Pnntngegunsmon/Gra

T

1. Please complete unshaded areas on
form as applicable.

2. Distribute copies as follows: Whlte and
Yellow to Graphic Services. Retain Plnk

es for your records.

3. On completion of order the Yellow copy

will be retumed with the
material.

printed

4.' Please direct enquiries, quoting requisi-
tion number and account number, to
extension 3451.

TITLE OR DESCRIPTION

EX

?
AR

ISITIONED

DATE R&TJS f X O /

DATE REQUIRED

//57? £5AP

i ii’
k!

ACCOUNT NO.

VAVEVATANZ2WE 4’1 % {1

reEqQuisiTioNnerRS PRINT. o/

PHONE

N SIGNING AUTHORITY

- \ J ot .
MAILING .~ NaME S DEPT, - BLDG. & ROOM NO. {‘JAE. LIVER
INFO- 5, DeilNceELr s NI DC 9314 C] rickeue

Copyright: | hereby agree to assume all responsibility and Ilabllity for any infringement of copyrights and/or patent rights which may arise from

the processing of, and reproduction of, any of the materials herein requested. | further agree to indemnify and hold blameless the
University of Waterloo from any liability which may ‘arise from said processing or reproducing. | also acknowledge that materials
processed as a result of this requisition are for edupatipnal use only.

NUMBER
., OF PAGES _

NUMBER
OF COPIES

% 20

. TYPE OF PAPER STOCK
4 Bono [ner_ 33 ;vfév:n

emsrou [@elrrnico [

' PAPER SIZE

S TERL [:];%xld

O llxl? [

'NEGATIVES i Dot QUANTITY SER *M“‘E“ tABOUR o
LFJLJMIIII.JIHII‘IJHIHI ||01011J
|F|L1Mi e l:':l-lf_‘tJl L | i | L d Lo Ll le0n]

- PAPER COLOUR

) mun’: O

+
INK . |

e Lack O _____1_
¢

3 '—}M] ||
|F1L|Mi | i 1

L Jl I |.~1~
ey

L1l

] |C|b|1 |

.1'. IJ |C_!-0|‘_1I

L || | |
le_l 1

PRINTING X NUMBERING R } - .
(v swe___res. e oes v FROM To lFlLiMl Lol ja L Lt H N R
BINDING/FINISHING & W% j&(PMT. . ‘ :

(.:OI.LATING M‘I’API ING PUNCH [j PLASTIC RING 1PIM|T| ": Uy III CiL J_J I IJ l I |C 0 1 I
- FOLDING/ CUTTING) R . S
PADDING SIZE

‘Special Instructions

| Il |J| bl IJ LC.IO....lﬂ.

. L || LJL_J_H 11 ilC|0|1l
l,’ ‘ i lll L H L]Ll -I_ | H lQ| |
’ llillllll H 11 lelorﬂ_

L J |P|0|1 |

._~|~-,L,J;

1”J| s Hl ;;[":_l J tololﬂ‘

DESIGN & PASTE-UP =

1]I L

bl

[l oo
I Jloo1]

-l H__L_H Iml‘_IJlOIOUJ

'maeserrma;. g
[PlAiPIO 0|010|01 H] J

- :
QUAnw*rv §

[PIAlplololalolQl | | 1 lg_J £

"‘..: L1N|G| IR

.I{.-{'

I JIB‘I‘?I"J-

| e H 1 -|"‘ ;

Cl [Bod]

|J| 1. |L|' |

L] [Bioy1]

.n._.

||_1_] 1

" OUTSIDE SERVICES-

-lP.ArPIo.ola 0|§|_}| L

; ‘.'T.,:M_USI(HQIQIU]OIJI Ll

L1 [Bo,1]

O I

- cosT -

IR ¥ IR S . O R
1. Taxes - proviNciaL []

FEDERAL' D GRAPHIC $ERV.

‘OCT.8 4822

Compiling A Default Reasoning System
into Prolog

David L. Poole
Department of Computer Science

Research Report CS-88-01
January 1988

Compiling A Default Reasoning System
into Prolog

David Poole

Logic Programming and Artificial Intelligence Group,
Department of Computer Science,
University of Waterloo,

Waterloo, Ontario, Canada, N2L3G1
(519) 888-4443
dlpoole@dragon.waterloo.edu

January 4, 1988

Abstract

Artificial intelligence researchers have been designing representa-
tion systems for default and abductive reasoning. Logic Programming
researchers have been working on techniques to improve the efficiency
of Horn Clause deduction systems. This paper describes how one
such default and abductive reasoning system (namely Theorist) can
be translated into Horn clauses (with negation as failure), so that we
can use the clarity of abductive reasoning systems and the efficiency
of Horn clause deduction systems. We thus show how advances in
expressive power that artificial intelligence workers are working on
can directly utilise the advances in efficiency that logic programming
researchers are working on. Actual code from a running system is
given.

1 Introduction

Many people in Artificial Intelligence have been working on default reason-
ing and abductive diagnosis systems [Reiter80,McCarthy86,Cox87,Poole88].

1

A Theorist to Prolog Compiler 2

The systems implemented so far (eg., [Brewka86,Lifschitz85,Ginsburg87,PGA87])
are only prototypes or have been developed in ways that cannot take full
advantage in the advances of logic programming implementation technol-

ogy.

Many people are working on making logic programming systems more
efficient. These systems, however, usually assume that the input is in the
form of Horn clauses with negation as failure. This paper shows how to
implement the default reasoning system Theorist [Poole88,PGA87] by com-
piling its input into Horn clauses with negation as failure, thereby allowing
direct use the advances in logic programming implementation technology.
Both the compiler and the compiled code can take advantage of these im-
provements.

We have been running this implementation on standard Prolog com-
pilers (in particular Quintus Prolog) and it outperforms all other default
reasoning systems that the author is aware of. It is, however, not re-
stricted to the control structure of Prolog. There is nothing in the com-
piled code which forces it to use Prolog’s search strategy. Logic pro-
gramming and other researchers are working on alternate control struc-
tures which seem very appropriate for default and abductive reasoning.
Advances in parallel inference (e.g., [Moto-Oka84]), constraint satisfac-
tion [Dincbas87,Van Hentenryck87] and dependency directed backtracking
[de Kleer86,Doyle79,Cox82] should be able to be directly applicable to the
code produced by this compiler.

We are thus effecting a clear distinction between the control and logic of
our default reasoning systems [Kowalski79]. We can let the control people
concentrate on efficiency of Horn clause systems, and these will then be di-
rectly applicable to those of us building richer representation systems. The
Theorist system has been designed to allow maximum flexibility in control
strategies while still giving us the power of assumption-based reasoning
that are requited for default and abductive reasoning.

This is a step towards having representation and reasoning systems
which are designed for correctness being able to use the most efficient of
control strategies, so we can have the best of expressibility and efficiency.

A Theorist to Prolog Compiler 3

2 Theorist Framework

Theorist [Poole88,PGA87] is a logical reasoning system for default reason-
ing and diagnosis. It is based on the idea of theory formation from a fixed
set of possible hypotheses.

This implementation is of the version of Theorist described in [Poole88].
The user provides three sets of first order formulae

F is a set of closed formulae called the facts. These are intended to be
true in the world being modelled.

A is a set of formulae which act as possible hypotheses, any ground
instance of which can be used in an explanation if consistent.

C is a set of closed formulae taken as constraints. The constraints re-
strict what can be hypothesised.

We assume that 7 U C is consistent.

Definition 1 a scenario of 7, A is aset DU ¥ where D is a set of ground
instances of elements of A such that D U ¥ U C is consistent.

Definition 2 If g is a closed formula then an explanation of g from 7, A
is a scenario of ¥, A which implies g.

That is, ¢ is explainable from 7, A if there is a set D of ground instances
of elements of A such that

FUD =g and
FuDuUC is consistent

F U D is an explanation of g.

In other papers we have described how this can be the basis of default
and abductive reasoning systems [PGA87,Poolc88,Poole87h,Poole8s). 1f
we are using this for prediction then possible hypotheses can be seen as
defaults. [Poole88| describes how this formalism can account for default
reasoning. This is also a framework for abductive reasoning where the
possible hypotheses are the base causes we are prepared to accept as to why

A Theorist to Prolog Compiler 4

some observation was made [PGA87|. We will refer to possible hypotheses
as defaults.

One restriction that can be made with no loss of expressive power
is to restrict possible hypotheses to just atomic forms with no structure
[Poole88|. This is done by naming the defaults.

