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ABSTRACT

Simulation of groundwater contamination by nonaque-
ous phase contaminants requires solution of the multi-
phase flow equations for a porous medium. A three
phase, two dimensional, two component (water, con-
taminant) model is developed. The contaminant can
partition between the air, water and nonaqueous phase.
An adaptive implicit method is used to discretize the
equations. In order to rigorously solve the flow and con-
straint equations in cells where the nonaqueous phase
saturation is identically zero, a variable substitution
method is used. A detailed discussion of the boundary

conditions is also presented.

1. Introduction

Recently, there has been considerable interest in modelling of
groundwater contamination by nearly immiscible fluids. Some
examples of this type of contamination are fuel oil and gasoline
leakage from underground storage tanks, and leaching of hazar-
dous organic chemicals from toxic waste dumps. Since these con-
taminants are only slightly water soluble, these systems can be
simulated on the basis of the multi-phase flow equations for a

porous medium [1]. Several authors [2-8] have proposed various
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formulations for solving these problems. As pointed out by Abriola
and Pinder [6], the equations of multiphase contaminant flow are
highly non-linear, and stability requirements necessitate some form
of implicit treatment. This makes these simulations extremely CPU

intensive.

The purpose of this article is to apply some recently
developed numerical methods to the solution of multiphase ground-
water contaminant problems. Three phase, two component, two
dimensional systems with mass transfer between the phases will be
considered. An adaptive implicit method [9] will be used to discre-
tize the flow equations. This technique can result in considerable
savings over a fully implicit method, while allowing timestep sizes
comparable to a fully implicit method. To avoid the problem of
having to specify a small amount of the contaminant phase every-
where [5], a variable substitution method will be used to account
for phase appearance and disappearance. The results for some
example simulations will be given, and comparisons with some pre-

viously published results, where available, are also included.

2. Formulation

In reality, a groundwater - contaminant system consists of
three components: air, water and contaminant. However, in shal-
low groundwater systems, it is common practice to ignore the con-
vective movement of the air phase, [2,6] and to assume that the air
phase pressure is constant. This assumption allows neglect of the
air mass balance equation, thus reducing the number of equations
and unknowns by one. This approximation has been shown to be
reasonable as long as the relative permeability to air near the criti-
cal air saturation is not too flat, and the air-water capillary pres-
sure is not too small [10]. The air phase is still taken into account,

however, in its affect on three phase relative permeability, and
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diffusional transport of the contaminant.

A single component contaminant will be considered. This con-
taminant can partition between the air, water and non-aqueous
phases. Convective transport of the contaminant can occur both
in the water and non-aqueous phases, while diffusive transport can
occur only in the air phase. These assumptions were also used in
[4,5,6]. Some recent computations for one dimensional systems
with an immovable non-aqueous phase have demonstrated that for
realistic values of the physical parameters, the diffusive and
dispersive movement of contaminant in the water phase is small
compared with diffusive transport in the air phase [7], and hence
can be ignored. Abriola and Pinder [5] also noted that contam-
inant plumes in the water phase were due primarily to gas phase
diffusion and local phase equilibrium. Consequently, the diffusive
and dispersive transport of contaminant in the water phase will be
ignored in the following. However, the numerical techniques used

in this paper do not in any way require this assumption.

In common with previous authors, it will also be assumed that
the dissolved contaminant does not affect the fluid properties of
the water-phase. Recalling that the air phase pressure is assumed
constant, the equations for three phase air (a), water (w) and
non aqueous (n) contaminant transport are:

Water mass balance:

0
—é-t— (¢pw Sw) = qQu (1) .

Kp, K

+ v = (VP,—pu9vD)
My
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Contaminant mass balance:

2

D (G0, 8,4C3 6 5,0 6 5,) )
cy Cn

=g t+—— Q@+t~ 4

dn P w Pa a

(Kp, K

+ v | —— (VP.—Pn 9 vD)]
L “n
(KCY K

+ v ——"—-Lw—(va—pva)]
| Koy

+ v Ld)SaDgEasz]

where:

¢ = porosity

Pe = density of phase £=a, w,n (M/L3)

Se = saturation of phase £

qe = source/sink term for phase £ (M /T)

K — absolute permeability (L?)

e = dynamic viscosity of phase £ (M /LT)

K,, = relative permeability of phase £

P, = pressure of phase £ (M /LT?)

g = gravitational acceleration (L /T?)

