use of the following connection
between the factor R and the Cholesky factor of ATA. First, they note that the factor R
is mathematically equal to the Cholesky factor of the symmetric positive definite matrix

AT A. Second, they observe that if P, and P, are permutation matrices, then
(P AP,)T(P,AP.) = PTAT(PTP,)(AP,) = (AP.)"(AP.) = PT(ATA)P, . (4.1)

With these observations, they suggest that a symmetric ordering which produces a sparse
Cholesky factor for AT A also yields an equally sparse R if the permuted matrix AP, is re-
duced by orthogonal transformations. Although finding an optimal ordering for a symmetric
and positive definite matrix is NP-complete [85], there exist a number of good heuristic or-
derings which perform well in practice and have efficient implementations (33]. Therefore,
it is common practice in sparse matrix computation to sub ject a given matrix to such an
ordering algorithm before determining the structure of R. From now on we shall assume
that the columns of the matrix A have been appropriately ordered.

Although it is apparent from (4.1) that the row ordering of A does not have any effect
on the sparsity structure of R, it is important in reducing the amount of intermediate fill.
The role of row ordering in solving sparse least squares problems has been investigated 'by
George and Ng in [39], and the row-ordering schemes for sparse Givens transformations
were studied by George, Liu and Ng in [36,37,38].

The scheme we propose is designed for the parallel implementation of the general row
merging scheme developed by Liu [61] for sparse Givens transformations. The row ordering
implicitly imposed by the rotation sequence of this scheme appears to introduce significantly
less intermediate fill in the process of computing R compared to other known schemes. In

Section 2, we review the George-Heath scheme and Liu’s general row merging scheme. The

109

parallel version of the latter and its complexity analysis on a model problem are presented

in Section 3.

4.2 Serial Row Merging Scheme

One of the main objectives of the serial row merging scheme is to reduce intermediate fill
during the process of orthogonal decomposition either via Givens rotations or Householder
transformations [34,61]. Since the arithmetic cost of the algorithm is closely related to the
intermediate fill during the computation, the reduction in factorization time can be very
significant as demonstrated by numerical experiments in [34,61]. It was also shown in [34,61]
that the trade-off for the lower computational cost is only a very modest increase in working
storage. Working storage is an important consideration for parallel implementation on local-
memory machines, because there is relatively much less memory available on each node
processor compared to a sequential machine. Since the parallel implementation performs
essentially the same computation in a distributed manner, the strategy leading to a reduced
amount of arithmetic in the serial algorithm is likely to benefit its parallel implementation
as well. A possible reservation is that for some very efficient serial algorithm, it may be
difficult to find an efficient parallel implementation due to its inherent serial bottlenecks.
Fortunately, as we shall see later, the row merging scheme does exhibit rich parallelism

suitable for implementation on a local-memory multiprocessor.

4.2.1 An Example

Following Liu [61], we use the example in Figure 4.5 to demonstrate how the row merging
schemes can be understood as generalizing the row rotations in the George-Heath scheme
(28] to submatriz rotations. In what follows, each (i,j) entry corresponding to a nonzero

element in the given coefficient matrix is marked “x” and each fill in the triangular factor

R is marked “f”.

(a1

a1
as1

aq1

as,2
ag,2
az 2

as,2

ag 3

a10,3

a11,3

ai2,3
a13,4
Q14,4
ais.4
a16,4

Figure 4.5: A 16 x 9 example.

ais
azs

as,s

a4,5

ass
ag,5
ars

ass

ag 6
ai10,6
ai1,6
a12,6
ai36
a14,6
ais,6

aie,6

a7
az,7
as,z

aq,7

ag 7
a10,7
ai1,7

ai2,7

as
a2,3
asg
a4,3
ass
a6,3
arzs
as.s
ag 8
a10,8
aii1,8
@12,8
a13,3
ai4,3
ais.;s

a16,8

as9
a9
azg

as,o

a13,9
a14,9
ai15,9

16,9

110

I. George-Heath Scheme [28]

Step 1. Determine the structure (not the numerical values) of B = AT A.

111

Step 2. Find an ordering for B (column ordering for A) which has a sparse Cholesky

factor R.

Step 3. Symbolically factor the reordered B, generating a row-oriented data struc-

ture for R.

Step 4. Compute R by processing the rows of A one by one using Givens rotations.

We assume A has been properly ordered and depict in Figure 4.6 the rotation se-

quence of Step 4 by numbering the zeroed locations in the order they are created. By

o = X

11
16

21
22
27

Figure 4.6: The George-Heath scheme.

32
37
42

23
28

& 8 8 x

o X X X

13
18

24
29

39
44

x

& &

41
46

comparing the zeroed pattern with the original coefficient matrix, we immediately see

that the intermediate fills are in locations {9, 13, 18, 26, 31, 34, 39, 44}. The total

112

x
X X X X X X X X

X o s s X

Figure 4.7: The resulting upper triangular factor.

number of rotations required by this scheme is 46. The resulting upper triangular
factor is shown in Figure 4.7.

The George-Heath scheme implicitly employs a fized pivoting strategy. The chosen
“pivot row” of each rotation which annihilates a nonzero in a particular column is
always the same. For example, row 1 in Figure 4.6 is used as the pivot row to annihilate
nonzero element a3; by rotation 1. When row 3 and row 4 are subsequently processed
one after another, row 1 is again used as pivot row to zero out a3 and a4; because
it is the only row which remains in the partially computed R with leading nonzero in

the first column.
II. The General Row Merging Scheme [61]

Step 1. Partition the m x n coefficient matrix into k submatrices, £ < n. Each
submatrix consists of all of the rows having their leading nonzeros in the same
position. The four submatrices obtained from the given example are separated

by dotted lines in Figure 4.8.

Step 2. Apply Givens rotations to each submatrix and carry out the reduction as far

as possible.

a1
@31
as

a4,1

as2

ag,2
a7

as 2

a13,4
a14,4
ais,4

a16,4

as
azs
ass

a4.5

ass
ae,5
az,s

asgs

Q9,6
Q10,6
a11,6

@126

a13,6
Q14,6
ais.6

16,6

a7
a7
as,7

aq4,7

ag,7
a10,7
a7

ay27

a3
a3
as,s

a4.8

as 3
a¢,3
ars

as,s

ag s
a10,3
ai1,8

@128

@133
G14,3
ais5.3

a16,8

as9
ag,9
arg

as,g

a13,9
Q149
aiso

ai6,9

Figure 4.8: The row merging scheme - step 1.

113

114

In Figure 4.9, we again number the zeroed locations to illustrate the rotation

sequence assuming the submatrices are processed one by one from top to bottom.

N = X

10

13
14
16

Figure 4.9: The row merging scheme - step 2.

19
20
22

I ot W X X

© X X

15
17

21
23

o X X X

X X X X

X

I X X x X

X X X

X X X X

X X X X

Step 3. Obtain a new set of submatrices by ignoring the first row of each reduced

submatrix. Merge the submatrices which have the same column subscript for the

first nonzero element in their (current) first row.

For example, the two submatrices defined by rows 2, 3,4 and 6, 7, 8 in Figure 4.9

satisfy this condition. So are the two submatrices defined by rows 10, 11, 12 and

rows 14, 15, 16. Therefore each pair of the submatrices will be merged by Givens

rotations as depicted in Figure 4.10.

[x

X X
25

X X

X

X X

31

Figure 4.10: The row merging scheme - step 3.

26

X X X

32

X X X X X

35
% /

115

The merging process applied to the two pairs of submatrices annihilates locations

25 to 30 for the first pair and locations 31 to 36 for the second pair. The

merging process simply annihilates as many nonzeros as possible in the second

matrix by Givens rotations. Alternatively, we can view each submatrix merging

operation as applying the George-Heath scheme to one submatrix with another

upper trapezoidal submatrix being the only computed part of the triangular

factor.

Step 3 is repeated for every newly generated set of submatrices until only one

submatrix remains. Then the algorithm terminates and we have generated all

the rows of the triangular factor R. For the given example, Figure 4.11 illustrates

116

the final step which involves submatrices defined by rows 3, 4, 6 and rows 11, 12,

14 respectively. The rotations annihilate locations 37 to 42.

(X x)
x f
x f
x f
X X X X
X
X
f
37 38 39
40 41
x X X X
42

Figure 4.11: The row merging scheme - the final step.

For this scheme, the intermediate fill correspond to locations {26, 32, 39, 41}. The
total number of rotations is 42. Note that the first row of each submatrix obtained
from a merging operation is the s** row of the factor R, where s is the column sub-
script of that row’s first nonzero element. The potential for parallel computation of
this scheme can be seen by observing that the merging rotations annihilating loca-
tions {25, 26, 27, 28, 29, 30} are independent of the rotations annihilating locations
{31, 32, 33, 34, 35, 36}, and these two merging processes can be performed concur-

rently.

117

Finally the row merging scheme can be viewed as employing a special variable pivoting
strategy. Referring to Figures 4.7-4.11, observe that in contrast to the fixed pivoting
strategy, the choice of “pivot row” may be different for each rotation which annihilates
nonzeros in the same column. For example, rotation 26 uses row 3 as the pivot row to
eliminate a nonzero at the position (6,7), whereas rotation 32 uses row 11 as the pivot
row to eliminate a nonzero at the position (14,7). Although the pivot rows vary, the
choices are determined nonetheless by the structure of A and the method. Therefore,
the pivoting strategy of the row merging scheme can be viewed as a special form of

variable pivoting [25,61].

4.2.2 Definitions

In the previous section we used a 16 X 9 matrix to demonstrate how the row merging scheme
works. The same example can also be used to motivate the concept of row merge tree and
essentially full submatrices. Figure 4.9 depicts the remaining nonzero elements at the end
of Step 2 of the general row merging scheme. As mentioned earlier, the top row of each
submatrix is the s** row of the factor R, where s is the column subscript of this row’s first
nonzero element. In Figures 4.12 to 4.15 we display the four submatrices in Figure 4.9

separately and explicitly label the final (7, 5) entry in R by r; ;.

1 0 0 0 m5 0 r7 rg O
0 000 x 0 x x 0
0 00O 0 x x 0
0 000 O 0 O x 0

Figure 4.12: The first submatrix.

These four submatrices are each an essentially full upper triangular matrix as defined

118

0 r52 0 0 7r95 0 0 78 79
0 0 00 x 00 x x
0 0 00O 0 0 x X
0 0 00 0 0O 0 x

Figure 4.13: The second submatrix.

0 0 r33 0 0 r36 737 738 0
00 0 00 x x x 0
00 0 00 0 x x O
00 0 0O0 O 0 X 0

Figure 4.14: The third submatrix.

0 0 0 744 O | Tas 0 T4g T49
000 0 0 x 0 x x
000 0 O 0 x x
000 O O O o0 © X

Figure 4.15: The fourth submatrix.

119

in [61]. We now state Liu’s definition for essentially full upper triangular and trapezoidal

matrices.

Definition 1 Let T be a sparse upper triangular matriz. Suppose the it* row and the itk
column of T are removed if they contain only zeros. After removing all null row/column
pairs from T, if the remaining matriz is full upper triangular, then T is said to be essentially
full upper triangular. If the resulting matriz is full upper trapezoidal, then T is said to be
essentially full upper trapezoidal. In either case, the structure of T is fully characterized by
the number of remaining rows together with the column subscript set. An essentially full
upper triangular or trapezoidal matriz is denoted by T Z[k,{jy,-* -, je-1, Jje}], where k is the

number of non-null rows in T, and {j1,- - -, je-1,]¢} are the column subscripts corresponding

to the non-null columns in T.

By Definition 1, the four submatrices in Figures 4.12-4.15 are essentially full and they
can be referred to as T'Z[4,{1,5,7,8}], TZ[4,{2,5,8,9}], TZ[4,{3,6,7,8}] and TZ[4,{4,6,8,9}].
As an example we cast the matrix in Figure 4.14 into a 6-by-6 sparse upper triangular matrix

in Figure 4.16 to show that it does indeed satisfy Definition 1.

r33 0 0 r3e raz 7'3,8\
0 0 0 0 0

0 0 o0 o0
X X X
X X
\ x)

Figure 4.16: T Z[4,{3,6,7,8}].

Since the rows containing r;; entries do not participate in the subsequent merging

process, the submatrices participating in Step 3 are obtained by deleting the top row from

120

each submatrix. The four submatrices so obtained are each still an essentially full upper

triangular matrix as displayed in Figures 4.17.

a5 a27 428 ag,5 ae,8 ae,9 @10,6 @10,7 @10,8 Q146 @148 Q14,9
az,7 asgs arg arg ai11,7 @io,8 ais,8 Q@14,9
Q4,8 as,9 a12,8 aie,9

Figure 4.17: TZ[3,{5,7,8}], TZ[3,{5,8,9}], TZ[3,{6,7,8}] and TZ[3,{6,8,9}].

For easy explanation of the concept of row merge tree and its role in guiding the compu-
tation in the general row merging scheme, we review the definitions of four trees which are
closely related to the row merge tree defined by Liu [61]. They are referred to as elimination
tree, row merge tree, binary row merge tree and reduced row merge tree. The definition of

row merge tree given in Liu [61] is for our binary row merge tree.