2.1 Syntax

The syntax of Theorist is designed to be of maximum flexibility. Virtually
any syntax is appropriate for wffs; the formulae are translated into Prolog
clauses without mapping out subterms. The theorem prover implemented
in the Compiler can be seen as a non-clausal theorem prover [Poole84].

A wff is a well formed formula made up of arbitrary combination of
implication (“=>", “< —7), disjunction (“or”, “”), conjunction (“and”,
“&”, “”) and negation (“not”, “””) of atomic symbols. Variables follow
the Prolog convention of being in upper case. There is no explicit quantifi-
cation.

A name is an atomic symbol with only free variables as arguments.

The following gives the syntax of the Theorist code:

fact w.
where w is a wff, means that (Vw) € ¥; i.e., the universal closure of
w (all variables universally quantified) is a fact.

default d.
where d is a name, means that d € A; i.e., d is a default (a possible
hypothesis).

default d : w.
where d is a name and w is a wif means w, with name d can be
used in a scenario if it is consistent. Formally it means d € A and
(Vd = w) € 7.

constraint w.
where w is a wif means Vw € C.

prolog p.
where p is an atomic symbol means any Theorist call to p should be

A Theorist to Prolog Compiler 5
proven in Prolog. This allows us to use built-in predicates of pure
Prolog. One should not expect Prolog’s control predicates to work.

explain w.
where w is an arbitrary wff, gives all explanations of Jw.

3 Overview of Implementation

In this section we assume that we have a deduction system (denoted)
which has the following properties (such a deduction system will be defined
in the next section):

1. It is sound (i.e., if A+ g then A |=g).

2. Tt is complete in the sense that if g follows from a consistent set of

formulae, then g can be proven. Le., if A is consistent and A |= g
then A | g.

3. If A g then AU B I g; i.e., adding in extra facts will not prevent
the system from finding a proof which previously existed.

4. Tt can return instances of predicates which were used in the proof.

The basic idea of the implementation follows the definition on explain-
ability:

Algorithm 1 to explain g

1. try to prove g from FUA. If no proof exists, then g is not explainable.
If there is a proof, let D be the set of instances of elements of A used
in the proof. We then know

FUDEg

by the soundness of our proof procedure.

2. show D is consistent with 7 U C by failing to prove it is inconsistent.

A Theorist to Prolog Compiler 6

3.1 Consistency Checking

The following two theorems are important for implementing the consistency
check:

Lemma 1 If A is a consistent set of formulae and D is a finite set of

ground instances of possible hypotheses, then if we impose arbitrary ordering
on the elements of D = {dy,...,dn}

AU D is inconsistent
if and only if
there is some i, 1 < ¢ < n such that AU {dy,...,d;_1} is consistent and
AU {dy,...,di_1} = —d;.

Proof: If AU D is inconsistent there is some least 7 such
that AU {d,,...,d;} is inconsistent. Then we must have AU
{d1,...,di_1} is consistent (as 7 is minimal) and AU{d,,...,di_1} =
—d; (by inconsistency). O

This lemma says that we can show that #UC U{dy,...,d.} is consistent
if we can show that for all 7,1 <: <n, FuCU{dy,...,di—1} I/ =d;. If our
theorem prover can show there is no proof of all of the —d;, then we have
consistency.

This lemma indicates that we can implement Theorist by incrementally
failing to prove inconsistency. We need to try to prove the negation of the
default in the context of all previously assumed defaults. Note that this
ordering is arbitrary.

The following theorem expands on how explainability can be computed:

Theorem 2 If FUC is consistent, g is explainable from 7, if and only
if there is a ground proof of g from ¥ U D where D = {d1,...,dp} is a set
of ground instances of elements of A such that F AC A{dy,...,di1} V/ —d;
for all 1,1 <1< n.

Proof: If g is explainable from #, A, there is a set D of ground
instances of elements of A such that U D |= g and 710 D11
is consistent. So there is a ground proof of ¢g from 7 U D.
By the preceding lemma ¥ U D U C is consistent so there can
be no sound proof of inconsistency. That is, we cannot prove

? ANC A {dla---adi—l} F —|di for any 1. O

A Theorist to Prolog Compiler 7

This leads us to the refinement of algorithm 1:
Algorithm 2 to explain g from ¥, A

1. Build a ground proof of g from # U A. Make D the set of instances
of elements of A used in the proof.

2. For each i, try to prove —d; from 7 A C A {di,...,d;_1}. If all such
proofs fail, D is an explanation for g.

Note that the ordering imposed on the D is arbitrary. A sensible one
is the order in which the elements of D were generated. Thus when a new
hypothesis is used in the proof, we try to prove its negation from the facts
and the previously used hypotheses. These proofs are independent of the
original proof and can be done as they are generated as in negation as
failure (see section 3.3), or can be done concurrently.

3.2 Variables

Notice that theorem 2 says that g is explainable if there is a ground proof.
There is a problem that arises to translate the preceding algorithm (which
assumes ground proofs) into an algorithm which does not build ground
proofs (eg., a standard resolution theorem prover), as we may have variables
in the forms we are trying to prove the negation of.

A problem arises when there are variables in the D generated. Consider
the following example:

Example 1 Let A = {p(X)}. That is, any instance of p can be used if it
is consistent. Let 7 = {VY (p(Y') = g¢), ~p(a)}. That is, g is true if there is
a Y such that p(Y).

According to our semantics, g is explainable with the explanation {p(b)},
which is consistent with 7 (consider the interpretation I = {-p(a),p(b)}
on the domain {a,b}), and implies g.

However, if we try to prove g, we generate D = {p(¥)} where V" is
free (implicitly a universally quantified variable). The existence of the fact
-p(a) should not make it inconsistent, as we want g to be explainable.

Theorem 3 It is not adequate to only consider interpretations in the Her-
brand universe of ¥ U AU C to determine explainability.

A Theorist to Prolog Compiler 8

Proof: consider the example above; the Herbrand universe
is just the set {a}. Within this domain there is no consistent
explanation to explain g. O

This shows that Herbrand’s theorem is not applicable to the whole sys-
tem. It is, however, applicable to each of the deduction steps [Chang73].
So we need to generate a ground proof of g. This leads us to:

Algorithm 3 To determine if g is explainable from 7, A

1. generate a proof of g using elements of ¥ and A as axioms. Make Dy
the set of instances of A used in the proof;

2. form D; by replacing free variables in Dy with unique constants;

3. add D, to 7 and try to prove an inconsistency (as in the previous
case). If a complete search for a proof fails, g is explainable.

This algorithm can now be directly implemented by a resolution theorem
prover.

Example 2 Consider ¥ and A as in example 1 above. If we try to prove
g, we use the hypothesis instance p(Y’). This means that g is provable from
any instance of p(Y). To show g cannot be explained, we must show that
all of the instances are inconsistent. The above algorithm says we replace
Y with a constant 8. p(B) is consistent with the facts. Thus we can show
g is explainable.

3.3 Incremental Consistency Checking

Algorithm 3 assumed that we only check consistency at the end. We cannot
replace free variables by a unique constant until the end of the computation.
This algorithm can be further refined by considering cases where we can
check consistency at the time the hypothesis is generated.

Theorem 1 shows that we can check consistency incrementally in what-
ever order we like. The problem is to determine whether we have generated
the final version of a set of hypotheses. If there are no variables in our set
of hypotheses, then we can check consistency as soon as they are generated.
If there are variables in a hypothesis, then we cannot guarantee that the
form generated will be the final form of the hypothesis.

A Theorist to Prolog Compiler 9

Example 3 Consider the two alternate set of facts:

A ={ p(X)}
A o={ ¥X p(X) "N g(X) =g,
—p(a),

q(b) }
Bo={ YX p(X) N e(X) =g,

_‘P(a),
q(a) }

Suppose we try to explain g by first explaining p and then explaining g.
Once we have generated the hypothesis p(X), we have not enough infor-
mation to determine whether the consistency check should succeed or fail.
The consistency check for 7 should succeed (i.e, we should conclude with a
consistent instance, namely X = b), but the consistency check for 7, should
fail (there is no consistent value for the X which satisfies p and ¢q). We can
only determine the consistency after we have proven g.

There seems to be two obvious solutions to this problem, the first is
to allow the consistency check to return constraints on the values (eg.,
[Edmonson87]). The alternate (and simpler) solution is to delay the eval-
uation of the consistency check until all of the variables are bound (as in
[Naish86]), or until we know that the variables cannot be bound any more.
In particular we know that a variable cannot be bound any more at the
end of the computation.

The implementation described in this paper does the simplest form of
incremental consistency checking, namely it computes consistency immedi-
ately for those hypotheses with no variables and delays consistency checking
until the end for hypotheses containing variables at the time they are gen-
erated.