D = depth (L)

¢! = concentration of contaminant in phase ¢ (M /L)

D? = molecular diffusion constant for contaminant in
the air phase (L?/T)

&, = air phase tortuosity factor

qe = source term for phase £ (M /T)
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In addition, to the above equations which describe the flow of
fluids, there are additional relationships among the variables. For

example, the saturations sum to one:
Sp+Sy,+5,=1 (3)

The phase pressures are related through the capillary pressures,

which are experimentally determined functions of the saturations:
P, —P, =P, (Sa) (4)

P,—P,=FPy, (Sw) (5)

Note that the assumption of constant P, effectively gives S, as a
function of P, from equation (4). A discussion of the methods for
modelling saturated-unsaturated flow is given in [10].

The relative permeabilities of the water - NAPL (non-aqueous
phase liquid) are determined experimentally, as are the relative
permeabilities for the air-nonaqueous phase system [11]. The three
phase NAPL relative permeability is obtained using Stone’s second
method [2,12,13]. Viscosities and densities are assumed constant,
while the porosity has the form:

¢=¢o [1+Cf (Pn_Po)] ' (6)

where ¢, is the porosity at P,=P,. Assuming the presence of
NAPL, the concentrations of the contaminant in the air and water
phases are: -

Ch=K} (7)
Cr=KY

where K,f are the partition coefficients. However, if the NAPL
phase is not present, equations (7) must be modified. This will be

discussed in a later Section. A detailed description of the physical



6 Peter A. Forsyth

assumptions involved in the above model is given in references
[4,5,6]. A description of multicomponent phase behaviour is given
in [7,8].

The above equations are discretized using a cell centered fin-
ite difference scheme, similiar to that used previously [2,4,5]. A
conservative difference scheme with upstream weighting of the

mobilities is used. The discretized equations are:
Water equation:
‘/i N+1 N N+1
-—A_t (¢Swpw)i —(¢Swpw)i — Qu (8)

v
M M M M
Ao [Tw,i+‘/z Privn Kivn Yo ive — Tyiow Pizw Ky 'bw,i-vz]
1)

+ (y terms) =0

Contaminant equation
‘/i N+1 N a N+1 a N
—A—t— (¢pn Sn )i _(¢pn Sn )z’ +(Cn ¢ Sa )i '—(Cn ¢ Sa )i (9)

(08 6 SN0 § 5,0

N+1 N+1

Cr 4q
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Puw
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—— qn —
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V.

?

- Ax,-
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V.
- A—; (¢ S, D2 &M, {

1

(CHM, — (c2)M }
(B +D7,4,)/2

(CHM, — (cHM }

+ (¢S, Dg & )%'fﬁ {(Aa;‘ + Aflf'i—l)/Q

+ (y terms) =0

In the above, the subscript 7 refers to the <’th finite difference
cell, V; is the volume of the ¢’th cell. The mobilities T, are
defined by:

I{rt

e

Tt =

Ty;4+y represents either T, ; or Ty ;,; depending on which is the
upstream point for phase £. Upstream weighting is also used for
the term:

(C::) Tw)i+‘/é

The absolute permeability is defined using the harmonic mean [2].
The effective diffusion coefficient:

(¢ Sa Dg‘sa )i+'/é

is also defined harmonically. The superscripts N or N+1 refer to
the time level. M can be either N or N+1 depending on the

adaptive implicit state of cell z.

