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Abstract

The role of model-based computer vision is to provide an interpretation of an
image based on symbolic knowledge of a domain of interest. We clarify the meaning

of this notion of interpretation by viewing visual recognition by a computer as theory

formation.

We provide a declarative semantics which defines what constitute valid inter-
pretations of an image, and provides a basis for ranking these interpretations. This
meaning of an interpretation is independent of implementation, but we also show
how this semantics can be combined with the typical representation used for visual
knowledge to define a model-based vision system. More specifically, we show how
valid interpretations can be constructed from a simple knowledge representation

that uses a particular form of composition and specialization hierarchies.

Our specification of an image interpretation clarifies several aspects of model-
based visual recognition. We compare it to related work in which a cycle of

hypothesize-test-revise is used to iterate toward a preferred interpretation.
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Chapter 1

Computer Vision: A Brief

Introduction

Once the main stream of a field of research is laid down, and researchers start
following the current, long awaited answers rapidly arise and solutions to central
issues become clearer as more complex concepts are made comprehensible. Compu-
tational vision has yet to have its main stream formally defined, but as our study of
computational vision matures and the pieces of the puzzle start falling into place,
central concepts that will become corner stones of further development are arising

from a consensus of researchers of the field.

Our aim in this dissertation is to formalize, into a logical framework, the govern-
ing paradigms of up-to-date research in model-based approaches to computational
vision. This formalism provides a precise and clear semantics for the different con-
cepts used in computational vision. The semantics naturally follows from what we

call Perceptual Reasoning' which introduces the idea of using “theory formation”

1The term is borrowed from Hayes [Hay81].
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as an abstraction of the visual recognition process in a computational setting.

In this introductory chapter, we briefly introduce the reader to the kind of
formats the sensed data take in a computational vision environment, and lay down
some common goals as general basis for research in the field of computational vision.

An overview of the rest of the dissertation is provided at the end of the chapter.

1.1 Human Perception and Computer Vision

Visual perception serves as a window on the world; it is a link between what is
in the world, and the concepts we reason with. Due to the ease with which we
achieve visual perception, our ability to visually perceive the surrounding world is

something that we take for granted in our daily life.

Philosophers since ancient Greece, and more recently, contemporary psycholo-
gists, have tried to explain this complex phenomenon of visual perception. The
quest for an explanation of our visual abilities is still on today. Numerous schools
of thought have come about to explain visual perception, each having their own
version of the “ezplanation” for human perception. Amongst the noticeable ones

are those of Helmholtz, Gibson, the sensationalists, and the Gestaltists [Gar86).

With the introduction of computers came a new generation of scientists con-
cerned with visual perception. These scientists belonging to new fields of research,
such as Artificial Intelligence (AI) and Cognitive Science (Cog-Sci) started to

investigate the possibility of defining computational models to achieve visual per-

ception.

Computers provide us with an environment for verifying our theories about

perception, and serve as a development tool for new ones. It is hoped by the
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Cog-Sci community, that by investigating how we can get the machine to perform
different tasks, we will gain insight on how we, ourselves, perform those same tasks.
The AI community, on the other hand, is interested in computational models that
are based on formal theories, but these theories are not necessarily representative

of the way human achieve visual perception.

1.1.1 What do Computers See?

The stimuli (included in images) that are made available to computers for visual
perception come in many different forms. Usually images used by computer vision
systems come in the form of what we call digital (discrete) images. A digital tmage is
an image sampled into digital values that approximates the brightness and location

of the sensed data.

In monochrome digital images, the gray level value of the partitioned (sampled)
image is assigned to a small cell called a pixel? . A pixel is the smallest unit of the
image, and can be thought of as abstracting the receptors, sensory nerve cells that
compose the retina in the human apparatus. These images can be represented by
an image function, f, where f(z,y) is the brightness of the gray level of the image
at a spatial coordinate (z,y) [BB82]. Note that f, z, and y only take on discrete
values. It is this discrete information that the computer has to process to perform

visual perception.

Even though this format is widely used, there exist other techniques relevant
to computer vision that are used to encode the sensed data of the surrounding

environments:

e Colour images

2¢Pixel” stands for “picture element.”
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e Stereo images

e Range images

Colour Images are multispectral images where, for example, the intensity of
the three wavelength: red, blue, and green are registered. In this case, the image

function f is a vector-valued function with components {fred, fotue, fyreen} [BB82].

The image data in range images is obtained, for example, through the use of a
laser range finder® , the depth information of the scanned surfaces of the scene is
then registered (e.g., [LWR85,HYI86|). We can extract the depth information, and
other spatial relationships in stereo images by examining the disparity between the

two image planes (e.g., [Hof86,CF82]).

1.1.2 Low Level and High Level Computer Vision

Computer vision can be roughly separated into two levels of processing: low level
and high level. Even though the two levels are often used to classify different tasks

in computer vision, the terms remain ill-defined in terms of their scope.

We believe that these terms (low level and high level vision) refer only to the
extremities of a “visual processing continuum”, we will therefore define them here

very generally, avoiding the overlapping section of the two levels.

Low level vision consists of the early processing of the data (e.g., filtering, edge
enhancement, range finding). Through the early processing, we try to expand the
information compressed in the pixels using their spatial relationships, and other

properties found amongst them. For example, the goal of filtering is to enhance the

30ther devices using light or sonar are also used.
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features included in the image by changing the registered gray levels of the image.
Edge enhancement exploits the relation between local discontinuities in the gray

level intensity and object boundaries to mark edges.

At the other end of this visual processing continuum, high level vision is more
concerned with the aspect of the cognitive use of some encoded knowledge about
objects and relations. The different tasks of high level vision are highly dependent
on the computational model used. The general goal is to produce a certain descrip-
tion of the scene from the image; the description required depends on the desired

application.

1.2 Visual Recognition by Computers

In order to achieve visual recognition by a computer, a very large amount of infor-
mation must be processed, and unfortunately, it is very poorly structured. Pixels,
by themselves, give rise to highly ambiguous information. The ambiguity arises
because the value of each pixel of a digital image could have been generated by
many different physical entities* , and because the depth dimension is collapsed by

the projection of three dimensional objects into a two dimensional image® [CF82].

We said earlier that “visual perception serves as a window on the world;” in a
computational setting, it should provide a correspondence between the world and
the model the computer has of the world. Providing this correspondence is a major
goal of computational vision that we refer to as computational visual recognition.
A very general definition of computational visual recognition can be stated in the

following terms:

4Many factors contribute to the value of a pixel -light, surface material, texture, etc.
5Using the focal length and the properties of similar triangles, we can define a multitude of
cartesian coordinates that could have produce the same value for any given pixel.
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Computational visual recognition is the process of finding a mapping between
the world, as depicted in an image, and an internal model of that world which

can be depicted by the same image.

The above mapping can be obtained by processing the intrinsic information
included in the image, and providing an “interpretation” of the image which makes
explicit the description of the scene depicted. This explicit description of the scene
becomes a prerequisite, in a multi-purpose system, for further tasks such as the
manipulation of objects and further reasoning about the objects [BB82]. Note that,
in accordance with this definition, the mapping process is independent of the domain
specific knowledge of the system. Only the terms used in an interpretation depend

on the system’s knowledge of a particular domain.

1.3 Motivation

An image can be considered as a collection of appearances of objects from the
world. It is generally a.ccept‘ed that going from the object to its appearance is a
stable mapping, but that going from an appearance to the object admits many
exceptions, simply because the image underconstrains the scene depicted. Simple
computational brute force to find this mapping is pointless unless guided by a theory.
What we seek may be thought of as a theory for inverting the physical process of
image formation [CM84].

In order to define a sensible theory of computational visual recognition, we must
be able to define what counts as an acceptable description of an image content.
This explicit description of an image content is usually referred to, in the computer

vision community, as an “interpretation” of the image. The formal foundations of
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what constitutes an interpretation of an image and how it can be obtained have
not received much attention in the computer vision community. We consider these
formal foundations to be crucial to an understanding of visual recognition. We
view as a major focus of computational vision to define clearly and precisely what

constitutes a valid interpretation of an image, and how it can be obtained.

In Marr’s view [Mar78,Mar82], when designing a computational model one

should distinguish between

e Computational Theory
e Algorithmic Considerations

¢ Implementation

The computational theory is concerned with the “what” and “why” of things
being computed. Algorithmic considerations describe “how” computation is to be
carried at an abstract level, and the implementation level specifies “how truly,” in
terms of a concrete implementation, the specifications of the previous level can be

carried out, or closely approximated.

In accordance with Marr’s view, our goal in this dissertation is to define a
“computational theory” for Model-Based approaches to computational vision and
to present “algorithmic considerations” for a particular instance of that theory. Our
emphasis is on higher levels of the computational recognition process, sometimes

called “high level scene analysis.”

There has been much fundamental research done in the lower level of compu-
tational vision, which we will refer to only when indicating how higher levels of

processing can be used to expedite lower level tasks.
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The thesis we support is that the meaning of symbolic interpretation of an image
is clarified by viewing computational visual recognition as “theory formation.” We
henceforth view the computational process of obtaining an interpretation of an
image as a theory formation process. The goal of this theory formation process
will be to explain, with theories built from a fized set of possible hypotheses, the
the observations made in the images, and to use these theories to make further
predictions about the image. The fixed set of hypotheses contain the building
blocks of the internal model of the world.