4 The Deduction System

This implementation is based on linear resolution [Chang73,Loveland78].
This is complete in the sense that if g logically follows from some consistent
set of clauses A, then there is a linear resolution proof of g from A.

A Theorist to Prolog Compiler 10

SLD resolution of Prolog [Llord87] can be seen as linear resolution with
the contrapositive and ancestor search removed.
To implement linear resolution in Prolog, we add two things

1. we use the contrapositive of our clauses. If we have the clause
LyvILyVv..VL,
then we create the n rules

Ll — _|L2 VANPYRIVAN “an
L2 — _'Ll VAN _|L3 N A ﬁLn

Ln — —1L1 VANPPRVAN ﬁLn_l

as rules. Each of these can then be used to prove the left hand literal if
we know the other literals are false. Ilere we are treating the negation
of an atom as a different Prolog atom (i.e., we treat -p(X) as an atom

notp(X)).

2. the ancestor cancellation rule. While trying to prove L we can assume
—~L. We have a subgoal proven if it unifies with the negation of an
ancestor in the proof tree. This is an instance of proof by contradic-
tion. We can see this as assuming —L and then when we have proven
L we can discharge the assumption.

One property of the deduction system that we want is the ability to
implement definite clauses with a constant factor overhead over using Pro-
log. One way to do this is to keep two lists of ancestors of any node: P
the positive (non negated atoms) ancestors and N the negated ancestors.
Thus for a positive subgoal we only need to search for membership in N
and for a negated subgoal we only need to search P. When we have definite
clauses, there are no negated subgoals, and so N is always empty. Thus
the ancestor search always consists of checking for membership in an empty
list. The alternate contrapositive form of the clauses are never used.

Alternate, more complicated ways to do ancestor search have been inves-
tigated [Poole86], but this implementation uses the very simple form given
above. Another tempting possibility is to use the near-Horn resolution of
[Loveland87|. More work needs to be done on this area.

A Theorist to Prolog Compiler 11

4.1 Disjunctive Answers

For the compiler to work properly we need to be able to return disjunctive
answers. We need disjunctive answers for the case that we can prove only
a disjunctive form of the query.

For example, if we can prove p(a) V p(b) for the query ?p(X), then we
want the answer X = a or b. This can be seen as “if the answer is not a
then the answer is b”.

To have the answer a; V...V a,,, we need to have a proof of “If the answer
is not @, and not a, and ... and not a,_; then the answer is a,,”. We collect
up conditions on the proof of alternate answers that we are assuming are
not true in order to have the disjunctive answer.

This is implemented by being able to assume the negation of the top
level goal as long as we add it to the set of answers. To do this we carry a
list of the alternate disjuncts that we are assuming in proving the top level
goal.

4.2 Conversion to Clausal Form

It is desirable that we can convert an arbitrary well formed formula into
clausal (or rule) form without mapping out subterms. Instead of distribut-
ing, we do this by creating a new term to refer to the disjunct.

Once a formula is in negation normal form, then the normal way to
convert to clausal form [Chang73] is to convert something of the form

aV (B Ay)

by distribution into
(aVB) A (V)
and so mapping out subterms.
The alternate [Poole84] is to create a new relation p parameterised with

the variables in common with o and 8 A . We can then replace 8 A v by
p and then add

(-pVB)A(—pV v)
to the set of formulae.

This can be embedded into the compiler by using Prolog “or” instead
of actually building the p. (Alternatively we can define “or” by defining

A Theorist to Prolog Compiler 12

the clause (p;q) «— p and (p;q) < ¢.) We build up the clauses so that
the computation runs without any multiplying out of subterms. This is an
instance of the general procedure of making clausal theorem provers into
non-clausal theorem provers [Poole84].

5 Details of the Compiler

In this section we give actual code which converts Theorist code into Prolog
code. The compiler is described here in a bottom up fashion; from the
construction of the atoms to compilation of general formulae.

The compiler is written in Prolog and the target code for the compiler
is Prolog code (in particular Horn clauses with negation as failure). There
are no “cuts” or other non-logical “features” of Prolog which depend on
Prolog’s search strategy in the compiled code. Each Theorist wif gets locally
translated into a set of Prolog clauses.

5.1 Target Atoms

For each Theorist predicate symbol r there are 4 target predicate symbols,
with the following informal meanings:

prove_r meaning r can be proven from the facts and the constraints.
prove_not_r meaning —r can be proven from the facts and the constraints.
ex_r meaning r can be explained from ¥, A.

ex_not_r meaning —r can be explained from 7, A.

The arguments to these built predicate symbols will contain all of the
information that we need to prove or explain instances of the source pred-
icates.

5.1.1 Proving

For relation r(—args—) in the source code we want to produce object code
which says that r(—args—) (or its negation) can be proven from the facts
and constraints and the current set of assumed hypotheses.

A Theorist to Prolog Compiler 13

For the source relation
r(—args—)
(which is to mean that r is a relation with —args— being the sequence of
its arguments), we have the corresponding target relations

prove r(—args—,Ths, Anc)

prove not r(—args—,Ths, Anc)

which are to mean that r (or —r) can be proven from the facts and ground
hypotheses T hs with ancestor structure Anc. These extra arguments are:

Ths is a list of ground defaults. These are the defaults we have already
assumed and so define the context in which to prove r(—args—).

Anc is a structure of the form anc(P, N) where P and N are lists of
source atoms. Interpreted procedurally, P is the list of positive (not
negated) ancestors of the goal in a proof and N is the list of negated
ancestors in a proof. As described in section 4 we conclude some goal
if it unifies with its negated ancestors.

Declaratively,
prove_r(—args—,Ths,anc(P, N))
means
FUThsU-PUN |=r(—args—)
5.1.2 Explaining

There are two target relations for explaining associated with each source
relation r. These are ex_r and ex_not_r.
For the source relation:

r(—args—)
we have two target new relations for explaining 7:
ex_r(—args—,Ths, Anc, Ans)
ex_not_r(—args—,Ths, Anc, Ans)

These mean that r(—args—) (or —r(—args—)) can be explained, with

A Theorist to Prolog Compiler 14

Ths is the structure of the incrementally built hypotheses used in explain-
ing r. There are two statuses of hypotheses we use; one the defaults
that are ground and so can be proven consistent at the time of genera-
tion; the other the hypotheses with free variables at the time they are
needed in the proof, for which we defer consistency checking (in case
the free variables get instantiated later in the proof). Ths is essen-
tially two difference lists, one of the ground defaults already proven
consistent and one of the deferred defaults. Ths is of the form

thS(TI, T2, Dla Dg)

which is to mean that T} is the consistent hypotheses before we try
to explain r, and and Ty is the list of consistent hypotheses which
includes T and those hypotheses assumed to explain r. Similarly, Dy
is the list of deferred hypotheses before we consider the goal and D,
is the list of resulting deferred hypotheses used in explaining r.

Anc contains the ancestors of the goal. As in the previous case, this is a
pair of the form anc(P, N) where P is the list of positive ancestors of
the goal, and N is the list of negated ancestors of the goal.

Ans contains the answers we are considering in difference list form ans(A;, A,),
where A, is the answers before proving the goal, and A; is the answers
after proving the goal.

The semantics of
ex_r(—args—,ths(Ty, Tz, D1, D;), anc(P, N),ans(A1, Az))
is defined by
FUT,UD;U~PUN U A, |=r(—args—)
where Ty C Ty, D; C Dy and A; C A,, and such that

F U Ty, is consistent

A Theorist to Prolog Compiler 15

5.1.3 Building Atoms

The procedure new_lit(Prefiz, Reln, Newargs, Newreln) constructs a new
atom, Newreln, with predicate symbol made up of Prefix prepended to
the predicate symbol of Reln, and taking as arguments the arguments of
Reln together with Newargs. For example,

?7— new lit("ex ”,reln(a,b,c),[T,A,B],N).

yields
N = ex_reln(a,b,c,T,A,B)
The procedure is defined as follows!:

new_lit(Prefix, Reln, NewArgs, NewReln) :-
Reln =.. [Pred | Args],
name (Pred,PredName) ,
append(Prefix. PredName, NewPredName),
name (NewPred,NewPredName) ,
append(Args, NewArgs, AllArgs),
NewReln =.. [NewPred | AllArgs].

5.2 Compiling Rules

The next simplest compilation form we consider is the intermediate form
called a “rule”. Rules are statements of how to conclude the value of some
relation. Each Theorist fact corresponds to a number of rules (one for each
literal in the fact). Each rule gets translated into Prolog rules to explain
and prove the head of the rule.