Definition 2 (Elimination tree of ATA) Given an m x n matriz A. Assuming that AT A is
irreducible, the elimination tree of AT A is a tree consisting of n vertices each being uniquely
labelled by an integer in {1,---,n — 1,n}. Let R denote the upper triangular factor from
the orthogonal decomposition of A or the Cholesky decomposition of AT A. If rij (1<7)is
the leading off-diagonal nonzero in the i** row of R, then verter J is the parent of vertez i

in the elimination tree.

By Definition 2, the elimination tree corresponding to the 16 x 9 matrix A given in
Figure 4.5 can be immediately obtained from the structure of R given in Figure 4.7. For
easy reference, we re-display the structure of R in Figure 4.18 and display the elimination
tree associated with A in Figure 4.19.

The elimination tree of a square sparse matrix M has been used to set up efficient
data structures and to guide serial and parallel computation in factoring M via Gaussian

elimination [14,15,29,31,33,57,59,60,70,80].

/ 1,1 T1,5 ™,7
72,2 72,5
3,3 36 T3,7
T4,4 T4,6
T5,5 Ts,7
6,6 T6,7
7,7

71,8
T2,8
3,3
74,8
Ts5,8
76,3
r7,8

r3,8

T2,9

T4,9
75,9
T6,9
T7,9

3,9

79,9 /

Figure 4.18: The factor R from Figure 4.7.

Figure 4.19: The elimination tree associated with the matrix A in Figure 4.5.

121

122

Figure 4.20: The row merge tree associated with the matrix A in Figure 4.5.

To obtain the row merge tree of an m X n matrix A, we add m leaves to the associated
elimination tree in the following manner. If A has m; rows with leading nonzeros in the 3t
column, m; leaves are attached to vertex ¢ in the corresponding elimination tree. For the
matrix A in Figure 4.5, we obtain the row merge tree as given in Figure 4.20.

Now, if the resulting row merge tree is not binary, it can be transformed into a binary
tree by introducing additional interior nodes (binary splitting) if a node has more than two
children, and by removing those parent nodes that have only one child [61]. We define the
transformed binary tree to be A’s binary row merge tree. We demonstrate this process by
transforming the row merge tree in Figure 4.20 to the binary row merge tree in Figure 4.21.
Therefore, for a given m X n matrix, its binary row merge tree is a strictly binary tree
with m leaves, each corresponding to a row in the matrix, which is the definition given in
[61] for row merge tree. As pointed out by Liu in [61], there are different ways to perform
binary-splitting of the row merge tree. To find the best possible splitting in the context
of sparse QR is a research problem in its own right. More on the splitting criterion and

strategies can be found in [16,61,87].

The name “row merge tree” is coined in [61] based on the following observation. Refer-

123

Figure 4.21: The binary row merge tree associated with the matrix A in Figure 4.5.

ring to the binary row merge tree in Figure 4.21, every interior vertex v; defines a subtree
rooted at itself. From the definition of the binary row merge tree, the leaves of each subtree
rooted at an interior vertex represent a subset of rows from the coefficient matrix A. There-
fore, one can associate with each interior vertex an upper triangular matrix obtained by the
orthogonal reduction of the corresponding rows in its subtree. Using the definition for es-
sentially full upper triangular or trapezoidal matrices, for the given example the submatrix
associated with vertex v; = 1is TZ[4, {1,5,7,8}], and the submatrix associated with vertex
v; = 2 is TZ[4,{2,5,8,9}]. The submatrix associated with vertex v; = 5 is then obtained
by merging the two submatrices associated with vertices v; = 1 and v; = 2. Clearly the
matrix associated with the root of the binary row merge tree is the triangular factor R.
From an implementation point of view, the following further observations are the keys
to the successful use of the full matrix technique which is to be explained in our discussion
below. They are also crucial in understanding the algorithmic description of the row merging
scheme presented in the next section. First, note that there is a one-to-one mapping between
each row in the factor R and each vertex in the elimination tree. Recall that after each

submatrix merging operation, the top row of the resulting submatrix will not participate

124

Figure 4.22: The reduced row merge tree of A in Figure 4.5.

in any one of the future reduction steps. Using the row merge tree terminology, the sth
row of R is computed by the submatrix merging operation associated with vertex v; = s
in the elimination tree. Observe that there is a chain of vertices v; = 7, 8 and 9 in the
elimination tree. This indicates that row 7, row 8 and row 9 of R are all computed by the
single submatrix merging operation associated with the vertex at which the chain begins,
L.e., v; = 7 in this case. Therefore, in terms of defining “submatrix merging operations”, we
can simply look at a “reduced row merge tree” which is transformed from the elimination
tree by removing those parent nodes which have only one child. See Figure 4.22 for the
reduced row merge tree of the same example.

Second, if each completely computed row of R is immediately stored into the static
data structure set up separately for the factor R, then such a row can be deleted from
the submatrix containing it. Using our example, for v; = 1, tow 1 of R is computed
and deleted from T'Z[4,{1,5,7,8}]; for v; = 2, row 2 of R is computed and deleted from
TZ7[4,{2,5,8,9}]. The remaining rows form submatrices T'Z[3, {5, 7, 8}] and TZ[3,{5,8,9}]
The merging of the two can be done by allocating storage (dynamically from a stack) for
one k X k full upper triangular matrix, where k¥ = 4 is the size of the union of the two
column subscript sets, i.e., {5,7,8,9}. We demonstrate this process in Figure 4.23. Since
the merging operation computes row 5 of R, the subscript set {5,7,8,9} is also known from

the nonzero structure of R, which is available after AT A4 is symbolically factored.

125

/ X X X \ { Ts5 T57 758 T59 \
X X X X X
x X X
e X
X X X
X X
\ <)\)

Figure 4.23: Applying full matrix technique to submatrix merging.

If we preprocess the rows of A as described by Step 1 and Step 2 of the general row
merging scheme, initially the submatrices are available at each leaf node of the reduced
row merge tree. Since the task associated with each interior node of the reduced row
merge tree is to merge the two submatrices associated with its two children after they are
formed, it is desirable to find an ordering to perform these tasks so that the submatrices
are always formed before they are needed and they are conveniently accessible whenever
they are needed. The post-ordering traversal of the reduced row merge tree generates such
a sequence, because it ensures that the children are always visited before their parent is
visited in the traversal. For example, a post-ordering traversal of the tree in Figure 4.22
consists of visiting vertices 1, 2, 5, 3, 4, 6 and 7 in order. The overall organization of the
computation makes use of a stack and is presented in the next section.

As far as generating the row merge tree is concerned, we simply recall that the nonzero
structure of the factor R is available after symbolic factorization of AT A. Alternatively,
the structure of R can be generated directly from A using a symbolic submatrix merging
algorithm described in [61]. More details about the properties of the row merge tree and
other related work is provided in [61]. For our purpose, it is essential to understand how

the row merge tree induces a computational sequence for performing Givens rotations in

126

the serial row merging scheme, and what role the row merge tree can play to identify and

exploit parallelism in the parallel row merging scheme we propose in this chapter.

4.2.3 The Algorithm

For completeness we restate the sequential row merging algorithm, which was described by

Liu in [61].

Step 1. (Column Ordering) Find a fill-reducing ordering P, (e.g., a minimum degree
ordering) for the structure of AT A. Obtain the structure of AP; using P, as the

column ordering.

Step 2. (Symbolic Factorization) Perform the symbolic factorization and generate the

(not necessarily binary) row merge tree.

Step 3. (Row Ordering) Traverse the row merge tree by a depth-first search and record
the post-ordering in a linear array LABEL. Sort the rows of AP, according to their
first column subscripts, following the order given by LABEL. That is, the rows with
their first column subscript equal to LABEL[:] should come before the rows with
their first column subscript equal to LABEL[j] if i < j. Let the corresponding row
ordering be P,.

Step 4. (Numeric Factorization) Initialize a stack of essentially full upper trapezoidal
matrices.
fori:=1ton

begin

4.1 From the structure of R, let LABEL[i], 4y, i3, ..., i, be the locations of the

nonzeros in row Ry 4 BEL[i]x-

4.2 Obtain working space for a full (¢ + 1) by (¢ + 1) upper triangular matrix.

127

4.3 If the top upper trapezoidal matrix on the stack has LABEL[i] as its first sub-

script then Pop it from the stack and merge it into the working triangular matrix.

4.4 While the next row from P, AP, has LABEL[:] as its first subscript, merge the

row into the working triangular matrix.

4.5 Save the first row of working triangular matrix as the row RraBEL[}« into the

static storage set up for R.

4.6 Consider the remaining non-null rows of working matrix as one upper trapezoidal

matrix with the subscript set: iy, ..., 4.

4.7 If the top upper triangular matrix on the stack has i; as its first subscript then
Merge the remaining working matrix into this top matrix else Push the remaining

working matrix onto the stack.

end

In this description of the serial row merging scheme, the array LABEL records the post-
ordering of the nodes of the row merge tree. Associated with each node s = LAB EL[i]is an
essentially full trapezoidal submatrix denoted by T Z[u, Us]. (Although it is possible that
some upper trapezoidal submatrices may not be essentially full, the bookkeeping overhead
involved in further exploiting this level of sparsity is not considered justified [61].) Since
the column subscript set U, can be identified as the row structure of Ry, it is not necessary
to store it explicitly.

The working storage, the stack size, and the amount of computation involved in each
merging process associated with an interior node LABEL[:] can also be determined based
on the row merge tree, the structure of the matrix P, AP,, and the structure of the factor

R. The details of these aspects were examined in [61].

128

4.3 Parallel Row Merging Scheme

We now consider implementing the row merging scheme on a hypercube multiprocessor.
Since the column ordering step, symbolic factorization step and the row ordering step are
each a research topic worthy of separate investigation, we shall consider only the problem
of parallelizing the numeric factorization phase described by Step 4. The proposed parallel
algorithm is designed to perform the numeric factorization on a hypercube machine with
p = 2¢ processors, where d is the dimension of the hypercube network. We assume that
at the end of step 3, the integer array LABEL, the permuted matrix P,AP,, and the
structure of the triangular factor R are all available in the host. Since there is no globally
shared memory among the p processing nodes, or between the host and a node processor,
the data must be distributed among the processors in some way, and the mapping strategy
should be devised to maintain high parallelism throughout the computation. Since the
entire computing process is a sequence of submatrix merging operations, the reduced row
merge tree is the most convenient form to use in our following discussions. Therefore, we
shall adopt the convention of using “row merge tree” to imply the reduced row merge tree

unless we explicitly state otherwise.

4.3.1 Basic Mapping Considerations

The mapping of data and computing tasks to processors must be done in a manner con-
sistent with the precedence relationship inherent in the algorithm. First, the precedence
relationship defined by the row merge tree requires that the computation associated with
the children nodes be completed before the work associated with the parent node is com-
pleted, and the task associated with the parent node is started after the tasks associated
with both of the children nodes are started. There are a number of ways to traverse the
tree so that the required precedence relationship is observed, while maintaining the same

amount of intermediate fill during the factorization process. The depth first traversal used

129

in Liu’s serial row merging scheme is one alternative. Whether the row ordering induced
by the depth first traversal is suitable for parallel implementation depends on several issues
discussed below.

If we consider the submatrix merging operation associated with each node of the row
merge tree as a computational task, the task granularity is one major consideration in
deciding whether each task should be allocated to more than one processor. If the amount
of computation demanded by each task is more or less the same, it is possible to obtain
speed-up by allocating each task to one processor and exploiting the parallelism permitted
by the precedence relationship only. This approach has been adopted in [31] to perform
sparse Cholesky decomposition on a local-memory multiprocessor, and in [15] to parallelize
the multifrontal schemes for shared-memory multiprocessors. However, if the amount of
computation demanded by any one task is of the same order of magnitude as the serial
algorithm, then regardless of how many processors are available the parallel algorithm using
this “one task to one processor” approach can at best be as fast as its serial counterpart (in
the order of magnitude sense). In addition, it is not uncommon that each node processor of
a local-memory machine has relatively limited memory compared to a sequential machine.
Therefore, the above “one task to one processor” approach could also impose a severe
limitation on the size of the problem the parallel algorithm can handle on a local-memory
multiprocessor.

In [61], the serial row merging algorithm is analyzed for a k-by-k grid model problem.
The complexity results given there indicate that the serial time (in terms of multiplicative
floating-point operations) is O(k3). It is well known that when the vertices of a k-by-k
regular grid are ordered by the nested dissection method [27], the computation associated
with the root of the row merge tree involves the merging of two full k X k upper triangular
matrices. Therefore, the serial time for this task alone will also be O(k®). This is exactly
the scenario we are concerned with in the last paragraph. Since there are usually non-

trivial communication cost involved when multiple processors on a local-memory machine

130

cooperate to perform a task, the strategy of dividing one task among multiple processors
should be used judiciously, probably to a subset of large tasks only. We shall therefore adopt
a mixed strategy, namely that we may allocate one processor to handle multiple small tasks,
but allocate multiple processors to handle each large-enough task. More will be said later
about how such a mixed strategy can be used beneficially in the proposed “parallel row
merging scheme”.