By viewing computational visual recognition as theory formation, we obtain a
declarative semantics which clearly and precisely defines the concept of an image
interpretation. This meaning of an interpretation for an image is independent of

the implementation of this process.

The need for having a clear and precise definition of what constitutes a valid
interpretation of an image, and a specification of how such interpretations can be

obtained, is further justified by the following two points.

First, this semantics provides a framework to evaluate the correctness of im-
plementations of model-based systems in computational vision. With a clear and
precise definition of what constitutes a valid interpretation of an image, we can
evaluate a particular implementation with respect to the criteria of completeness

and soundness.

Second, the meta-theory of how such a valid interpretation is obtained can serve
as a specification for new and possibly more efficient implementations. The theory

does not equal the implementation as it is the case in many other approaches

Note that this dissertation makes no claims about human perception and is

really only concerned with defining formalisms for model-based approaches to com-



CHAPTER 1. COMPUTER VISION: A BRIEF INTRODUCTION 9

putational vision.

1.4 Outline of the Dissertation

In the following chapter, we examine existing control structures used in compu-
tational vision. We are particularly interested in abstracting the current trends
in model-based approaches to computational vision and synthesizing them into a
theory formation process that we call Perceptual Reasoning. We explain informally

how computing interpretations of images naturally follow from this abstract process.

In chapter 3, we provide a declarative semantics which defines a valid interpre-
tation, and provides basis for ranking interpretations. This semantics (meaning) of
an interpretation is independent of implementation, and can therefore be used as
a reference for the correctness evaluation of model-based systems or as a guide for

new implementations.

Chapter 4 demonstrates how Perceptual Reasoning can be used to define a com-
putational vision system. We first discuss the use of hierarchies of abstraction for the
representation of the visual knowledge as it is used in most model-based approaches,
and then present a particular instance of Perceptual Reasoning that exploits com-
position and specialization hierarchies for its visual knowledge representation. Full
examples of the recognition process, and arguments of the correctness of this par-

ticular instance of Perceptual Reasoning are provided.

Finally, we conclude in chapter 5 with a summary of our formalism and our

contribution, and indicate directions for further research.



Chapter 2

Control Structures of

Computational Vision

The aim of this chapter is to examine existing control structures used in com-
putational vision. In particular, we abstract the current trends in model-based
computational vision and synthesize them into one coherent framework. We intro-
duce Perceptual Reasoning as this abstraction of the visual recognition process in
a model-based computational setting. Perceptual reasoning is based on the idea of

using “theory formation” as the basis for providing interpretations of images.

2.1 Existing Computer Vision Control Structures

Despite all the past research in computer vision, there is still disagreement on very
central issues of what constitutes an appropriate approach to visual recognition by
a computer. One such issue is the control structure used for computational vision,

which is at the very heart of any vision system. The different control structures

10
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that exist can, at a high level of abstraction, be classified into three very general
paradigms: the bottom-up approach, the top-down approach, and the hypothesize-

and-test approach.

2.1.1 Three Paradigms

The bottom-up approach, also known as the data driven approach, can be recog-
nized in the pioneering work of Marr [Mar78,Mar82], and Barrow and Tenenbaum
[BT78,BT80]. This approach is characterized by a data driven process; the initial
level is computed directly from the image and recognition is achieved by incremen-
tally processing the available information upward. Its counterpart, the top-down
approach, usually relies on “surface shape” or “wire frame” models and proceeds
by trying to identify a restricted set of objects in the given image by going from the
model to the image. This approach, however restrictive because of the many ap-
pearances the objects can take from different viewpoints, is behind several successful

industrial vision systems.

The third control structure alternates between bottom-up and top-down pro-
cesses; it is the hypothesize-and-test approach. This is the approach taken in so-
called Model-Based vision systems (e.g., ACRONYM [Bro81]). We believe all these
systems include the basis of the ideal general solution to the control issue, that is,
that they alternate between data- and model-driven processes. In the next section,

we redefine this notion in terms of segmentation and interpretation.

2.1.2 Segmentation and Interpretation

Segmentation and interpretation are often seen as the major steps in computer vi-

sion recognition. By segmentation, we mean the location and extraction of coherent
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spatial groups in the image, such as edges, surfaces, background/foreground, etc.,
and by interpretation, we refer to the transformation of the image description, in
terms of the segmentation, into a description of the scene which conveys a meaning-

ful organization of what is really out there.

To apply these two steps sequentially assumes that a perfect segmentation can be
achieved. It is known that only partial segmentation can be achieved at first, unless
you make very strong and unverifiable assumptions. We believe, like Mackworth
[Mac78], that these two problems (segmentation and interpretation) are not inde-
pendent, and further believe that contextual knowledge is the key to an adequate

segmentation.

In a visual framework, it can easily be shown that contextual information from
the complete image plays an important role in how we interpret what we see. A
piece of image out of its context carries little information about its surroundings.
To convince yourself, simply look through a tube at the scene around you, or place a
piece of paper with a narrow slit cut in it over a picture [Pen86,Roc83]. It then seems
evident that exploiting contextual information from an image is essential for visual
recognition by a computer. Although contextual information plays an important
role in visual recognition by a computer, one must realize that the entire picture
itself serves as a tube or slit on the surrounding world, meaning that context is
always partial. There can be more or less of the contextual information present but
never all. Therefore the potential for ambiguity is always present, and a maximal

use of the “available” contextual information is what we should aim for.

In order to exploit contextual knowledge during segmentation, we believe it
is desirable to alternate between careful segmentation and interpretation, as was

suggested by Mackworth [Mac78|.
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2.2 Model-based Approaches to Computational
Vision

Contextual knowledge of an image arises when the recognition of one object (or
feature) in the image leads us to expect other certain objects (or features). It
is generally accepted that image understanding is almost impossible without such
expectations, but some formalisms do not explicitly exploit that information. We
believe it is important to use such information as it will reduce the search space
when interpreting the image. We further believe that the use of this contextual
information should be part of the specification of a computational vision framework,
as opposed to being in the form of embedded heuristics, because this will help clarify

the early processing.

This idea of using such contextual information is the underlying concept be-
hind model-based approaches to computational vision. This explains the particular
attention given to model-based approaches of computational vision in this disserta-

tion.

In our effort to abstract and synthesize the visual recognition process used in
model-based approaches to computational vision, we examined many different sys-
tems, trying to develop insight into how the analysis of an image is controlled.
Amongst the many systems studied were the Aerial Photographs Analysis System
[MNI78,MNI79], VISIONS [HR78], ACRONYM [Bro81,Bro84,Bro86|, MAPSEE
[Mac77,HM83], ALVEN [Ts085)], the Model-Based System of Goad [Goa86), and

others.

These systems’ control structures share many similarities. Mackworth [Mac78]

already noticed that a paradigm for the control structure of vision programs can be
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characterized in what he defined as the Cycle of Perception. He further explained
how different vision programs can be characterized by the way they treat the Cycle

of Perception.

2.3 The Cycle of Perception

The Cycle of Perception, as proposed by Mackworth [Mac78|, consists of four pro-
cesses: cue discovery, model invocation, model verification, and model elaboration.

See figure 2.1.

Mulder [Mul85] gives an elaboration of the respective roles of these processes.
Briefly, the cue discovery process is equivalent to segmentation, the model invocation
process associates possible interpretations with the elements of the cue discovery
process. Model verification is the process that tests whether the description of
the model associated with the cues is consistent with the image, finally, the model
elaboration process ensures, using a constraint satisfaction algorithm, that the con-
straints produced by the set of all models are jointly satisfied and do not contradict

one another.

What is not explicit in Mackworth’s Cycle of Perception is a precise specification

of what constitutes a valid interpretation, i.e. when does the cycle end.

2.4 Theory Formation: An Intuitive Abstraction

The basic concept underlying all these model-based systems that Mackworth cha-

racterized with his Cycle of Perception is this idea of hypothesizing the presence of
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cue
discovery

model model

invocation elaboration
model
verification

Figure 2.1: The Cycle of Perception
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some objects based on cues extracted from the image, and then verifying that these

objects are indeed present in the image.

Intuitively, this way of proceeding with the analysis of images is very similar
to the way scientists build theories to explain natural and physical phenomena.
Informally, having observations of certain phenomenon, a scientist proposes a theory
to explain this phenomenon based on related hypothesis and facts. He will then
use this theory to explain new observations and to make predictions of further
phenomena. In the event that the predictions from his theory are not observable or
even contradicted, the scientist will revise his hypotheses, and modify his theory so

that it is more representative of the phenomena.

Analogically, we can view the features (cues) extracted from the image as a
set of observations to be explained by a theory. We want to use as theories, only
consistent sets of objects that explain the presence of the features observed in the
image. This criterion for forming theories already considerably reduces the search
space for computational visual recognition, yet, many such theories can be found
for a given set of observed features. The process of finding theories that explain the
observed features characterize what are called “hypotheses activation schemes” in

the computer vision community.

