e N e

...... @ Km o{\/»

L Mamn Luther-Umversﬂat
, . Halle-Wittenberg
Vo ; Sektion\Mathemahk
Universnétgplatz 6
"DDR - Halle
: 402 0
& QDeutscha Demoktahsdme Repubhk

Senderq

© - IVAP23 P 702/36 4000 7900
BT I

vl

§ enutled T e SO / ‘

Wlth many 1hanks for your kmdness, ;" :,;’ '

L

e Yours slnce:rely. e

Drlnti@Requnsmon/Gfa ShicServices

10343

Please complete unshaded areas ‘on 2. Distribute copies as follows: White and 3. On completion of order the Yellow copy 4. Please direct isi
form as applicable. Yellow to Graphic Services, Ronm Pink will be retumed with the printed tion number and account numbcf to
Copies for your records. - material. extension 3451.
- .

ITLE OR DESCRIFTION

‘exformance of a Multifront Scheme foy

CATE REQUISITIONED DATE REQUIRED ACCOUNT NO.

ek, 16/83 ASAD lii21elgiograizlargl
equisiTioNErR- PRINT PHONE, SIGNING AUTHORITY '

* A.R. Conu X3688 %M/I\L Gk

MAILING NAME DEPT. BLDG. & ROOM &i DELIVER

INFO - Sue DeAngelis Computer Science MC 608lE [] pick-up

sopyright:

| hereby agree to assume all responsibility and liability for any infringement of copyrights and/or patent rights which may arise from
the processing of, and reproduction of, any of the materials herein requested. | further agree to indemnify and hold blameless the
University of Waterloo from any liability which may arise from said processing or reproducing. | also acknowledge that materlals

processed as a result of this requisition are for educational use only.

ER. LABOUR

UMABER 26 NUhMBE-R 100 NEGATIVES QU&NTITY ’ gs. TIME CODE
‘ e S— LFiL M| e I IIgLouJ
ﬂaouo N LT U X L-XCOVER _|erisToL &l?aupm,lsu I — LFLLlMl W lL U 'L l Il—L I. I lIClol’]l
:‘AF‘ER SIZE ' » R -) - . -
Hetem Lleix LI Ll i NFLM L L e 1leo]
3APER COLOUR INK s . :
Bowwre [o [Blee) ||F LM L L 1 leo]
AMRINTING NUMBERING '
TJrswe _een [X2 sioes __reu. FrOM To lFlLIMI B T I | JLI 11 IJI__I ll L 1] ilclol1j
IINDING/FINISHING 3 down left side PMT
K] COLLATING lg] STAPLING L]_.__:\Thghgo D PLASTIC RING
X PM,T - ~|,,||||||
P p— LI TR | ANEE A § BT cont
oo kad Pl e b g Hewegtl
special Instructions . .
Math fronts and backs enclosed. Pt e b b e
' PLATES ' . ‘
Pl |[x||1|-'||lPJOJ1l
PO Tl H | lb L]P0yt
T S | A I AN AN | AN § A B L R0
STOCK ' _ - f
Lo b o b s legeg]
COPY CENTRE : OPER. “MAGH.) _
. o la“":“ v o Lo e e b Lo T legegtd
Plkind [9ad : L
DESIGN & PASTE-UP R, LABOUCIRcmE | 11 I I | IL [I__H ||| | l_Jlolol1l
'A ' lJJ[ulJD|011:|||111LJL|111||‘|H|||H°|011J
L L1 1 ||pjo,1]f BINCERY
IRNGL |'|J|Q|Ql| | |2Q|B|0|1|
: L1]19041]
TYPESETTING TavmTiTy RNGL o o b 1 [Biogt]
Paplo000000 [Ly oy T L JmoplRNGL o Il L e o B0t
PAP[010000y [{ 4y o Il dla o [mot]fiMinsle05000, JL 1 Tl flaa o]1Bi0s1]
PAP[0,0,0,010 [[4 JLy Ly oo [|Ti0g1]] OVTSIDE SERVICES |
PROOF
P\R/F| o oo e b ke
CPRFL e T e L S
COST
' t T N T ;

e e cr e et s SAAVET AP AOO

PERFORMANCE OF A MULTIFRONTAL SCHEME FOR
PARTIALLY SEPERABLE OPTIMIZATION

A.R. Connt , N.I.LM. Gould}, M. Lescrenier{ and
Ph. L. Toint§
Research Report CS-88-04

February, 1988

+ Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada.

1 Harwell Laboratory, Harwell, England.

%]13qlgian National Fund for Scientific Research, Facultés Universitaires ND de la Paix, B-5000 Namur,
elgium.

§ Department of Mathematics, Facultés Universitaires ND de la Paix, B-5000 Namur, Belgium.

PERFORMANCE OF A MULTIFRONTAL SCHEME FOR
PARTIALLY SEPERABLE OPTIMIZATION

by A.R. Connt, N.ILM. Gould}, M. Lescrenier§ and
Ph.L. Toint§

Abstract. We consider the solution of partially seperable minimization problems
subject to simple bounds. At each iteration, a quadratic model is used to approx-
imate the objective function within a trust region. To minimize this model, the
iterative method of conjugate gradients has usually been used. The aim of this pa-
per is to compare the performance of a direct method, a multifrontal scheme, with
this iterative method (with and without preconditioning). To assess our conclusions,

a set of numerical experiments, including large dimensional problems, is presented.

tDepartment of Combinatorics and Optimization
University of Waterloo
Waterloo, Canada

{Harwell Laboratory,
Harwell, England

YBelgian National Fund for Scientific Research
Facultés Universitaires ND de la Paix
B-5000 Namur, Belgium §Department of Mathematics
Facultés Universitaires ND de la Paix
B-5000 Namur, Belgium

This report is being issued simultaneously by the Department of Combinatorics and
Optimization , University of Waterloo, Waterloo, Ontario, Canada, the Computer Science and
Systems Division, Harwell Laboratory, Oxfordshire, U.K. and the Department of Mathematics,

Facultés Notre Dame de la Paix, University of Namur, Namur, Belgium

1. Introduction.

This paper is concerned with the solution of partially separable optimization problems (defined in Section
2). Such problems appear in a large majority of nonlinear minimization applications, for example finite
elements, network problems and others. The formalism was first introduced by Griewank and Toint
(1982) and methods using this particular structure have proved to be extremely successful for large
dimensional problems (se¢ Griewank and Toint (1984) for instance).

To solve these problems, a trust region type algorithm may be applied which requires the partial
solution of a quadratic minimization problem at each step of an iterative scheme. Up to now, only iterative
methods, specifically (jpreconditioned and truncated) conjugate gradient schemes, have been used in
practice to solve the quadratic minimization problem. The aim of this paper is to test the use of direct
methods, particularly multifrontal schemes, for this purpose.