Rules use the intermediate form called a “literal”. A literal is either an
atomic symbol or of the form n(A) where A is an atomic symbol. A rules
is either a literal or of the form H « Body (written “if (H.Body)™") where
H is a literal and Body is a conjunction and disjunction of literals.

LThe verbatim code is the actual implementation code given in standard Edinburgh
notation. I assume that the reader is familiar with such notation.

A Theorist to Prolog Compiler 16

We translate rules of the form

h(—z=) « bi(=z1—), b2 (—22—), .., by (=T —);
into the internal form (assuming that h is not negated)

ex_h(—z—,ths(To, Tn, Do, D,.),anc(P, N),ans(Ao, A,)) : —
embl(—-azl—,ths(To, Tl,Do,DI),anc([h(r—)lP] N) (AOaAl)),
ex_by(—z2—,ths(Ty, Tz, D1, D3), anc(|h(—z—)|P], N),ans(A1, As)),

ceey

ex by (—zp—,ths(Tu-1, Tny Du-1, Dy),anc([h(—z—)|P],N),ans(An-1, An)).

That is, we explain h if we explain each of the b;, accumulating the
explanations and the answers. Note that if h is negated, then the head
of the clause will be of the form ex not h, and the ancestor form will be
anc(P,[h(—z—)|N]). If any of the b; are negated, then the corresponding
predicate will be ex_not_b;.

Example 4 the rule
gr(X,Y) « f(X,2),p(Z,Y)
gets translated into

ex_gr(X,Y,ths(D,E, F,G),anc(H,I),ans(J,K)) : —
ex_f(X,Z,ths(D,M, F,N),anc([gr(X,Y)|H|,I),ans(J,O)),
ex_p(Z,Y,ths(M,E,N,G),anc([gr(X,Y)|H|,I),ans(0, K)).

To explain gr we explain both f and p. The initial assumptions for f
should be the initial assumptions for gr, and the initial assumptions for
p should be the initial assumptions plus those made to explain f. The
resulting assumptions after proving p are are the assumptions made in
explaining gr.

Example 5 the fact
father(randy, jodr)

gets translated into

A Theorist to Prolog Compiler 17

ex father(randy, jodi,ths(T,T, D, D), _,ans(A, A)).

We can explain father(randy, jodi) independently of the ancestors; we need
no extra assumptions, and we create no extra answers.

Similarly we translate rules of the form
h(—.’l)-*) — bl(—zl——), bz(—.’l?g—), ceey bN(—IBn—);
into

prove h(—z—,T,anc(P,N)) : —
prove_b,(—z,—,T,anc([h(—z—)|P],N)),

ceey

prove b,(—z,—,T,anc([h(—z—)|P], N)).
Example 6 the rule
gr(X,Y) « f(X,2),p(2,Y)
gets translated into

provegr(X,Y,D,anc(H,I)) : —
prove_f(X,Z,D,anc([gr(X,Y)|H], I)),
prove p(Z,Y, D, anc([gr(X,Y)|H],I)).

That is, we can prove gr if we can prove f and p. Having ¢gr(X,Y’) in the
ancestors means that we can prove gr(X,Y) by assuming that —gr(X,Y)
and then proving gr(X,Y).

Example 7 the fact
father(randy, jods)

gets translated into
prove father(randy,jods, ,).

Thus we can prove father(randy,jodi) for any explanation and for any
ancestors.

A Theorist to Prolog Compiler 18

Disjuncts in the source body (;) get mapped into Prolog’s disjunc-
tion. The answers and assumed hypotheses should be accumulated from
whichever branch was taken. This is then executed without mapping out
subterms.

Example 8 The rule
p(4) « q(A),(r(A4),s(A);t(4)), m(A).
gets translated into

prove_p(A, B,anc(C, D)) : —
prove a(A, B, anc([p(4)[C], D)),
(prover(A,B,anc([p(A)|C], D)),
prove_s(A, B,anc([p(A)|C], D))
;. provet(A, B,anc([p(A4)|C], D))),
prove m(A, B,anc(|p(4)|C], D)).

ex_p(A,ths(B,C,D,E),anc(F,G),ans(H,I)) : —
ex_q(A,ths(B,J,D, K), anc(|p(A)|F],G),ans(H, L)),
(ez r(A,ths(J,M,K,N),anc([p(A)|F],G),ans(L,0)),
ex_s(A,ths(M, P,N,Q),anc([p(A)|F],G),ans(O, R))
. ext(A,ths(J, P, K,Q),anc([p(A)|F],G),ans(L, R))),
ex.m(A,ths(P,C,Q, E),anc([p(A)|F|,G),ans(R,I))

Note that P is the resulting explanation from either executing r and s or
executing ¢t from the explanation J.
5.2.1 The Code to Compile Rules

The following relation builds the desired structure for the bodies:
make_bodies(B,T,[Ths, Anc, Ans|, Prove B, EzB)

where B is a disjunct/conjunct of literals (the body of the rule), T"is a
theory for the proving, Ths is a theory structure for explaining, Anc is an
ancestor structure (of form anc(P, N)), Ans is an answer structure (of form
ans(A0, A1)). This procedure makes ProveB the body of forms prove_b;
(and prove_not_b;), and EzB a body of the forms ez b;.

A Theorist to Prolog Compiler 19

make_bodies((H,B), T, [ths(T1,T3,D1,D3), Anc, ans(A1,A3)],
(ProveH,ProveB), (ExH,ExB)) :-
',
make_bodies(H,T, [ths(T1,T2,D1,D2),Anc,ans(A1,A2)] ,ProveH,ExH),
make_bodies(B,T, [ths(T2,T3,D2,D3),Anc,ans(A2,A3)] ,ProveB,ExB) .

make_bodies((H;B),T,Ths, (ProveH;ProveB), (ExH;ExB)) :-
!

’

make_bodies(H,T,Ths,ProveH,ExH),
make_bodies(B,T,Ths,ProveB,ExB) .

make bodies(n(A), T, [Ths,Anc,Ans], ProveA, ExA) :-
1

new_lit("prove_not_", A, [T,Anc], Proveld),
new_lit("ex_not_", A, [Ths,Anc,Ans], ExA).

make _bodies(A, T, [Ths,Anc,Ans], ProveA, ExA) :-
1

new_lit("prove_", A, [T,Anc], Proved),
new_lit("ex_", A, [Ths,Anc,Ans], ExA).

The procedure rule(F, R) declares R to be a fact or constraint rule
(depending on the value of F). Constraints can only be used for proving;
facts can be used for explaining as well as proving. R is either a literal or
of the form i f(H, B) where H is a literal and B is a body.

prolog cl(C) is a way of asserting to Prolog the clause C. This can
either be asserted or written to a file to be consulted or compiled. The
simplest form is to just assert C.

make anc(H) is a procedure which ensures that the ancestor search is
set up properly for H. It is described in section 5.7, and can be ignored on
first reading.

rule(F,if (H,B)) :-
1

make_anc (H) ,
make_bodies(H,T, [Ths,Anc,Ans] ,ProveH,ExH) ,

A Theorist to Prolog Compiler 20

form_anc (H, Anc ,Newanc),
make_bodies(B,T, [Ths,Newanc,Ans] ,ProveB,ExB),
prolog_cl((ProveH:-ProveB)),
(F=fact,
prolog_cl((ExH:-ExB))
; F=constraint).

rule(F,H) :-
make_anc (H) ,
make_bodies(H,T, [the(T,T,D,D),_,ans(A,A)] ,ProveH,ExH),
prolog_cl(ProveH),
(F=fact,
prolog_cl(ExH)
; F=constraint).

form anc(L, A1, A2) means that A2 is the ancestor form for subgoal L
with previous ancestor form Al.

form_anc (n(G), anc(P,N), anc(P,[GIN])) :- !.
form_anc (G, anc(P,N), anc([GIP].N)).

5.3 Forming Contrapositives

For both facts and constraints we convert the user syntax into negation
normal form (section 6.2), form the contrapositives, and declare these as
rules.

Note that here we choose an arbitrary ordering for the clauses in the
bodies of the contrapositive forms of the facts. No attempt has been made
to optimise this, although it is noted that some orderings are more efficient
than others (see for example [Smith86] for a discussion of such issues).