Given the set of theories that explain the observations, we want to first consider
those that are most likely to be coherent with the image. An attempt to rank the
theories is then in order to “focus” our attention on a preferred theory. We then
want to verify the “expectations” of this theory. If the expectations of the present
theory are coherent with the image, we then use this theory as an “interpretation”
of the image. If it turns out that the expectations of the present theory are not
coherent with the image, we then focus on the next preferred theory and so on until

an interpretation is found or we run out of theories, in which case, it is safe to assert
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that no interpretation of the image can be found given the knowledge of the system.

This “theory formation” abstraction of reasoning was inspired by Popper’s view
of scientific discovery [Pop58], and is basically an abductive form of reasoning
[Hem65]. Quine and Ullian [QU78] also favour this kind of theory formation ap-

proach as an explanation of human reasoning.

The foundations of the approach we present in this dissertation were inspired by
the THEORIST project at the University of Waterloo [PGA86]. Theory formation
from a fixed set of possible hypotheses has also been shown to include part of
human common sense way of doing reasoning in many tasks, e.g., default reasoning

[PGA86,GFP86,Poo86|, analogical reasoning [Jac86], and planning [Goo87,GG87].

The following chapter defines Perceptual Reasoning, which is a formal charac-
terization of “theory formation” appropriate for describing the way model-based
vision systems obtain interpretations of images. From the formal treatment of

these ideas arises a semantics for image interpretations.



Chapter 3

A Semantics for Visual

Recognition

In this chapter, we view computational visual recognition as theory formation, pro-
vide a declarative semantics which defines a valid interpretation, and provide a basis
for ranking interpretations. We clarify the meaning of a symbolic interpretation by
formalizing model-based computational vision in terms of a theory formation cha-
racterization founded on first order logic. This formalism, which we call Perceptual
Reasoning, provides logically founded criteria to discriminate between valid and

non-valid interpretations, and for preferring one interpretation to another.

3.1 High Level Scene Analysis

We restrict ourselves to the the problem of High Level Scene Analysis' of static

images. We define the problem of high level scene analysis as the process of mapping

1The term “image understanding” is also often used.

18
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the image domain to the scene domain. This distinction between the image and
scene domains in the cycle of perception is due to Kanade [Kan78]. We view the

image domain as a projection, depicting the scene domain from one fixed viewpoint.

When referring to the image domain, we speak of cues or features that can be
extracted from the image (e.g., lines, regions, etc), or of derived cues and features,
(e.g., sets of lines and regions), which are directly derived from the image. In the
scene domain, we refer to sets of symbols? denoting scene objects (e.g., car, wheel,

etc.), and to relationships amongst those symbols.

The mapping process between the image domain and the scene domain for static

images correspond to a restricted form of computational visual recognition as de-

fined earlier.

3.2 Perceptual Reasoning: Visual Recognition as

Theory Formation

A description of a scene depicted by an image is obtained by providing an interpre-
tation of the image in the scene domain. As we observed in the previous chapter,
this notion of interpretation is intuitively similar to a scientific theory: a possible

explanation of the observations made in the image domain.

Informally, in Perceptual Reasoning we propose theories of scene domain objects
that could have generated the appearances that we observe in the image domain.

For a set of initial observations from the image, hypotheses are selected from a fixed

2These symbols are names of scene domain objects. We use the word symbol here, because of
the way these symbols are used to categorize the features from the image. The term “label” is also
often used.



CHAPTER 3. A SEMANTICS FOR VISUAL RECOGNITION 20

set of possible hypotheses to try to explain the observations made® . An ordering
of the selected hypotheses is then attempted, and the hypotheses are verified, one
by one, for coherence with the image. As soon as an hypothesis with all the desired
properties of an interpretation is found, we commit to this theory as being the

interpretation of the given image which provides a description of the scene depicted.

The rest of this chapter will formalize this theory formation characterization of

model-based approaches to computational vision.

3.2.1 Using Logic for a Specification

First order logic is well known for its clear and precise semantics and has been shown
to be descriptively adequate for many tasks [Hay77,Moo82]. We chose first order
logic as the language for the specification of our characterization of computational

vision, because of the rigor it provides.

Traditional logic as been perceived as inappropriate for the kind of reasoning
we are interested in, because of its monotonicity. That is, a common use of logic
is to state our knowledge by making assertions of what is true in the world we are
modelling, and then inferring what logically follows from our knowledge. When
analyzing images, we do not only want to use deduction, we in addition want to
test hypotheses, and to change our hypotheses of the content of an image as new
information is obtained. Israel [Isr80] argued that rather then being a problem with
logic, the problem was with the way we use logic. Poole [Poo86] further argued that
by viewing reasoning as theory formation, we are able to overcome these apparent

shortcomings of ordinary logic.

3The observations are cues and features of image domain and the hypotheses are scene domain
objects, i.e. the possible things that could be in the scene.
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The syntax we will use for our characterization is an extension of the syntax of
first order predicate calculus. The following normal first order predicate calculus
symbols will be used: variables start with upper case letters, constants, functions
and predicates are in lower case. The connectives are the standard first order
connectives: — for negation, V for disjunction, A for conjunction, D for implication.
Parentheses are used as well, and Prolog’s convention is used for lists (e.g., [a, b, ¢]
is a 3 item list). All new additions to this syntax will be explain as we introduce

them.

Before going into the details of Perceptual Reasoning, we have to formalize and

provide definitions for different concepts that will help put Perceptual Reasoning

into perspective.

3.2.2 The symbolize Relation

We first need a formal way to relate the cues or features of the image domain to
the scene domain objects they can depict. Intuitively, we would like to preserve
flexibility vis a vis the imagé analysis/synthesis paradigms [Won86| because of the
close relationship that exists between these two paradigms. Computer vision has
been concerned with the analysis of images, thet is, to produce a description of
what can be “seen” in the image. On the other hand synthesis belongs to the
field of computer graphics. It refers to “illustrating” graphically, in an image, the

description of a scene.

We provide the desired relation and flexibility by using a two place predicate,
symbolize* , as the basis of our formalism. Intuitively, we want symbolize to relate

names of objects to the actual things (instances) that can be observed in the image.

“gymbolize is defined in [Oxf79] as a verb (i): to be the symbol of (ii): to represent by mean of
a symbol.
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To achieve this, two domains are defined. The first one consists of the individual, or
composite individual (i.e. individuals regrouped into one) things that are actually
in the image (e.g., line, region, etc.). We refer to these individuals and composite
individuals as the “cues” from the image. The second domain is a set of “symbols.”
These symbols are the names of objects that could be in the scene depicted by the
image (e.g., car, bicycle, etc.). For Perceptual Reasoning, symbolize is a relation
between these two domains. Therefore symbolize(X,Y) is true whenever the Symbol

X symbolizes (names) a Cue Y of an image.

The symbolize relation, in Perceptual Reasoning, is used as a basis for a kind
of rewriting framework such that a mapping from the image domain to the scene
domain is obtained. During this rewriting, the individual cues are regrouped to
form composite individual cues. The rewriting is done according to axioms that
are written about the symbolize relation. The grouping of cues (features) to form
a higher level cue, can be perceive as a form of segmentation, as it reflexes the

association of cues (features) from the image into coherent spatial groups.

Definition 1: The primitives are a distinguished set of symbols from the domain

of symbols.

Primitives denote the finest grains of Perceptual Reasoning and are used in both
observations and predictions. We assume that a procedural attachment exists to

define the symbolize relation between a primitive and a cue from the image.

Definition 2: An instance of a primitive is a ground instance of the symbolize
predicate where the first argument is a primitive and the second argument refer

to a particular cue in the image.
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The symbols used in the initial observations will form the start set of the recog-
nition process. In general, these symbols are going to be primitives. One possible

exception to this general rule is image-specific observations directly inputed by the

user.

We present a simple example to clarify these concepts in figure 3.1. We first
list the primitives for the example. We then define the symbolize relation for the
primitives (we used small icons for the second arguments of the symbolize relation
to illustrate the fact that a procedural attachment would be used to define the
relation). An example of a particular image is then given along with the instances

of primitives that form the observations for this image.

One can recognize in the symbolize relation the preservation of the analy-
sis/synthesis flexibility mentioned above. In the synthesis context, procedures for
“rendering” the cues or feature would be used to define the symbolize relation for

the primitives as opposed to procedures for detecting them.

We now introduce the concept of an Intermediate Image.

Definition 3: An intermediate image is a collection of assertions made from
and about the digital image. It consists of instances of symbolize(z,y), where

z s a primitive, and of other detected relations between the cues.

An intermediate image consists of two parts; there is an explicit and implicit
part. The ezplicit part of an intermediate image contains the actual observations;
cues that are found initially in the image. Whenever we attempt to establish the
symbolize relation in the image to verify a prediction, we are dealing with the

implicit part of an intermediate image.