Another important issue is how to exploit the parallelism permitted by the precedence
relationship, which is in turn induced by the row merge tree. For the parallel algorithm we
shall propose, a stronger precedence relationship is actually imposed, namely that the task
associated with a parent node will start only after the tasks associated with all of the children
nodes are finished. It should be pointed out that with the decision made on dividing each
task among multiple processors, the stronger precedence relationship does not necessarily
imply reduced parallelism. On the contrary, this assumption will simplify the other aspects
of the parallel algorithm and could enhance its performance. This can be easily understood
from an example. Let us consider the precedence relationship induced by a degenerate tree,
say a chain of n nodes. Using the “one task to one processor” approach together with the
stronger precedence relationship, the m tasks must be processed sequentially. The parallel
algorithm becomes a distributed serial algorithm. However, using the “one task divided
among p processors” approach, the parallel algorithm still has the potential to be “p” times
faster than the serial algorithm, regardless of how we interpret the precedence relationship
induced by the chain of n nodes. In the situation when multiple tasks associated with a
subtree are assigned to one processor, it is obvious that these tasks can only be processed
sequentially. That is, the precedence relationship induced by the subtree corresponds to

the stronger interpretation.

131

4.3.2 A Parallel Submatrix Merging Algorithm

We now take a closer look at the mixed mapping strategy we proposed in the last section. In
our application of the “multiple tasks to one processor” strategy, each chosen group of tasks
is associated with a subtree of the row merge tree. The subtrees will be selected so that as
many processors as possible can work in parallel. The processor responsible for the tasks
associated with a subtree can be viewed as executing the serial row merging algorithm
for a smaller problem defined by the subtree. It is clear that if J subtrees each induces
same amount of work can be processed simultaneously by j processors in parallel, then a
j fold speed-up will result because no communication is necessary among the cooperating
processors. The remaining question is how to identify such subtrees. We address this
problem later.

There are two crucial decisions to be made with respect to the implementation of the
“one task divided among ¢ processors” strategy, namely, how to map data among the ¢ pro-
cessors and how to embed an efficient communication topology in the hypercube connection
network provided for this subset of g processors. Recall that a computational task is defined
to be a submatrix merging operation. Therefore, the two essentially full upper trapezoidal
submatrices are the data to be divided among the q processors. We shall first examine two
variants of the sequential Givens algorithm and choose one which is more suitable for the

parallel implementation.

132

(1) Method A - Standard Givens Rotations Without loss of generality, we shall present
the method by applying it to the merging of two full ¥ X k upper triangular matrices
R and R. To annihilate row #;, from R, the sequential algorithm does the following.

for{=14,1+1,---,k do
if |7 ¢| 2 [re,| then
t e |rgel/|Fil
8 — 1/\/1-1-—112
c — st

else
b [Figl/Ire.l
c—1/V1+12
s —ct

for j=£,+1,---,k do
V= Ty
W — Ty
T¢; < cv + sw

Fij ¢« —sv + cw

To annihilate row 1 to row k of the matrix R in series, the arithmetic cost (in terms
of multiplicative operations) is 2k3 + 2k? + %k.

(2) Method B - Pairwise Givens Rotations In Method B, we pair the i*" row of R
and the " row of R for 1 < i < k. We then apply the above algorithm with [= §
to each pair of the i** rows, resulting in annihilating the first nonzero value in row
Ti». We now have k updated rows in R and (k — 1) updated rows in R. (The kt*
row of R has been eliminated.) The rows with their first nonzero elements in identical

positions are again paired together, and we apply the above algorithm with | = i

133

to the 4** pair of rows, where 2 < ¢ < k. This is repeated for (k — 2) more times
to eliminate the remaining (k — 2) rows from R. The arithmetic cost (in terms of

multiplicative operations) is the same as Method A, namely 2k + 2k + k.

In Method B, the g row merging operations corresponding to the g pairs of rows can be
done simultaneously by ¢ available processors. By distributing the rows of the two subma-
trices over a loop of ¢ processors in a wrap-around fashion, and requiring each processor to
send the reduced row to its right neighbour after each row merging operation, we obtain a
parallel algorithm to perform the submatrix merging operation on a loop of g processors.
We demonstrate how the proposed algorithm works by applying it to the following example.

We consider merging two essentially full upper triangular matrices X and Z on a
loop of four processors Py, P;, P3 and Py, where X = TZ[6, {1,2,3,4,5,6}] and Z =
TZ[6,{1,2,3,4,7,8}]. The 4-processor loop and the matrices X and Z are displayed in

Figures 4.24 to 4.26.

Figure 4.24: A loop of four processors.

The rows of each submatrix are distributed among the processors as shown in Fig-
ure 4.27. We note that the wrap mapping is applied to the union of the two column
subscript sets, i.e. {1,2,3,4,5,6,7,8}. If row i is missing from a submatrix, we simply skip
the assignment of row ¢ for that submatrix.

As mentioned above, we can view the submatrix merging operation as annihilating as
many nonzero elements in the matrix Z as possible via a sequence of Givens rotations. After
each processor applies a Givens rotation to the first pair of rows and sends the reduced row
to its right neighbour, the updated rows are now distributed among the processors as shown

in Figure 4.28. Note that P4 ’s right neighbour is P;, and P; ’s right neighbour is Py for

134

—

/231,1 Ti2 213 T14 T15 216 0 O
T22 Z23 T24 T25 Tzs 0 O

z33 234 235 T3g 0 O

ZTgq Z45 T4 0 O

Ts5 Ts5.6 0 0

336,6 0 0

0 0

0

N—

Figure 4.25: X = TZ[6,{1,2,3,4,5,6}].

(21,1 212 213 214 0 0 217 2z
222 223 224 0 0 237 293

233 234 0 0 237 235

234 0 0 z47 243

0 0 O 0

0 0 0

27,7 %78
233)

Figure 4.26: Z = TZ[6,{1,2,3,4,7,8}].

P P, Py Py
r__—_ — — —
X F:ows 1,5 | rows 2, 6 row 3 row 4
Z row 1 row 2 rows 3,7 | rows 4, 8

Figure 4.27: Wrap mapping X and Z to a loop of four processors.

135

i1=1to3.
Pl P2 P3 P4
X | rows 1,5 | rows 2, 6 row 3 row 4
Z row 5 row 2 rows 3,7 | rows 4, 8

Figure 4.28: A snap shot.

Our discussion above implies that it is really not necessary to distinguish the origin of
each row. We simply pair the rows with identical column subscripts for their leading nonzero
elements, and reduce one row using another row via Givens rotations. We therefore distin-
guish the rows by the column subscripts of their first nonzero elements, regardless of whether
they originate from X or Z. We summarize in Figure 4.29 the whole process of merging X
and Z into an 8 X 8 essentially full upper triangular matrix R = TZ[8,{1,2,3,4,5,6,7, 8}].
We list the rows each processor will have for each step, and it is understood that the action
involved in each step is to merge a pair of rows and send the reduced row to the processor’s
right neighbour in the ring. The “blank” space corresponding to step i and P; indicates

that no row merging operation is performed by processor P; during step i.

4.3.3 Hypercube Partitioning

Recall that associated with each vertex of the row merge tree is a task involving merging two
essentially full upper trapezoidal submatrices. In the previous section we propose a parallel
algorithm to divide such a task among a number of processors which form a loop. When the
precedence relationship induced by the row merge tree allows us to process several tasks in
parallel, it is desirable to partition the available processors into several loops — one for each
task. Furthermore, if these tasks have different computational demand, it is also desirable
to assign more processors to a bigger task and fewer processors to a smaller task so that

the work can be divided evenly among all processors. Therefore, before we can lay out the

136

Py P P3 Py

step 0 | 1,1,5 | 22,6 | 3,3,7 | 44,8
step 1| 1,55 226 |3,3,7|4438
step 2 | 1,5,5 | 2,6,6 | 3,3,7 | 4,4,8
step 3 | 1,5,5 | 2,6,6 | 3,7,7 | 4,4,8
step 4 | 1,5,5 | 2,6,6 | 3,7,7 | 4,8,8
step 5| 1,5 |2,6,6|3,7,7| 488

step 6 2,6 |3,7,7| 4,88
step 7 3,7 |1 48,8
step 8 4,8

Figure 4.29: The entire submatrix merging process.

overall strategy, an important question is “Given an arbitrary number ¢, does there always
exist a subset of ¢ processors in the hypercube machine so that a loop can be embedded?”
Although the answer to this question is negative, we have an affirmative answer if q is an
even number. With this very mild restriction, we can actually obtain much stronger results
which turn out to be very important for the performance of the proposed parallel algorithm.

We establish these results in the following theorem.

Theorem 4.1 Suppose we are given a hypercube connection network with p = 2% processors.

If it is desirable to partition the set of p processors into k disjoint subsets Sy, S., ..., and

Sy such that

k
p=> IS
=1
and
|Si| = 2¢;, where ¢; is a positive integer

then there ezists a (possibly different) partition which maintains the cardinality of each

subset, and permits the embedding of k disjoint loops, one for each subset. For each ;=1

137

we have a degenerate loop consisting of two processors.

Proof: There is a unique mapping from the d-bit reflected binary Gray code [74] to the
24 processor id’s of the given hypercube machine, and it is known that the former coding
embeds a loop on the hypercube network. Furthermore, any two processors whose id’s
are different in 1 bit, regardless of the bit position, are connected by a direct link in a
hypercube network. By the definition of the reflected binary Gray code, if we represent the
24-1 (d — 1)-bit Gray code by the array

G(d - 1) = {GO, Gl’ G?) "'7G2“-1 —1} ’
then the 2¢ d-bit Gray code can be defined recursively by the following equation
G(d) - {OGO, OGI) OGQ, ceey 0G2d—1_1, 1G2d—1 —19 ey 1G2, lGl,].GO} .

Thus any two Gray codes in symmetric positions from the left end and the right end of
the array G(d) also differ in one bit only. Therefore, the ¢ processors from the left and of
the array and the £; processors from the right end of the array form a loop of 2¢; processors.
The 2¢; processors for S5 can be chosen from the remaining processors in exactly the same
manner, and so on for the 2¢; processors for the subsets Si, 3 £ 1 < k. This proves the
theorem. a

The implication of Theorem 4.1 is in essence that it is not only possible to assign pro-
cessor loops of different size to handle independent tasks which demand different amounts
of computation, but it is also feasible to have all of the processor loops operating simultane-

ously. Using a hypercube of dimension 4, we illustrate one such partitioning in Figure 4.30.
4.3.4 A Mapping Example

A k-by-k Grid Model Problem

Before we proceed further, let us fix in mind the basic ideas discussed so far by applying them

to a k-by-k regular grid problem. This class of problems arises typically in the natural factor

138

0000 0001 0011 0010

0111 0101 0100

Pof—{ Ao
1000 1001 1011 1010 1110 1111 1101 1100

Figure 4.30: Embedding loop(s) in a hypercube of dimension 4.

formulation of the finite element method [1]. Associated with each of the k2 grid vertices is
a variable z;, where ¢ is the label of the vertex under a chosen ordering scheme. Associated
with each of the (k — 1)? small squares are s equations involving the four variables at the
corners of the square. Thus, the coefficient matrix of the resulting overdetermined system
is (m = s(k — 1)?) by (n = k?). The example in Figure 4.31 is a 3-by-3 grid with vertices
numbered by a nested dissection ordering [27]. When s = 4, associated with the grid is the

16 x 9 matrix given in Figure 4.32.

There is an intimate relationship between the ordering of the vertices and the structure of
the elimination tree because the former amounts to permuting the columns of the coefficient
matrix and thus determines the sparsity structure of R, which in turn determines the
structure of the elimination tree. The ordering schemes which generate an elimination tree
with minimum or near-minimum height were examined in [63]. We thus explain first the

relationship between the nested dissection ordering and the resulting elimination tree.

139

@ 28, @
O—O—®

O—0O0—B

Figure 4.31: Nested dissection ordering of a 3-by-3 grid.

/ a ais a1,7 418 \
az; » azs az,7 Qa3
as i ass aszz assy
aq1 a4 5 47 Q43
as 2 as s a53 Qas9
ae,2 as,s @68 Qg9
az.2 azs arzg arg
as,2 as;s asg asgyog
ag 3 ags Q@97 Qg
a10,3 aio6 Q10,7 G108
@11,3 a6 @11,7 @118
ai2,3 ai26 G127 G128
a13,4 a13,6 @138 @139
Q14,4 ai4,6 G148 Q14,9
ais 4 a1s5.6 @158 Qi59
a16,4 aie,6 ai6,8 @a16,9 /

Figure 4.32: The 16 x 9 matrix associated with the grid in Figure 4.31.

140

The Nested Dissection Method and the Elimination Tree

When being applied to a regular grid, the nested dissection method can be understood as
choosing a group of vertices as a separator to partition the grid recursively. The vertices
in the separator are always numbered after the vertices in the two disjoint subgrids are
numbered, and the nodes consisting of a separator form a chain in the elimination tree. We
show in Figure 4.33 how to generate a nested dissection ordering by recursively defining
separators on a 7-by-7 grid. The elimination tree corresponding to the grid in Figure 4.33 is
displayed in Figure 4.34. In Figure 4.33, vertices 43 to 49 form the separator S?, which par-
titions the 7-by-7 grid into two 7-by-3 subgrids. Note that the superscript j in our separator
notation S{ indicates that there are 2/ separators at this level of recursive partitioning and
the subscript ¢ in {1,2,---,27} enumerates them. The vertices 37 to 39 form the separator
S1, and the vertices 40 to 42 form the separator S3. $1 and S} partition the two 7-by-3
subgrids into four 3-by-3 subgrids.