The authors are aware that this type of direct method can only be used when the solution of the
quadratic problem can be found by solving a linear system, that is, when the quadratic has a finite
solution. Such a situation normally arises when the Hessian matrix of the quadratic is positive definite. In
the indefinite case, the authors use a simple strategy which consists of computing directions of negative
curvature. However, they realize that a more sophisticated strategy like the Levenberg-Marquardt
algorithm (see Moré 1977) or an attempt to solve the trust region problem by another method may be
more appropriate.

The paper is organized as follows. Section 2 defines the concept of partial separability. Section 3
describes the trust region algorithm used to solve partially separable problems. Indirect and direct
methods to solve the quadratic minimization problem are proposed in Sections 4 and 5 respectively. In
Section 6 we discuss the numerical experiments and conclusions are drawn in Section 7. We end with an
appendix which describes some additional test functions not available in the literature.

2. Partial separability.
We consider the simple bound constrained minimization problem

Min f(x)

ainiSbi (2'1)

where x is a vector of R" and fis a so called partially separable function, that is a function of the form
m
f(x)=_21f,~(x) 2.2)
=

where the element functions f;(x) have Hessian matrices of low rank compared with n, the dimension of
the problem.

A typical case is when each element function only depends on a small subset of the variables called the
elemental variables. Frequently, it is possible to further reduce the number of elemental variables
applying a linear transformation of the type

y;=Ux (2.3)
where the variables of y; are called the internal variables for the i-th element function.

The adaptability of partially separable methods to problems of large sizes comes mainly from a

compact storage scheme for the Hessian approximation and the correspondmg updating technique. The
change of variables (2.3) allows us to consider new element functions f such that

£ =F0). 24)
The gradients of f; and 7 ; satisfy
g:0=U] 0, @2.5)
while the Hessians satisfy
H®)=UH,0)U;. 2.6)

The so called partitioned updating technique consists in storing and accessing only the gradients and
Hessians in intemal variables, that is, the g;(y;) and H ;(v;) from (2.5) and (2.6) respectively. The
advantage clearly comes from the fact that the number of internal variables is much smaller than the total
dimension of the problem and that the Hessian of f is never explicitly assembled.

Finally, since in many practical problems, the matrices U; only differ in the elemental variables that
they select, they are not stored explicitly, but the operations involving them,

u=Uy and u=U]v, Q.7

are performed in a user provided subroutine.

3. A trust region algorithm for partially separable problems.

The algorithm we propose for solving problem (2.1) is of trust region type and belongs to the class of
methods described by Conn, Gould and Toint (1988a).

At each iteration, we suppose that we have a feasible point x®, the gradient g(") of the objective
function (2.2) at this point and a suitable symmetric approximation H® to the Hessian of f at x®_ In the
remainder of this paper, by ‘Hessian’ we will always mean an approximation of the true Hessian. This
approximation may be computed by a secant updating formula such as the Broyden-Fletcher-Goldfarb-
Shanno or the symmetric rank-one update for instance (see Dennis and Schnabel (1983)). The gradient
and Hessian of the partially separable function f are stored as described in Section 2. We approximate the
objective function by a quadratic model

m®a® 4 5=Ax®) +5Tg® + 1sTHO 5, @3.1D

in a region surrounding the current iterate defined by its radius A® _ This region, called the trust region, is
of the form

lx—x®<a®. 3.2)

It is convenient to choose the infinity norm for then the shape of the trust region is aligned with the simple
bounds of the problem (2.1). If we define

1P =max(a;, x® -4®),
u,-(") =min(bi,xi(") +4®), @3
a trial point x® +s® is constructed by finding an approximation to the solution of the trust region
problem, which is
Minm® (x) (3.4.2)
subject to
19 <x, <u®. (3.4.b)

If the function value calculated at this new point matches its predicted value (the one given by the model),
the point is accepted as the next iterate and the trust region is possibly enlarged; otherwise, the point is

rejected and the trust region size decreased. More precisely, we compute the ratio of the achieved to the
predicted reduction of the objective function,

t _ _fa®)=fix® +50)

P T fx®)—m® (x® 4 50y (3.5)
and set
® 4O if ok
k1) _ J X7 +57 i pV > p,
* _{x"" if p® <y (3.6)
and

% A® f p(k) <pu,
ABD =2 4B if pcp® oq, G.7

where ¥, <1<7,, t and 7 are appropriate numbers.

It remains now to describe our approximate solution of (3.4). We first compute the Generalized Cauchy
Point x% which is defined as the first local minimizer of the univariate function

mBPx®-1®)) 3-8
where P[-] is the projection operator componentwise computed as
I® ifx, <1®,
PlxD); =< u® ifx;2u®, (3.9)

x; otherwise.

]

The Generalized Cauchy Point (GCP) is then the first local minimizer of the model, along the piecewise
linear arc defined by projecting the steepest descent direction into the feasible domain of problem (3.4).
We define I(x® 1% u®) as the active set of x& with respect to the bounds /¥ and 2 ¥, that is the set of
indices of the variables at the GCP violating or lying on a constraint of (3.4), and solve the sub-problem
(3.4) with the restriction that the variables in the active set remain fixed. The solution of this restricted
sub-problem gives us the trial point x® +s® and can be computed by using an iterative or a direct
method. This is the subject of the next two Sections.

4. Minimization of the quadratic model by iterative methods.

If the Hessian H® is positive definite and the bounds (3.4.b) which are inactive at the Cauchy point
remain inactive, the solution of the sub-problem (3.4) may be obtained as the solution of a system of
linear equations. However, this may be prohibitively expensive in the context of large scale optimization
unless care is taken to solve the resulting linear system as efficiently as possible. To date, the use of
iterative schemes, in particular truncated, preconditioned conjugate gradients methods, seem to have been
the most popular approach to solving the sub-problem as it is reflected in the works of Toint (1981),
Steihaug (1983) or Stoer (1983).

Two main reasons explain this interest. The first one is that a truncated strategy which asymptotically
takes the exact quasi-Newton step can save a significant amount of computation during the early
iterations, when we are still far from the optimum. The second reason, and probably the main one, is that
these types of methods do not involve operations on the matrix entries but only require matrix-vector
products. This calculation, which represents the major cost of the algorithm, can be efficiently performed

when the sparsity pattern of the matrix is taken into account. In the context of partially separable
optimization, the matrix is the Hessian of the objective function, and the matrix-vector product does not
require the assembly of the Hessian since it can be computed as

(§.H,-)d=§(U,-TFI,-U,-)d- “4.1)
=1 =1

The conjugate gradient algorithm is applied, starting from x=x(é), to the sub-problem (3.4) with the
restriction that the variables in the set I(x ((':‘) 1® u®) are kept fixed throughout the process. The algorithm
we choose uses the diagonal of the Hessian as preconditioner and is terminated at the point x if

(i) the norm of the restricted gradient of the model, that is the vector whose components are those of the
gradient of m® (x) at x=% not indexed by I(x® 1® ,u®), is less than n®, for some n%; or

(ii) one or more of the unrestricted variables violate one of the bounds of (3.4).x is then the point at
which the offending bound(s) is (are) encountered.