The potential terms i are given by:
‘pn,iﬂé = (Prjzvﬂl - Prjz\{?l)/AxH% (10)

- Pr%+% g (Di+1 — D; )/Axi-f-%
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N
’/)w,i+'/z = (Prjl\{;trll - Pn,;'H)/Axi+‘/é
N N+1
— (Potki) — Pog i) /D%y,
M
—Puwi+% 9(D;41—D; )/ DTy,

Agiyy = (Bz;+D24,)/2

The convergence properties of such difference approximations on

irregular cell centered grids is given elsewhere [14].

When M =N in equations (9-10), the discretization is similar
to the IMPES (implicit pressure, explicit saturation) method used
in petroleum reservoir simulation [1]. When M=N+1, the
discretization is fully implicit. The adaptive implicit method [9,15]
attempts to minimize computational work by using a fully implicit
method in those regions undergoing large flows, while using an
IMPES method elsewhere. A discussion of the switching strategy

will be given in a following section.

The discretized equations (9) are solved using full Newton

iteration.

3. Variable Substitution

If S, is non-zero, then equations (9-10) with constraint equa-
tion (7) can be formally solved for the two primary variables
P,I,\f;"l, Sﬁ;"l by full Newton iteration. All other variables are

functions of these unknowns.

However, if S, ; =0, then equation (7) no longer applies.
This problem was avoided previously [5] by defining a “pseudo K
value’’, K' such that:
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e
(K)) = |————| K} (11)

S, +10™*

(K3) =

n
—— | K2
s,,+1o*"] "

and specifying a small non-zero S, everywhere. Equation (11)
prevents complete disappearance of the nonaqueous phase since
complete vaporization or solubization of the contaminant is prohi-
bited. This “pseudo K’ value method has been used in reservoir
simulation, but can require very small tolerances to achieve good

material balance errors [16].

A more rigorous approach uses variable substitution. Con-

sider a cell with S, ; >0, then the primary variables are: -
Py iy Sy

with
Cy: =Ky

a  _ jra
Cn,i - I‘n

If any Newton iteration produces an S, ; <0, then the primary

variables are switched to:
Pn,i ’ Cr?,z’ (12)
with constraints:

S,; =0 (13)

’
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K
Ky

. w .
n,t

If the independent variables are P, ;, Cy; and any Newton itera-

tion produces a Cy ; such that:
Cyi > Ky (14)

then the independent variables are switched back to Py, ;, Sy ;-
This approach allows the nonaqueous phase saturation to be ident-
ically zero. Note that generally S, =0 everywhere at the begin-

ning of a simulation.

If K“ was identically zero in the above example, then Cp
would be used as a primary variable. If both K/, K} are identi-
cally zero, then variable substitution is suppressed, with the
independent variables being P,, S,,. In regions where S5, ; =0,
then equation (2) merely states that 0 = 0. However, this equa-
tion does posess derivatives with respect to S, ; (recall equations

(3-4)), so that the Jacobian is nonsingular.

4. The Adaptive Implicit Method

As mentioned earlier, the basic idea behind an adaptive impli-
cit method is to use a fully implicit technique only in those regions
where required (M =N+1 in equations (8-9)), while using an expli-
cit method (M=N) elsewhere. Note that even if M=N, the
pressure P, is still taken implicitly in the flow terms, and hence
couples nearest neighbour cells. By analogy with petroleum reser-
voir simulation, cells with M =N will be refered to as IMPES
cells (implicit pressure, explicit saturation). Clearly, if there are
large regions where an IMPES method is stable, then significant

savings in computational work will result. In particular, it is
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expected that those regions where S, ;=0 can be solved using an
IMPES method in many cases.

The discretized equations (8-9) are solved using full Newton
iteration, and the Jacobian is solved using an incomplete LU itera-
tive solver with ORTHOMIN acceleration [9,17,18,19]. Note that
even if M =N, all variables occur at {t=N+1 in the mass accu-
mulation term. Elementary matrix operations are required to
decouple IMPES variables from the Jacobian. Full details con-
cerning the construction of the Jacobian, decoupling of the IMPES
unknowns, and the matrix solve are given in [9).

