DEPARTMENT

BEPARTMENT
DEPARTMENT

ER SEIENEE
o RN

L
T
T
T

L
U
U

M
MP

3368

ERE

E Wat
F WATERL

/8
ITY

I

IVERSITY OF WATERLOO CO

VER
VER

Wavefront Elimination
and

Renormalization
Research Report

Wei Pai Tang

CS-88-07

March, 1988




Wavefront Elimination and Renormalization*

Wei Pai Tang!

Abstract

Recently, a new class of optimal fast solver for the model problem —
wavefront elimination (Wg )- has been developed using template opera-
tors. The complexity of this type of new algorithms is only one fraction
of the cost of the multigrid method applied to the same problem. These
algorithms have potential for an efficient parallel implementation and
also as preconditioning operators for general elliptic problems.

A more interesting fact is that this algorithm shows some concep-
tual connection with two new theories — renormalization in physics
and fractals in mathematics. In this paper, we will demonstrate these
rather interesting relations between the wavefront elimination, the
renormalization theory and fractals.

1 Introduction

The study of fast solvers is always an important part of research in domain
decomposition [5]. Using template operator (T0Q) - a new structure of the
linear operator in finite dimensional space [6] - some optimal fast solvers are
presented here. This result has answered an open question, namely, can a di-
rect approach for solving the model problem achieve an optimal complexity?
In particular, the complexity of our new algorithm, called wavefront elim-
ination (wé' ), is even better than the complexity of the multi-grid method
for solving the same problem. Different from a traditional approach, there
is more than one discrete TO which is used on the same grid point. The
combination of these different TQ’s makes the sparsity of the consequent
T0’s during the W& process on the same grid point possible. A more in-
teresting fact is that this new algorithm exhibits some amusing conceptual
relationships with two new important theories - renormalization in physics

*This research was supported by the Natural Sciences and Engineering Research Coun-
cil of Canada.
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2 Wei Pai Tang

and fractals in mathematics. Renormalization theory was discovered by
K.G. Wilson at Cornell[7]. The basic idea of this theory can be understood
as a successive thinning out of the degree of freedom in the partition func-
tion. The N-particle problem is transformed into an N'-particle problem
with N' < N, whereby the temperature T and the magnetic field H may also
have to be renormalized. The wavefront elimination process can be viewed
as a renormalization process from different scales. During the elimination
process, the template operators display a sequence of self-similar structure
on the different scales. In the backward solution process of the W¢ |, we see
a procedure surprisingly similar to the recursively detailing a fractal. These
interesting facts contribute another convincing example of a fundamental
principle which organizes a whole universe. As we know this principle has
been fascinatingly demonstrated by fractal geometry and renormalization
theory. As we will see in this paper this principle has also provided us with
guidance for designing a whole new class of algorithm, for the numerical
solution of P.D.E’s.

2 Template Operators

In [6] the template operator was first introduced for identifying the problems
for which the Schwarz Splittings are most suitable. In the same paper it was
also successfully applied to obtain a “good” splitting when the Schwarz ap-
proach is used. The unique features of this structure are as follows. First, in
a template operator the artificial sequential constraints in the matrix struc-
ture are removed. The original topological frame of the continuous problem
from which the discrete operator is derived is well preserved. Second, in
particular, the locality of the operator and the proximity of the variables
are also maintained in this new structure. Therefore, many physical phe-
nomena which are related to the topology of the solution region can be easily
presented in this form. That is the key to the successful application of TQ
in the study of Schwarz Splittings. A more important feature is that the 70
provides us a “graphical structure” to think in pictures.

In graphical representation, natural processes can be compre-
hended in their full complexity by intuition. New ideas and as-
soctations are stimulated, and the creative potential of all those
who think in pictures s awakened.

—The Beauty of Fractals

In this paper, we will show how the TQ can provide us a “graphical” struc-
ture for designing a new class of fast solver.

In [6] the template operator is presented as a structure which is math-
ematically equivalent to the matrix form, in other words, we can find a
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one-to-one mapping between a template operator and a matrix. Here a sim-
ilar idea is used, but the formality is different though we can present the
following algorithm in terms of the form we used in [6] or even in terms of
matrices. In order to display the interesting connection between our fast
algorithm and its physical interpretations, we will adapt the definition of
the template operator in this paper for this new contextl.