A superlinear rate of convergence can be assured provided that the ratio of the norm of the restricted
gradient at the final point to that at x® tends to zero as the iterates approach a Kuhn-Tucker point for the
problem and the matrices H ® restricted to the set of variables active at the solution satisfy the
Dennis-Moré condition (see Dennis and Schnabel (1983)). A suitable choice for n® in order to satisfy the
first condition is given by

7® =min(0.1,Vig® 1) 13 @1, “4.2)
where §® is the projected gradient, P[x® — g®]-x® at x®.

5. Minimization of the quadratic model by a direct method.

Let us now consider the solution of the sub-problem (3.4) (where some of the variables are fixed) by a
direct method.

We already remarked that the advantage of using the conjugate gradient method to solve (3.4) is that
there is no need to assemble explicitly the Hessian. Surprisingly, this advantage can be maintained for a
class of direct methods called the frontal methods, introduced by Irons (1970).

These methods solve symmetric positive-definite systems of linear equations

Ax=b G.D)
by Gaussian elimination where the matrix A has a finite-element representation
A=Y B", (5.2)
r

and where each B is zero except in a small number of rows and columns.
In frontal methods, advantage is taken of the fact that elimination steps
— -1

a;;=0a;;—0a;;8; a; (5.3)
do not have to wait for all the assembly steps
from (5.2) to be complete. The operation (5.3) can be performed as soon as the pivot row (and column) is
fully summed, that is, as soon as all the operations (5.4) have been completed for them. The fully summed
rows and columns (not yet eliminated) are stored in a so-called frontal matrix whose size can be
maintained sufficiently small.

This scheme is perfectly adaptable to our framework except that we have no assumption of positive
definiteness of the matrix A. Duff and Reid (1983) overcame this difficulty by following Bunch and
Parlett (1971), using a mixture of 1x1 and 2x2 pivots chosen during the numerical factorization of A. This
allows stable Gaussian elimination for indefinite systems.

This method has been implemented by Duff and Reid (1982) as a set of Fortran subroutines, currently
available through the HARWELL library under the name MA27 and is the one we used for our
implementation.

During the assembly steps of the frontal method, one needs to access the entries of each element
Hessian H®. Since the element Hessians are stored in internal variables, each time we need one of them
we must restore it in elemental variables. The user is then asked to write a code to perform operation (2.6),
in addition to the operations (2.7). Numerical experience shows that this can often be done efficiently
since (2.6) requires few floating point operations. Furthermore, we maintain the advantages of a reduction
of storage for the Hessian H® and of an efficient updating technique.

One must point out however, that the current version of MA27 does not assume a finite-element
representation for the matrix A but requires instead its storage in compact form. Consequently, for our
experimental code, one had to assemble the Hessian, even if this type of method does not require it. One
must point out, however, that this does not inhibit the proof of the viability of the frontal approach and
does not affect our conclusions. Moreover there are plans to introduce a new version of MA27 which
allows an elemental representation of the coefficient matrix (Iain Duff, private communication).

Given the factorization of the Hessian (restricted to only the free variables)
HO=g®p® 0T (5.5)

we check the 1x1 and 2x2 pivots stored in D® to decide whether it is positive definite, indefinite, or
singular. Different strategies will be applied in these different cases.

If the restricted Hessian is positive definite, we can solve the Newton equations
H® s=—_g® (5.6)
for the direction s along which a step will be taken. The actual step is then computed as
s®= min(1, a(k)) K 5.7

where a® s is the largest admissible step for which (3.4.b) is satisfied. MA27 provides the code for the
forward and backward substitutions that compute this direction s.

If H® is indefinite, the solution of (5.6) is no longer that of the sub-problem (3.4). Fortunately, the
decomposition (5.5) allows us to compute a direction of negative curvature for (3.4), along which we will
take the largest admissible step.

To compute a direction of negative curvature, s say, we first chose 4, the most negative eigenvalue of
D® and computed the corresponding eigenvector v. The direction s would then be given at the cost of a
backward substitution

s=L®y (5.8)
and the corresponding curvature would be
sTH®s=2|v]|2. (5.9)

Numerical experiments indicate a drawback of this method. When the restricted Hessian remains
indefinite in successive iterations, the direction s often lies in the same subspace and the number of
iterations required to reach optimality is abnormally high. To avoid this defect, when successive

directions of negative curvature are encountered, instead of choosing the most negative eigenvalue of
DW, we cycle on its negative eigenvalues. By cycling we mean that we choose the negative eigenvalue
ordered next to the one used at the previous iteration until we reach the last, in which case we repeat the
cycle starting with the most negative again.

The last case to consider is when the restricted Hessian is singular and semi-positive definite, although
we noticed that it occurs very rarely in practice (and indeed, it never occured in our experiments of the
next Section). The strategy used is the one described by Conn and Gould (1984) which consists in solving
the linear system if it is consistent (trying to take a Newton step along this direction in the feasible
domain), or finding a descent direction s otherwise, satisfying

H®s=0 and sTg® 0, (5.10)
along which the maximal admissible step will be taken.

6. Numerical experiments.

The test problems we used for our experiments come mainly from the set of functions used by Toint for
testing partially separable codes. They are fully described in Toint (1983) and the numbering we use here
refers to that paper. We considered the problems 8 (Tridiagonal quadratic), 10 (Rosenbrock function), 11
(Linear minimum surface), 16 (Boundary value problem), 17 (Broyden tridiagonal), 19 (Extended Powell
singular function), 20 (Wrong extended Wood’s function), 22 (Diagonal quadratic), 27 (Extended Wood’s
bounded problem), 29 (Extended McCormick’s bounded problem), 31 (Extended ENGVLI1), 33
(Extended Freudenstein), 36 (Cube problem) and 47 (PSPDOC example, with n—2 elements). We also
considered five additional problems, described in the appendix to this paper, so as to allow for other
sparsity structures in our test set.

For starting points, we decided to use the ones provided in Toint (1983). However, to test the sensitivity
of our code to changes in the initial points, we tried a second point for some of the test problems (see
Table 8). For these problems, the two different starting points are given in the appendix.

All the experiments were performed on the CRAY 2 supercomputer of Harwell Laboratory. Our code,
called hereafter SBMIN, is written in Fortran 77 and compiled using the CFT77 Fortran compiler (without
optimization). All timings reported are in seconds for time spent in the C.P.U.

The initial trust region radius A9 =0.1]g©|, and we chose u=0.25, n=0.75, y,=1/4/10 and
7, =410. The stopping criteria we used was based on the order of magnitude of the gradient (projected on
the feasible domain); we required its norm to be of less than 107°.

In the tables, the symbol * indicates that the trust region radius has become too small and that the
routine has consequently decided to stop. One must point out however, that in those cases, the projected
gradient norm was of the order of 10~ or even 10~ and the failure should be attributed to numerical
rounding errors preventing the accurate calculation of the ratio p (equation 3.5). The symbol # means that
the maximum number of iterations has been reached. In the cases where this occured, we again observed
that the norm of the projected gradient was small.