When P, ; and S, ; are independent variables, equations (1-2)
are too complex to allow a reasonable stability analysis, especially
in the case of multi-dimensional flows. Note that only recently has
a stability analysis been carried out for one dimensional, two phase
incompressible flows with gravity but no capillary pressure [20].
This work has recently been extended to include capillary pressure
[21], but this is a long way from being applicable to three phase,
multidimensional systems. Consequently, the conservative switch-
ing strategy used in reference [9] will be used here. Only switching
from IMPES to fully implicit is allowed. The switching occurs
when the saturation change exceeds a small fraction (typically
25%) of the timestep selector norm [9]. Switching can occur after
any Newton iteration.

On the other hand, when P, C} are primary variables, it is
possible to analyse the stability of equations (8-9) if a few simplify-
ing assumptions are made. The stability criteria in this case are
given in the Appendix, and are used to switch from IMPES to
fully implicit if C,’ is a primary variable.
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5. Boundary Conditions
The system of equations (1-2) has both hyperbolic and para-

bolic properties. The pressure can be considered to be a
parabolic-like variable, while the saturation or concentration is a
hyperbolic-like variable. All physically possible boundary condi-
tions can be specified by forcing no - flow at all boundaries, and
using source/sink terms to simulate injection and production of
fluids. For example, an aquifer can be modelled by specifying an
injection/production rate which forces a constant pressure
(P,=P,*) boundary. For brevity, the subscript ¢+ will be dropped
in the following. Unless otherwise noted, all unsubscripted vari-
ables refer to qualities evaluated in the ¢’th cell. Consequently, an
aquifer boundary with P,=P,,* is specified by :

KK,, . .
qQw = Pw VVi (Pw _Pw); (Pw _Pw)<0 (15)
w
KK, (S,=1
= "”u( w=D pw Wi (Py*—P,);  (P,*—P,)>0
w
KK, p, W;
dn = "Z L (Pn*_Pn)
n
CcYq
+min |0, — "’]; (P,*—P,) <0
w
=0 : (P,*—P,)>0
where:

P,* =P,* + Pepy (Sy=1)
and where W; is a large number selected so that:
Pw ¥ - Pw << Pw *

On the other hand, if an air boundary is to be modelled, then a
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constant air pressure P,=P,* can be specified. If P, <P,*,
then no fluid flow (either water or NAPL ) can take place across

the boundary.

Consequently:
gy =0 (16)

= —S. W;Cp; P, <P,
Where W; is again selected so that:
s, Cll<e; e<<1

The above conditions have the effect of forcing C;=0 on the
boundary. This assumes that there is instantanéous equilibrium
between the air phase at the boundary of the porous medium and

the air phase at the surface.

If P,>P,*, then: (17)
KK,,p
qw=—_l:'u—(Pa*_Pw); (Pa*_Pw)<0
w .

= ’ (Pa*_Pw)>0

KK,y po W;
g = ————— (P,*=P,)
tn

qy Cy
Puw

+ min |0,

where, as usual, W; is a suitably chosen large number.

If there is a non-zero capillary pressure P,,,, then equation
(17) has the effect that no water phase will flow until the NAPL
saturation becomes as small as possible. This is a numerical state-
ment of the outlet effect [22]. In reservoir simulation, the outlet
effect is negligible due to the large flow rates and large finite
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difference cells. In contrast, the outlet effect is important in shal-

low groundwater systems.

Other boundary conditions can be simulated in a manner simi-

lar to equations (15-16).

6. Example With No Mass Transfer

The first example is the problem posed by Faust [2]. The
model developed by Faust [2] does not have the ability to solve
problems with mass transfer between phases, so all mass transfer

terms in equations (8-9) are set equal to zero.

This problem consists of a porous medium 5m in depth and
16.9m in width. A constant absolute pressure P, =131.85 Kpa is
specified on the bottom edge, with a constant recharge of
100Ky /yeau'/'m2 of water on the surface. There is a point source
of contaminant at the upper left corner of 900Ky /year. All other
boundaries are no-flow. This problem was modelled on a 6X20
cell centered grid. A complete description of all physical proper-
ties is given in reference [2]. The thickness of the physical region
was estimated to be 1m (this data was not mentioned in [2]).
Constant rate source terms were used to simulate water and con-
taminant injection in the top cells, and a constant pressure sink
term (as described in Section 5) was used to model the draining

aquifer.