Consider the Dirichlet problem

{ Au(x: y) = f(z: y)
u(z,y)|ro = 9(z,y)

where 1 is a unit square in the (z,y) plane. Let us lay an equally spaced
mesh on this square and let the mesh size be h = # . Here we always

assume n = 2 — 1. The following figure shows a grid with n = 23 — 1.

The traditional numerical technique for this problem is first to discretize
the differential operator on every interior node, then to form a matrix equa-
tion and finally to solve this matrix equation by some efficient algorithm.
Here a different approach is used. There is no explicit system of linear equa-
tions involved. Each node can have as many operators as needed. These
operators all represent some local physical principles under some conditions.
In order to preserve the locality of these operators and the topological rela-
tions of the variables, a new structure of the discrete operators is introduced
as follows: we define a template T as:

[ oo  box  bo2  ccr bon  bon4r
bio O11 O132 ++ Oin  binnr
b2,0 O21 Oz2 - Oz2n banu

bn,O On,l On,2 On,n bn,n+1
[ bn+1,0 bnt11 btz ot bt bntindl

'Since we are mainly discussing the Dirichlet problem of the 2-dimensional Poisson
equation on a unit square region in this paper, the pictures of templates are mostly demon-
strated on a square region with equally spaced mesh. But the same idea can be directly
applied to any irregular region and irregular mesh such as finite element triangulations

(see [6]).
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where b;; represent the boundary nodes while O;; represent the interior
nodes. A template vector

go,0 go,1 g0,2 *** gdon gon+1

g1,0 T11 1,2 tcr Tin 91,n+1
U=|: . . . .

dn,0 Tn,1 Tn,2 *tc ZTpn Inn+l

In+1,0 9n+1,1 9n+1,2 *°° Gn+ln Intln+l

can be defined on this template, where g;; are the boundary values on the
boundary nodes b;;, which are known, and z;; are the values of the unknown
u(z, y) of the continuous problem at node O;; 2.

Given a finite difference approximation, for example a five-point stencil,
a template operator A;; for node O;; can be defined as:

[0 ... 0 0 0 -« 07

L 1o 0 -1 0 -0
Aij=75 | 0 -1 4 -1 ol ¢
0 0 -1 0 -+ 0

0O .-+ 0 O O --- 0

L o

where ¢ = 1,--- n; j =1,--- n and 4 is located in position (¢,7). Note
that the values of z;; in the template vector U are sampled from the true
solution of the continuous Poisson equation.

The operation of A;; on U is to multiply the elements of A;; with the
corresponding elements of U, and the summation of these products is the
result of this operation. Thus we have

1
Aijo U= (=15 = Tir1j = Tij-1 = Tij+1 + 42ij].

The Poisson operator at O;; can be written in terms of the T0

Aijo U = fij + mj, (1)

2For simplicity, we only define one function value on each node. There is no difficulty
in generalizing this definition to include the cases where both the function value and its
derivatives are needed on each node. In [6], for a generalized version of TO even a state
vector can be defined on each node.

We will also only discuss the finite difference approximation in this paper for the same
reason.
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where fi; = f(ih, jh) and 7;; is the truncation term for the five-point stencil.
It is known that r;; ~ O(h?).

Since most of the elements in A;; are zeros, a compact notation for A;;
is convenient. Let

1 1 0 -1 O
A(t.,j,l,—?):'-'z- -1 4 -1
h h 0 -1 O

1,51
denote A;;, where 1,7 is the center position of the template operator; 1

denotes the increment of the indices and 7‘1:; is the constant factor of the
operator. Then (1) can be rewritten as:

A(i:j)lazl}')OU =p- -1 4 -1 OU
0 -1 01..
5,1
1
= fij + 75

The compact form for the template operator derived from a skewed five
point stencil at node O;; is:

1 [-1 o -1
Aii=AG,51,55)=55| 04 O
2h 2R | 0 o g

451
Then the same Poisson operator at O;; can also be expressed by 3,‘,‘ as:

~ 1
AijolU = g (=Ti-1j-1 = Tivrj-1 = Ti-Li+1 ~ Titrinn + 4z;5)
= fij + 7
where 7;; is the truncation term for the skewed five point stencil at node