21 25 22 43 30 34 31 21 S3 22 S? 30 S? 31
23 26 24 44 32 35 33 S3 S} S§ S? s3 os? os3
19 27 20 45 28 36 29 19 S2 20 S? 28 S? 29
37 38 39 46 42 41 40 S} St St S? S} si sk
3 7 4 47 12 16 13 3 S 4 S 12 52 13
5 8 6 48 14 17 15 53 St S3 S? 83 s oS3
1 9 2 49 10 18 11 1 S 2 S8 10 82 11

Figure 4.33: Nested dissection ordering of a 7-by-7 grid and separators.

141

E-O-&-6-0--®

@9 42

& @

37 (49
© 29 9 39
® @29 & @3
(1) (29 16 (39

(5) (6) 23 29 (14 19 32 (33
O OO OB @®®LO OO @ ® @ &

Figure 4.34: An example of an elimination tree.

142

The Application of a Mixed Mapping Strategy

Suppose we are given a hypercube of dimension 3, i.e., there are eight processors available.
Using the elimination tree in Figure 4.34 as an example, our discussion so far suggests the
following mapping. For the eight independent subtrees rooted at nodes 5, 6, 23, 24, 14, 15,
32 and 33, each will be assigned to one processor. The four tasks associated with nodes 7 ,
25, 16 and 34 will each be handled by two processors. Recall that a chain of nodes in the
elimination tree simply means no merging is necessary for the nodes other than the first one.
In the next level, the two tasks associated with nodes 37 and 40 will each be handled by a
loop of 4 processors. Finally the merging of two 7-by-7 full upper triangular matrices, which
is the task associated with node 43, will be handled by a loop of 8 processors. For the k-by-k
grid problem, all tasks corresponding to the nodes at the same level of the elimination tree
are of the same size (strictly speaking, this is true when k = 2/ — 1,7 > 0), and the tasks
are getting larger as we move up toward the root of the tree. Therefore, the above mapping
does actually achieve the dual goals of assigning multiple small tasks to one processor and
dividing each larger task among multiple processors.

In addition, this mixed mapping strategy also leads to the following very favourable
situation. For a given machine with p processors, the larger the value of k, the larger the
number of nodes (or tasks) in each of the p independent subtrees, and the larger the tasks
which are each handled by multiple processors. As noted earlier, the speed-up obtained by
processing independent subtrees in parallel is the best one can expect, because there is no

communication overhead involved.

4.3.5 Complexity Analysis of a Model Problem

In this section, we shall give a complexity analysis of the parallel row merging scheme applied
to a k-by-k grid model problem. This class of problems is well-suited to our approach, and

serves to demonstrate the potential speed-up and the effectiveness of the communication

143

scheme supported by the embedded multi-loop topology.

We first note that the nested dissection ordering [27] fits our mapping strategy very
well in terms of minimizing communication cost and balancing work load. The match is not
accidental, because it hinges on the recursive nature of the nested dissection method coupled
with the recursive structure of the hypercube network and the recursive characteristic of
the multi-loop embedding scheme we propose in Theorem 4.1. Recall that the elimination
tree in Figure 4.34 is induced by the nested dissection numbering of a 7-by-7 grid. Here
we shall use the same tree again to demonstrate the intimate relationship among the three.
Let us use a hypercube of dimension 3 as an example. Given below is the reflected binary

Gray code for the eight 3-bit processor id’s.
G(3) = {000, 001,011,010, 110,111,101,100} .

Let us represent the set of processors assigned to perform the task associated with node v;
by a linear array L,,(N), where N is the number of processors. Using natural numbers, we

can enumerate the processors in the 8-loop assigned to the task node 43 of the elimination

tree as

L43(8) = {Po, P1, P3, P, Ps, P, Ps, Py}.
Following Theorem 4.1, the two 4-loops employed by node 37 and node 40 are
L37(4) = {Po, P, Ps, P4}

and
Lio(4) = {P3, P2, Ps, Pr} .
We observe the following:
1. Since the loops assigned to the task nodes at the same level of the row merge tree

form a partition of the hypercube network, they are disjoint sets of processors and

there is no competition for communication channels among the loops.

144

2. Suppose we designate the left-most processor in each linear array L., (N) as the leading
processor for the associated task node. For example, the leading processors for the
task nodes 43, 37 and 40 are Py, Py and P; respectively. Suppose that the leading
processor for each task node is responsible for receiving submatrices to be merged
and sending the reduced submatrix to the leading processor for the parent task node.
Since the row merge tree induced by the nested dissection ordering on a k-by-k grid is
binary, completely balanced, and the computational work load is the same for all task
nodes at the same level, our mapping scheme automatically assigns the same leading
processor for every parent-left child pair. Needless to say, only one submatrix will

actually be relocated after each submatrix merging operation.

3. The analysis of the model problem can be greatly simplified by examining the work
associated with a branch of the row merge tree, which corresponds to the critical path
of the parallel algorithm. This point will be made more clear in the following section

on complexity analysis.

Complexity Analysis

The following analysis is for a k-by-k grid model problem on a hypercube multiprocessor of
dimension d. For convenience, we shall assume k = 2¢ — 1, where £ > 0. Letting p denote
the total number of node processors on the machine, we have p = 2%, Since all of the p
processors cooperate to perform the last task and the work involves merging two full k-by-k
upper triangular matrices, we shall assume k 3> p from now on.

We show in Figure 4.33 how to generate a nested dissection ordering by recursively
defining separators on a 7-by-7 grid. The elimination tree corresponding to the grid in
Figure 4.33 was displayed in Figure 4.34. Recall that the (reduced) row merge tree is
transformed from the elimination tree by amalgamating the vertices along a chain into a

single vertex. Therefore, there is a one-to-one mapping between the separators defined on

145

the grid and the vertices in the row merge tree. Each vertex in the row merge tree carries
the smallest label among the vertices in the corresponding separator. We give in Figure 4.35

the row merge tree for the 7-by-7 grid shown in Figure 4.33.

Figure 4.35: The (reduced) row merge tree associated with the 7-by-7 grid shown in Fig-
ure 4.33.

Now, with p = 24 processors available, the subtrees rooted at separators S%, 1 <1 < 29,
will each be assigned to one processor, and the separators one level above will each be
assigned to a loop of two processors, and so on. The last separator, S9 which is the root of
the row merge tree, will be assigned a loop of p processors. Therefore, if we let T (Sf , {7)
denote the time (computation and communication) required by the parallel submatrix
merging operation associated with one task node, and let T} (Sf) denote the time for
processing the subtree rooted at separator Sf by the serial row merging scheme, the total
time required by the parallel row merging scheme to factor the coefficient matrix associated
with the k-by-k grid can be expressed as

d-1 ,
Tixk(k,p) = Ts (Sfl) + ;}T (53’ 2%) ,
j=
where each Sij refers to one particular j** level separator which is located on the highest-cost
path of the row merge tree. Thus the values of i’s may not be the same for all Sf . We shall

explain shortly how to determine the highest-cost path. If we let IS;’ I denote the number of

146

grid vertices contained in the separator (or the size of the separator), and we assume that

k=2-1,£>0, then we have

5=

G=1)| _
|| =J£|—1 if j is odd ,

2

and

|Sf| = IS(ji—l)l, if j is even.

Note that the subgrids produced by the separators may have one more grid line along one or

more sides. Such n-by-n subgrids are termed bordered subgrids in [33]. Given in Figure 4.36

is a subgrid bordered by separators on its two sides.

o o o e 21
o o o e 23
o o o e 19
c o e e sl

Figure 4.36: A bordered subgrid from the 7-by-7 grid in Figure 4.33.

25
26
27
St

22
24

Si

S?
St
S?
S?

Now if we let p(n,1,q) be the cost (computation and communication) of factoring on ¢

processors the coefficient matrix associated with an n-by-n subgrid which is bordered along

t sides, then we have

p(n,j,q) > p(n,i,q), for every j > i.

Therefore, the highest-cost path (which is not unique) can be defined by the separators

in Figure 4.37. Applying this to the 7 x 7 grid in Figure 4.33, the corresponding branch

on its row merge tree is identified by the path labelled in Figure 4.38.

We can then

derive the total cost of the parallel algorithm by setting up the recurrence equations for

147

o ° o o o o o [e] o o o o o ° o
)) o) ° o o . o o o o o) o
o o ° o o o o . o o o o o) o
o o o o o ° o . o o) o ° o o
° o o o o o o ° o o o o o o o
° o o) ° o o . ° ° o o o o o
o ° o o o o o . o o o o o ° o
leo . . . ° . o| |eo o ° o o o ° o
o o o [e] o B . o ° o o o o o
° o o . ° E . o o o o) o o
o o ° . o ° ° o o o o o o o
° o ° . E . o ° ° ° ° ° °
) o o ° o o o . ° o o o o o o
o o o . o o o . o o o o o ° o
° o o |[e] o o o |[eo] o o ° o o ° o

Figure 4.38: An example of the highest-cost branch on a (reduced) row merge tree.

148

the subproblems along the highest-cost path. We first define some cost functions which are

needed in the recurrence equations.

Definition 3 The function A(u,v,t,q) is defined to be the computation and communication
cost (in terms of multiplicative operations) of merging (via the parallel pairwise Givens
scheme on q processors) two essentially full upper triangular submatrices of dimension u

and v respectively, where t columns in these matrices have common subscripts.
Definition 4 c(u,v,t) is defined to be A(u,v,t,1).

Definition 5 8(k,1) is defined to be the multiplicative operations required to factor a coef-
ficient matriz associated with a k-by-k grid bordered along i sides by the serial row merging

scheme.

We first show how to apply these cost functions recursively to the model problem using
a 7-by-7 grid as an example. The nested dissection ordering of the grid was given in
Figure 4.33 and a highest-cost branch in the corresponding row merge tree was given in
Figure 4.38. As noted in Figure 4.38, the highest-cost path consists of vertices 43, 37,7, 6

and 4. To apply the cost functions to the associated problems, let us recall the following.

1. There is a one-to-one mapping between the rows of the factor R and the vertices of
the elimination tree. In particular, the s** row of R is associated with the vertex

v;=S.
2. The nested dissection ordering dictates that the vertices contained in each separator
are numbered sequentially.

3. Each separator S;: corresponds to a chain of length 'S,'I in the elimination tree.

4. Since the chain of vertices in the elimination tree is amalgamated into one single vertex
in the (reduced) row merge tree, the observations 1 to 3 imply that associated with

each vertex in the row merge tree is a collection of consecutive rows in R. Therefore,

149

the nonzero structure of these rows combined gives the column subscript set associated

with the representative vertex of the chain, or vice versa.

Now, referring to the row merge tree in Figure 4.38, we see that the task associated with
the root vertex 43 is the merging of two submatrices resulting from solving the subprob-
lems induced by the separator S?. Each subproblem is associated with a 7-by-3 subgrid
bordered on one side as shown in Figure 4.39. The column subscript set of each submatrix
corresponds to the vertices contained in the border. Because these two subgrids share a
common border consisting of vertices {43,44,---,49}, the task associated with vertex 43
is the merging of two full 7 x 7 upper triangular matrices with identical column subscript

set of {43,44,---,49}. Therefore, the cost function associated with the root vertex 43 is

21 25 22 o e 30 34 31 © 0o o 43 o o o
23 26 24 o e 32 35 33 0 0 o 44 o o o
19 27 20 o e 28 36 29 0o 0o o 45 o o o
37 38 39 e o 42 41 40 ©o o o 4 o o o
3 7T 4 e e 12 16 13 o o o 47 o o o
5 8 6 e e 14 17 15 o o o 48 o o o
1 9 2 e 10 18 11 o o o 49 o o o

Figure 4.39: Subproblems associated with subgrids.

given by A(k,k,k,p), where k = 7 = |S?|, p is the total number of processors available
on the hypercube. The next vertex along the highest-cost path is vertex 37. Referring to
the grid, vertex 37 is the representative of the separator S! which is consisted of vertices
37, 38 and 39. The separator S} further divides the 7-by-3 subgrid into two 3-by-3 sub-
grids. Each of the 3-by-3 subgrid is bordered along two sides. The submatrices produced
from solving each of the subproblems associated with the two 3-by-3 subgrids have each

a column subscript set containing the vertices in their respective borders. Therefore, the

150

task associated with vertex 37 is the merging of two submatrices with column subscript sets
of {37,38,39,43,44,45,46} and {37, 38,39,46,47,48,49}. These two column subscript sets

can be identified from the grid as shown in Figure 4.40. The subscripts in the common set

21 25 22 e o o o 0o 0 0 0 0o o o o o o 43 o o o
23 26 24 e o o o 0o 0 0 0o o o o o o o 44 o o o
19 27 20 e o o o © 0 0o o 0o o o o o o 45 o o o
e e o o 0 0 O e o o o 0 0 o 37 38 39 46 o o o
] o 0o o o o o 3 7 4 ¢ 0 o o o o o 47 o o o
o o 0 o o o o 5 8 6 ¢ o o o [o o 48 o o o
o o o o o o o 1 9 2 e o o o o o o 49 o o o

Figure 4.40: Subproblems and column subscript sets for merging at vertex 37.

are {37,38,39,46}. In terms of the grid size k, the common subscript set is of size (k/2),
and each of the two column subscript sets is of size k. Therefore, the submatrices partic-
ipating in the merging are each at most a k X k essentially full upper triangular matrix.
According to our mapping strategy, (p/2) processors will be allocated to perform this task.
The cost for the merging operation associated with vertex 37 is thus A (k, k, ’%, g) . A task
of exactly the same cost is associated with vertex 40 and is performed by the other set of
(p/2) processors in parallel.