For each test problem, we consider three different methods, conjugate gradients (cg), preconditioned
conjugate gradients (pcg) and multifrontal (multif), to obtain an approximate solution to the subproblem
(3.4). We also consider three ways of computing the element Hessians; exact derivatives (exact), the
Broyden-Fletcher-Goldfarb-Shanno update (BFGS) and Athe symmetric rank-one update (rkl).

Specifically, in the latter two cases the i~th element Hessian, H ,-(k) , stored in terms of its internal variables,
is updated from the BFGS formula

a (k) o (T 7K 2 2(OT 5K
SOSET AP0 5T i

SOT 200 AT 0 () °
BTgh " L @r fo s

fy (k1) _ 75 (0

or from the rank-one formula

(k+1) (k) 4 ® F T

s 5>] t

B =0+ o sm
i i

(D) _ Y, and the change in

Here § ,-(") and y i(") are, respectively, the change in the internal variables U ;(x
the elemental gradient g #V -3 ® and P =3 ® A" §® The BFGS update is only performed for a
given element if the new approximation can be ensured to be positive definite, and this is implemented by
only allowing an update if the condition

AT 2(k) ;.2 OT 4k -8
3PP 15 PT 58 210

is satisfied. The rank-one update is only made when the correction has norm smaller than 10%. The initial
estimate of each element Hessian H ,-(0) is set to the identity matrix when updating schemes are used. This
choice is considered satisfactory as the test problems are reasonably well scaled.

The figures we report in each Table are the number of function evaluations (fct), the number of gradient
evaluations (grad), the time spent in the main optimization routine (sbmin cpu) and the time spent in the
main optimization routine added to the time for function and gradient evaluations (total cpu). Under the
label * syst. iter. > we give the number of conjugate gradient iterations in the case of the iterative method
or information of the type pd nc (ratio) for the direct methods where pd is the number of positive definite
linear systems solved, nc is the number of directions of negative curvature taken and ratio gives an idea of
the fill-in during the Gaussian elimination and is equal to the storage space needed to store the factor of
the Gaussian decomposition divided by the space needed for the original matrix. In our tests, no singular
linear systems were encountered despite our having code specially to deal with such eventualities.

Table 1 presents the performance of the different methods on a set of 19 problems ran with 100
variables.

pb Hessian method fet. grad. syst. iter. sbmin cpu total cpu
8 exact cg 7 8 160 0.57 0.57