Two different cases were considered. One run used
P, =1200 Kg /m® (p,, = 1000 Kg/m?), and the other set
P, =950 Kg/m3. Tabular values of the NAPL saturation with
p, =1200 Kg /m3 at time =1.16 years are given in Table 1, which
can be compared with Table 5b of Faust [2]. The agreement
between the two tables is good, except for the values for cell
(20, 1). Faust [2] shows S, =0.0 for this cell, while the present

model gives S, =.100 (the critical saturation for the nonaqueous



Simulation of Nonaqueous Phase Groundwater Contamination 15

phase). Clearly, the constant pressure boundary condition is simu-
lated in a different way in the previous code [2]. The present
model will require that the saturation is at least the critical value
before any mass is removed from the system (see Section 5).
Reduction of the timestep changed the results only in the third
decimal place, while the material balance error for this run was
less than 1074,

Table 2 gives the results for this same problem with
p, =950 (g /m3. This table can be compared with Table 5a from
[2]. The agreement between the two models is quite good, espe-
cially for large saturation values. The difference between the two
models is more pronounced for the small saturations near the lead-
ing edge of NAPL. This could be accounted for by the different
method of discretizing the boundary conditions (as pointed out in
the previous example with p, =1200 Kg /m?).

Reduction of the timestep did not change the results appreci-
ably, and the material balance error for this run was less than
5% 1078, indicating that the algebraic equations were being solved
accurately. There was little difference between the fully implicit
and adaptive implicit runs.

Table 3 shows run statistics for the case with
P, =1200 Kg /m3. The average degree of implicitness is the aver-
age fraction of cells which are fully implicit during the course of
the run. (A fully implicit run would have an average degree of
implicitness =1.0, while an IMPES run would have an average
degree of implicitness =0.0). For this simulation, the adaptive
implicit run required an average degree of implicitness of only
16%. The adaptive implicit method required approximately 40%
less CPU time than the fully implicit method. A larger saving in
CPU time can be expected for larger problems, where the matrix

solve begins to dominate.

Table 4 shows the statistics for the run with
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pn =950 Kg/m3. Here, the average degree of implicitness was
only 11% for the adaptive implicit run. Again, the adaptive impli-
cit run required approximately 40% less CPU time than the fully

implicit method.

In both cases, the fully implicit and adaptive implicit methods
gave virtually the same results. Note that the total number of
Newton iterations for the adaptive implicit method was approxi-
mately 25% higher than for the fully implicit technique. This is to
be expected, since the change of state of some cells from IMPES
to fully implicit during the course of a timestep will generally
require more Newton iterations. The average degree of implicit-
ness required is surprisingly low for both runms, even with some

large timesteps (90 days) at the end of the runs.

7. Example With Mass Transfer

In order to demonstrate the variable substitution method for
handling NAPL appearance and disappearance, an example run

was carried out with non-zero air and water partition coefficients.

Figure 1 shows the domain of the problem. Water is injected
along the top at a rate of 100 cm/year. A point source of contam-
inant ( 1m?3 /year ) is placed on the left boundary 4m below the
surface, and a constant pressure boundary with P, =129.4 Kpa is

specified along the bottom edge.

A 13X10 cell centered discretization was used, with half cells
on the boundaries, so that the centers of the boundary cells coin-
cided exactly with the boundaries. The model was run to a simu-

lated time of 3 years.

A constant pressure P, =100 Kpa air boundary is specified
along the top edge (top row of cells). The recharge due to rainfall

is modelled by injecting water along the top row of cells.
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Consequently, the contaminant can leave the system by convection
in the water phase through the bottom edge, and diffusion into the
air at the top.