The cost analysis given above can be applied to each of the four subproblems defined
by the four subgrids induced by the first two levels of separators. We display the four
subgrids in Figure 4.41. Note that each one of them is a square grid of dimension (k/2)
and is bordered on two sides. According to our mapping strategy, the four associated
subproblems are solved in parallel, each employing (p/4) processors. The cost for solving

any one of them is therefore p (%, 2, %) .

Applying the analysis above recursively, we can now set up the following recurrence

151

21 25 22 e 30 34 31
23 26 24 e 32 35 33

3 7 4 e 12 16 13
5 8 6 e 14 17 15
1 9 2 e 10 18 11

Figure 4.41: The four subgrids induced by the separators.

equations for the subproblems along the highest-cost path, which determines the total cost

of the parallel row merging scheme. We have

p(k0.7) < 5 (302)+A(kkkp)+A(kk’;,§ , (4.2)
k 5k 3k 3k k p

< .

ph2) < p(3al)4a(FFmp)+a (kL ER)

p(k,4,p) < p(g, 4)+A(3k 3kkp)+A(2k 2k,§,§), (4.4)

and

k k
p (Ed/_274’ 1) < 6 (53,—2,4)

= 8 (7’“_5,4) , (4.5)
where d is the dimension of the hypercube machine, and is assumed to be an even number
here so that each processor will be assigned a square subgrid. This assumption is made
to facilitate our recurrence analysis, although the algorithm we propose is valid for any
value of d. Since the cost functions A(u,v,t,q) and 8 (7"5,4) yield upper bounds, we have
inequalities in the equations above. In what follows, we shall first show how to solve for

8(k,) to obtain the serial cost 6(k,0) and evaluate 8 (7';-’,4) which is needed in (4.5). We

152

next show that the cost function A(u,v,t,q) is the summation of the arithmetic cost, the
start-up time cost, the communication overhead cost and the cost for data distribution and
collection for each submatrix operation. To solve for the total arithmetic cost, o(k,0,p), the
total start-up time, 91(k,0,p), the total communication overhead, ¥;(k,0,p) and the total
cost for data distribution and collection, 3(k,0,p), we replace the function A(u,v,t,q)
in (4.2)-(4.4) by each component cost function. Finally, we obtain an upper bound for

p(k,0,p) from

p(k,0,p) < o(k,0,p) + 1(k,0,p) + ¥2(k,0,p) + ¥3(k,0,p) .

To obtain 6(k,%), we need the formula for c(u,v,t) which was derived in [62] and we
cite it below in Lemma 4.3. Note that the cost function ¢(w,w,w) we use in Lemma 4.3
measures the number of multiplicative floating point operations for merging two full w x w
upper triangular matrices using either Method A (standard Givens) or Method B (pairwise
Givens), whereas Liu’s formula measures the number of elements being modified. Lemma 4.2

ensures that the cost functions in Lemma 4.3 yield upper bounds.

Lemma 4.2 [62] The cost of merging two essentially full upper triangular submatrices U =
TZ[u, 5] and V = TZ[v, $,] using Givens rotations, where |S; N Sa| = t, is bounded by the

cost of merging U and V when their leading t columns have common subscripts.

O

Lemma 4.3 [62] Consider merging two essentially full upper triangular submatrices
U = TZ[u,5] and V = TZ[v,S2] using Givens rotations, where the first t columns of
U andV have common subscripts. Let g(u,v,t) denote the total number of rotations. Then

g(u,v,t) =t(w—-t)+t(t—;-12 ,

153

where w = u+v—1t. Let c(u,v,t) denote the total arithmetic cost (in terms of multiplicative

operations). Then

c(u,v,t) = e(w,w,w) — ¢(z,z,z),

where w =u +v—1, z = w—t, and c(k,k,k) = k3 + 2k? + 4k for k = w and k = .

O

The recurrence equations for computing 8(k,%), the total multiplicative operations re-

quired to factor a coefficient matrix associated with a k-by-k grid bordered along i sides,

were set up in [62] as given by equations (4.6)—(4.9).

6(k,0) = 40(5,2)+2c(kk§)+c(kkk),

8(k,2)

8(k,3)

8(k,4)

% (5

(32)+2(

(5k 3k

k

o

The solutions we obtain are given in Lemma 4.4.

Lemma 4.4

8(k, 4)
8(k,3)
8(k,2)

8(k,0)

371 8

Tka + 31]62 10g2 k — 121]672 - §k
2
§3k3 + 31k%log, k — 133k2 + %ﬁk
4
99 — k4 1§5k2 log, k — 145k2 + 80k — %
829 5 155 , 569 , 488 176
21k+3k10g2k 3k+3k—7

-’22 3) ()+c(3—2k,k,-§) +c<2k,
).
(b)) (@20, o

46 (5,4) +2¢ (2k,2k, g) + c(3k, 3k, k) .

(4.6)

23

3k k)

(4.7)

(4.9)

(4.10)
(4.11)
(4.12)

(4.13)

154

Proof: The recurrence equations given by (4.6)—(4.9) are solved in the order 0(k,4),
0(k,3), 8(k,2) and 8(k,0). To solve for f(k,4), we expand (4.9) as below so that 0(k,4) is

explicitly expressed in terms of the known cost function ¢(u, v, t).

8(k,4)

46 (2,4) + 2c (2k,2k, g) + ¢(3k, 3k, k)

log, &) logy k-1)
_ 4,_16(% 2% k>+ > 4,6(3k 3k k)

2i-172i-1" 21 pard 2079007

The above expression is further simplied using MAPLE [7] to obtain 6(k,4) in (4.10).

=1

To solve for 6(k,3), we first replace (-’;—,4) in (4.8) by an explicit expression obtained
from the solution for (k,4) in (4.10). The resulting equation involves 6(k,3) on the left
hand side and 6 (%,3) on the right hand side. We can now proceed to solve for 8(k,3)
in exactly the same way as we did above in solving for 6(k,4). 6(k,2) and 6(k,0) are
subsequently solved in a similar manner. a

We derive next the arithmetic cost of solving the k-by-k grid model problem on a
hypercube with p processors. Recall that in setting up the recurrence equations for the total
cost p(k,0,p) we employ the cost function A(u,v,t,q), which includes both the arithmetic
and communication cost of solving the associated problem. To obtain an upper bound
of the arithmetic cost o(k,0,p) for the parallel algorithm, we have to solve the same set
of recurrence equations except for replacing A(u,v,t,q) by a proper cost function which
computes the arithmetic cost alone for the associated problem. In Lemma 4.6 we show that
the cost function to replace A(u,v,t,q) in equations (4.2)~(4.4) is given by C (u+v-1t,t,q).
To derive the latter and the communication cost, we need the results in the following lemma.
Lemma 4.5 Consider merging a k-by-k full upper triangular matriz and a t-by-k (t < k)
full upper trapezoidal matriz using a loop of p (p < t) processors via the pairwise Givens

scheme. The total number of parallel steps (i rotations are performed by i processors

concurrently per parallel step, where 1 < i < p) is given by

t
G(k,t,p) = 2—1;(2’c -t+p),

155

and the arithmetic cost measured by the number of multiplicative operations is given by

k2t 2 kt?
Ck,t, = 2 —-|- 2-— ——+t__
(k,t,p) <p Pop- p)
LAkt 282
p 3p 3p

Proof: For simplicity in our derivation, we shall assume that ¢ and k are each an integral
multiple of p. Using the wrap mapping scheme, each processor will have been allocated (t/p)
rows and (k/p) rows from each matrix respectively. Since all of the p processors will start
merging their first pair of rows simultaneously and the pt* processor will be kept busy at
all steps until it last merges the last pair of k** rows, the total number of parallel steps is

equal to the number of rotations the p** processor will perform, which is computed by

t/p
. k-1t
G(k7t$p) = pzi + t'(__—)
=1 p
t
%(216 -t+p)

To compute the arithmetic cost of the parallel algorithm, we need to account for the maxi-
mum number of multiplicative operations performed at each step. Using the wrap mapping
scheme and assuming that ¢ and k are each an integral multiple of p, the maximum number
of operations are performed by the first processor which is assigned row 1, row (p+ 1), - -,
and row (k—p+1) before it has exhausted its data. After that the remaining (p—1) proces-
sors will each update their last row in the remaining (p — 1) steps subsequently. Therefore,

the total number of multiplicative operations is given by

L1 k=t
P P p—1
Clkt,p) = 43 (L+ip)(k—ip)+4 Y t(k—t—ip)+43 i
=0 =0 1=1
k2%t 2 kt?
= 2|—+p-p-—+t-—
(p p-p 4 p)
kt 283 2
4— 4 —— — Zpt .
+ p+3p 3p

156

Lemma 4.6 We consider merging two essentially full upper triangular submatrices U =
TZ[u, 5] and V = TZ[v, S;], where |S1 N S3| = t, using a loop of q (¢ < t) processors via
the pairwise Givens scheme. Let w = (u+v—t). The total number of parallel steps is given
by

Glw, b9 < 5-(u—t+q),

and the total number of multiplicative operations is given by

pat 28 2,
g 3¢ 37

Proof: To obtain an upper bound of the arithmetic cost, we assume that the columns
with subscripts in common are the leading ¢ columns. Our proof employs the following
observation. Consider, for example, U = TZ[6,{1,2,3,4,5,6}] and V = TZ7(5,{1,2,7,8,9}]
in Figure 4.42. First, note that the merging of U and V in Figure 4.43 is equivalent to
merging U and V in Figure 4.44. Second, the number of parallel steps and the arithmetic
cost of merging U and V is bounded by those of merging afull wx w (w=u+v—-1t=9)
upper triangular matrix U and a t x w full upper trapezoidal matrix V in Figure 4.45.
The total number of parallel steps and the multiplicative operations for merging U and V
can then be obtained from G(w,t,q) and C(w,t,q) defined in Lemma 4.5. This proves the

lemma. O

157

1 23 456 7 8 9 (123456789
Uu *u v U U U v v v v v
u U U U U v v v v
u U U u v v v
Uu U u v v

u U v

Figure 4.42: The submatrices U = TZ7(6,{1,2,3,4,5,6}] and V = TZ[5,{1,2,7,8,9}].

(uuuuuu \ (*********\
U U u U u * k Kk k xX k *x K
U U U u * k ok Kk Kk K K
u u u * k K* Kk Kk *
u u * k Kk Kk K
u * Kk Kk x
——p

- * Kk *
v v v v v L
v v v v *

v v v

v v
o)\ /

Figure 4.43: Merging U = TZ[6,{1,2, 3,4,5,6}] and V = TZ[5,{1,2,7,8,9}].

u (***
u * ok
u *
u
u
u
—_
v v v
v v
v
v v v

Figure 4.44: Merging U and V.

158

159

\ (*********\

X X X X
X X X X X
X X X X X X
X X X X X X X
X X X X X X X X
X X X X X X X X
*
*
*
*
*

X
*

Figure 4.45: Merging U and V.

We now apply the cost function above to the k-by-k grid model problem on a hypercube
with p processors. An upper bound of the arithmetic cost for the parallel row merging
scheme, denoted by o(k, 0, p), can be obtained by solving the following recurrence equations,

which are modified from Equations (4.2)~(4.5) by replacing A(u,v,t,q) by C (u+v—t,t,q).

o(k,0,p) < c(g ,)+C’(kk)+C(32’c ’; ’2’) , (4.14)
o(k,2,p) < a(; , >+C(3k kp)+C(3k '; ’2’) , (4.15)
o(k,4,p) < a(;)+C(5k kp)+C<72k '2° ’;) , (4.16)

k k
ol —=,4,1] < 8|—,4). 4.17
() < o(59 i
Solving Equations (4.14) - (4.17), we obtain the following lemma.