The declarations are as follows:

declare_fact(F) :-
nnf (F,even,N),
rulify(fact,N).

declare_constraint(C) :-

A Theorist to Prolog Compiler 21

nnf (C,even,N),
rulify(constraint,N).

nnf (W{f,Parity, Nnf) (section 6.2) means that Nnf is the negation nor-
mal form of Wff if Parity=even and of = Wff if Parity=odd. Note that we
rulify the normal form of the negation of the formula.

rulify(H,N) where H is either “fact” or “constraint” and N is the
negation of a fact or constraint in negation normal form (see section 6.2),
means that all rules which can be formed from N (by allowing each atom
in N being the head of some rule) should be declared as such.

rulify(H,(A,B)) :- !,
contrapos(H,B,A),
contrapos(H,A,B).

rulify(H,(A;B)) :- !,
rulify(H,A),
rulify(H,B).

rulify(H,n(A)) :- 1!,
rule(H,A).

rulify(H,A) :-
rule(H,n(A)).

contrapos(H, D,T) where H is either “fact” or “constraint”, and (D, T)
is (the negation of) a formula in negation normal form means that all rules
which can be formed from (D,T) with head of the rule coming from T
should be formed. Think of D as the literals for which the rules with them
as heads have been formed, and T as those which remain to be as the head
of some rule.

contrapos(H,D, (L,R)) :- !,
contrapos(H, (R,D),L),
contrapos(H, (L,D) ,R).

contrapos(H,D,(L;R)) :- !,

A Theorist to Prolog Compiler

contrapos(H,D,L),
contrapos(H,D,R) .

contrapos(H,D,n(A)) :- !,
rule(H,if (A,D)).

contrapos(H,D,A) :-
rule(H,if (n(A),D)).

Example 9 if we are to rulify the negation normal form
n(p(4)),q(A), (r(A),s(A);t(A)),m(A)
we generate the following rule forms, which can then be given to rule

p(4) — q(A),(r(4),s(4);t(A)), m(A)

n(q(4)) — (r(4),s(A);¢(4)),m(A),n(p(A))
n(r(A)) < s(A),m(A),q(A),n(p(A))
n(s(4)) < r(4),m(A4),q(4),n(p(A4))
n(t(A4)) < m(A),q(4),n(p(4))
n(m(4)) — (r(4),s(4);¢(4)), ¢(A),n(p(4))

5.4 Possible Hypotheses

22

The other class of things we have to worry about is the class of possible
hypotheses. As described in [Poole88] and outlined in section 2, we only

need worry about atomic possible hypotheses.

If d(—args—) is a possible hypothesis (default), then we want to form

the target code as follows:

1. We can only prove a hypothesis if we have already assumed it:

prove_d(—args—,Ths, Anc) : —
member(d(—args—), Ths).

2. We can explain a default if we have already assumed it:

ex-d(—args—,ths(T,T,D, D), Anc,ans(A, A)) : —
member(d(—args—),T).

A Theorist to Prolog Compiler 23

3. We can explain a hypothesis by assuming it, if it has no free variables,
we have not already assumed it and it is consistent with everything
assumed before:

ex d(—args—,ths(T,|d(—args—)|T|, D, D), Anc,ans(A, A)) : —
variable_free(d(—args—)),
\ + (member(d(—args—),T)),
\ + (prove_not_d(—args—, [d(—args—)|T],anc([],[])))-

4. If a hypothesis has free variables, it can be explained by adding it to
the deferred defaults list (making no assumptions about its consis-
tency; this will be checked at the end of the explanation phase):

ex-d(—args—,ths(T, T, D,[d(—args—)|D|, Anc,ans(A, A)) : —
\ + (variable_free(d(—args—))).

The following compiles directly into such code:

declare_default(D) :-
make_anc (D),
new_lit("prove_",D,[T,_],Pr_D),
prolog_cl((Pr_D :- member(D,T))),

new_lit("ex_",D, [ths(T,T,Defer,Defer), _, ans(A,A)], ExD),
prolog_cl((ExD :- member(D, T))),
new_lit("ex_",D, [ths(T,[DIT],Defer,Defer), _, ans(A,A)], ExDass),

new_lit("prove_not_",D, [[DIT],anc([],[]1)],Pr_not_D),
prolog_cl((ExDass :- variable_free(D), \+member(D,T),

\+Pr_not_D)),
new_lit("ex_",D, [ths(T,T,Defer,[D|Defer]), _, ans(A,A)], ExDefer),
prolog_cl((ExDefer :- \+ variable_free(D))).

Example 10 The default
birdsfly(A)

gets translated into

A Theorist to Prolog Compiler 24

prove birdsfly(A,B,C) : —
member(birdsfly(A), B)
ex_birdsfly(A,ths(B,B,C,C),D,ans(E,E)) : —
member(birdsfly(A), B)
ex birdsfly(A,ths(B, [birdsfly(A)|B],C,C),D,ans(E,E)) : —
variable_free(birdsfly(A)),
\+member(birdsfly(A), B),
\+prove_not_birdsfly(A, |birdsfly(A)| B, anc([],[]))
ex birdsfly(A,ths(B, B, C,|birdsfly(A)|C]), D,ans(E,E)) : —
\+variable_free(birdsfly(A))

5.5 Relations defined in Prolog

We can define some relations to be executed in Prolog. This means that
we can prove the prove and ez forms by calling the appropriate Prolog
definition.

declare_prolog(G) :-
new_lit("ex_",G, [ths(T,T,D,D), _, ans(A,A)], ExG),
prolog_cl((ExG :- G)),
new_lit("prove_",G,[_,_],PrG),
prolog_cl((PrG :- G)).

5.6 Explaining Observations

expl(G,T0,T1, A) means that T'1 is an explanation of G or A (A being the
alternate answers) from the facts given T0 is already assumed. G is an
arbitrary wff.

expl(G,TO,T1,Ans) :-
declare_fact(’<-’(newans(G) , G)),
ex_newans (G,ths(T0,T,[],D),anc([],[]).ans([],Ans)),
ground (D),
check_consis(D,T,T1).

check_consis([],T,T).
check_consis([H|D],T1,T) :-

A Theorist to Prolog Compiler 25

new_lit("prove_not_", [T1,anc([],[])], Pr_n_H),
\+ Pr_n_H,
check_consis(D, [H|T1],T).

To obtain disjunctive answers we have to know if the negation of the top
level goal is called. This is done by declaring the fact newans(G) «— G, and
if we ever try to prove the negation of a top level goal, we add that instance
to the list of alternate answers. In this implementation we also check that
G is not identical to a higher level goal. This removes most cases where we
have a redundant assumption (i.e., when we are not gaining a new answer,
but only adding redundant information).

ex_not_newans(G,ths(T,T,D,D) ,anc(Pos,Neg) ,ans(A, [G|A])) :-
\+ id_anc(G,anc(Pos,Neg)).

id_anc(n(G) ,anc(_,N)) :- !, id_member(G,N).
id_anc(G,anc(P,_)) :- id_member(G,P).

5.7 Ancestor Search

Our linear resolution theorem prover must recognise that a goal has been
proven if it unifies with an ancestor in the search tree. To do this, it keeps
two lists of ancestors, one containing the positive (non negated) ancestors
and the other the negated ancestors. When the ancestor search rules for
predicate p are defined, we assert ancestor_recorded(p), so that we do not
attempt to redefine the ancestor search rules.

make_anc (Name) :-
ancestor_recorded(Name),
1

make_anc (n(Goal)) :-
]

make_anc (Goal) .

make_anc (Goal) :-
Goal =.. [Predl|Args],
same_length(Args,Nargs),
NG =.. [Pred|Nargs],

A Theorist to Prolog Compiler 26

make_bodies (NG, _, [ths(T,T,D,D),anc(P,N) ,ans(A,A)] ,ProveG,ExG),
make_bodies (n(NG),_, [ths(T,T,D,D),anc(P,N),ans(A,A)],ProvenG,ExnG),
prolog_cl((ProveG :- member(NG,N))),

prolog_cl((ProvenG :- member(NG,P))),

prolog_cl((ExG :- member(NG,N))),

prolog_cl((ExnG :- member(NG,P))),

assert(ancestor_recorded(NG)).

Example 11 if we do a call
make_anc(gr(A,B))
we create the Prolog clauses

prove_gr(A,B,C,anc(D,E)) : —
member(gr(A,B),E).
prove_not_gr(A,B,C,anc(D,E)) : —
member(gr(A,B),D).
ex_gr(A,B,ths(C,C,D,D),anc(E,F),ans(G,G)) : —
member(gr(A,B),F).
ex_not_gr(A,B,ths(C,C,D,D),anc(E,F),ans(G,G)) : —
member(gr(A,B),E).

This ts only done once for the gr relation.

6 Interface

In this section a minimal interface is given. We try to give enough so that
we can understand the conversion of the wff form into negation normal
form and the parsing of facts and defaults. There is, of course, much more
in any usable interface than described here.

6.1 Syntax Declarations

All of the declarations we use will be defined as operators. This will allow
us to use infix forms of our wffs, for extra readability. Here we use the
standard Edinburgh operator declarations which are given in the spirit of
being enough to make the rest of the description self contained.