O;;. Similarly, we have the template operators derived from a nine-point
and a skewed nine-point stencil at node O;;:

1 L |1 -4 -1
AL =A"5,1,55)= =5 | —4 20 —4
6h 6h? | | 4 4

i)jll

0O 0 -1 0 O
0O -4 0 -4 O
20 0 -1
-4 0 -4 O

0O 0 -1 O

1

.. 1
Ay = &0 0,1 1357) = g

£,,1
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The last two operators have an accuracy of O(h*). Note, if the template
operator derived from the five-point stencil at node O;; uses mesh size 2h,
it can be written as

1 1 0 -1 0
A(t,],2,m)ov= W —1 4 -1
0 -1 0]..
$,7,2
o 1
A(5,5,2, ) o U = m(—%’—z,j — Tiy2j — Tij-2 — Tij+2 + 4%i5)
= fij + O[(2h)?] (2)

As we mentioned above, in a traditional approach, only one template op-
erator at each node is used. But in our wavefront elimination process, more
than one, even several different template operators at each node are used
simultaneously. This is one key difference between the Wg and conventional
methods.

3 Wavefront Eliminations

The influencing and influenced wavefronts for each node in a template op-
erator are introduced in [6]. These concepts characterize the propagation of
the influences between nodes. Here the concept of wavefronts is used in a
different context, namely to characterize the change of the non-zero pattern
during the elimination process.

The first wavefront of any node O;; in a template operator is defined
here as the set of nodes where the elements of the template operator A;;
are non-zero except the node O;; itself. Since we will use two or even more
different template operators at each node O;;, the wavefront will certainly
be referred to the corresponding template operator at O;;. For example, the
first wavefront W;; for A;; is

Wi; := {0ij-1,0ij+1, Oi+1,§, Oi-1,5},

while the first wavefront ﬁ;;,- for Z;j is

Wij := {0i_1,j-1, 0i-1,j+1, Oi+1,j-1, Oit1,5+1}-

Similarly denote W/; as the wavefront for A{; and W} for Aj;, where

W,-'j = W,‘j U W,'j,
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and -
Wi = Wij U{0i—2,,0is2,5,0i,j+2, Oij-2}-

There are many ways of performing wavefront eliminations. It is actually a
whole class of direct approaches for the numerical solution of elliptic P.D.E’s.
To illustrate the basic idea of the wavefront eliminations let us introduce the
simplest version of wavefront eliminations below. It is easy to see from the
following description of the new algorithms: if we change the combination
of the template operators and chose the different wavefronts, we may obtain
many different algorithms. They all have an optimal complexity though the
constants for each approach will be slightly different. The simplest case of
a wavefront elimination only uses two kinds of template operators at each
node O;;, namely A;; and A;j.

Let us define the addition A; + Az of two template operators A; and
A2 to be a new template operator such that the elements of A, + A, are
the sum of the corresponding elements of A; and A;. Likewise, define the
scalar product aA be a new template operator such that the elements of
aA are the products of a with the corresponding elements of A.

One step of the wavefront elimination is to eliminate the non-zero el-
ements of a template operator, say A;;j, by the template operators at the
nodes of its first wavefront. Let

Aij oU = fij +7ij, (3)
Ainyj oU = ficrj+ T, 4)
Aiy1; oU = firrj + Titr4, (5)
Ajj-1 oU =fij1+1i5-1, (6)
Aijr1 o U = fijr1+fij41, (M

where 75, 7i41,5,° * * are the truncation terms.
It is known that 7;; ~ O(h?),i,j = 1,-+,n. Then one step of the
wavefront elimination for A;; can be written as

1
Ay (A + Aigry + Aijor + Aij+1)

o 0-1 0 O
0o -2 0 -2 0
-1 0 12 0 -1
0 -2 0 -2 0
o 0-1 0 O

_1
T 4h2

§,5,1
To simplify the notation, let

1
Wi(wi;) =vij + Z(yc'—l,j + Yit1,j + Yij-1+ Yii+1)s
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1
Walvij) =wij + Z(yi—l,j—l + Yit1,j-1 T Vit1,j+1 + Yi-1,j+1)

where y;; is defined on node O;;. Note that y can be a template operator
or a grid function. Denote