The physical properties and discretization data are given in
Table 5a and 5b. The physical properties of the contaminant are
assumed to be those of Toluene [7]. The relative permeability and

capillary pressure data are those from the previous example [2].

Table 6 gives the run statistics for this problem and the ident-
ical run with K=K, =0. Note that the average degree of impli-
citness for the case with mass transfer is 85%, while the case with
no mass transfer had an average degree of implicitness of 37%.
This is because the stability criterion equation (A8) is dominated
by the air diffusion condition at early times, and hence a large
fraction of the cells turn implicit very quickly in the unsaturated
zone. After the timesteps build up, the throughput condition for
the dissolved contaminant in the water phase in the unsaturated
zone is exceeded (recall that the stability conditions equation (AS8)
are used only if C} is a primary variable).

The mass transfer simulation required approximately 40%
more Newton iterations than the simulation with no mass transfer.
Part of this difficulty was due to the diffusion upward of contam-
inant in the air phase. Equilibrium conditions then demanded that
some of the diffused contaminant dissolve in the water phase,
which was then convected downward due to gravity effects. Con-
sequently, small amounts of contaminant were diffused upward and
simultaneously convected downward. Not surprisingly, this
created some difficulties for the Newton iteration.

The variable substitution method appeared to work well. Ini-
tially, S, was identically zero everywhere, and remained zero in
the saturated zone. As long as the amount of S, appearing in a
cell was reasonably large, then the Newton iteration proceeded

quite smoothly through the phase appearance. Occasionally, if the
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value of S, was very small, the Newton iteration had some diffi-
culty. This is because the mass of contaminant in the NAPL (pro-
portional to S, ) was very small, as was the mass of contaminant
in the water and air phases (also quite small since K’ and Ky are
both small). Consequently, several Newton iterations were
required to determine the precise state (S,=0or S, # 0) of the
cell, even though the amount of mass involved was very small.
This problem was cured by detecting this situation and under-

relaxing the Newton iteration.

It can be seen from Table 6 that the simulation with mass
transfer required almost twice as much CPU time as the simulation
with no mass transfer. This is a result of the greater degree of
implicitness and extra Newton iterations required for the case with

mass transfer.

Figure 2 shows the NAPL saturation contours at three years.
The NAPL has penetrated approximately 20m away from the
source in the horizonal direction. Since the contaminant density is
less than water, the maximum saturation occurs near the water

saturated zone.

Figure 3 shows the normalized concentration (Cy/Kj’) of
contaminant in the water phase at three years. Since the concen-
tration of contaminant in the air phase is proportional to the con-
centration in the water phase, the air phase concentration contours

are similar and hence not shown.

It is interesting to see that a high level of contamination
exists in the saturated water zone. This is due to the convective
movement of water through the system. However, contamination
also exists above the level of the pollutant source. This is due to
diffusion in the air phase and subsequent dissolution in the water
phase. This contamination persists in spite of the fact that there

is a large throughput of water from the surface.
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Table 7 shows the fate of injected fluids after three years. It
is interesting to note that even though K is smaller than K,
slightly more mass of contaminant escapes into the atmosphere
than escapes into the aquifer. This is due to the large diffusion
effect in the air phase, and is highly dependent on the value of the
diffusion coefficent. The values used in this study were typical

values used in references [7,8].

The results did not change significantly if smaller timesteps

were used.
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8. Conclusions

The adaptive implicit method worked well for three phase
contamination problems with no inter-phase mass transfer. Sav-
ings of 40% in CPU time were obtained over fully implicit runs.
For large problems, the matrix solve will begin to dominate. Since
the solve will require work proportional to the square of the
number of unknowns per cell, a larger saving for the adaptive

implicit method can be expected for larger problems.

For simulations with mass transfer between phases, stability
conditions required that most of the cells be solved using a fully
implicit method. Of course, this is highly dependent on the air dif-
fusion constant, and the magnitude of the water throughput. Con-
sequently, problems involving mass transfer between phases are

much more expensive to run than problems with no mass transfer.