Lemma 4.7 The total arithmetic cost for applying the parallel row merging scheme to the

160

k-by-k grid model problem on a hypercube having p processors is given by

2 2
L klogek R 20,0+ 6k
P p 21

54 k 8, 4
T
TRt g

3
o(k,0,p) < %-gk—

a
We now proceed to analyze the communication cost for the parallel row merging scheme
when applied to the k-by-k grid model problem on a hypercube having p processors. We
distinguish three kinds of communication costs. They are start-up time, the communication
overhead during each submatrix merging operation, and the time for data distribution and
collection before and after each submatrix merging operation. The upper bounds we shall
provide are v, (k,0,p) for total start-up time, ¥5(k,0, p) for total communication overhead,
and ¥3(k,0,p) for total cost of data distribution and collection.
To obtain %, (k, 0, p), we solve the same set of recurrence equation as given by Equations
(4.14)-(4.17) except for noting that the arithmetic cost function should be replaced by
a proper start-up time cost function and that the communication cost is zero when the

subproblem is solved by a single processor. The start-up time cost function is given in

Lemma 4.8.

Lemma 4.8 The start-up time incurred in merging two essentially full upper triangular
submatrices U = TZ[u,$1] and V = TZ[v,S,], where |S1NS2| = t, using a loop of q

(g < t) processors via the pairwise Givens scheme is given by
t
w(w,t,q) = 2—q(2w —-t+q)8,
where w = u + v — t, and § is the start-up time for sending a message.

Proof: The result above is immediate from Lemma 4.6 and that for each parallel step, we

only need to account for the start-up time for one message because all processors will be

161

sending ome rtow to their right neighbours simultaneously. We thus have
l‘(wata Q) = G(wvtaq)ﬂ- O
The set of recurrence equations are modified from Equations (4.14)—(4.17) and are given

below by Equations (4.18)—(4.21).

hi(k,0,p) = ¥ (g 2,5) + p(k, k p)+u<3—2k -123 g) , (4.18)
Pi1(k,2,p) = % (g 4, g) + pu(3k, k p)+u(3k, g g) , (4.19)
ik, 4,p) = ¥ (g 4, %) + u(5k,k,p) + p (Zé_k_ g g) , (4.20)

(4 (7’%,4, 1) = 0. (4.21)

Solving Equations (4.18)~(4.21) we obtain t;(p,0,k) as given in Lemma 4.9.

Lemma 4.9 The total start-up time incurred in applying the parallel row merging scheme
to the k-by-k grid model problem on a hypercube having p processors is given by

31k%log,p 17k* 3. 3 k
¢1(k,0,p)—ﬂ(§——-—p -3 +2k_2\/13

For the communication overhead involved in each submatrix merging operation, we can
substitute ¥; by v, and p(w,t,q) by é(w,t,q) in (4.18) to (4.21), where ¢(w,t,q) is the

data transmission cost given in the following lemma.

Lemma 4.10 Consider merging two essentially full upper triangular submatrices U =
TZ[u,5] and V = TZ[v, 5], where |53 N S2| = t, using a loop of ¢ (¢ < t) processors
via the pairwise Givens scheme. Recall that each processor must send the reduced row to
its neighbour after every row merging operation. The communication cost (ezcluding the
start-up time) is given by

[s
¢('w’t, q) S Zc(w’ta Q) ’

where w = u+v—1 and « is the ratio of the time for transmitting one floating-point number

across one link to the time for one floating-point multiplicative operation.

162

Proof: For each parallel step, the communication overhead is the time for sending the
longest row across one link, and the computation cost is to merge the pair of longest rows.
Therefore, the communication overhead per parallel step is (a/ 4) times the computational il
cost, so is the total communication cost. O
Solving Equations (4.17)- (4.21) after replacing every occurrence of u(w, t,) by ¢(w, ¢, q9),

we obtain the total communication overhead cost as given in Lemma 4.11.

Lemma 4.11 When applying the parallel row merging scheme to the k-by-k grid model prob-
lem on a hypercube having p processors, the total communication cost for data transmission

during the submatriz merging operations (ezcluding start-up time) is given by

¢2(kv O,p) <

73k 371 k* 31k%log,p 1742
6 p 12 p/p 8 p 2 p

+§§_I.c__ik +§k+22 +l
25 2 PTNTEF TP
O

To compute the upper bound of communication cost for data distribution and collection,

we derive in Lemma 4.12 an upper bound of the data distribution and collection cost for

each submatrix merging operation.

Lemma 4.12 Consider applying the parallel row merging scheme to the model problem on
a hypercube having p processors. Associated with the merge of two essentially full upper
triangular submatrices U = TZ[u, 5] and V = TZ[v,S,], where |S; NS2| = t, an upper
bound of the data collection and distribution cost is obtained by assuming a w X w full upper
triangular matriz is redistributed and relocated before and after each submatriz merging
operation, where w = u + v —t. Such cost incurred in each submatriz merging operation is

given by

/\(’QD) 10g2 p,

163

where A(w) = w(w + 1)a, (log,p) is the dimension of the hypercube, and a is the ratio
of the time for transmitting one floating-point number across one link to the time for one

floating-point multiplicative operation.

Proof: We noted earlier that at the end of each merging operation, only one submatrix
needs to be relocated. The size of this submatrix is at most w(w+ 1)/2 and the path length
is at most log; p, resulting in the cost of (w(w + 1)alog, p) /2. At the beginning of each
step, the rows of the two submatrices must be distributed among the processors. Since each
loop of processors form a subcube and we can pipeline the distribution, and each submatrix
is of dimension u < w or v < w, a reasonable upper bound is also (w(w + 1)e log, p) /2.
The cost of A(w)log, p is obtained by summing up these two. o

The total cost for data distribution and collection can now be obtained by solving the set
of recurrence equations (4.22) to (4.25), which are modified from Equations (4.18)—(4.21)
by replacing every occurrence of u(w,t,q) by A(w)log, p.

ws(k0) < o (5.2.8) a0l +a (L)ogns, @)
valk,22) < b (5.4.2) + 223K loma (4.23)
vl p) < ¥ (5.48) £ 36010 p 43 (B lomp, (420

bs (7'% 4, 1) = 0. (4.25)

The solution we obtain for ¥3(k,0,p) is given in Lemma 4.13.

Lemma 4.13 When the parallel row merging scheme is applied to the k-by-k grid model
problem on a hypercube having p processors, an upper bound of the cost for data distribution

and collection is given by

521 149k%log,p = 39 klog, p
k < = k2] i =7 ¥ A Rty 3 | —17—222)
¥3(k,0,p) < (g " o8P~ =3 » + 7 klogyp— 17 »

164

a

Because o(k,0,p) and (41(k,0,p) + ¥2(k,0,p) + ¥3(k,0,p)) give the respective upper

bounds for the total arithmetic cost and communication cost associated with the model

problem, the total cost p(k,0,p) can now be bounded by the sum of them. We give the
result in Theorem 4.14.

Theorem 4.14 An upper bound of the total cost for applying the parallel row merging
scheme to a k-by-k grid model problem on a hypercube having p processors is given by

146 146 371 K3 k¥log, k521 2
p(k,0,p) < (—3- + EThaE ma) » + 31——p—— + ng (log, p)a

31 1099 \ k2log, p kK 17k?
+(?ﬂ— = a) - 1555 - T2 (a4 9)

p
20
- -2—1kp + O(klog2 p).

Proof: To obtain an upper bound of the total cost, we sum up the upper bounds of total
arithmetic cost, total start-up time, total communication overhead and the total cost for
data distribution and collection. The above result is thus immediate from the following

inequality and Lemma 4.7, 4.9, 4.11 and 4.13.

p(k7 0,?) < U(k, 0,p) + 1l’l(k’ 0)1’) + ¢2(k’ 0,p) + ¢3(k’ 071’) .

a

Observe in the analysis above that the coefficient of the O(K*/p) term in the parallel
arithmetic cost o(k,0,p) is (146/3), which is slightly bigger than the coefficient of (829/21)
of the O(k®) term of the serial arithmetic cost 6(k,0). They are not exactly the same
because the tasks associated with the critical path are bigger than the tasks associated with
other branches of the row merging tree. The upper bound we obtained in Theorem 4.14
for p(k,0,p) indicates that the «O(k3/p) communication cost of the proposed algorithm is
of the same order of magnitude as the arithmetic cost. This is undesirable on a machine

where the communication cost is not negligible compared to the arithmetic cost. Note that

165

the function contributing to the aO(k3/p) terms is 12(k,0,p) given in Lemma 4.11, which
was computed by associating with each submatrix merging operation the communication
overhead given by ¢(w,?,q) in Lemma 4.10. In the next section we examine a generalized
version of the parallel submatrix merging algorithm and indicate how it may reduce the

communication cost.

4.3.6 Generalizing The Parallel Submatrix Merging Algorithm.

We first recall that the parallel pairwise Givens algorithm proposed in section 4.3.2 requires
that the consecutive rows of both matrices are assigned to consecutive processors of the
loop, with assignment “wrapping around” to processor 1 after a pair of rows is assigned to
processor p. This mapping strategy can be viewed as a special case of a more general block
wrap-mapping scheme, where the block size is equal to one. In Theorem 4.16 below we
show that by choosing a particular block size the communication cost for merging two k X k
full upper triangular matrices using a loop of p processors can be reduced from O(k®/p)
to O(pk?), and that the leading term of the arithmetic cost remains unchanged. For any

chosen block size b > 1, we first derive the arithmetic and communication cost functions in

Lemma 4.15.

Lemma 4.15 Consider merging two k X k full upper triangular matrices on a loop of p
processors using the parallel pairwise block Givens scheme. For any chosen block size b >1,
the arithmetic cost Cy(k,b,p) (measured by the total number of multiplicative operations)
and the communication cost ¢5(k,b,p) (ezcluding the start-up time) are given by

2
K v avk = o2k — ok — a2k
p 3 P

+ 4b£— + 2p?b% — 6b3p + 4b° + 4pb? — 48? ,

2k3
Colk,bip) = 342

and

a (KB, kK k2
ou(k,b,p) = E<Qb—p—6k + 3=+ 35+ dbpk — 3bk

166

-3k —6(b— 1)% + 6b%(p — 2)* + 6b(p — 2)) .

Proof: Let b denote the block size. The block wrap mapping scheme will assign consecutive
blocks, b rows per block, to consecutive processors in the loop, with assignment wrapping
around to processor 1 after a pair of blocks is assigned to processor p. We shall use n; to
denote the number of block pairs, that is n; = % For convenience, we shall assume that
k and ny are each an integral multiple of p. By keeping track of the work performed by
processor 1 before its data are exhausted as well as the work performed by the other (p—1)

processors in merging their last pair of submatrices, we obtain

b
P b-1
Co(k,bp) = 43 (1+jp)Y (k—jbp—€+k— jbp— b+1—£)—

7=0 =0
p—2b-1

+4) > (b(p—1)—jb—L+b(p— 1) — jb - b+1—f)-
7=04£=0

2k k2

= -—— 4 2 + 4%k — gb2pk — 2bk — 4b2f
3p 3 D

+ 4b§ + 2p2b3 — 6b%p + 4% + 4pb® — 482 .

For b > 1, each processor will transmit the reduced submatrix to its neighbour after the
leading b nonzeros in all of the b rows have been annihilated. By keeping track of the data

transmitted by processor 1 as well as the data transmitted in the last (p — 2) parallel steps,

we obtain

Zh_
si(kbp) = o 3 (140 = G+ Db+ k= G+ Dop— b+ 1)1
7=0

+az(p=2)(bp—2)+1)

B, kR
= 12(27)-5—619 + 3+ 3+ dbpk — 3bk

-3k —6(b- 1)-1; + 66%(p — 2)% + 6b(p — 2)))

167

where a is the ratio of the time for transmitting one floating-point number across one link
to the time for one floating-point multiplicative operation. a

The results in Theorem 4.16 below can then be immediately obtained from Lemma 4.15.

Theorem 4.168 Consider merging two k-by-k full upper triangular matrices on a loop of
p processors using the parallel pairwise block Givens scheme. By choosing the block size
b= k/p?, the arithmetic cost Cy(k,b,p) and o5(k,b,p) are given by

3 2 3 3 3
k) o 22 e e
p p p p

+4 6—2;’34-8;3-—4—2
and
k o« 9 9 k2 k2
¢b(k,p2,p) = 3 (2pk — 6k +3pk+7p +3p2

k2 k2 k k
-30— + 24— — 3k + 12— — 12— | .
P p* P p2)

Comparing Cy(k,b,p) in Lemma 4.15 and the serial time given by
§k3 + 2k + %k ,
we see that the arithmetic cost of the generalized parallel pairwise Givens algorithm is
optimal in its leading term. Note that the leading term of Cy(k,b,p) is independent of the
block size. Comparing Cy(k,k/p?,p) with ¢y(k,k/p?, p), we see that the arithmetic cost
dominates the communication cost when k > p. More specifically, the O (k3/p) arithmetic
cost and O (pk?) communication cost imply that p should be chosen to be less than vk
in order to have the arithmetic cost dominate the communication cost. This implication
is important because for the k-by-k grid model problem we have analyzed in this section,

the last task on the critical path involves merging two k x k full upper triangular matrices

using a loop of p processors.

168

The results in this section suggest that the communication cost of the parallel row
merging scheme can be reduced by applying the generalized submatrix merging algorithm
with appropriate block size to each task. The development of an enhanced parallel row

merging scheme by incorporating this idea merits further research.