0 0 -1 0 0O
) . 0 -2 0 -2 0
ARG 1, —)==—>| -1 0 12 0 -1
3IJrY ™) 2 2
AR 5 9 0 -2 0
0 0 -1 0

15,1
Then we have

1

0.5)(; »

wl(Aij) = A( )('»Js l:m)'

If the wavefront elimination is carried out on the equations (3) — (7 ) we will
have

Wi(Aij) o U = Wi(fij) + Wa(mj)-

Comparing the non-zero pattern of W;(A;;) with Z.‘j, it is easy to see that
in one more step of elimination the non-zero elements of W;(A;;) at position
((+1,7+1),(f+1,57-1),(: —1,7+1), (i — 1,5 — 1) can be annihilated as
follows:

00 -1 0 0
N 1 00 00 0
00 00 0
| 00 -10 it
1 0 -1 o0
=—|-1 4 -1 (9)
2
oo 1 oo
L 1,5,2
.. 1
= A(’)]a 2, W) (10)

To summarize the above steps, we have
Wa(Ay) - Kij = AG, j,2,(2—2)2). |
Let
AR = AG5,2 ),
(2h)?
fi(,-l) = fij,
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)y _ ¢
ij = fij’
v _ .
Tij —_— T‘J )
~(l) —_— .
T =T,

12 =wmfz) - 7,
iD= Wing) - 7).

. 0 -1 0
= | -1 4 -1 oU
2
@R o _1 o

i,5,2
1

= gz (T%i-25 = Tivaj — Tij-2 — Tijea + 4aij)

— (2 (2)
= f‘j) + Tij .

Applying a similar procedure to Z,-,-, we will have

and

where

5.(,?) = Wa(Ay;) - Ag)

o1
=A("]:2:m)
RS
_———2- ,

8K 1 1 0 -1

45,2

KD oy = J® 4 40

3] ?

f}f) = W2(f‘(’l)) - f(z)

i
R =l - o,

This is one complete step of a wavefront elimination. Here a new set of
template operators at node O;; is obtained:

2
A’(j) oU

1 °o -1 0 @, @
= -1 4 -1 olU = fx' 4+ 157,
(2h)? ij i
0 -1 of,.,
N 2) |, ~(2)
gz | Yo 0 oU = fij" + 75"

17,2
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The increment of the index in these operators is 2 now. If we recursively
proceed with this process we will obtain

(k) 1 0o -1 0 *) (k)
Aij oU = (—2"_—1"‘{)—2 -1 4 -1 olU = f'] +Tij N
0 -1 0 [z
(k) 1 -1 o= 8) k)
Aij OU =-2—-(2—k:mj—2‘ 0 4 0 °U=f£j +"F£J .
-1 0 =114, ..,
1,9,2

Here a sequence of self-similar template operators is generated for the
same node at different stages of the elimination. If we call them W-template
operators 3, they look exactly the same as an ordinary template operator
which is derived from a large mesh size. The key difference here is the right
hand side of the equation derived from wavefront elimination — it is derived
from a renormalization process which we will discuss in the next section. The
right hand side of the traditional template operator is simply the function
value of the source term at the given node. Notice that we have always kept
the truncation term with the template operator during the above discussion.

The motivation is to let both template operators Agf) and ZS:) operate on

the same U. Furthermore, the analysis of the error propagation during the
elimination process can be easily shown by the growth of r'.'; and "i';(k) So far
the rigorous error analysis has not been completed but the following informal
discussion provides us with a very rough picture. From the definition of the

wavefront elimination process, we have the recurrence relations

= Ml -,
’1‘-"(:’,‘) = wz('ﬁ-(f—l)) — r(k)

5

Because the numbers of the elements in rgc) and ﬁ(]k) are reduced by a factor
of 4 at each step, we can not apply some traditional techniques for the
recurrence relations to this problem. But from this relation we may observe

|

a rough estimate of the growth factor of r‘-(;‘) and '1";(;‘) As we know that the
eigenvalues of the operator W, are:

1 i jr
Xij =1+ 5(cos 5p—g +cos 2Lk ) (11)
i=1,2,--, (2% -1), (12)
§=1,2,---, (2 F-1). (13)

3 W - stands for wavefront
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Thus the maximum growth factor for W, (7i;) isless than 2. After subtracting
~(k-1)

7 from w,-(r,-(f—l) ), the rough estimate of the growth factor of 1'.-(:) is less

than 1 or close to 1. We may obtain a similar rough estimate for '1";.({‘) .
Preliminary numerical tests agree with this estimate but the result is by no
means concrete.

Since the increment of the index is doubled at each step of the elimina-
tion, the number of the nodes involved in the elimination process is reduced
by a factor of 4. A compact description of the above discussion is as follows:

1. Let k=1

1P =16 - 1)k, (G - 1)h)
P =16 - 1), (G- 1))
i=1,.--,2f -1
j= 1,""2L - 1;
2. For nodes p = 2%i, ¢ = 2% where { = 1,---,2L"k_1 5=1,.. ., 2L-k_
1.
et =) - B,
f;‘;&l) — wz(f;s:)) _ qu(lc+l).

3. k=k+1, if k < L go to step 2.

This is a forward elimination process. After L — 1 steps of wavefront
eliminations, the template operator A‘(,L ) for the center node O;; where
¢ = 2L-1 _ 1 has reached the boundary of the solution region, namely, the
increment of the index in A,(,L 1 js 2L-1,

(L-1) 1 oL o (L-1)
Aﬁ 0U= (_2L_—1W -1 4 -1 0U= f“ .
0 -1 0],z

Since the boundary values are known, we can obtain the result of z;; directly
from this operator. Then a backwards solution process can be started. The
complexity of the forward process is 32N where N = n? = (2F — 1)%.

The backward process has the same complexity as the forward process.
We will need another 3N operations to obtain the value of z;; at the finest
level. Therefore the complexity of the whole process is approximately 10N
. As we mentioned above, for each node O;; there are many different tem-
plate operators with different accuracies. Due to the symmetry of these
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operators, many combinations of these operators can be chosen to perform
the wavefront elimination. A more detailed discussion will be presented
in a future report. The other algorithms also have an optimal complexity
but the constants will be slightly bigger. The idea of using this algorithm
as a preconditioner for a general elliptic equation is also considered. We
are also studying the possibility of directly generalizing these algorithms to
more general problems. Another interesting application of this algorithm is
in combination with other efficient algorithms. For example, three or four
steps of wavefront elimination are first executed then an other efficient al-
gorithm is applied to solve the reduced system. This strategy can be used
in case the truncation term grows during the elimination. If three steps of
wavefront elimination are applied, the size of the reduced system is only 61—4th
of the original one. A great saving in computational cost can be achieved.

Some other generalizations can also be derived from this algorithm.
First, the application of the W¢ to problems on an irregular solution region
is considered. Suppose a solution of the Dirichlet problem on an irregular
region () is wanted:

{ AU(z,y) = f(=z,9)
U(z, y)h‘n = g(z,y)

We can enclose €2 by a larger rectangular region ' and let

' f(z, if (z, Q
f("”y)={ o( Y ifgz,zgén'—n

The wavefront elimination can be applied to the problem

{ AU (z,9) = f'(2,9)
U(:E, y)lrg =0.

Then apply an optimal algorithm due to Greengard and Rakhlin [1], [4] to
the Dirichlet problem of the Laplace equation

{ AU(z,y) =0 .
U(x’ y)II‘n = g(:l!,y) - U(x, y)'

It is easy to verify that U —U' is the solution of the original problem and the
complexity of this procedure is also optimal. The generalization of this idea
to a three dimensional problem is also considered. Unfortunately, there is
no optimal algorithm in analogy with the two-dimensional version. The best
result we can obtain so far has a complexity of O(N log n), where N = n3.
How to find a renormalization mapping for three dimensional problems is a
challenging open problem.