pcg 6 7 32 0.19 0.19

multif 1 2 1 0 (1.00) 0.03 0.04

BFGS cg 10 7 120 0.61 0.61

pcg 10 1 30 0.36 0.36

multif 6 3 1 0 (1.00) 0.20 0.20

k1 cg 10 7 120 0.61 0.61

peg 10 7 30 0.35 0.36

multif 6 3 1 0 (1.00) 0.20 0.20

10 exact cg 441 289 2064 5.68 5.88
pcg 492 259 2133 6.19 6.38

multif 527 272 512 11 (1.00) 12.42 12.63

BFGS cg 495 334 3133 8.55 8.76

peg 639 393 2088 791 8.17

multif 363 319 356 0 (1.00) 9.21 9.38

k1 cg 1072 624 2098 11.70 12.13

peg 1093 641 2007 10.78 11.22

multif 1619 935 586 993 (1.03) 39.87 40.51

11 exact cg 35 29 80 0.62 0.63
pcg 38 31 n 0.85 0.87

multif 15 14 15 0 (1.89) 045 0.46

BFGS cg 17 18 154 0.64 0.65

peg 21 19 135 0.79 0.81
multif 17 18 17 0 (1.89) 0.58 0.59

k1 cg 63 36 105 1.17 1.20

pcg 49 35 74 1.22 1.24

multif 109 67 16 93 (1.91) 3.40 3.45

16 exact cg 3 4 254 0.93 0.93
peg 4 5 377 1.46 1.47

multif 3 4 3 0 (1.00) 0.11 0.11

BFGS cg 17 17 2016 7.36 1.37

peg 18 18 2603 9.18 9.79

multif 21 21 20 0 (1.00) 0.79 0.80

k1 cg 12 9 508 1.96 1.96

peg 10 9 911 352 353

multif 6 6 4 1 (1.00) 0.21 0.21

17 exact cg 7 8 29 0.17 0.17
peg 6 7 28 021 0.22

multif 5 6 5 0 (1.00) 0.18 0.18

BFGS cg 11 9 30 0.25 0.25

peg 11 9 32 0.33 0.33

multif 11 9 9 0 (1.00) 0.38 0.38

rk1 cg 15 9 40 0.33 0.33

peg 11 9 35 0.33 0.34

multif 10 8 8 0 (1.00) 0.33 0.34

19 exact cg 15 16 95 0.19 0.20
peg 15 16 83 0.18 0.19

multif 15 16 15 0 (1.00) 0.31 0.32

BFGS cg 51 45 2726 4.30 4.31

peg st 4 1m7 294 2.95

multif 42 36 35 0 (1.00) 0.89 0.90

rk1 cg 53 33 632 1.20 1.21

peg 70 38 746 1.52 1.53

multif 72 48 27 40 (1.00) 1.47 1.48

20 exact cg 11 12 35 0.12 0.12
peg 9 10 20 0.09 0.09

multif 9 10 8 0 (1.00) 0.21 0.21

BFGS cg 53 37 122 0.64 0.65

peg 66 38 166 0.82 0.84

multif 43 30 38 0 (1.01) 1.07 1.09

rk1 cg 43 26 45 042 043

peg 55 32 69 0.54 0.56

multif 2 39 13 53 (1.02) 1.73 1.75

22 exact cg 6 7 8 0.06 0.06
pcg 2 3 1 0.02 0.02

multif 3 4 1 0 (1.00) 0.05 0.05

BFGS cg 22 15 76 0.38 0.39

peg 33 18 v 0.50 0.52

multif 25 16 19 0 (1.00) 072 0.73

k1 cg 10 8 10 0.12 0.12

peg 10 8 4 0.11 0.11

multif 6 4 1 0 (1.00) 0.08 0.09

21 exact cg 9 10 9 0.07 0.07
pcg 6 7 5 0.05 0.05

multif 4 5 31 (1.18) 0.09 0.09

BFGS cg 21 16 37 023 0.24

pcg 26 21 34 026 0.27

multif 26 19 18 0 (1.00) 045 0.45

k1 cg 25 17 26 0.25 0.26

peg 28 16 19 0.24 0.25

multif 34 23 9 18 (1.06) 0.57 0.58

29 exact cg 9 8 12 0.06 0.08
pcg 9 8 10 0.07 0.08

multif 8 7 40 (1.00) 0.10 0.11

BFGS cg 12 11 15 0.13 0.14

peg 11 10 12 0.12 0.13

multif 11 10 9 0 (1.00) 0.28 0.29

k1 cg 8 9 1 0.08 0.09

peg 8 9 9 0.09 0.09

multif 17 8 4 10 (1.00) 0.39 0.40

31 exact cg 8 9 21 0.07 0.08
pcg 8 9 13 0.07 0.07

multif 7 8 5 0 (1.00) 0.14 0.14

BFGS cg 13 11 31 0.16 0.16

pcg 13 11 25 0.16 0.16

multif 11 9 7 0 (1.00) 0.24 0.25

k1 cg 13 10 27 0.15 0.15

peg 25 10 25 0.22 0.23

multif 15 10 65 (1.00) 0.33 0.34

33 exact cg 11 12 25 0.09 0.10
peg 7 8 18 0.07 0.08

multif 10 11 4 0 (1.00) 0.13 0.14

BFGS cg 19 15 26 0.19 0.21

peg 17 13 23 0.18 0.19

multif 17 13 6 0 (1.00) 0.25 0.26

k1 cg 17 13 28 0.17 0.18

peg 18 13 21 0.18 0.19

multif 37 14 7 20 (1.00) 0.75 0.77

36 exact cg 1008 612 7615 17.18 17.61
pcg 1028 596 4031 11.46 11.89

multif 994 562 932 7 (1.00) 21.84 2224

BFGS cg 1566 971 9092 2541 26.04

pcg 1401 936 4443 16.72 17.30

multif 1237 853 1224 7 (1.00) 31.06 31.58

k1 cg 3154 1833 8788 34.16 35.40

peg 3017 1750 4732 21.07 28.26

multif 4043 2293 1928 1943 (1.03) 97.54 99.12

47 exact cg 8 9 34 0.21 0.21
pcg 10 9 20 0.26 0.27

multif 8 8 8 0 (1.00) 0.28 0.29

BFGS cg 8 8 25 0.21 0.21

peg 9 9 32 0.32 0.33

multif 9 9 9 0 (1.00) 0.37 0.37

k1 cg 8 8 27 0.21 0.22

pPeg 8 8 26 0.27 0.28

multif 9 9 7 0 (1.00) 0.30 0.30

55 exact cg 5 6 4 0.03 0.04
peg 5 6 4 0.04 0.04

multif 5 6 2 0 (1.00) 0.08 0.08

BFGS cg 12 9 2 0.10 0.10

peg 13 10 9 0.3 0.13

multif 13 10 3 0 (1.00) 0.18 0.19

k1 cg 22 10 14 0.16 0.16

peg 15 10 1 0.13 0.13

multif 22 10 12 0 (1.00) 0.21 0.21

56 exact g 12 13 14 0.16 0.17
peg 12 13 0 0.21 0.23

multif 12 13 11 0 (1.00) 041 0.42

BFGS cg 19 20 430 1.86 1.88

peg 19 20 452 2.09 2.11

multif 19 20 13 0 (1.00) 0.61 0.63

k1 cg 39 2 17 0.68 0.71

peg 32 2 26 0.70 0.73

multif 33 2 122 (1.01) 0.96 1.01

57 exact cg 107 68 1380 6.09 6.13
pcg 133 80 971 562 5.67

multif 15 16 11 0 (1.00) 0.50 0.51

BFGS cg 93 64 1140 532 5.36

pog 110 88 397 373 371

multif 24 2 16 0 (1.00) 0.82 0.83

rkl cg 107 76 1378 6.22 6.26
peg 176 130 523 5.22 5.28

multif 24 2 16 0 (1.00) 0.79 0.80

59 exact cg 8 7 16 0.11 0.12
peg 10 9 18 0.14 0.16

multif 12 9 45 (2.69) 045 0.47

BFGS cg 13 12 23 0.26 0.29
peg 13 12 13 0.25 0.27

multif 11 10 8 0 (2.75) 0.47 0.49

k1l cg 10 9 8 0.17 0.18
peg 15 12 10 0.24 0.27

multif 19 9 3 12 (2.48) 0.73 0.76

61 exact cg 13 14 56 0.35 0.36
peg 1 12 25 0.22 0.23

multif 11 12 10 0 (1.00) 0.55 0.56

BFGS cg 34 26 150 1.12 1.14
peg 26 20 66 0.70 0.71

multif 26 20 18 0 (1.00) 1.20 1.21

k1 cg 45 2 131 1.19 1.21
peg 56 25 45 1.08 1.10

multif o117 72 19 90 (1.00) 6.21 6.27

Table 1. Performance of the methods on a set of test problems with 100 variables.

This table indicates the viability of the multifrontal method in the context of partially separable
optimization and more than that, we already see that the method seems to be really competitive with the
iterative schemes in some cases. It is not rare that the number of function and gradient evaluations is
significantly reduced and this can lead to significant improvements in terms of computation time. In order
to investigate more carefully the relative performance of the methods, we increased the dimension 7 up to
a maximum of 5000. The results of those experiments are given in Tables 2 to 7 for a subset of our test
problems. The problems were chosen as being fairly representative of the larger set.

n Hessian method fet. grad. syst. iter. sbmin cpu total cpu
484 exact cg 169 125 357 14.62 15.05
pPcg 153 103 202 16.63 17.01

multif 24 19 24 0 (3.45) 532 5.38

BFGS cg 32 26 540 10.56 10.64

peg 78 58 294 1252 1271

multif 26 21 26 0 (3.43) 6.18 6.25

rk1 cg 264 163 442 25.97 26.56

pcg 214 136 198 23.05 23.53

multf 498 321 27 471 (3.58) 113.65 114.77

961 exact cg 517 470 712 165.29 171.78
peg 184 128 298 81.78 83.79

multif 26 20 26 0 (4.17) 16.79 17.10

BFGS cg 51 38 538 48.16 48.66

pcg 100 75 568 76.95 11.99

multif 26 21 26 0 4.17) 18.24 18.51

k1 cg 562 358 803 311.78 316.91

peg 440 286 37 179.01 183.01

multif 2274 1414 58 2215 (4.32) 1589.50 1609.06

4900 exact cg 2039 1755 3077 3521.02 3651.55
pecg 580 441 769 1324.17 1358.05

multif 36 29 36 0 (6.43) 136.29 138.49

BFGS cg 127 96 1601 741.55 748.15

peg 376 269 1448 1247.58 1266.58

multif 32 25 32 0 (6.43) 131.93 133.63

10

rk1 cg - - - - > 20000

peg 2035 1327 1178 5957.36 6052.71

multif - . - - > 20000

Table 2. Performance of the methods on the test problem 11 for increasing dimensions.