Chapter 5

Conclusions

5.1 A Summary of Contributions

In this thesis we have described three new parallel algorithms for reducing a rectangular ma-
trix A to upper triangular form using orthogonal transformations. The first two algorithms
we describe are for dense matrices on shared and local memory architectures respectively,
and the third is for a class of sparse matrices on a local-memory multiprocessor.

In Chapter 2 we considered factoring a dense rectangular matrix on a shared-memory
multiprocessor. We analyzed the synchronization cost, the work load distribution and the
expected performance of the algorithm. Our analysis indicates that the proposed algorithm
enjoys low synchronization cost. In particular, for a given m X n matrix A and a multi-
processor having p processing nodes, our analysis of the algorithm shows that this cost is
O (n?/p) if m/p > n, and O (mn/p?) if m/p < n. Note that in the latter case, the syn-
chronization cost is smaller than O (n?/p). Therefore, when m > 7, the synchronization
cost of the proposed algorithm is bounded by O (n?/p), which is independent of m. This
is important for machines where synchronization cost is high, and when m > n. We have

simulated high-synchronization cost in our experiments, and the timing results so obtained

169

170

are in agreement with our analysis. The experiments also indicate that the algorithm is
effective in balancing the load and producing high speed-up as predicted by our analysis.

In Chapter 3 we considered the problem of factoring a dense rectangular matrix on
a hypercube multiprocessor. The proposed algorithm involves the embedding of a two-
dimensional grid in the hypercube network, and our analysis of the algorithm determines
how the aspect ratio of the embedded processor grid should be chosen in order to minimize
the execution time or storage usage. The algorithm was implemented in FORTRAN and
tested on an Intel iPSC hypercube with 64 processors. Our numerical experiments demon-
strate the effect of the aspect ratio on the performance of the parallel algorithm and show
that the execution time or storage requirement using the predicted aspect ratio is very close
to the actual minimum for the test matrices.

Another feature of the algorithm proposed in Chapter 3 is that redundant computations
are incorporated in a communication scheme which takes full advantage of the hypercube
topology. With the proposed communication scheme the data are always exchanged between
neighbouring processors and such exchanges can occur simultaneously on all channels. The
latter feature is important in reducing traffic congestion in the network. It is expected that
in future generations of hypercubes special hardware support may achieve a situation where
sending a message to a processor several hops away may not take any longer than sending
the message to a neighbour. However, the problem of traffic congestion will still exist. The
communication scheme we proposed in Chapter 3 provides a solution to this problem.

The extensive experimental results presented in Chapter 3 also show that the proposed
algorithm can be efficiently implemented and various enhancements can be easily incorpo-
rated to further reduce the execution time and storage requirement.

In Chapter 4 we considered the orthogonal decomposition of a class of large sparse
matrices on a hypercube multiprocessor. The proposed algorithm offers a parallel imple-
mentation of the general row merging scheme for sparse Givens transformations developed

by Liu [61]. The proposed parallel algorithm is novel in several aspects. First, we propose a

171

new mapping strategy whose goal is to reduce the communication cost and balance the work
load during the entire computing process. Second, we described a new sequential algorithm
for merging two upper trapezoidal matrices (possibly of different dimensions), wherein the
order of computation is different from the standard Givens scheme, and is more suitable for
parallel implementation. Third, we show that the hypercube network can be employed as
a multi-loop multiprocessor. The performance of the parallel algorithm applied to a model
problem was analyzed and computation/communication complexity results were presented.
Finally, we showed that the parallel submatrix merging algorithm can be viewed as a special
case of a more general scheme and indicated how the generalized scheme may reduce the

communication cost.

5.2 Further Work and Open Problems

Recall that when we applied Algorithm II in Chapter 3 to a dense square matrix, substantial
saving in execution time and storage usage are obtained by embedding a two-dimensional
grid in the hypercube network compared to employing the hypercube as a linear array. A
natural question to ask is whether Algorithm II can be adapted to parallelize other numerical
algorithms efficiently. In this section we give such an example by applying the ideas of
Algorithm II to parallelize Gaussian elimination with pairwise pivoting on a hypercube
multiprocessor. We briefly review the pairwise pivoting scheme and sketch how to adapt
Algorithm II in Chapter 3 for this task.

The method of Gaussian elimination using triangularization by elementary stabilized
matrices constructed by pairwise pivoting is analyzed by Sorensen in [83]. It is shown that
a variant of this scheme which is suitable for implementation on a parallel computer is
numerically stable although the error bound is larger than the one for the standard partial
pivoting algorithm. The serial algorithm and its analysis are given in detail in [83]. For

our purpose, it is sufficient to note that the variant we are considering can be understood

172

as applying a 2 X 2 elementary matrix to each pair of rows in a similar fashion as applying
Given’s rotations. Recall that in the Given’s scheme, we apply the rotation of the following

form to a pair of rows to annihilate a leading nonzero element from one of the rows.

For Gaussian elimination with pairwise pivoting, this elementary 2 x 2 matrix will be of the

following form
5o 10 P,
v 1

where P is a 2X 2 permutation. Therefore, to annihilate one element, only one row of data is
modified. The serial arithmetic cost is therefore one half of the Given’s scheme. If the work
load is evenly distributed among the multiple processors, then the parallel arithmetic cost is
also one half of the parallel Given’s scheme. We can further improve the numerical stability
without any cost by performing partial pivoting whenever parallelism can be maintained.

Following our description of Algorithm II in Chapter 3, we shall have each processor
perform Gaussian elimination with “partial pivoting” in the IAP phase at each reduction
step. After that all of the processors can cooperate to perform Gaussian elimination with
“pairwise pivoting” in the CAP phase to eliminate the leading nonzeros in the local pivot
rows. Note that with the wrap mapping a balanced work load distribution can be maintained
throughout the entire elimination process as long as the k** row of A is reduced to the kt*
row of the upper triangular factor [8]. Therefore, explicit permutations during the CAP at
the k** reduction step are needed only when the pair of rows involve row k and row k is not
chosen as the pivot row. Whenever this happens, our communication scheme ensures that
both rows are present in the two processors involved. The explicit permutation can thus be
done at no extra cost by carefully delaying the actual modification until the very last step.

Another point worthy of noting is that there is no redundant computation involved simply

173

because the rotation does not modify the row to be further exchanged! The analysis of the
parallel scheme would be similar to the analysis of Algorithm II in Chapter 3.
In the remainder of this chapter we discuss several research problems which are related

to our work and need further investigation.

1. It is well-known that the numerical factorization phase is the most time-consuming
part in the process of solving linear equations or least squares problems on a sequential
machine regardless of whether the matrix is dense or sparse. The algorithms proposed
in this thesis have been concerned with parallelizing this phase. However, to solve the
systems of linear equations or the least squares problems on a multiprocessor, we still
require an efficient parallel algorithm to solve the resulting upper triangular system.
In some cases such an algorithm can be easily adapted from some known scheme, but
in some other cases an efficient triangular solver has not yet been developed.

If A is dense and the target machine is a shared-memory multiprocessor, then the
parallel QR factorization algorithm ensures that the rows of R be assigned to the
processors according to a wrap mapping. The implementation of the parallel back
substitution algorithm is straightforward and it is considered a solved problem [30].

If Ais dense and the target machine is a hypercube multiprocessor, we have two more
cases to consider. Recall that our analysis and experimental results in Chapter 3
indicate that the p processors of the hypercube will be used as a p-by-1 grid or 1-by-p
grid in case m 3> n or m < n. Under these two extreme cases, our algorithm ensures
that the rows (in the former case) or the columns (in the latter case) of factor R
are wrap-mapped to the p processors. In either case there are a number of parallel
algorithms available in the literature to solve the triangular system on the hypercube.
The article by Heath and Romine [52] contains several new schemes and provides a
comprehensive comparison of most triangular solvers available to date. Researchers

in this area are still working on improving these schemes.

174

In the less extreme cases we have employed a two-dimensional grid in the factorization
phase. Therefore, the rows and columns of the upper triangular factor R will have been
wrap-mapped to the processors along the rows and columns of the grid respectively. In
this case, it is not clear whether such a partitioning would allow an efficient triangular
solver. This is a problem which merits further investigation.

When A is sparse, the parallel factorization algorithm we propose in Chapter 4 will
have the rows of the upper triangular factor wrap-mapped on a loop of processors
embedded in the hypercube. Although there is straightforward way to adapt currently
available dense triangular solvers for the sparse case, the performance is far from being
satisfactory [88]. Therefore, designing an efficient parallel solver for the resulting

sparse triangular system remains a subject of further work.

. All of the algorithms proposed in this thesis aim at achieving high performance on
the target machine. Chapter 2 and Chapter 3 contain two very different algorithms
designed for solving the same problem on two different classes of multiprocessors.
These two very different designs support the common view that the design of par-
allel algorithms is architecture-dependent if performance is the ultimate goal. Since
physical data partitioning is usually not a concern in designing parallel algorithms for
shared-memory multiprocessors, the parallel algorithms in this class are obviously not
portable to local-memory multiprocessors. On the other hand, it is relatively easy to
simulate message-passing on a shared-memory machine. Therefore, the parallel algo-
rithms designed for local-memory multiprocessors can be ported to shared-memory
multiprocessors in a fairly simple way. Although we expect to lose some performance
by porting the local-memory code to shared-memory machine by simulating message
passing on the latter, the relative magnitude of the loss is unknown. Knowing that in-
formation would be useful in deciding whether the human effort involved in designing

and implementing a separate scheme for the shared-memory machine is worthwhile.

175

We feel that the two algorithms in Chapter 2 and Chapter 3 are good candidates to
investigate the issue of porting parallel algorithms across the two classes of multipro-

cessor architecture.

. Throughout Chapter 4 we have assumed that the columns of the sparse matrix A
have been appropriately ordered for reducing fills in the triangular factor R. For
the class of matrices associated with the k-by-k grid model problem, it is well known
that George’s nested dissection ordering [27] attains the lower bound on the number
of nonzero entries in R [33]. In Chapter 4 we explained in detail that the nested
dissection ordering is also very suitable for parallel implementation of the general row
merging scheme on the hypercube. Our complexity analysis provides upper bounds
for the computation and communication cost of the parallel algorithm applied to the
model problem. An enhanced parallel row merging scheme employing the generalized
submatrix merging algorithm and an efficient implementation on a hypercube remain
to be developed.

For general sparse matrices, the structure of the row merge tree induced by a fill-
reducing ordering may not be balanced and the size of each task may be drastically
different. For the former problem, there exist heuristic algorithms which reorder the
columns of A so that the induced row merge tree is better balanced while main-
taining the same amount of fills in the factor R [63]. For the latter problem, our
work in Chapter 3 shows that the hypercube connection allows us to embed multiple
loops of different (even) sizes so that the allocation of processors to each task can be
proportional to the amount of work involved. In this more general setting, a loop of
processors assigned to an interior task node on the row merge tree may no longer share
its leading processor with any one of its children nodes. Therefore, the relocation of
submatrices between non-adjacent processors will occur more frequently. One crucial

issue in an efficient implementation of the algorithm for general sparse matrices is the

176

reduction of communication volume and traffic congestion.

Bibliography

(1] J. H. Argyris and O. E. Bronlund. The natural factor formulation of the stiffness
matrix displacement method. Comput. Meth. Appl. Mech. Engry., 5:97-119, 1975.

[2] A. Bjorck. Sc_)lving linear least squares problems by Gram-Schmidt orthogonalization.
BIT, 7:1-21, 1967.

[3] J. Blackmer, P. Kuekes, and G. Frank. A 200 MOPS systolic processor. In Proc. SPIE,

Vol. 298 (Real-Time Signal Processing IV), Society of Photo-Optical Instrumentation
Engineers, 1982.

[4] K. Bromley, J. J. Symanski, J. M. Speiser, and H. J. Whitehouse. Systolic array pro-
cessor developments. In H. T. Kung, R. F. Sproull, and Jr. G. L. Steeler, editors, VIST
Systems and Computations, pages 273-284, Carnegie-Mellon University, Computer Sci-
ence Press, October 1981.

(5] P. A. Businger and G. H. Golub. Linear least squares solutions by Householder trans-

formations. Numer. Math., 7:269-276, 1965.

[6] R. M. Chamberlain and M. J. D. Powell. QR Factorization for Linear Least Squares
Problems on the Hypercube. Technical Report CCS 86/10, Dept. of Science and Tech-
nology, Chr. Michelsen Institute, Bergen, Norway, 1986.

(7] B. W. Char, K. O. Geddes, G. H. Gonnet, and S. M. Watt. Maple User’s Guide, 4th
Edition. WATCOM publications Limited, Waterloo, Ontario N2L 3X2, Canada, 1985.

177

178

(8] E. C. H. Chu and J. A. George. Gaussian elimination with partial pivoting and load
balancing on a multiprocessor. Parallel Computing, 5:65-74, 1987.

[9] M. Cosnard, J.-M. Muller, and Y. Robert. Parallel QR Decomposition of a Rectangular
Matrix. Numer. Math., 48:239-249, 1986.

[10] M. Cosnard and Y. Robert. Complexité de la factorisation QR en paralléle. C.R.
Acad. Sci., 297:549-552, 1983.

[11] G. J. Davis. Column LU factorization with pivoting on a hypercube multiprocessor.
Technical Report 6219, Mathematical Sciences Section, Oak Ridge National Labora-
tory, Oak Ridge, Tennessee 37831, 1985.