The variable substitution techmnique provided a rigorous
method of solving the flow and constraint equations for cells with
S, identically zero, and automatically switches to the correct for-
mulation whenever the nonaqueous phase appears in a cell. This
formulation gives a small material balance error even with rela-
tively loose convergence tolerances. The variable substitution
method also avoids some of the problems associated with having to

specify initial conditions on nonexistent phases.

Finally, a complete description of the method for handling the
boundary conditions by means of source/sink terms has been
given. The precise method for specifying boundary conditions for
shallow, multiphase flow systems has not been discussed in detail
previously. In particular, it is important to pay careful attention to
the outlet effect. This effect is negligible in petroleum reservoir

simulation.
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Al

Appendix
In this appendix, the stability condition for an IMPES type

discretization of equations (8-9) is derived, assuming Py, Cy are
primary variables, with S, =0.

In order to simplify the algebra, equation (8) will be rewritten.
Consider a finite different cell ¢, and define a face j of cell 7 as
the interface between cell ¢ and cell j. Then equation (8) can be

written as:

i A
=5 (A1)

where the volume of water in cell 7 is
Vi = (9 8y):i Vi

and defining the volumetric flow across face j of cell ¢ as:

i -
f;v = z—j— uIYj+% I\j+'/é ¢wj+'/é (A2)
where:
A;=Ag; J—x direction
= Ay; J—y direction

and j+% refers to quantitites evaluated at the interface between

cell ¢ and cell . p, has been assumed constant.
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Let:

Val = (¢ SNV, (A3)
Aj+'/z = (Aj + Aj+‘/s_»)/2

' a N ‘/‘
Dj = (¢ S, Dy &, )j+’/z A
J

Then assuming Sﬁ=S£§-=O, S,jx+1=5',1,\;-+1=0, then equation (9)
can be written as:

1| | K N K@
~7 | Ve +1 P (CE N+t — vl I’ (CEN (A1)

VAT e - v (e |
= Z {max (f7,0) C,';’]N
J

— |min (0, £¥) IC}&N}

Ky
KY

N — cul
A

D/

+ ZDf, J
J

i+
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Noting that:
VAR (Cp N - v ()Y (5)
= v [t — (om) ] /a
+(om [V vy
= VI (o - o) /e

+EN1 S {maX(fE”, 0)

J
— |min (f¥, 0) |}

where equation (A1) has been used in the last step above. Finally,
equation (A4) takes the form:

1 || Kn
At || kv

VAT o -V esY] )

+ v sy — (o )N]}

= 3 max (7, 0) (€ — O
J

K:
Ky

wiN wN
C'n ;- Cni

D}

+ 3

J

D
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Equation (A6) can be rearranged in the form:
(O =g (s Cal)
Note that:
g(0,0)=0
g(C*, C*)=C*B

~Q

K
Wl ||+ Ve

KY '
B = (A7)
a
n
[Vé\z{+l — + %-H]
n
It is easy to see that:
949
acrN
and that:
0
>0
aCy

if the following condition is satisfied:

5 (max (/1 0) 4+ || 24
max (f;,
7 z KP | Bjiw
At <1 (A8)
a
o Ki |, v

w wt
n
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Equations (A7-A8) imply that:
0 < (CpN*! < max (CN) B
if:
V:, 0<C“ < max (C*N (A9)

Note that B is not necessarily one. To examine the physical rea-
son for this, let V+1=0, then:

N
Vai
N+1
Vai

8=

so that if the air phase volume decreases, then (C¥)N*! will be
larger than max (C’,'f,N). This is because the convective motion of
the air phase has been ignored in equations (1-2). Also, (C% )N*!
cannot become larger than K , since this triggers the appearance
of the nonaqueous phase (see equation (14)). Consequently, equa-
tion (9) is numerically stable if SN = SN*! =0, and condition
(A8) is satisfied.
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TABLE 1

Computed saturations of nonaqueous phase for example from Faust
[2]. Density of nonaqueous phase 1200 Kjg /mS. Time =1.16

years.
Column
Row 1 9
1 178 105
2 175 .100
3 .169 .095
4 .163 091
5 157 .085
6 139 ' .075
7 123 .069
8 122 .068
9 122 .067
10 122 .064
11 122 .064
12 122 .063
13 122 .062
14 121 .001
15 121 .059
16 121 .058
17 121 .057
18 121 .056
19 119 .052
20 .100 0.0

0.0 at all other cells.
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TABLE 2

Computed saturation of nonaqueous phase for example from Faust

[2]. Density of nonaqueous phase 950 Kg /m®. Time =1.07 years.