n Hessian method fet. grad syst. iter. sbmin cpu total cpu
500 exact cg 3 4 1634 29.06 29.07
pcg 3 4 1839 3334 33.35

multif 5 6 5 0 (1.00) 0.87 0.88

BFGS cg 15 15 10280 181.61 181.65

peg 16 16 13131 240.93 240.97

multif 23 23 22 0 (1.00) 4.40 4.46

k1 cg 17 11 495 9.91 9.95

pcg 5 5 937 17.47 17.48

multif 9 9 4 4 (1.00) 1.60 1.63

1000 exact cg 2 3 256 18.19 18.24
peg 2 3 612 4433 44.39

multif 5 6 5 0 (1.00) 2.54 2.64

BFGS cg 15 15 14435 945.39 945.63

pcg 19 19 26667 177299 1773.29

multif 44 32 30 13 (1.00) 22.02 22.61

k1 cg 12 8 822 56.62 56.78

Pcg 7 6 3088 207.01 207.12

multif 8 8 4 3 (1.01) 394 4.08

5000 exact cg 2 3 1151 395.78 396.05
pcg 2 3 1830 643.32 643.59

multif 7 8 7 0 (1.00) 17.15 17.86

BFGS cg 19 11 4510 1581.51 1582.73

peg 19 14 14069 4743.19 4744.55

multif 197 115 10 186 (1.01) 1365.62 137751

k1l cg 17 10 282 114.01 115.09

peg 23 13 158 88.42 89.84

multif 125 n 4 121 (1.01) 657.81 665.37

Table 3. Performance of the methods on the test problem 16 for increasing dimensions.

n Hessian method fet. grad. syst. iter. sbmin cpu total cpu
500 exact cg 13 14 0 0.57 0.65
peg 13 14 0 115 122

multif 13 14 00 0.58 0.65

BFGS cg 20 21 1015 19.92 20.02

peg 20 21 1431 28.79 28.89

multif 20 21 12 0 (1.00) 2.96 3.06

k1 cg 30 22 8 231 244

g 35 25 34 393 4.08

multif 60 37 4 45 (1.00) 1845 18.69

1000 exact cg 13 14 14 236 2.64
pcg 13 14 0 415 443

multif 13 14 00 2.29 2.56
BFGS cg 21 22 1454 107.38 107.72

peg 21 22 2628 194.66 195.00

multif 21 22 12 0 (1.00) 8.84 9.18

k1 cg 36 24 17 15.05 15.51

peg 35 26 29 13.86 1433

multif 42 27 0 30 (1.00) 48.71 49.24

5000 exact cg 14 15 0 11.98 1341
peg 14 15 0 21.11 22.54

multif 14 15 00@) 11.94 13.37

11

BFGS cg 22 23 2170 747.86 749.58
peg 22 23 5998 2079.67 2081.38
multif 22 23 11 0 (1.00) 42.53 4425
k1 cg 36 25 13 9225 94.55
pcg 40 29 42 79.64 82.23
multif 43 29 0 30 (1.00) 1588.61 1591.31
Table 4. Performance of the methods on the test problem 56 for increasing dimensions.
n Hessian method fet. grad. syst. iter. sbmin cpu total cpu
500 exact cg 115 75 1715 36.46 36.66
peg 180 120 852 29.80 30.13
multif 16 17 10 0 (1.00) 345 3.49
BFGS cg 172 124 1751 4291 4322
peg 653 454 851 78.06 79.22
multif 18 16 14 0 (1.00) 4.98 5.02
rkl cg 164 116 1572 38.16 38.45
pecg 548 414 775 66.27 67.27
multif 18 16 14 0 (1.00) 493 496
1000 exact cg 141 88 1946 151.90 153.39
peg 224 140 1073 128.60 130.97
multif 17 18 10 0 (1.00) 25.58 25.82
BFGS cg 216 164 2512 214.40 216.67
pog 568 405 852 23157 237.16
multif 19 17 15 0 (1.00) 3834 38.56
k1 cg 213 150 2209 180.86 182.87
pPeg 554 430 825 218.12 223.56
multif 19 17 15 0 (1.00) 41.18 41.39
5000 exact cg 164 105 2296 879.14 887.70
peg 199 125 838 529.40 539.69
multif 18 19 10 0 (1.00) 507.83 509.08
BFGS cg 260 181 2835 119299 1205.22
peg 1133 787 1418 216172 2221.16
multif 20 18 16 0 (1.00) 84419 845.28
rkl cg 252 178 2446 1069.75 1081.73
pcg 993 695 1318 190092 1947.81
multif 20 18 16 0 (1.00) 840.97 842.05
Table 5. Performance of the methods on the test problem 57 for increasing dimensions.
n Hessian method fet. grad. syst. iter. sbmin cpu total cpu
500 exact cg 10 7 18 0.66 0.74
peg 8 7 13 052 0.59
multf 19 13 3 14 (7.35) 130 146
BFGS cg 14 13 39 1.63 1.76
peg 12 11 12 115 1.26
multif 14 13 13 0 (7.23) 5.85 5.98
rkl cg 19 1 6 1.29 143
peg 19 1 14 144 1.58
multif 33 15 3 23 (7.08) 11.24 1146
1000 exact cg 10 7 23 321 3.54
peg 14 11 31 4.67 5.16
multif 40 %4 6 31 (1.23) 62.80 63.99
BFGS g 14 13 28 606 6.53
peg 14 13 15 5.63 6.10
multif 13 12 12 0 (1.20) 19.15 19.58
k1 cg 24 12 9 142 8.01
peg 21 10 5 640 691
multif 23 15 2 14 (1.20) 26,69 2133

12

5000 exact cg 20 14 40 29.15 32.33

g 10 8 16 1342 15.16
multif 26 15 4 20 (5.38) 84483 848.66

BFGS cg 15 14 58 48.11 50.56
g 13 12 15 3435 3647

multif 15 14 14 0 (5.23) 500.06 502.57

k1 g 41 18 55 7248 71.10
g 28 17 7 5645 60.08

multif 39 19 2 27 (5.31) 108627 1090.98

Table 6. Performance of the methods on the test problem 59 for increasing dimensions.

n Hessian method fet. grad. syst. iter. sbmin cpu total cpu
500 exact cg 13 14 55 1.77 1.83
peg 11 12 24 1.10 1.15

multif 11 12 10 0 (1.00) 401 4.06

BFGS cg 37 26 139 5719 5.89

peg 27 21 67 373 3.80

multif 30 23 21 0 (1.00) 9.57 9.66

rk1 cg 49 23 115 5.96 6.07

peg 54 26 68 5.60 572

multif 397 234 91 296 (1.20) 156.62 157.56

1000 exact cg 14 15 64 9.39 10.00
Peg 11 12 24 547 5.96

multif 12 13 10 0 (1.00) 41.39 41.92

BFGS cg 68 31 135 35.74 37.18

Peg 74 35 61 39.84 * 4142

multif 68 32 49 0 (1.00) 129.13 130.59

rkl cg 49 25 138 31.92 33.00

peg 5 25 76 37.02 * 3846

multif 428 250 85 328 (1.00) 178435 * 1793.84

5000 exact cg 44 21 79 104.15 * 110.02
peg 11 22 23 42.68 45.08

multif 12 13 10 0 (1.00) 894.85 897.45

BFGS cg 75 35 137 234.24 * 23994

peg 30 21 67 169.22 172.86

multif 30 22 20 0 (1.00) 1915.80 1919.52

k1 cg 41 25 103 197.91 202.61

peg 54 25 68 205.04 210.64

multif - - - - > 20000

Table 7. Performance of the methods on the test problem 61 for increasing dimensions.