[12] J.J. Dongarra, F. G. Gustavson, and A. Karp. Implementing linear algebra algorithms
for dense matrices on a vector pipeline machine. SIAM Review, 26:91-112, 1984.

[13] J. J. Dongarra, A. H. Sameh, and D. C. Sorensen. Implementation of some concurrent

algorithms for matrix factorization. Parallel Computing, 3:25-34, 1985.

[14] I. S. Duff. Full matrix techniques in sparse Gaussian elimination. In G. A. Watson,

editor, Lecture Notes in Mathematics (912), Springer-Verlag, 1982.

[15] I. S. Duff. Parallel implementation of multifrontal schemes. Parallel Computing, 3:193—
204, 1986.

(16] I. S. Duff. Pivot selection and row ordering in Givens reduction on sparse matrices.

Computing, 13:239-248, 1974.

[17] 1. S. Duff and J. K. Reid. A comparison of some methods for the solution of sparse
overdetermined systems of linear equations. J. Inst. Maths. Appl., 17:267-280, 1976.

(18] L. Elden. A Parallel QR Decomposition Algorithm. Technical Report, Department of
Scientific Computing, Uppsala University, and Department of Mathematics, Linkoping
University, October 1987.

179

[19] M. Feilmeier. Parallel numerical algorithms. In D. Evans, editor, Parallel Processing
Systems, pages 285-338, Cambridge University Press, 1982.

[20] M. J. Flynn. Very high speed computing systems. In Proc. IEEE, pages 1901-1909,
1966.

[21] D. B. Gannon and J. V. Rosendale. On the impact of communication complexity on the
design of parallel numerical algorithms. IEEFE Trans. on Computers, C-33:1180—1 194,
December 1984.

[22] G. A. Geist and M. T. Heath. Parallel Cholesky factorization on a hypercube multi-
processor. Technical Report ORNL-6211, Oak Ridge National Laboratory, Oak Ridge,

Tennessee, 1985.

[23] W. M. Gentleman. Error analysis of QR decompositions by Givens transformations.

Linear Algebra and its Appl., 10:189-197, 1975.

[24] W. M. Gentleman. Least squares computations by Givens transformations without

square roots. J. Inst. Maths. Appl., 12:329-336, 1973.

[25] W. M. Gentleman. Row elimination for solving sparse linear systems and least squares
problems. In G. A. Watson, editor, Lecture Notes in Mathematics (506), pages 122—
133, Springer-Veriag, 1975. (Proc. 1975 Dundee Conference on Numerical Analysis).

[26] W. M. Gentleman. Some complexity results for matrix computations on parallel pro-

cessors. J. Assoc. Comput. Mach., 25(1):112-115, 1978.

[27] J. A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer.
Anal., 10:345-363, 1973.

[28] J. A. George and M. T. Heath. Solution of sparse linear least squares problems using
Givens rotations. Linear Algebra and its Appl., 34:69-83, 1980.

[29] J. A. George, M. T. Heath, and J. W-H. Liu. Parallel Cholesky factorization on a
shared-memory multiprocessor. Linear Algebra and its Appl., 77:165-187, 1986.

180

[30] J. A. George, M. T. Heath, J. W-H. Liu, and E. G-Y. Ng. Solution of sparse posi-
tive definite systems on a shared memory multiprocessor. Technical Report CS-86-10,
Dept. of Computer Science, York University, 1986. (to appear in Internat. J. Parallel

Programming).

[31] J. A. George, M. T. Heath, J. W-H. Liu, and E. G-Y. Ng. Sparse Cholesky factor-
ization on a local-memory multiprocessor. Technical Report CS-86-02, Department
of Computer Science, University of Waterloo, 1986. (to appear in Siam J. Sci. Stat.

Comput.).

[32] J. A. George and J. W-H. Liu. Compact structural representation of sparse Cholesky,
QR and LU factors. In R. Glowinski and J.-L. Lions, editors, Computing Methods

in Applied Sciences and Engineering, VII, Elsevier Publishers B.V. (North-Holland),
1985.

[33] J. A. George and J. W-H. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.

[34] J. A. George and J. W-H. Liu. Householder reflections versus Givens rotations in

sparse orthogonal decomposition. Linear Algebra and its Appl., 88/89:223-238, 1987.

[35] J. A. George, J. W-H. Liu, and E. G-Y. Ng. A data structure for sparse QR and LU
factors. SIAM J. Sci. Stat. Comput., 9:100-121, 1988.

(36] J. A. George, J. W-H. Liu, and E. G-Y. Ng. Row ordering schemes for sparse Givens
transformations: I. Bipartite graph model. Linear Algebra and its Appl., 61:55-81,
1984.

[37] J. A. George, J. W-H. Liu, and E. G-Y. Ng. Row ordering schemes for sparse Givens
transformations: II. Implicit graph model. Linear Algebra and its Appl., 75:203-224,
1986.

[38] J. A. George, J. W-H. Liu, and E. G-Y. Ng. Row ordering schemes for sparse Givens

181

transformations: III. Analysis for a model problem. Linear Algebra and its Appl.

75:225-240, 1986.

’

[39] J. A. George and E. G-Y. Ng. On row and column orderings for sparse least squares
problems. SIAM J. Numer. Anal., 20:326-344, 1983.

[40] J. A. George and E. G-Y. Ng. On the complexity of sparse QR and LU factorization
of finite element matrices. 1987. (submitted to STAM J. Sci. Stat. Comput.).

[41] J. A. George and E. G-Y. Ng. Orthogonal reduction of sparse matrices to upper trian-
gular form using Householder transformations. SIAM J. Sci. Stat. Comput., 7:460-472,
1986.

[42] W. Givens. Computation of plane unitary rotations transforming a general matrix to

triangular form. J. Soc. Ind. Appl. Math., 6:26-50, 1958.
[43] G. Golub and C. Van Loan. Matriz Computations. Johns Hopkins Press, 1983.

[44] G. H. Golub. Numerical methods for solving linear least squares problems. Numer.

Math., 7:206-216, 1965.

[45] G. H. Golub and R. J. Plemmons. Large-scale geodetic least squares adjustment by
dissection and orthogonal decomposition. Linear Algebra and its Appl., 34:3-27, 1980.

[46] G. H. Golub, R. J. Plemmons, and A. Sameh. Parallel block schemes for large scale
least squares computations. Technical Report CSRD Rpt. No. 574, Center for Super-
computing Research and Development, University of Illinois, Urbana, IL 61801-2932,
April 1986.

[47] S. Hammarling. A note on modifications to the Givens plane rotation. J. Inst. Maths.

Appl., 13:215-218, 1974.
(48] M. T. Heath, editor. Hypercube Multiprocessors 1986, SIAM, Philadelphia, 1986.

[49] M. T. Heath, editor. Hypercube Multiprocessors 1987, SIAM, Philadelphia, 1987.

182

[50] M. T. Heath. Numerical methods for large sparse linear least squares problems. SIAM
J. Sci. Stat. Comput., 26:497-513, 1984.

[51] M. T. Heath. Parallel Cholesky factorization in message passing multiprocessor envi-
ronments. Technical Report ORNL-6150, Mathematical Sciences Section, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, 1985.

[52] M. T. Heath and C. H. Romine. Parallel solution of triangular systems on distributed
memory-multiprocessors. Technical Report ORNL/TM-10384, Mathematical Sciences
Section, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, 1987.

(53] M. T. Heath and D. C. Sorensen. A pipelined Givens method for computing the QR
factorization of a sparse matrix. Linear Algebra and its Appl., 77:189-203, 1986.

(54] D. Heller. A survey of parallel algorithms in numerical linear algebra. SIAM Review,
20:740-777, 1978.

[55] R. W. Hockney and C. R. Jesshope. Parallel Computers. Adam Hilger Ltd., Bristol,
Great Britain, 1981.

[56] A. S. Householder. Unitary triangularization of a nonsymmetric matrix. J. ACM,

5:339-342, 1958.

(57] J. A. G. Jess and H. G. M. Kees. A data structure for parallel L/U decomposition.
IEEFE Trans. Comput., C-31:231-239, 1982.

(58] H. Jordan. A special purpose architecture for finite element analysis. In Proc. 1978
Int. Conf. Parallel Processing, pages 263-266, IEEE Computer Soc. Press, 1978.

[59] J. W-H. Liu. An adaptive general sparse out-of-core Cholesky factorization scheme.
SIAM J. Sci. Stat. Comput., 7, 1986. (to appear).

(60] J. W-H. Liu. A compact row storage scheme for Cholesky factors using elimination

trees. ACM Trans. on Math. Software, 12:127-148, 1986.

183

[61] J. W-H. Liu. On general row merging schemes for sparse Givens transformations.

SIAM J. Sci. Stat. Comput., 7:1190-1211, 1986.

[62] J. W-H. Liu. On general row merging schemes for sparse Givens transformations.
Technical Report CS-83-04, Dept. of Computer Science, York University, North York,
Ontario, July 1983.

(63] J. W-H. Liu. Reordering sparse matrices for parallel elimination. Technical Report CS-
87-01, Dept. of Computer Science, York University, 1987.

[64] R. E. Lord, J. S. Kowalik, and S. P. Kumar. Solving linear algebraic equations on an
MIMD computer. J. Assoc. Comput. Mach., 30:103-117, 1983.

[65] F. T. Luk. A rotation method for computing the QR-decomposition. SIAM J. Sei.
Stat. Comput., 7:452-459, 1986.

[66] J. J. Modi and M. R. B. Clarke. An Alternative Givens Ordering. Numer. Math.,
43:83-90, 1984.

(67] J. M. Ortega and R. B. Voigt. A bibliography on parallel and vector numerical al-
gorithms. Technical Report NASA Contract Report 178335, ICASE, NASA Langley
Research Center, Hampton, Virginia, July 1987.

[68] O. Osterby and Z. Zlatev. Direct methods for sparse matrices. In Lecture Notes in

Computer Science 157, Springer Verlag, Berlin, 1983.
[69] D. Parkynson. Using the ICL DAP. Comput. Physics Comm., 26:227-232, 1982.

[70] F. J. Peters. Parallel pivoting algorithms for sparse symmetric matrices. Technical
Report, Dept of Math and Computer Science, Eindhoven University of Technology,
1982.

[71] A. Pothen and P. Raghavan. Distributed orthogonal factorization: Givens and House-
holder algorithms. Technical Report, Department of Computer Science, The Pennsyl-
vania State University, University Park, PA 16802, July 1987.

184

[72] A. Pothen, J. Somesh, and U. Vemulapati. Orthogonal factorization on a distributed
memory multiprocessor. In M. T. Heath, editor, Proc. Hypercube Multiprocessors 1987,
pages 587-596, STAM, Philadelphia, PA, 1987.

[73] F. Preparata and J. Vuillemin. The cube-connected-cycles: a versatile network for

parallel computation. Comm. Assoc. Comput. Mach., 24:300-319, 1981.

[74] E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms: Theory and
Practice. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1977.

[75] J. R. Rice. Experiments on Gram-Schmidt orthogonalization. Math. Comp., 20:325-
328, 1966.

[76] A. Sameh. On some parallel algorithms on a ring of processors. Computer Physics

Communications, 37:159-166, 1985.
[77] A. Sameh. An overview of parallel algorithms. Bull. EDF C1, 129-134, 1983.

[78] A. H. Sameh and D. J. Kuck. On stable parallel linear system solvers. J. ACM,
25:81-91, 1978.

[79] A. H. Sameh and D. J. Kuck. Parallel direct linear system solvers - a survey. In M.
Feilmeier, editor, Parallel Computers - Parallel Mathematics, International Association

for Mathematics and Computers in Simulation, Amsterdam, 1977.

[80] R. Schreiber. A new implementation of sparse Gaussian elimination. ACM Trans. on

Math Software, 8:256-276, 1982.

[81] R. Schreiber. Systolic linear algebra machines: a survery. Technical Report 87-18,
Rensselaer Polytechnic Institute, Troy, New York, June 1987.

[82] L. Snyder. Introduction to the configurable, highly parallel computer. IEEFE Computer,
15:47-56, Jan. 1982.

[83] D. C. Sorensen. Analysis of pairwise pivoting in Gaussian elimination. Technical

Report ANL/MCS-TM-26, Argonne National Laboratory, Argonne, IL, February 1984.

185

[84] G. W. Stewart. The economical storage of plane rotations. Numer. Math., 25:137-138,
1976.

[85] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc.
Meth., 2:77-79, 1981.

[86] D. W. L. Yen and A. V. Kulkarni. The ESL systolic processor for signal and image
processing. In Proc. 1981 IEEE Computer Society Workshop on Computer Architecture
for Pattern Analysis and Image Database Management, pages 265—-272, November 1981.

[87] Z. Zlatev. Comparison of two pivotal strategies in sparse plane rotations. Comp. and

Maths. with Appls., 8:119-135, 1982.

(88] E. Zmijewski. Sparse Cholesky Factorization on a Muitiprocessor. PhD thesis, Depart-
ment of Computer Science, Cornell University, Ithaca, New York 14853-7501, August
1987.

	