From the above discussion, we can see that the study of the new algo-
rithms does create a challenging new direction of research for fast solvers.
It is more important than the optimum of the complexity per se.
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4 Renormalization Theory and Wavefront Elim-
inations

In the last section a new class of algorithm W¢ was introduced. During
the elimination process a sequence of self-similar W-template operators is
derived on the same node. Let’s see how the process can be interpreted
in terms of physics. Imagine the solution U to be temperature, therefore
the right hand side of the Poisson equation ought to be the heat source. It
is not difficult to see that A;j or Z,-,- can be interpreted as a conservation
relation between heat source and heat flux around the small cell where node
O;; is located. After one step of wavefront elimination, a new W -template
operator

0 -1 0
APoU=|-1 4 -1| oUu=f®
0 -1 0]..
£,9,2
where , ) .
= mP) - 78, (14)

is obtained.

Imagine this process as the result of zooming our observation position
a little further away from the solution plane. This new equation can also
be viewed as another conservation relation for node O;; except the scale is
different. In order to make the conservation valid without changing the solu-
tion then the heat source has to be renormalized. The mapping (14) actually
can be viewed as the renormalization transformation. If we compare this
process with K.G. Wilson’s renormalization theory for the magnet, there
are surprising similarities between the two completely different subjects. In
his theory, the same magnet of given temperature, when viewed on different
scales, looks as if it were at different temperature 4. Consider a magnet of
N atoms with inter-atomic distance a and temperature T'. On a coarse scale
where the elementary block is taken to have sidelength o' = b - a and com-
prises b% atoms, the magnet looks like one with N’ = N/b® atoms but with
another renormalized temperature T'. The relation 7' = Ry(T) is called
renormalization transformation. In a recent development of this theory, it
can also be derived that the pattern of fluctuation at the critical value of
temperature is self-similar. This basic idea eventually led to quantitative
results and explained the physics of phase transitions in a satisfying way.
L. P. Kadanoff first discovered the scaling law in 1966 [2], but it was K. G.
Wilson who finally surmounted the difficulties and developed the method of

“In wavefront elimination, the same temperature were produced from a different heat
source if the temperature field is viewed from different scales



14 Wei Pai Tang

renormalization into a technical instrument that has proven its worth in in-
numerable applications. It is not surprising that renormalization theory has
recently led to fractal phase boundary. The book “The Beauty of Fractals”
[3] cites a dictum from V. F. Weisskopf,

There’s a fog of events and suddenly you see a connection.
It expresses a complez of human concern that goes deeply to you
that connects things that were always in you that were never put
together before.

From the sequence of hierarchical self-similar W-template operators ® we

can also sense the principle which Mandelbrot discovered that organizes a
whole universe of self-similar structure. If the forward process of the wave-
front elimination is equivalent to a renormalization of the heat source term,
then the backward solution process is surprisingly similar to recursively de-
tailing the solution when our “camera” is zooming into the fine scales. This
interesting connection between wavefront elimination, renormalization the-
ory and fractals has inspired us to generalize the wavefront elimination to
other kinds of elliptic equations. Some preliminary study shows that this is
a promising new direction for research into fast algorithms.

Before we conclude this section, it is also very interesting to compare
wavefront elimination with the multi-grid method. It is not difficult to
see that one basic idea behind the two very different approaches is the
same, namely, both are using the idea of hierarchical computation in or-
der to achieve the optimal complexity. But to achieve the same goal, the
approaches they use are two extreme examples. In the wavefront elimination
a renormalization of the source term, in other words the right hand side,
is used to march from the fine grid level to coarse while in multi-grid the
error of the solution is projected from a fine grid to a coarser one. In the
wavefront elimination case we are able to complete the solution process in
one scan while the latter need a few scans.

5 Conclusion

A whole new class of fast solvers is briefly discussed in this paper. A great
many interesting open problems remain to be studied in this area. In par-
ticular, the discussion of the error analysis in section 3 is informal. Even
though there appears to be no instability problem in our preliminary nu-
merical tests, more studies are needed for a concrete result regarding the
error analysis of the We.

51t is also worth-while to mention that template operators provide us a right structure
to exhibit their self-similarity and renormalization relations?
It would be very difficult to observe this fact from the structure of a matrix
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