A Theorist to Prolog Compiler 27

op(1150,fx,fact).

:- op(1150,fx,constraint) .
:- op(1160,fx,default).
:- op(1150,fx,prolog) .
:- op(1150,fx,explain).
:- op(1130,xfx,:).

:- op(1110,xfx,<-).

:- op(1110,xfx,=>).

:- op(1100,xfy,or).

:- op(1000,xfy,and) .

:- op(1000,xfy,&) .

:- op(950,fy,”).

:- op(950,fy,not) .

6.2 Converting to Negation Normal Form

We want to convert an arbitrarily complex formula into a standard form
called negation normal form. Negation normal form of a formula is an
equivalent formula consisting of conjunctions and disjunctions of literals
(either an atom or of the form n(A) where A is an atom). The relation
defined here puts formulae into negation normal form without mapping
out subterms. Usually we want to find the negation normal form of the
negation of the formula, as this is the form suitable for use in the body of
a rule.
The predicate used is of the form

nnf(Fla, Parity, Body)
where
Fla is a formula with input syntax

Parity is either odd or even and denotes whether I'la is in the context of
an odd or even number of negations.

Body is a tuple which represents the negation normal form of the negation
of Fla if parity is even and the negation normal form of Fla if parity
is odd.

A Theorist to Prolog Compiler

nnf ((X => Y), P,B) :- !,
nnf ((Y or not X),P,B).
nnf ((Y <- X), P,B) :- 1!,
nnf ((Y or not X),P,B).
nf((X & Y), P,B) :- !,
nnf ((X and Y),P,B).
nnf((X , Y), P,B) :- 1!,
nnf ((X and Y),P,B).
nnf((X ; Y), P,B) :- !,
nnf ((X or Y),P,B).
nnf ((X and Y),P,B) :- !,
opposite_parity(P,0P),
nnf ((not X or not Y),0P,B).
nnf ((X or Y),even, (XB,YB)) :- !,
nnf (X,even,XB),
nnf (Y,even,YB) .
nnf ((X or Y),odd,(XB;YB)) :- !,
nnf (X,0dd,XB),
nnf (Y,o0dd,YB) .
nnf((~ X),P,B) :- !,
nnf ((not X),P,B).
nnf ((not X),P,B) :- !,
opposite_parity(P,0P),
nnf (X,0P,B) .
nnf (F,odd,F).
nnf (n(F) ,even,F) :- .
nnf (F,even,n(F)).

opposite_parity(even,odd).
opposite_parity(odd,even).

Example 12 the wif
(a or not b) and ¢ = d and (not ¢ or f)

with parity odd gets translated into
d, (e; f);n(a), bs n(c)

A Theorist to Prolog Compiler 29

the same wif with parity even (i.e., the negation of the wff) has negation
normal form:

(n(d);e, n(f))’ (a; n(b)),c

6.3 Theorist Declarations

The following define a subset of the Theorist declarations. These indicate
how this can be done. Essentially these operators just call the appropriate
compiler instruction.

fact F :- declare_fact(F),!.

default N : H :-
!,
declare_default(N),
declare_fact((H <-N)),
L

default N :-

declare_default(N),
',

constraint C :-

declare_constraint(C),
1.

7 Runtime Considerations

What is given here is the core part of our current implementation of Theo-
rist. This code has been used with Waterloo Unix Prolog, Quintus Prolog,
C-prolog and Mac-Prolog. For those Prologs with compilers we can actu-
ally compile the resulting code from this translater as we could any other
Prolog code; this make it very fast indeed.

The resulting code when the Theorist code is of the form of definite
clauses (the only case where a comparison makes sense, as it is what the two
systems have in common), runs at about half the speed of the corresponding
interpreted or compiled code of the underlying Prolog system. This seems

A Theorist to Prolog Compiler 30

reasonable as all we are doing is one membership of an empty list (which
should immediately fail) for each procedure call. Thus for each procedure
call, we do one extra Prolog call which fails. The contrapositive of the
clauses are never used.

8 Conclusion

This paper has described in detail how we can translate Theorist code into
prolog so that we can use the advances in Prolog implementation Technol-

ogy.
As far as this compiler is concerned there are a few issues which arise:

e Is there a more efficient way to determine that a goal can succeed
because it unifies with an ancestor [Poole86,Loveland87]?

e Can we incorporate a cycle check that has a low overhead? A simple,
but expensive, version is implemented in some versions of our compiler
which checks for identical ancestors.

e Are there optimal ordering which we can put the compiled clauses in
so that we get answer most quickly [Smith86]? At the moment the
compiler just puts the elements of the bodies in an arbitrary ordering.
The optimal ordering depends, of course, on the underlying control
structure.

e Are there better ways to do the consistency checking when there are
variables in the hypotheses?

We are currently working on many applications of default and abductive
reasoning. Hopefully with compilers based on the ideas presented in this
paper we will be able to take full advantage of advances in Prolog imple-
mentation technology while still allowing flexibility in specification of the
problems to be solved.

Appendix: A Detailed Example

Consider the Theorist code:

A Theorist to Prolog Compiler 31

fact emu(A) => bird(A).

default birdsfly(A): bird(A) => flies(A).
constraint not (birdsfly(A) and emu(A)).
fact emu(tweety).

fact bird(polly).

This appendix will show the exact code that this Theorist fragment gets
compiled to according to the code in this paper.

fact emu(A) => bird(A).
gets translated into the forms for computing ancestor search for birds:

prove_bird(A,B,anc(C,D)) :-
member (bird(A) ,D).
prove_not_bird(A,B,anc(C,D)) :-
member (bird(A),C).
ex_bird(A,ths(B,B,C,C),anc(D,E),ans(F,F)) :-
member (bird(A) ,E) .
ex_not_bird(A,ths(B,B,C,C) ,anc(D,E) ,ans(F,F)) :-
member (bird(A),D).

the rules for explaining and proving something is a bird:

prove_bird(A,B,anc(C,D)) :-
prove_emu(A,B,anc([bird(A)|C],D)).

ex_bird(A,B,anc(C,D),E) :-
ex_emu(A,B,anc ([bird(A)|C],D) ,E).

the ancestor search for emus:

prove_emu(A,B,anc(C,D)) :-
member (emu(A),D).
prove_not_emu(A,B,anc(C,D)) :-
member (emu(A),C) .
ex_emu(A,ths(B,B,C,C) ,anc(D,E) ,ans(F,F)) :-
member (emu(A) ,E) .
ex_not_emu(A,ths(B,B,C,C) ,anc(D,E) ,ans(F,F)) :-
member (emu(A) ,D) .

A Theorist to Prolog Compiler 32

and the rules for explaining and proving something is a not an emu:

prove_not_emu(A,B,anc(C,D)) :-
prove_not_bird(A,B,anc(C, [emu(A) [D])).

ex_not_emu(A,B,anc(C,D) ,E) :-
ex_not_bird(A,B,anc(C, [emu(A) ID]) ,E).

The input:
default birdsfly(A): bird(A) => flies(A).
gets translated into
default birdsfly(A).
which compiles into:

prove_birdsfly(A,B,anc(C,D)) :-

member (birdsfly(A),D).
prove_not_birdsfly(A,B,anc(C,D)) :-

member (birdsfly(A),C).
ex_birdsfly(A,ths(B,B,C,C),anc(D,E),ans(F,F)) :-

member (birdsfly(A) ,E) .
ex_not_birdsfly(A,ths(B,B,C,C),anc(D,E),ans(F,F)) :-

member (birdsfly(A),D).
prove_birdsfly(A,B,C) :-

member (birdsfly(A),B).
ex_birdsfly(A,ths(B,B,C,C),D,ans(E,E)) :-

member (birdsfly(A),B).
ex_birdsfly(A,ths (B, [birdsfly(A)IB],C,C),D,ans(E,E)) :-

variable_free(birdsfly(A)),

\+member (birdsfly(A),B),

\+prove_not_birdsfly(A, [birdsfly(A)|B],anc([],[1)).
ex_birdsfly(A,ths(B,B,C, [birdsfly(A)|C]),D,ans(E,E))

\+variable_free(birdsfly(A)).

and the fact rule

flies(A) —bird(A),birdsfly(A).