For perceptual reasoning purposes, the intermediate image is initially going to

provide observations to be explained by a theory, as instances of the symbolize
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primitives = { wheel, frame, seat, handles }

Definition of symbolize for primitives
(procedural attachment)

symbolize( wheel, O )
symbolize( frame, T )
symbolize( handles, ¢ )
symbolize( seat, a )

d

eC —
O

Instances of Primitives

symbolize( wheel, a )
symbolize( wheel, b )
symbolize( frame, c )
symbolize( seat, d )
symbolize( handles, e )

Figure 3.1: Primitives
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predicate and other known relations. These “other relations” are relationships which
may hold between cues (e.g., junction types between lines). The intermediate image,
through the use of the symbolize predicate, is a powerful media because of the

flexibility and abstraction it provides with respect to the digital image® .

The intermediate image can be seen as a communication node between the lower
levels and the higher levels of recognition processing. Through the intermediate
image, the lower levels provide observations to be explained by higher levels, and

the higher levels make predictions to be verified by lower levels.

The intermediate image is independent of the knowledge source; the observations
that form the intermediate image can come from many different sources® (e.g.,
stereo vision disparities, texture analysis, range data from sonar), even from the
user (e.g., domain specific knowledge). All these sources can cooperate to build the

intermediate image.

Two things are important to notice at this point. First, that the procedu-
ral attachment that defines the symbolize relation for a primitive can relate to
different kind of cues or features depending on the implementation for a particu-
lar desired application (e.g., line drawings, volumes, etc.). Second, that no fixed
point on the recognition continuum is specified by the formalism for the interme-
diate image, meaning that the level of abstraction at which the observations are
made can vary from implementation to implementation (e.g., symbolize(edge, a) or
symbolize(wheel,b)). The location on the visual recognition continuum at which the
intermediate image should be fixed will depend on efficiency and performance crite-

ria of the overall system. The availability of powerful and highly efficient algorithms

5The concept of the intermediate image is similar to the primal and 2.5D sketches of Marr
[Mar78,Mar82] or the intrinsic image set of Barrow and Tenenbaum [BT78,BT80] in being an inter-
mediate version of the image, but is still different since symbols are related to the cues.

%See Glicksman [G1i82a,G1i82b,G1i83,G1i84], and Rubin [Rub81] for more on multiple sources of
information in computational vision.
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Digital Intermediate Description
Image Image of the Scene
' A=
Ol Perceptual O
' O ' Reasoning
L
—>

Visual Recognition
Continuum

Low level High level
Vision Vision

Figure 3.2: Graphical abstract

rithms for lower level tasks will, for example, influence the position of the interme-

diate image on the continuum.

Figure 3.2 presents a graphical abstraction of some of the ideas discussed to
this point. Note that Perceptual Reasoning refers to the process of going from the

intermediate image to a description of the scene.
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3.2.3 Visual Knowledge Representation

In the proposed formalism, the visual knowledge representation is expressed in
a logical language used to explicitly declare, through axioms, the knowledge we
have about the “domain of interest” or “intended world”. It has been argued that
at least first order predicate calculus is needed in a representation that requires

manipulation of individuals and relations [Hay77,Mo082].

Most model-based vision systems exploit hierarchical abstractions of prototypi-
cal objects in their representation of visual knowledge. This practice doesn’t influ-
ence the formal meaning of an interpretation of an image, so it will be left out of
this chapter, to be taken up in the following chapter when we discuss a particular

instance of Perceptual Reasoning.

Within Perceptual Reasoning we distinguish three sets of formulae:

I’ : The set of facts. This set contains axioms about the symbolize predicate, and
other facts. In particular, it contains assertions about the relations known to
be always true of the domain of interest, between the scene domain and the

image domain.

A : The set of possible hypotheses. The possible hypotheses are instances of
the symbolize predicate denoting scene domain objects that we are ready to
accept as explanations for the observations, and therefore as part of inter-
pretations. They refer to the possible things that could be in the scene, the
building blocks of the internal model of the world.

Obs : The set of image observations. It contains all the observations made
from the image (e.g., instances of primitives). This set is the explicit part of

the intermediate image.
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3.2.4 Coherent Interpretations

We now need a formal definition of what it means to have a valid interpretation’ for
an image. With this formal definition it is possible to discard invalid interpretations

and to tell when we found a valid one.

Before going into more details, let us look at some general intuitive proper-
ties that are desired of an interpretation for an image, independently of how this

interpretation is acquired:

e We want an interpretation to somehow account for the observations made in

the image.

e We want an interpretation to be sensible given the knowledge the system has

of the domain of interest.

e We want an interpretation to predict only these things that are coherent with

the image.

A more formal rewording of the above desired properties in terms of logic could

be listed as:

1. An interpretation should logically imply the observations made from the

image.

2. An interpretation should be consistent with the particular knowledge the sys-

tem has of the domain of interest and the observations made from the image.

3. All the primitives entailed by an interpretation should be coherent with the

image, meaning that for an entailed primitive either:

"Note that our use of the term “interpretation” is in accordance with its use in the computer
vision community and should not be confused with its use in logic.
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(a) we have already observed it in the image or
(b) it can be verified in the image or

(c) there is supporting evidence for it not being observable.

Items (a) and (b) above refer to the intermediate image in the following manner:
item (a) -if the primitive has already been observed then it is in the explicit part
of the intermediate image, item (b) -another possibility is that the primitive is
in the implicit part of the intermediate image, in which case we can verify this
prediction by trying to establish the symbolize relation for that primitive. Lets
consider some of the possible reasons why some features predicted (entailed) by
the interpretation may not be verifiable (observable) in the image, and the possible

evidence supporting these reasons (item 3(c) above).

First, we may be dealing with objects that are partially occluded in the image.
An object is partially occluded if it is partially hidden behind another object. If
an object is occluded by another, then not all of its predicted parts and relations
amongst them will be observable in the image. Evidence of partial occlusion may
come from various hints; one of the best known is the presence of T junctions in
the image [Low85]. See figure 3.3. This idea of using junction types as evidence of

possible associations of regions into objects was first observed by Guzman [CF82].

Another possible reason for an expected primitive not to be observable could be
(if using 3D models) that parts of an object are hidden because of the viewpoint
(self-occlusion). In cases where scene objects are defined using 3D models, visibility
of the primitive of an object can be decided based on the framing knowledge of the
image. The framing knowledge of the image consists of such facts as the viewpoint,
the perspective constants, lighting, etc. Note that in cases where the objects are

defined using 2D line drawings where no self-occlusion is possible, all the parts of
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Figure 3.3: T junctions as evidence of occlusion
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the objects are a prior: expected to be visible since the viewpoint has no influence

in these cases® .

In Perceptual Reasoning, our theory formation characterization of model-based
approaches to visual recognition, we have grouped the desired properties of an

interpretations in the following way:

Definition 4: Given a set of facts I' known to be true of the scene and image
domains, a set I consisting of instances of the symbolize relation is said to

be a theory that ezplains the ezplicit part of the intermediate image, Obs, if

T'UJI = Obs and

T U I is consistent®

Definition 5: Given I', a set facts known to be true of the scene and image do-

mains, a theory I that ezplains the ezplicit part of the intermediate image,
Obs, is coherent if for any P, where P is the symbolize relation involving a
primitive:
ifTUTI |= P then either: T UObs |= P

or

P is verifiable in the image

or

P ts accounted for.

The conditions for a primitive P to be accounted for, will include potential
reasons for which P has not been observed or cannot be verified in the image, and

the required evidence for these reasons to be sensible. We informally discussed

80cclusion from other objects is still possible.
9The term consistent here refers to logical consistency.
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above some of these potential reasons, namely occlusion and self-occlusion because
of the viewpoint, and indicated the evidence that could be required for them to
be acceptable. It may also be the case that in a simpler instance of Perceptual
Reasoning there is no need for such conditions!® . In these cases the primitives

must either have been observed or be verifiable in the image.

We do not here pursue a formal characterization of all the conditions for a primi-
tive to be accounted for, as such an endeavor would require a very elaborate study
of all possibilities. The two possibilities presented above indicates how complicated
and wide this definition can become. The conditions specified in the above defi-
nition still provide an appropriate basis as they state needed conditions and leave
room for completion. They then make perfect sense if only to make progress on the

problem.

We can now define an interpretation in the following way:

Definition 6: A theory I that ezplains the observations from an image (i.e., the
ezplicit part of the intermediate image) is said to be an interpretation of

this tmage if it is coherent.

This clear and simple d=finition provides a semantics for obtaining a descrip-
tion of the scene through an interpretation of the image. This definition of an
interpretation follows our definition of computational visual recognition, as it de-
fines clearly and precisely what the correspondence between the observations of the
image domain, and the objects of the scene domain means. Note that this definition
is independent of the implementation and can therefore be used for both a charac-
terization of model-based approaches to computational vision, and as a guide for

an implementation.

10F.g.,systems that do not deal with 3D models or occlusion, for example MAPSEE [HM83].



CHAPTER 3. A SEMANTICS FOR VISUAL RECOGNITION 33

It is important to realize that an interpretation will not necessarily be a single
symbol for every possible complete image; objects can be recognized individually in
unexpected contexts, and complex scenes by proposing an interpretation that is a
conjunction of instances of different objects. A complete and accurate account of
the content of an image can be obtained by computing closure under theoremhood
of an interpretation of the image. What we mean by complete and accurate account
of an image is the full breadth of both explicit and abstract scene and image domain

objects that can be inferred about the image.