When exact derivatives are available, the multifrontal method seems competitive with respect to the
conjugate gradients type algorithms in many cases. It appears to be also the case when the
Broyden-Fletcher-Goldfarb-Shanno update is applied. If the symmetric rank-one upd ate is used however,
conjugate gradients methods are preferable.

We observe the excellent performances of the multifrontal method when the quadratic model is convex
(see Table 5 for instance). However, if the fill-in of the factorization is too high, the number of operations
for the Gaussian elimination is dominant and the multifrontal scheme is no longer competitive. A good
example of this is shown in Table 6 where the sparsity pattern of the Hessian is rand Omly generated.

We observe particularly poor performances of the direct method when directions of negative curvature
are taken. This happens, obviously, more often with the symmetric rank-one update of the Hessian.
Nlustration of this behaviour can be found is Tables 2, 3, 6 and 7. The proposed strategy seems to be
clearly inefficient and other type of strategies must definitely be used to handle swuch cases, if direct
methods are to be used.

13

We niote that the negative curvature directions generated by the rank-one update are always taken into
account when using our multifrontal approach, in contrast with the (preconditioned) conjugate gradient
technique. This last calculation only considers the first Krylov subspaces spanned by the gradient and its
successive images by the Hessian approximation, especially in the early iterations when this
approximation may be quite poor and the trust region radius small. The comparison of the performances
of the rank-one update with the (preconditioned) conjugate gradient and the multifrontal scheme, in cases
where negative curvature is encountered, tends to show that this possible ignorance of the negative
curvature in the early stages of the computation might be advantageous.

We were also interested in the behaviour of our methods with respect to the starting point, since we
aimed for globally convergent algorithms. Table 8 shows the results of these experiments. For each
method, the two lines refer respectively to the first and second starting points given in the appendix. It is
important to note that the choice of the starting point does not affect the conclusions that we have drawn
in this Section.

Finally, in Conn, Gould and Toint (1988b), the simplest of the updating schemes, the symmetric
rank-one method, appeared to perform better than the BFGS method for many of the problems tested. It
seems that, in the context of partial separability, this conclusion does not appear to apply. One could
attempt to explain this phenomenon by the fact that it is not uncommon for the projection of successive
search directions into the range space of certain elements to be close to linear dependence despite the
independence of the overall search directions. Linear dependence of the search directions can be highly
undesirable for the rank-one update.

pb Hessian method fet. grad. syst. iter. sbmin cpu total cpu
11 exact cg 169 125 357 14.62 15.05
145 103 365 21.15 27.92

peg 153 103 202 16.63 17.01

135 93 227 29.63 30.34

multif 24 19 24 0 (3.45) 532 5.38

19 16 19 0 (3.45) 556 5.67

BFGS cg 32 26 540 10.56 10.64
24 23 471 17.93 18.06

peg 78 58 294 1252 1271

80 55 413 26.84 27.21

multif 26 21 26 0 (3.43) 6.18 6.25

26 21 26 0 (3.43) 8.20 8.33

k1 cg 264 163 442 25.97 26.56
299 184 438 .67 72.99

pcg 214 136 198 23.05 23.53

229 151 219 45.76 46.79

multif 498 321 27 471 (3.58) 113.65 114.77

811 532 30 780 (3.59) 26033 263.96

16 exact cg 3 4 1634 29.06 29.07
4 5 3088 105.86 105.90

pecg 3 4 1839 3334 33.35

3 4 1666 58.42 58.46

multif 5 6 5 0 (1.00) 087 0.88

5 6 5 0 (1.00) 127 1.32

BFGS cg 15 15 10280 181.61 181.65
17 17 14008 48241 482.56

pcg 16 16 13131 24093 240.97

18 18 15615 542.59 542.74

multif 23 23 22 0 (1.00) 440 4.46

33 33 32 0 (1.00) 8.72 8.99

k1l cg 17 11 495 9.91 9.95

15 10 1850 65.70 65.81

pcg 5 5 937 17.47 17.48

8 7 3084 110.00 110.07

14

multif 9 9 4 4 (1.00) 1.60 1.63

13 11 4 8 (1.00) 335 345

56 exact cg 13 14 0 057 0.65
2 3 0 0.16 0.18

peg 13 14 0 115 122

2 3 0 0.34 0.36

multif 13 14 00 0.58 0.65

2 3 00¢G 1.16 1.18

BFGS cg 20 21 1015 19.92 20.02
6 1 2 0.50 0.54

peg 20 21 1431 2879 28.89

22 23 38 228 235

multif 20 21 12 0 (1.00) 296 3.06

6 7 2 0 (1.00) 051 0.55

k1 cg 30 22 8 231 244
10 8 2 045 0.48

peg 35 25 34 3.93 4.08

6 7 13 0383 0.86

multif 60 37 4 45 (1.00) 18.45 18.69

10 8 2 0 (1.00) 045 048

57 exact cg 115 5 1715 36.46 36.66
1379 842 28824 1041.14 1048.35

pcg 180 120 852 29.80 30.13

4839 2924 17447 1209.96 123547

multif 16 17 10 0 (1.00) 345 3.49

22 23 11 0 (1.00) 8.96 9.12

BFGS cg 172 124 1751 4291 4322
1709 1225 27124 1063.56 1072.01

peg 653 454 851 78.06 79.22

10000 6610 12206 1873.86 # 1921.59

multif 18 16 14 0 (1.00) 498 5.02

26 24 16 0 (1.00) 13.57 1371

rkl cg 164 116 1572 38.16 3845
1614 1157 24370 966.64 974.67

Peg 548 414 775 6627 6127

10000 6485 12458 1904.63 # 1952.06

multif 18 16 14 0 (1.00) 493 4.96

26 2% 16 0 (1.00) 13.65 13.79

59 exact cg 10 7 18 0.66 0.74
3 4 1 029 037

pcg 8 7 13 052 0.59

3 4 1 032 0.40

multif 19 13 3 14 (7.35) 730 746

3 4 1 0 (6.96) 0.68 0.76

BFGS cg 14 13 39 1.63 1.76
10 11 19 1.90 2.09

peg 12 1 12 115 126

10 11 11 176 1.95

multif 14 13 13 0 (7.23) 5.85 5.98

10 11 10 0 (7.23) 551 5.70

1kl cg 19 11 6 1.29 143
19 9 8 2.69 292

pcg 19 11 14 144 1.58

16 10 2 2.04 2.26

multif 33 15 3 23 (7.08) 11.24 11.46

27 12 119 (7.30) 1097 11.29

61 exact cg 13 14 55 177 1.83
19 20 T 554 5.95

peg 11 12 24 1.10 115

16 17 32 340 3.74

multif 11 12 10 0 (1.00) 401 4.06

16 17 15 0 (1.00) 18.24 18.59

BFGS cg 37 26 139 579 5.89
65 28 146 16.78 * 1745

g 27 2 67 373 3.80

41 25 164 16.15 16.63

15

multif 30 23 21 0 (1.00) 9.57 9.66

29 21 24 0 (1.00) 31.88 32.24
rk1 g 49 px) 115 596 6.07
53 23 147 1648 17.06

pog 54 2 68 560 572

40 19 69 1141 11.84

multif 397 234 91 296 (1.20) 156.62 157.56

350 228 37 308 (1.24) 42864 43219

Table 8. Changing the starting point (n=500, except for problem 11 where n=484).