A Theorist to Prolog Compiler 33

which is compiled into

prove_flies(A,B,anc(C,D)) :-
member (flies(A),D).
prove_not_flies(A,B,anc(C,D)) -
member (flies(A),C).
ex_flies(A,ths(B,B,C,C),anc(D,E),ans(F,F)) :-
member (flies(A) ,E).
ex_not_flies(A,ths(B,B,C,C),anc(D,E),ans(F,F)) :-
member (flies(A),D).
prove_flies(A,B,anc(C,D)) :-
prove_bird(A,B,anc([flies(A)|C],D)),
prove_birdsfly(A,B,anc([flies(A)IC],D)).
ex_flies(A,ths(B,C,D,E),anc(F,G),ans(H,I)) :-
ex_bird(A,ths(B,J,D,K),anc([flies(A)|F],G) ,ans(H,L)),
ex_birdsfly(A,ths(J,C,K,E),anc([flies(A)|F],G),ans(L,I)).

and the fact rule
—bird(A) «— —flies(A),birdsfly(A).
which is compiled into

prove_not_bird(A,B,anc(C,D)) :-
prove_not_flies(A,B,anc(C, [bird(A) |D])),
prove_birdsfly(A,B,anc(C, [bird(A)ID])).

ex_not_bird(A,ths(B,C,D,E) ,anc(F,G) ,ans(H,I)) :-
ex_not_flies(A,ths(B,J,D,K),anc(F, [bird(A)|G]),ans(H,L)),
ex_birdsfly(A,ths(J,C,K,E) ,anc(F, [bird(A)|G]) ,ans(L,I)).

and the fact rule
—birdsfly(A) «— —flies(A),bird(A).
which is compiled into

prove_not_birdsfly(A,B,anc(C,D)) :-
prove_not_flies(A,B,anc(C, [birdsfly(A)ID])),
prove_bird(A,B,anc(C, [birdsfly(A)[D])).

A Theorist to Prolog Compiler 34

ex_not_birdsfly(A,ths(B,C,D,E) ,anc(F,G),ans(H,I)) :-
ex_not_flies(A,ths(B,J,D,K) ,anc(F, [birdsfly(A)|G]),ans(H,L)),
ex_bird(A,ths(J,C,K,E) ,anc(F, [birdsfly(A) IG]),ans(L,I)).

The next declaration is
constraint not (birdsfly(A) and emu(A)).
This gets translated into

prove_not_birdsfly(A,B,anc(C,D)) :-
prove_emu(A,B,anc(C, [birdsfly(A)|D])).

prove_not_emu(A,B,anc(C,D)) :-
prove_birdsfly(A,B,anc(C, [emu(A) [D])).

fact emu(tweety).

gets translated into

prove_emu(tweety,A,B).
ex_emu(tweety,ths(A,A,B,B),C,ans(D,D)).

fact bird(polly).

gets translated into

prove_bird(polly,A,B).
ex_bird(polly,ths(A,A,B,B),C,ans(D,D)).

Acknowledgements

This work could not have been done without the ideas, criticism and feed-
back from Randy Goebel, Eric Neufeld, Panl Van Arragon, Scott Goodwin
and Denis Gagné. Thanks to Brenda Parsons and Amar Shan for valuable
comments on a previous version of this paper. This research was supported

under NSERC grant A6260.

REFERENCES 35

References

[Brewka86] G. Brewka, “Tweety — Still Flying: Some Remarks on Ab-
normal Birds, Applicable Rules and a Default Prover”, Proc.
AAAI-86, pp. 8-12.

[Chang73] C-L. Chang and R. C-T. Lee, Symbolic Logic and Mechanical
Theorem Proving, Academic Press, 1973.

[Cox82] P. T. Cox, Dependcncy-directed backtracking for Prolog Pro-
grams.

[Cox87] P. T. Cox and T. Pietrzykowski, General Diagnosis by Abduc-
tive Inference, Technical report CS8701, School of Computer
Science, Technical University of Nova Scotia, April 1987.

[Dincbas87] M. Dincbas, H. Simonis and P. Van Hentenryck, Solving Large
Combinatorial Problems in Logic Programming, ECRC Techni-
cal Report, TR-LP-21, June 1987.

[Doyle79] J. Doyle, “A Truth Maintenance System”, Artificial Intelli-
gence, Vol. 12, pp 231-273.

[de Kleer86] J. de Kleer, “An Assumption-based TMS”, Artificial Intelli-
gence, Vol. 28, No. 2, pp. 127-162.

[Edmonson87] R. Edmonson, 7777

[Enderton72] H. B. Enderton, A Mathematical Introduction to Logic, Aca-
demic Press, Orlando.

[Genesereth87] M. Genesereth and N. Nilsson, Logical Foundations of Ar-
tificial Intelligence, Morgan-Kaufmann, Los Altos, California.

[Ginsburg87] M. L. Ginsburg, Computing Circumscription, Stanford Logic
Group Report Logic-87-8, June 1987.

[Goebel87] R. G. Goebel and S. D. Goodwin, “Applying theory formation
to the planning problem” in F. M. Brown (Ed.), Proccedings of
the 1987 Workshop on The Frame Problem in Artificial Intelli-
gence, Morgan Kaufmann, pp. 207-232.

REFERENCES 36

[Kowalski79] R. Kowalski, “Algorithm = Logic + Control”, Comm. A.C.M.
Vol 22, No 7, pp. 424-436.

[Lifschitz85] V. Lifschitz, “Computing Circumscription”, Proc. IJCAI85,
pp. 121-127.

[Llord87] J. Lloyd, Foundations of Logic Programming, Springer-Verlag,
2nd Edition.

[Loveland78] D. W. Loveland, Automated Theorem Proving: a logical basis,
North-Holland, Amsterdam.

[Loveland87] D. W. Loveland, “Near-Horn Logic Programming”, Proc. 6th
International Logic Programming Conference.

[McCarthy86] J. McCarthy, “Applications of Circumscription to Formalis-
ing Common Sense Knowledge”, Artificial Intelligence, Vol. 28,
No. 1, pp. 89-116.

[Moto-Oka84] T. Moto-Oka, H. Tanaka, H. Aida, k. Hirata and
T. Maruyama, “The Architecture of a Parallel Inference En-
gine — PIE”, Proc. Int. Conf. on Fifth Generation Computing
Systems, pp. 479-488.

[Naish86] L. Naish, “Negation and Quantifiers in NU-PROLOG”,
Proc. 3rd Int. Conf. on Logic Programming, Springer-Verlag,
pp. 624-634.

[Neufeld87] E. M. Neufeld and D. Poole, “Towards solving the multiple
extension problem: combining defaults and probabilities”, Proc.
Third AAAI Workshop on Reasoning with Uncertainty, Seattle,
pp- 305-312.

[Poole84] D. L. Poole, “Making Clansal theorem provers Non-clausal”,
Proc. CSCSI-84. pp. 124-125.

[Poole86] D. L. Poole, “Gracefully adding Negation to Prolog”,
Proc. Fifth International Logic Programming Confercnee, Lon-
don, pp. 635-641.

REFERENCES 37

[Poole86]

[Poole87a)

[Poole87b]

[Poole88]

[PGAST|

[Reiter80]

[Smith86]

D. L. Poole, “Default Reasoning and Diagnosis as Theory For-
mation”, Technical Report, CS-86-08, Department of Computer
Science, University of Waterloo, March 1986.

D. L. Poole, “Variables in Hypotheses”, Proc. IJCAI-87, pp.
905-908.

D. L. Poole, Defaults and Conjectures: Hypothetical Reasoning
for Explanation and Prediction, Research Report CS-87-54, De-
partment of Computer Science, University of Waterloo, October
1987, 49 pages.

D. L. Poole, A Logical Framework for Default Reasoning, to
appear Artificial Intelligence, Spring 1987.

D. L. Poole, R. G. Goebel and R. Aleliunas, “Theorist: A Log-
ical Reasoning System for Defaults and Diagnosis”, in N. Cer-
cone and G. McCalla (Eds.) The Knowledge Frontier: Essays in
the Representation of Knowledge, Springer Varlag, New York,
1987, pp. 331-352.

R. Reiter, “A Logic for Default Reasoning”, Artificial Intelli-
gence, Vol. 13, pp 81-132.

D. Smith and M. Genesereth, “Ordering Conjunctive Queries”,
Artificial Intelligence.

[Van Hentenryck87] P. Van Hentenryck, “A Framework for consistency

techniques in Logic Programming” 1JCAI-87, Milan, Italy.