Column
Row 1 2 3 4 5
1 378 371 364 324 121
2 .396 .390 .383 264 .056
3 414 410 .348 203 .019
4 .433 .387 287 135 0.0
5 .381 325 .223 056 0.0
6 315 261 .156 015 0.0
7 242 .186 .092 0.0 0.0
8 .150 101 .006 0.0 0.0
9 .059 .004 0.0 0.0 0.0

0.0 at all other cells
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TABLE 3

Statistics for example from Faust [2], density of nonaqueous phase
1200 Kg/m®.

Fully Implicit Adaptive Implicit
Total Timesteps 12 ‘ 12
Total Newton Iterations 96 104
Average Implicitness 1.0 .16
Total CPU time 183 114
(VAX 11/780 Seconds)
Material Balance Error 1x10™* 11074
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TABLE 4

Statistics for example from Faust [2], density of nonaqueous phase

950 ICg/m3.

Fully Implicit

Adaptive Implicit

Total Timesteps
Total Newton Iterations

Average Implicitness

Total CPU time
(VAX 11/780 Seconds)

Material Balance Error

46

1.0

98

4%107°

55
A1

63

1X107°
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TABLE 5a

Data for example with mass transfer.

Permeability 10712 m?
Porosity 3

Viscosity water 001 Kg m™! §7!
Viscosity NAPL 001 Kg m™! §7!
Density, water 1000 Kg/m3
Density, NAPL 862" Kg /m®

NAPL-water partition
coefficient K 515 Kg /m?

NAPL-air partition
coefficient K3 133 Kg /m?

NAPL air diffusion

constant D} 107° m?/sec

Air phase tortuosity
factor §, 2

Grid Data (13X10)
Az 1m
Az 1,1.5,2,3,4,6,8,10,10,10m
Ay 1m
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TABLE 5b

Data for example with mass transfer.

Initial Conditions

Depth Sy P, (Kpa)
0.0 2 22.9
1.0 2 22.9
2.0 3 31.3
3.0 4 41.1
4.0 %) 51.0
5.0 .6 60.8
6.0 v 70.6
7.0 8 80.4
8.0 9 90.2
9.0 1.0 100.0

10.0 1.0 109.8
11.0 1.0 119.6
12.0 1.0 129.4

Relative permeability and capillary pressure from Table 4, Faust

[2]. Nonaqueous phase saturation S, =0 everywhere initially.
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TABLE 6

Run statistics for the example with mass transfer. Simulated time

=3 years.

Mass Transfer

No Mass Transfer K =0, K,'f’ =0

Total timesteps
(repeats)

Average implicitness

Total CPU time
(VAX 11/780 seconds)

Material balance erron

19
(1)

.85

308

3%1078

18
(0)

37

146

5X107°
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TABLE 7

Fate of injected and produced fluids for the simulation with mass

transfer.

Nonaqueous phase Water
contaminant (m?) (m?)
Total injected 3.0 151.5
Total escaping into
draining aquifier 9.6%107° 148.7
Total escaping into
atmosphere 1.2%1072 0.0
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Figure Captions

(1) Domain for problem with inter-phase mass transfer.
(2) Non-aqueous phase saturation contours at three years.

(3) Normalized concentration of contaminant in the water phase
(maximum = 1.0) at three years.
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(1) Domain for problem with inter-phase mass transfer.
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(2) Non-aqueous phase saturation contours at three years.
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(3) Normalized concentration of contaminant in the water phase
(maximum = 1.0) at three years.



	