3.2.5 Preferring Interpretations

For a given image we can expect to find many interpretations with the above pro-
perties. We would now like to have some well founded criteria to select or prefer one
interpretation over the others. Using our formal definition of what it means to have
an interpretation of an image, we can provide logically founded criteria to define
the concept of a preferred interpretation. This notion of preferred interpretations
may vary from one application to the another. Our criteria of preference should
then be generic ones, and we should allow the possibility of changing them so that

Perceptual Reasoning can be tailored to a particular application.

One more or less universal criterion that seems to provide a basis for the pre-
ference of interpretations is the notion of specificity. For example, suppose that
we have an image of a frame properly connected to two wheels, a seat, and curly
handles. An intuitively desirable description might be that it is a scene of a racing
bicycle. However, many interpretations for the given set of observations will satisfy
our above definitions for interpretations, e.g., in this case, it is just as intuitively

correct to say that the image depicts a bicycle. When preferring interpretations on
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the basis of specificity, a racing bicycle would be preferred, although a bicycle is
also a valid interpretation, because it is a more specific interpretation of the obser-
vations. Therefore, we say we are interested in the most specific interpretation for

which we have evidence.

The intuition behind specificity is that the symbols used in a preferred inter-
pretation refer to more specific classes of objects than those used in another inter-
pretation. We define what it means for an interpretation to be more specific than

another with the following semantics:

Definition 7: Given the set T of facts known to be true of the image and scene
domains. For a given image, we say that an interpretation I, is more specific

than an interpretation I; if
Turn |= I

This relation over the interpretations of an image induces a partial ordering of

interpretations.

Definition 8: A most specific interpretation for which we have evidence is an
interpretation that is a mazimal element in the partial ordering of more specific

interpretations.

We are assuming that there is always such a maximal element, which means we
assume that there are no infinite specializations. Note that there may be multiple
incomparable most specific interpretations for an image, e.g., for the Necker cube.

In these cases any one of the most specific interpretations can be used.

Now, for different applications, the most specific interpretations may not be

the preferrable ones, some other preference criteria may be more suitable for a
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particular application. For example, the vision recognition system could serve as
the input source of another system to which the recognition of peculiar objects, or
classes of objects, is important. In general, the interpretations are preferred on the
basis of the symbols that are used in them. We will now define the general basis

for preferring interpretations based on the symbols they use.

A binary relation defining a preorder!! over the set of symbols is needed to
formally define the notion of preference, we will use > to denote this preorder.
An instance of Perceptual Reasoning can be tuned to a particular application by
providing an alternative relation ( I>) over the set of symbols that defines a tuned

preordering of the symbols for the specific application.

We now can define how to prefer one interpretation over another, on the basis
of this preordering of the symbols. Given the set of all interpretations for an image,

we define the following binary relation over the interpretations.

Definition 9: For a given image, we say that we prefer an interpretation I to an

interpretation I, written Iiply, if

V symbolize(z,y) € I,
J symbolize(u,v) € I, s.t.
ubzrandvDdy

The proper superset condition between v and y is introduced to insure that we
are comparing elements of the interpretations for the same image features and that
the largest possible set of features from the image are included as being of the same

type.

11 A preorder is a transitive and reflexive relation.
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We see that p is a preorder over all the interpretations of an image. We can now

define an equivalence relation over all the interpretations of an image as follow:

Definition 10: For a given image, we say that an interpretation I, is equally

specific to an interpretation Iy written

Il = Iz > IlpIz and Iszl

This equivalence relation partitions the interpretations of an image into equiva-
lence classes of interpretations. We introduce the concept of equivalence classes of
interpretations in order to obtain a partial ordering as the basis for preferring inter-
pretations. This also provides us with the ability to qualify two interpretations of
an image as equally specific. It is easy to demonstrate that, as a result of applying
p over these equivalence classes, we obtain a partial ordering of equivalence classes

of interpretations.

Definition 11: A preferred interpretation for an image is an interpretation
I; € [I], where [I] is an equivalence class of interpretations that is a mazimal
element of the partial ordering induce by p over the equivalence classes of

interpretations for the image.

Now, this ordering also applies to theories before they are checked for coherence
and become interpretations. We should then rank the theories before verifying their
coherence with the image. By doing so, the computational visual recognition search
space is further reduced, since the first coherent theory that we will find will also
be a preferred interpretation. This is a common practice in computational vision

and is referred to as “focusing the attention”.
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3.3 Summary

We have provided a characterization, based on theory formation, of model-based
approaches to computational vision. Hypotheses invocation schemes, found in com-
putational vision, have been characterized as finding logically consistent theories
that have as logical consequences the observations made from the image. The fo-
cusing of attention was characterized as selecting a maximal element from a partial
ordering as being the most promising theory to pursue. The generation of expecta-
tions and their verification was characterized as ensuring coherence of the theories

with the image.

This characterization of model-based computational vision provides us a simple
and clear semantics for interpreting images that is independent of implementation.
The Cycle of Perception, discussed in chapter 2, can be recast in this framework.
The reformulation provides a motivation to the different processes of the Cycle
of Perception, and provides explicit definition of the criteria to be satisfied du-
ring the cycle and explicitly defines when we can stop the cycle. One important
thing to notice is that the semantics is independent of the control strategy, but the

hypothesize-and-test strategy follows naturally from theory formation.

Figure 3.4 provides an abstract representation of Perceptual Reasoning. Re-
presented in this figure are the ideas that, from the set of possible hypotheses, A,
theories, {I; ... I,}, are found such that along with the facts, T, they logically imply
the observations collected in the intermediate image. The theory preference crite-
rion based on specificity or on a particular > provides a most promising theory,
I;, for which we verify coherence with the image. If coherent, this theory is then a
most specific interpretation for which we have evidence, otherwise the next preferred

theory is verified for coherence with the image.
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Figure 3.4: An abstraction of Perceptual Reasoning



Chapter 4

An Instance of Perceptual
Reasoning: Exploiting

Composition and Specialization

In this chapter, we first discuss the use of hierarchies of abstraction for the repre-
sentation of visual knowledge in model-based approaches. We then show how the
formal theory presented in the previous chapter can be used to define computa-
tional vision systems. The demonstra.tion consists of defining a particular instance
of Perceptual Reasoning that exploits composition and specialization hierarchies for
the representation of visual knowledge. An example that demonstrates the parti-
cular recognition process, and arguments of correctness of this particular instance

of Perceptual Reasoning are provided at the end of the chapter.
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4.1 Hierarchical Representation of the Visual

Knowledge

A concept that is basically agreed upon amongst the researchers in computational
vision is that the interpretation of an image can more easily be obtained by a series of
transformations of the image that incrementally provide more abstract descriptions
of the content of the image. An adequate representation of the visual knowledge
under these circumstances should provide for an organization of the knowledge
into a hierarchy of incrementally more organized and abstract objects and scene

descriptors! .

Most model-based vision systems exploit hierarchical abstractions of prototy-
pical objects or scene descriptors in their representations of the visual knowledge,
e.g., the Aerial Photographs Analysis System [MNI78 MNI79|, VISIONS [HR78],
ACRONYM [Bro81,Bro84,Bro86|, MAPSEE [Mac77,HM83], ALVEN [Ts085|, and

many others.

Tsotsos [Tso84] discusses the decomposition of visual knowledge in such hierar-
chical way, referring to orthogonal azes of representation: the composition axis, the
specialization axis, and the analogical axis. This layering is also supported else-
where, e.g., Dana Ballard supports and defends the idea of hierarchical structuring
in computational vision, based on new discoveries about the organization of the

human brain? .

In what follows, we will explore the use of the composition and specialization

axes for the representation of the visual knowledge, and will present a particular

1A scene descriptor is a prototypical scene which is made up of scene domain objects and certain
relationships between them, for example, we may have a scene descriptor of an office.

2Dana Ballard presented his recent research in a seminar at the University of Waterloo in March
1987.
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instance of Perceptual Reasoning that explicitly uses this layering to find interpre-

tations.

4.2 A Theory of Schema Labelling

In “A Theory of Schema Labelling” [Hav85|, Havens represents his visual know-
ledge as schemas organized in hierarchies. For his framework, Havens provides an

algebraic account of how schemas get instantiated for a given image.

We present an instance of Perceptual Reasoning inspired by Havens’ “Theory
of Schema Labelling.” This instance provides a declarative semantics for Havens’
theory, and also indicates how Perceptual Reasoning can be used to characterize
vision systems that exploit hierarchically organized visual knowledge. Furthermore,
this instance of Perceptual Reasoning can be argued to satisfy the adequacy criteria

recently listed by Mackworth [Mac87|.