7. Conclusions.

The numerical experiments show that the use of a direct method instead of an iterative one can lead to
very significant improvements in terms of computation time. They also clearly demonstrated that these
improvements can only be achieved in cases where the quadratic model of the function at the current
iterate is convex (or at least not too often non convex) and the structure of the Hessian is sufficiently
regular to avoid high fill-in during the factorization.

When the approximation of the function Hessian is indefinite, the use of directions of negative
curvature inhibits fast convergence of direct methods and can even lead to dramatic increase of
computation time. This conclusion convinced the authors that in this particular case, other types of
strategies must definitely be used.

The main conclusion is that an efficient code for partially separable optimization must provide the user
a choice of methods more adapted to the specific problem being solved. The authors intend to provide
such a code through the HARWELL library in the future.

Acknowledgements.

The project has been financially supported by the Belgian National Fund for Scientific Research, Harwell
Laboratory (UK.A.E.A.) and by grant A8639 from the Natural Sciences and Engineering Research
Council of Canada. This support is gratefully acknowledged.

Appendix.

The five problems that we added to introduce other type of sparsity structures are now given. For each of
them we mention (a) the element functions, (b) any bounds on the variables and (c) the starting point.

1. Test problem 55.
@ fix)=@x? +x3)2 —4x;+3, for i=1,...,n—1.

© x=(1,1,..1).

2. Test problem 56.

@ fi(x)=(x;+x;,) e W) for =1, om0,
® x;0,i=1,..n
© x=(1,1,.,1).
3. Test problem 57.
@ ()= +x,,+x,)% for i=1,...,n-2,

16

Fr1 (®)=(x, _x2)2’
[=0x, —x,)%.

© x=(1,-1,1-1,..).

4. Test problem 59.
2 7% .
@ fixm=xie *, for i=1,...,n,

fi=x2 e, for i=n+1,..2n,

where the indices j; are randomly generated between 1 and n in order by subroutine FAO4BS of the
Harwell Subroutine library, starting with the default seed, but with the provision that any j; equal to i is
rejected and the next random number in the sequence taken.

© x=(1,-1,1-1,..).

5. Test problem 61.
@ fi()=(2+2x2 +3x2, +4x2,+5x2)24x, +3, for i=l,...,n—4.

() x=(1,1,1,..).

Below, we give the initial points used for the experiments reported in Table 8. For each problem, we have
two different starting points.

1. Test problem 11.
The variables on the boundaries of the unit square are kept fixed at the values :
x;=1+4t,
XGppr1 = 1482,
Xipp—1y =9 +41,
X, =548t

for i=1,..., p. Here t=(i—1)/(p—1), while p is given by the relation n= p2. The two different starting points
are determined by the initialization of the free variables, namely

(1) free variables initialized to 0, and

(2) free variables initialized to 1.

2. Test problem 16.

(1) x;=ih(ih-1) for i=2,..n-1,
x, =0,
x,=0.

) x;=2ih(ih-1) for i=2,..n-1,

17

3. Test problem 56.
1) x=(1,1,..1).
2 x=(,0,1,0,.).

4. Test problem 57.
@ x=(1,-1,1,-1,..).
2) x=(10,-10,10,—10,...).

5. Test problem 59.
QO x=1,-1,1-1,..).
2 x=(0.1,-0.1,0.1,-0.1,...).

6. Test problem 61.
1 x=(,1,.,1).
2 x=(0,10,..,10).

References.

Bunch, J.R. and Parlett, B.N. (1971). Direct methods for solving symmetric indefinite systems of linear
equations. SIAM J. Numer. Anal. 8, 639-655.

Conn, A.R. and Gould, N.I.LM. (1984). On the location of directions of infinite descent for nonlinear
programming algorithms. SIAM J. Numer. Anal., Vol. 21, No. 6, 302-325.

Conn, A.R., Gould, N.I.M. and Toint, Ph.L. (1988a). Global convergence of a class of trust region
algorithms for optimization with simple bounds. SIAM J. Numer. Anal., Vol. 25, No. 2, 433-460.

Conn, A.R., Gould, N.LM. and Toint, Ph.L. (1988b). Testing a class of mxmethods for solving
minimization problems with simple bounds on the variables. To appear in Mathematics of

Computation.

Dennis, J.E. and Schnabel, R.B. (1983). Numerical methods for unconstrained optimiz ation and nonlinear
equations. Prentice-Hall, New Jersey.

Duff, LS. and Reid, J.K. (1982). MA27 — A set of Fortran subroutines for solving sparse symmetric sets of
linear equations. Report HL82/2225 (C13),

Duff, 1.S. and Reid, J.K. (1983). The multifrontal solution of indefinite sparse symmetxic linear equations.
ACM Transactions on Mathematical Software, Vol. 9, No. 3, 302-325.

Griewank, A. and Toint, Ph.L. (1982). Partitioned variable metric updates for large structured
optimization problems, Numerische Mathematik, vol. 39, 119-137.

18

Griewank, A. and Toint, Ph.L. (1984). Numerical experiments with partially separable optimization
problems, in Numerical Analysis: Proceedings Dundee 1983 (D.F. Griffiths,ed.), Lecture Notes in
Mathematics 1066, Sprinnger Verlag, Berlin, 203-220.

Irons, B.M. (1970). A frontal solution program for finite element analysis. Int. J. Numer. Meth. Eng. 2,
5-32.

Moré, 1.J. (1977). The Levenberg-Marquardt algorithm : implementation and theory. Numerical Analysis,
G.A. Watson, ed., Lecture Notes in Math. 630, Springer-Verlag, Berlin, 105-116.

Steihaug, T. (1983). The conjugate gradient method and trust regions in large scale optimization. SIAM
Journal on Numerical Analysis, Vol.20, No. 3, 626-637.

Stoer, J. (1983). Solution of large linear systems of equations by conjugate gradient type methods, in
Mathematical Programming : The State of the Art (Bonn 1982), A. Bachem, M. Grotschel and B. Korte
(eds.), Springer Verlag, Berlin, 540-565.

Toint, Ph.L. (1981). Towards an efficient sparsity exploiting Newton method for minimization, in Sparse
Matrices and their Uses (I. S. Duff, ed.), Academic Press, London.

Toint, Ph.L. (1983). Test problems for partially separable optimization and results for the routine
PSPMIN. Report 83/4 of the FUNDP, Namur.

19

	