VE : KILVIIL 1TAINUR AUV IUL
X-24601 REV. 3/86 VENDOR CODE: 390620

VENDOR NAME: UNIVERSITY OF WATERLOO

INV NUMBER INV DT PO # CD AMT BILLED DISCOUNT

C38801’ 110388 B 003048 V 4.00 .00

ATTACH. CODE:

dla K NG G W S ME G e e e W AN 0 SW L

CHECK NUMBER (1756432

CHECK DATE: 12/19/88
PAGE 1 OF 1

D e R R e

DEBIT AMT NET _AMT
.00

N=NONE B=BSS V=VENDOR X=BOTH

P.O. BOX 3707 ** SEATTLE, WA 98124

IVISION OF THE BOEING COMPANY **
270460 OEING SUPPORT SERVICES

CHECK
AMOUNT Xxxkxxxd 00

Purchase ¢

‘U’n}'vevrsnty of Waterloo
Department of Computer Science
-Waterloo, Ontario N2L 3G1

INVOICE

Sea'tt]‘.e'.,j 24—-2207

$19939

cs-88-01

price inc lpdés p@ggage)

Woulcldyo lease make your cheque or international bank draft payable to the Computer Scn- .

' ence Departmen University of Waterloo and forward to my attentlon

Thanking you in advance.

Yours truly,

oa

. Susan DeAngelis (MIS) S
Research Report Secretary
. Comgute: Scxeqce Dept.

NOV -2 1928

BOEING TECHNICAL LIBRARY

PLEASE REFERENCE
OFFICIAL S 7 S PURCHASE ORDER NO. || "o, DAY
PURCHASE ORDER BILLS OF LADING, ETC.
L9939 < 88/10/18
S THE BOEING COMPANY ? THE BOEING COMPANY
| LIBRARY ACQUISITIONS L LIBRARY ACQUISITIONS
P P.0. BOX 3707 M/S 74-60 L P.0. BOX 3707 M/S 74-60
SEATTLE, WA 98124-2207 SEATTLE, WA 98124-2207
T T
0 U.S.A. 0 U.S.A.
QUANTITY ISBN TITLE DESCRIPTION EST. UNIT PRICE
1 POOLE, D L. COMPILING A DEFAULT REASONING SYSTEM INTO 30.00

PROLOG. NOTE: 1988. NOTE: CS-88-01. NOTE: 109552.
NOTE: HARD COPY. EDITION: LATEST.

U.P.S. SHIPPING ADDRESS:

%&kw ‘ BOEING CENTRAL RECEIVING

LIBRARY, 237-1563, MS 74-60
AUTHORIZED SIGNATURE ’ ’
BLDG 4-63, DR 27
LOGAN N & N 6TH ST
RENTON, WA 98055

UNIVERSITY OF WATERLOO DIRECT ORDER INQUIRIES TO:

WATERLOO, ONT
N2L 3G1 THE BOEING COMPANY
CAVADA LIBRARY ACQUISITIONS

P.0. BOX 3707, M/S 74-60
SEATTLE, WA 98124-2207
TEL:(206) 237-1563

National Centre for Software Technology
Guimohar Cross Road No. 9, Juhu, Bombay 400 049

Telephone: 62 96 06 /62 95 74
Telex: 011-78260 NCST IN

DEC - 9 1383
NCST

Dy. Librarian ' ¢ (- 8%

Ref:NCST/LIB/ &g

E)Cfox4nA&uJ' §¥ (f&wﬁ:ul@l. Lcicvce

Un«vwc(7 S Wealéx feo
Wedeiloo Outeio NAL 3G
S A

Dear Sir,

(rewinicol Repot '1qsg)

We hereby place our firm order for the titled}llsted below/in the
enclosure. :

Please send your proforma invoice in quadruplicte for advance
payment. Also indicate the handling/shipping charges and
discount applicable to R & D Centres/educational institutions.

Awaiting an early receipt of invoice.

Yours faithfully,

(C'fskat\,
74(Dy. Litrévion-)

D Peecle o Covnpif .
ID/ ,\w\a o, ol /.,/A"_ s
e in ke Pr& Q%’S;K%‘Ol

COMMANDE DE LIVRE / BOOK ORDER —l"u nases78/00 MBIPATE 2¢ 10 88

70 QUOTE
lOTEIOOI-". TITRE/TITLE AUTEUR/AUTHOR - EDITEUR/PUBLISHER . . .
GO1 | COMPILING A DEFAULL [FENG SYS- | POOLE D. NEE vEAR AUT.JAUTH.
TEM INTO PROLQGGCS 88 U1 Vo /
RESEARCH REPORTS T9EE '
ED./PUBL.
2 i AU} %
MESSAGE q
_ Casrh) o g)
EXP./SHIP| SURF ACF W/‘(\W"}
fd f m'.“\ WATERLOO (UNIVERSITY OF)
awson rrance 4 SUSAN DE ANGELIS-FAC.MATHEMATI|CS
SERVICE LIBRAIRIE-BOOKS DEPT. LUPT COMPUTER SCIENCE E
AGREMENT DOUANE | 20 WATERLOC ONTARIOC NZL 361
B.P. 40 CANAGA -
91121 PALAISEAU CEDEX (FRANCE) -
TEL. : (1) 69.09.01.22 - TELEX 600 394 £ i
_ Télécopieur (1) 64.54.83.26 Y, o
4 2T ook .
OUR ACCT %X o oEDITION PAQUET POSTE
SHIPMENT BY BOOKPOST

REMISE LIBRAIRE SVP / BOOKSELLER'S DISCOUNT PLEASE FACT. 3 EX. / INVOICE IN TRIPLICATE

-

IMPORTANT : NOTICE TO PUBLISHERS / RECOMMANDATION AUX EDITEURS

e TO COMPLY WITH UNIVERSAL POSTAL UNION REGULATIONS

A - PLEASE STICK THIS LABEL ON THE PARCEL,

B - AFFIX ON THE PARCEL THE GREEN CUSTOMS LABEL “C1” COMPLETED
WITH THE NET VALUE (AS APPEARING ON YOUR INVOICE) AND THE
DESCRIPTION OF CONTENT (EDUCATIONAL BOOK, ETC...) OR,

- AFFIX OR ANNEX EITHER A COPY OF YOUR INVOICE OR A CUSTOMS
DECLARATION “C2/CP3".

FAILURE TO COMPLY WITH THE ABOVE COULD RESULT IN THE
CUSTOMS WITHHOLDING CONSIGNMENT.

e AFIN DE SATISFAIRE AUX EXIGENCES POSTALES ET DOUANIERES
A - VEUILLEZ COLLER CETTE ETIQUETTE SUR LE COLIS, : >
B - VEUILLEZ FIXER SUR LE COLIS L'ETIQUETTE VERTE DE DOUANE “C1”
AVEC LE PRIX NET (TEL QU'IL APPARAIT SUR VOTRE FACTURE) ET LA
. DESCRIPTION DU CONTENU (LIVRE D'ENSEIGNEMENT, ETC...) OU
JOINDRE VOTRE FACTURE OU UNE DECLARATION C2/CPS3.
LE DEFAUT DE CETTE PROCEDURE POURRAIT PROVOQUER UN BLOCAGE
EN DOUANE. {

PFRQO22

SIMON FRASER UNIVERSITY

BURNABY, B.C. V5A 1S6

VENDOR NO.

41450 |pace

BATCH

INVOICE NO.

P/0 NO.

INVOICE AMOUNT

BATCH

INVOICE NO.

P/O NO.

INVOICE AMOUNT

REFORT

200

o~

RN

AR

gd

REMITTANCE STATEMENT

e

PLEASE DETACH

L

faa]
sl

w3

TOTAL

200

SIMON FRASER UNIVERSITY

SCHOOL OF COMPUTING SCIENCE BURNABY, BRITISH COLUMBIA V5A 156
FACULTY OF APPLIED SCIENCES , Telephone: (604) 291-4277
&8

&

AUGUST 25, 1988

UNIVERSITY OF WATERLOO
DEPT. OF COMPUTER SCIENCE
WATERLOO, ONTARIO

N2L 3G1

DEAR SIRS:

PLEASE FIND ENCLOSED MY CHEQUE IN FHE-AMOUNT OF $2.00.
PLEASE SEND ME TECH REPOREBifgiﬁg:Ql,COﬁPILING A DEFAULT
REASONING SYSTEM INTO PRO . POOLE.

&

THANK YOU,

JIM DELGRANDE
ASSISTANT PROFESSOR

gree to assume all responsmlllty and |I§blllty fo any‘ nfr'n
reproductlon of any ‘f the matenals here n requested | furth' :agree to mdemmfy and hol

. NUMBER
“oF COPIES"

- NUMBERING.
- _FROM

| PLASTIC RiNG

CUTT[NG
SIZE

. ACCQUNT NOU

NUMBE‘R R R 2 T NUMBER -

-OF lﬁmsgs i oD . . OF cOPIES

. %ER_ [l srisToL

o NUMBERING
BGS. < UFROM .

	