As an example of a domain, we consider the hypothetical recognition of drawings
of trains as presented in [Hav85|. In this domain there is no occlusion possible and
the objects are not defined as 3-D models. We present a restricted axiomatization
of the visual knowledge explicitly organized into composition and specialization
axioms, and show how we can exploit such a representation to obtain interpretations
for an image. A more precise and realistic axiomatization of the domain is possible,

but the one given here is adequate for our purpose.
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4.3 Axiomatization of a Domain

For the representation of scene domain objects or scene descriptors, we suggest an
approach similar to Minsky’s frames [Min85] or Havens and Mackworth’s schemas
[HM83,Hav85], except that no explicit notion of prototypical objects is used® .
Informally, if z is a scene domain object or scene descriptor, then a prototype for
z is simply the collection of all axioms that contain symbolize(z,y) for some y.
During the recognition process, we informally refer to an individual y as something

recognized as an z, or as an “instance of prototype r.”

In order to adequately capture the desired visual knowledge in a hierarchy of
abstraction of prototypes, we suggest that the visual knowledge be classified into
“composition” and “specialization” axioms. Prototypes can be members of two
hierarchies, a part-of hierarchy on the composition axis, and a is-a hierarchy on the

specialization axis.

The composition axioms provide a set of rules which states acceptable decom-
position of prototypical objects into their subparts. The axioms should express

this decomposition down to the level where primitives and their relationships are

described.

The specialization axioms assert relations that exists between pairs of objects,
one of which is a specialization of the other, and states the particular properties

that makes that object a specialization of the other.

In such cases the following holds about the set of facts available to Perceptual

Reasoning:

3See Schubert [SGC78] and Feldman [Fel75] for some arguments against the explicit representa-
tion of frames.
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Definition 12: If C is the set of all composition axioms and S is the set of all
specialization azioms, then for T', the set of facts available to Perceptual

Reasoning, we have:

CuScrT

An object can be defined at more than one resolution level by having many
decomposition rules using the same object symbol in an axiom. In these cases, a
disjunction of the decomposition rules defining the object is added as a composition
axiom to the set of facts. For example, it might be desired to have a description
of a tree at two different level of abstraction. One decomposition rule defining a
tree as composed of two parts: the trunk and foliage, where the leaves are seen as a
whole, another decomposition rule describing a tree as a trunk with branches and
many leaves attached to the branches. The decomposition rules in such axioms use

different sets of primitives.

4.3.1 Axiomatization Methodology

We now present an instance of Perceptual Reasoning that exploits composition and
specialization axioms. For the purpose of the demonstration we do not present
a general algorithm. The algorithm presented in the following sections depends
on a particular axiomatization methodology. We define a very restricted form of
composition and specialization axioms so that the recognition process defined will
remain intuitive. A more general axiomatization of the visual knowledge is possible,

but the restricted form used here is adequate for our purposes.

Instead of representing in one axiom the decomposition of an object into its

subparts all the way down to the level of the primitives, we write composition axioms
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at many layers of abstraction. The lowest layer uses primitives or general classes
of primitives (for example see figure 4.2). Similarly, we write the specialization
axioms at many layers of specialization. The finer grain of these specializations can

be primitives of the image (for example see figure 4.3).

The composition axioms will form many hierarchies of syﬁlbols of scene domain
objects and scene descriptors. The lowest levels of these hierarchies are primitives,
and the top of these hierarclies are symbols of the most general objects and scene
descriptors that we know about. Each symbol in each composition hierarchies
can be the root of a specialization hierarchy. Of all the symbols in specialization
hierarchies only symbols that are roots of these hierarchies can be used as symbols

in the composition hierarchies. See figure 4.1.

In summary, the set of symbols used in composition hierarchies can be maximal
elements in the set of symbols used in the specialization hierarchies. The symbols
in the middle of specialization hierarchies cannot be in the set of symbols used in

composition hierarchies.

4.3.2 Composition Axioms

We first present the syntax and semantics of composition axioms, which are used to
describe how objects are composed (part-of hierarchy). Intuitively, we want to write
axioms that express how a prototypical object is composed of a collection of other

prototypical objects so that recognizing an object implies recognizing its subparts.

For example, recognizing a bicycle implies having recognized two wheels and
appropriate relations amongst them, but recognizing an isolated wheel does not
imply having recognized a bicycle. Consequently we represent a composition axiom

for symbol S as disjunctions of all decomposition rules of the following form:
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Figure 4.1: Composition and Specialization Axes
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symbolize(S,T) O aggregation[X;, Xa,...,X,] A

symbolize(Part,, X;) - A
symbolize(Party, X3) A
symbolize(Part,, Xy,) A

relations| Xy, Xs, ..., X,);

Where relations is a finite conjunction of atomic assertions expressing the rela-
tions between the parts, and aggregation is a finite conjunction of atomic assertions
expressing the aggregation of the cues from the parts into one cue for the object. In
this example, since Prolog was used for the implementation, we use lists as second
arguments of the predicate symbolize to denote the aggregation of the cues from

the image.

The intended interpretation of the above decomposition rule schema is that
any object which can be labelled with Symbol implies the existence of all its appro-
priately labelled parts, Part, ... Part,, and the truth of the relations relations. Note
that the above is a decomposition rule schema and that Symbol and Part, ... Part,
can be the name of any scene domain objects (e.g., tree, bicycle). The variables in

composition axioms are universally quantified.

In our example of the train domain, a train consists of an engine, followed by a
non-empty set of wagons (carSet), optionally ending with a caboose. See figure 4.2.
The composition axiom for trains is then defined by the disjunction of the following

two decomposition rules:

symbolize(train,T) D T = [X,Y] A
symbolize(engine, X) A
symbolize(carSet,Y);
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engine carSet caboose

carSetO

car

Figure 4.2: Composition Hierarchies of the Train Domain
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symbolize(train,T) D T = [X,Y, Z]
symbolize(engine,X) A
symbolize(carSet,Y) A

symbolize(caboose, Z);

We give a recursive definition of a carSet through a composition axiom formed

of the disjunction of the following decomposition rules:

symbolize(carSet,C) O C = [X] A
symbolize(car, X);

symbolize(carSet,C) O C = [X|Y]
symbolize(car, X)
symbolize(carSet,Y);

symbolize(carSet,C) O append(X,Y,C) A
ne(X, []) A ne(Y,[])
symbolize(carSet, X)

>

symbolize(carSet,Y);

The intended interpretation of the last decomposition rule is that recognizing a
carSet could imply recognizing two non-empty carSets together. This decomposi-
tion rule is added because we didn’t specified that cars in a carset are connected
together, therefore two carsets are considered as forming only one carset. The
append predicate defines the aggregation of the cues and the ne predicate insure
that the two carSets are not empty by verifying that the carSet symbols are not

attached to an empty set of cues from the image.

Note that further relations (constraints) could have been added to those axioms,

e.g., that the parts of the train are connected together. Note also that we could



CHAPTER 4. EXPLOITING COMPOSITION AND SPECIALIZATION 49

have given a more complete axiomatization of the drawings of trains by giving
composition axioms for the parts of the parts of a train, and taking it down to the
edges and surfaces found in the image, or any level appropriate to the low level

vision system.

4.3.3 Specialization Axioms

Each object symbol of a composition hierarchy may be the root a hierarchy of other
object symbols, where all object symbols part of such a hierarchy are specializations

of that root.
Specialization azioms are of two forms. The first is
VX (conds[X] A symbolize(Class, X) D symbolize(Special, X)) A
( symbolize(Special, X) D symbolize(Class, X))
where conds[X] is a conjunction of constraints.

We use the following notation as a shorthand for the above axiom as it seems

to follow a more natural way in which the knowledge come up:
symbolize(Special, X) : symbolize(Class, X) «— Conds;

The intended interpretation of the axiom is that the symbol Special is a speciali-
zation of the symbol Class if the conditions Conds hold. The colon represents the
specialization/generalization relation between the symbol Special and the symbol

Class* ; the connective « indicates the conditions.

The second form of specialization axioms relate specialized objects that are

primitives to their general class in the composition hierarchies.

4The colon can also be thought of as denoting the ISA relation between the Special symbol and
the Class symbol.
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VX ( symbolize(Special, X) D symbolize(Class, X))

and where Spectal is a primitive.

Which in the shorthand notation is written:
symbolize(Special, X) : symbolize(Class, X);

In summary, specialization axioms form a hierarchy of scene objects which are

refinements of their composition root. See figure 4.3.

As defined above, specialization axioms can be pictured as hierarchies of spe-
cialization for the different composition symbols. For the domain of trains we
have the following specialization axioms. All specialization axioms are universally
quantified. Trains are subdivided into two specialization classes, longHauls and
shortHauls. The criteria of classification is the specialization of the engine symbol.
The engine symbol has two specialized symbols: a switcher (a small yard engine)

or a loco (a larger long-haul locomotive).

Trains:

symbolize(longHaul,[X|Y]) : symbolize(train,[X|Y]) «— symbolize(loco, X);

symbolize(shortHaul,[X|Y]) : symbolize(train,[X|Y]) « symbolize(switcher, X);

Engines:

symbolize(loco, X) : symbolize(engine, X);

symbolize(switcher, X) : symbolize(engine, X);
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train
longHaul shortHaul
expressTrain freightTrain localTrain commuterTrain
car
freightCar passCar
box flat hopper  tank coach observe saloon mail
engine carSet
loco switcher freightCarSet passCarSet mixedCarSet

Figure 4.3: Specialization Hierarchies of the Train Domain
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The same comment about details, as for the composition axioms, apply for the
specialization axioms; more precision could be specified in the axioms, which could

force a deeper focusing.

LongHauls and shortHauls are further specialized. LongHauls can be express
trains or freight trains, and shortHauls can be local trains, commuter trains, or
freight trains. The further specialization of longHauls and shortHauls depends on

the specialization of the carSet symbol.
LongHauls:

symbolize(expressTrain,[X,Y])  :symbolize(longHaul,[X,Y))
«— symbolize(passCarSet,Y);

symbolize(freightTrain,[X,Y, Z]) : symbolize(longHaul,[X,Y, Z))
« symbolize(freightCarSet,Y);

ShortHauls:

symbolize(localTrain,[X,Y|Z)) : symbolize(short Haul,[X,Y |Z))
+ symbolize(mizedCarSet,Y);

symbolize(commuterTrain,[X,Y]) :symbolize(shortHaul,[X,Y])
«— symbolize(passCarSet,Y);

symbolize(freightTrain,[X,Y,Z]) :symbolize(shortHaul,[X,Y, Z))
«— symbolize(freightCarSet,Y);
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Cars (wagons) can be subdivided into two classes: freight cars which includes
boxes, flats, tanks and hoppers, and passenger cars which includes coaches, mails,
observes and saloon cars. Consequently carSets can be specialized to freight carSets,

passenger carSets or mixed carSets.

* CarSets:

symbolize(freightCarSet,[X])  :symbolize(carSet,[X])
« symbolize(freightCar, X);

symbolize(freightCarSet,[X|Y]) :symbolize(carSet,[X|Y])
« symbolize(freightCar, X) A
symbolize(freightCarSet,Y);

symbolize(passCarSet,[ X)) : symbolize(carSet, [ X])

« symbolize(passCar, X);

symbolize(passCarSet,[X|Y]) : symbolize(carSet, [X|Y])
« symbolize(passCar, X)

Asymbolize(passCarSet,Y);

symbolize(mizedCarSet, X) : symbolize(carSet, X)
+— member(Cy, X)A
symbolize(passCar,C;) A
member(Cz, X) A ne(Cq,C2)A
symbolize(freightCar,C,);

The predicates member and ne used above have the following meaning:
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member(X,Y) is true if X is an element of the list Y, ne(X,Y) is true if X # Y.
The intended interpretation for these predicate is that member refers to a subset
relationship between the cues of the image and ne insure that we are not dealing

with the same subset of cues.

Freight cars:

symbolize(freightCar,X) :symbolize(car, X) «— symbolize(boz, X);
symbolize(freightCar,X) :symbolize(car, X) « symbolize(flat, X);
symbolize(freightCar,X) : symbolize(car, X) «— symbolize(tank, X);
symbolize(freightCar,X) :symbolize(car, X) «— symbol: zé(hopper, X);

symbolize(boz, X) : symbolize(freightCar, X);
symbolize(flat, X) : symbolize(freightCar, X);
symbolize(tank, X) : symbolize(freightCar, X);
symbolize(hopper, X) : symbolize(freightCar, X);

Passenger cars:

symbolize(passCar,X) : symbolize(car,X) «— symbolize(mail, X);
symbolize(passCar, X) : symbolize(car, X) «— symbolize(observe, X);
symbolize(passCar,X) : symbolize(car, X) « symbolize(coach,X);
symbolize(passCar,X) : symbolize(car, X) + symbolize(saloon, X);
symbolize(mail, X) : symbolize(passCar, X);

symbolize(observe, X) : symbolize(passCar, X);

symbolize(coach, X) : symbolize(passCar, X);

symbolize(saloon,X) : symbolize(passCar, X);

The axiomatization given above for the domain of trains makes some assump-

tions. One is that we are able to recognize drawings of the prototypes: coach, box,
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mail, etc, and therefore the observations, presented in the intermediate image, are
instantiations of these symbols. In other word, these symbols are the primitives for
this example. Using this assumption we have all the visual knowledge we need to

complete our example.

For the purpose of this example we define ¢4, such that the “deepest” symbols
in the specialization hierarchies of the highest symbols of the composition hierarchies

will correspond to the maximal elements of the >4, relation.

Definition 13: The relation = Drainy holds if from T' there ezists a derivation (in-
ference chain) such that symbolize(z,u) is used to derive (infer) symbolize(y,v)

tn that derivation.

Figure 4.4 exhibits a subset of the >44, relation over the symbols of the train
domain. We intentionally left out the transitive and reflexive tuples in figure 4.4
for clarity of the presentation, but these links should also be present for the figure
to adequately display the complete ¢4 relation. As examples of instances this

relation we have localTrain Birqin car and tratn Dypq, carSet.

We will now describe a recognition process that is an instance of Perceptual
Reasoning, and that exploits the hierarchies represented by the restricted forms of

composition and specialization axioms presented.

4.4 A Recognition Process

Intuitively, for this example we want to specify an incremental process of the image
such that the interpretation found is a “most specific” interpretation of the given

image. To do so, we exploit the organization of the visual knowledge. As the
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Figure 4.4: The D4, Relation for the Train Domain
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visual knowledge is organized into a hierarchy of abstraction, incrementally provi-
ding analysis of the image will correspond to moving up the structure of the visual

knowledge.

In chapter 3, we defined the logical criteria for visual recognition by characte-
rizing the process of finding an interpretation as finding theories that explain the
observations, ranking the possible theories using a preference criteria, and verifying
the preferred theories until one is found to be coherent with the image. We now
describe how we can exploit the structure of the visual knowledge presented in the
previous section to analyze images by dynamically climbing the hierarchies of the

knowledge.

4.4.1 Exploiting the Visual Knowledge

We want to reduce the semantic problem of finding an interpretation, defined in
chapter 3, to a syntactic one that a machine can solve. Having divided our visual
knowledge into composition and specialization axioms, we define a separate phase
of the reccgnition process for each of the two categories of the visual knowledge,
namely the composition phase and the specialization phase. We use an iterative
theory formation process which produces intermediate analyses of the scene during
the composition phase, and then applies the specialization phase. The goal of the
composition phase is to incrementally analyze the image so that we use objects and
scene descriptors that are more abstract then the current analysis (i.e., progress up
the composition hierarchies). The goal of the specialization phase is to specialize
the objects and scene descriptors, provided by the composition phase, as far down

their specialization hierarchies as possible® so that they are as specific as possible.

5Recall that each symbol of the composition hierarchies may be the root of a specialization
hierarchy.
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During the recognition process we maintain two environments: the general know-
ledge of the image and the composition environment. The general knowledge of the
image environment corresponds to all the initial observations, together with every
inference that was made to the present point of the process; we refer to it as GKI.
The composition environment, CE, is an environment where the current analysis of
the image is kept, only instances of the symbolize predicate with symbols from com-
position hierarchies are found in CE. For example, if we had an observation in the
intermediate image of an instance of the prototype “box”, the initial composition

environment would contain the fact that it is a “car”.

Since some observations can be primitives that are down in the specialization
hierarchies, a generalization phase is first used in order to initialize adequately the
two environments. The GKI is adequately initialized if it initially contains all the
initial observations and all the valid generalization inferences for them. The CE is
adequately initialized if it initially contains the most general forms for the initial

observations. These definitions will become clearer in the following section.

The algorithm for the iterative recognition process is simply the generalization
phase followed by some iterations of the composition phase, and finally the speciali-
zation phase. The details of each phase of the process are found in the following

sections.
The Iterative Recognition Process

1. do generalization phase
2. repeat composition phase until no more composition theories can be found

3. do specialization phase
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Composition theories are defined in the composition phase section (Section

4.4.3).

4.4.2 The Generalization Phase

The recognition process starts with the content of the explicit part of the interme-
diate image as its initial set of observations. The explicit part of the intermediate
image is provided by the low level process. As some of the primitives are leafs
of specialization hierarchies, we first need to generalize the observations from the

intermediate image in order to initialize adequately the two environments.

A valid generalization is one derived from the specialization/generalization re-

lations described in Section 4.3.2. For example, given the following specialization

axiom:
symbolize(loco, X) : symbolize(engine, X);

a valid generalization of an observation symbolize(loco, a), where a is an instance ob-
served in the image of the prototype “loco”, would be to infer symbolize(engine,a),

This generalization is valid since:
symbolize(loco, X) DO symbolize(engine, X).
Here is an overview of the algorithm for the generalization phase:

The Generalization Phase

1. set GKI to be the observations from the intermediate image

2. for each observation in the intermediate image
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(a) repeat until no more valid generalization possible

i. apply a valid generalization

ii. add the generalization to GKI

(b) make CE the set of most general forms found.

Because of the restricted way our knowledge is structured, only instances of the
symbolize predicate with symbols that are in composition hierarchies will be found
in the CE at the end of the generalization phase. This comes from the fact that

the hierarchies are finite and explicitly known.

4.4.3 The Composition Phase

The role of the composition phase is to progressively update the composition envi-
ronment. To do so, we find composition theories to explain the present elements of

the composition environment (CE).

Definition 14: Given the set of all composition azioms C, we say that T is a
composition step that ezplains a non empty set of elements, ®, from the
composition environment CE if T is a ground instance of the hypothesis

symbolize(X,Y) such that

CUT D P and
CUT is consistent and
T ¢ CE and
3T st.T"# T and CUT DO T'
Where T' is a ground instance of symbolize(X,Y) and ® C CE.
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Consistency of C UT can be verified by failing to prove an inconsistency. See
[PGAS86| for more on this. The above definition for composition theories ensure

that we only consider theories that represent one inference step.

When looking for a composition step that explains a subset of the composition
environment, generally more than one theory is going to be candidate. We need a
composition step selection scheme as a way to insure an adequate aggregation of the
elements of CE, so that the selected composition theory represents a step toward
a most specific interpretation. Preference, at each step of the iterative process
(going up the composition hierarchy), is always given to the composition theories
that uses symbols that are at a lower level in the composition hierarchies. Such
cautious progress through the composition hierarchies, ensures that no observations
are left behind in our search for a most specific interpretation. This is particularly
important for objects defined recursively. For example, imagine a situation where
the present state of the composition environment is that the image depicts an engine,
a set of two cars (wagons), and an individual car (wagon). In this situation, the
composition step with a set of three cars should be selected over the composition
step that it is a train (composed of an engine and two cars), as the latter will leave

a car behind and not incrementally lead us to a most specifi¢ interpretation.

This selection of composition theories is based on, but should not be confused
with, the definition of “a preferred interpretation” of Chapter 3. Our criteria of
preference here is based on our interest in taking the best possible step up a com-

position hierarchy.

We define the selection of a composition step over others in the following terms:

Definition 15: We select composition step T1 over composition step T, if either

a) T = symbolize(p,,z) and T = symbolize(ps,y), and
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P2 By
b) Ty = symbolize(p,z) and T = symbolize(p,y) and
z2y

Otherwise the two theories are incomparable.

The candidate composition theories are ordered according to the above defini-
tion, and we commit to the preferred one. When theories are not comparable any
one can be committed to. This arbitrary choice will be corrected later if wrong,
when more context will provide grounds for preference. The context we refer to
here will come from verifying coherence of theories that uses symbols higher up in

the > relation of symbols ( >¢rain for this example).

We now present an outline of the algorithm for the composition phase.
The Composition Phase

1. find all valid composition steps T for the CE
2. order T’s according to selection criteria
3. pick first T that is coherent

(a) add T to GKI

(b) replace ® by T in CE, where ® is the set of elements from CE explained
by T.
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Note that verifying coherence in this example only means that either the primi-
tives have been observed or they can be verified in the image, as we are not dealing
with occlusion or 3-D models in this example. Also note that, when verifying cohe-
rence of the composition step, new primitives verified may suggest different symbols
for cues or features, in these cases the new symbols replaces the previous ones, as
these new symbols where suggested from higher levels of the composition hierarchy,
and therefore arises from a more general consideration of the surrounding context.
Any newly verified primitives during the verification of coherence are added to the

GKI (i.e. new primitives for which the symbolize relation have been establish).

4.4.4 The Specialization Phase

The specialization phase is applied when no more composition theories can be found
to explain a subset of CE. It outputs a set I consisting of the most specific speciali-
zations for the content of the CE. This is achieved by specializing as far down as
possible the specialization hierarchies of the final compositidn theories. To take a
step down the specialization hierarchy of the composition step T has the following

meaning:

Definition 16: Given the set of all specialization azioms S and the general know-
ledge of the image GKI, we say that ST is a specialization theory of T,
if

3 a ground instance of {ST : T « Conds} € S
s.t. for each relation o of Conds either
GKI o
or

o can be verified in the image.
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According to this deﬁnitibn, we have a specialization theory for an element of
CE, if there exists a ground instance of a specialization axiom such that for every
condition (constraint) of that axiom, either the condition is already recorded in the
general knowledge of the image, or we can verify the condition in the image. Some
of these conditions may be primitives to be detected, in which case they are added
to GKI if detected. We stop going down a branch of the specialization hierarchy

when one of the required conditions is false or unknown.

We now present an overview of the algorithm for the specialization phase.
The Specialization Phase

1. for each element T of CE

(a) repeat until no more specialization possible

i. apply valid specialization ST
ii. add ST to GKI

(b) add the last specialization to I

4.5 Summary and Example

Abstractly, we can define the algorithm in the following brief terms: Generalize all
observations from the intermediate image, so that we are in the different composi-
tion hierarchies. For as long as it is possible, take a step up to a neighbour node
in a composition hierarchy to explain a subset of CE. When you can’t take any
more steps up in any composition hierarchy then end the composition phase, and
then go as far as possible in the specialization hierarchies of the final nodes of the

composition phase. Figure 4.5 tries to express this process.
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Figure 4.5: Abstract View of a Recognition Process
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Note that this algorithm is not a general way or necessarily the most efficient
way to compute interpretations, it is only meant as a demonstration of how we can
use the semantics presented in Chapter 3 as a guide to define a recognition process
and to characterize different model-based approaches that exploit hierarchies of

abstractions in there representation of the visual knowledge.

At the end of this iterative recognition process, the composition environment
CE will contain instances of the symbolize predicate that use the highest possible
symbols in the different composition hierarchies for the initial observations, and
the set I will contain the symbols that are as deep as possible in the specialization
hierarchies of the symbols from CE. The set I obtained at the end of the iterative
recognition process is referred to as the answer obtained by the process and and

should correspond to a most specific interpretation of the image.

Arguments of the correctness of the iterative recognition process with respect to
the semantics presented in Chapter 3 is presented in the next section. For now, let’s
take up an example used by Havens in [Hav85], and see how the iterative recognition

process obtain a most specific interpretation for this example.

We will go through this example fairly quickly, because the details are not ne-

cessary, to give an idea of what is happening during the recognition process.
Imagine that the intermediate image contains the following observations:

{ symbolize(boz,a), symbolize(switcher,b), symbolize(coach,c),

symbolize(flat,d), symbolize(caboose,e) }

Where a,b,c,d,e are cues from the image which have been recognized to be
instances of the corresponding symbols. Applying the generalization phase, the

following valid generalizations can then be derived from the given set of observations:
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symbolize(boz, a) D symbolize(freightCar, a);
symbolize(freightCar,a) O symbolize(car,a);
symbolize(switcher,b) D symbolize(engine, b);
symbolize(coach,c) D symbolize(passCar,c);
symbolize(passCar,c) D symbolize(car, c);
symbolize(flat,d) D symbolize(freightCar,d);

symbolize(freightCar,d) D symbolize(car,d);

After the generalization phase the GKI and CE contain the following:

GKI = all the observations from the intermediate image plus all the inferences

from the generalization phase, i.e.

{ symbolize(boz, a), symbolize(freightCar,a), symbolize(car, a),
symbolize(switcher, b), symbolize(engine,b), symbolize(coach,c),
symbolize(passCar, c), symbolize(car, c), symbolize(flat,d),

symbolize(freightCar,d), symbolize(car, d), symbolize(caboose, €) }

CE = { symbolize(car,a), symbolize(engine,b), symbolize(car,c),

symbolize(car,d), symbolize(caboose, €) }

After the generalization phase, we apply the composition phase until no further
composition theories can be found to explain subsets of the composition environment

(CE). For our present example, the candidate composition theories according to the

definition are:

T = symbolize(carSet,[a])
T;

symbolize(carSet, [b])
Ts = symbolize(carSet,|c])
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According to our selection scheme, these theories are not comparable and any

can be used. We arbitrarily pick T3, so the composition environment becomes:

CE = { symbolize(carSet,[a]), symbolize(engine,b), symbolize(car,c),

symbolize(car,d), symbolize(caboose, €) }

Going on with the composition phase, we have, once more, to find the compo-

sition theories that explains a subset of the CE. The available theories are:

T, = symbolize(carSet,[c])
T, = symbolize(carSet,[d])
Ts = symbolize(train,[b,[a],¢])
T, = symbolize(train,[b,|a]])

Theories T} and T3 are not comparable, but are both preferred over theories T3
and Ty as train Dipqin carSet. T is preferred to Ty. We then pick T and commit

to it. The composition environment becomes then:

CE = { symbolize(carSet,[a]), symbolize(engine, b), symbolize(carSet, [c])

symbolize(car,d), symbolize(caboose, €) }

We go on with the composition phase, picking the first theory in the partially

ordered list of possible composition theories given, and commit to it.
Composition phase:

Ty, = symbolize(carSet,|a,c])

T, = symbolize(carSet,[c,al)
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Ts = symbolize(carSet,[d])
T, = symbolize(train, (b, [a], €])
Ts = symbolize(train,[b,][al])
Te = symbolize(train,[b,[c|,e])
Ty = symbolize(train,[b,[c]])

Theories T} and T are both preferred to one another since carSet >4, carSet,
but are incomparable to theory Ts. All three theories are preferred to theories
T4,Ts,Te and T7 where Ty is preferred to T and T; is preferred to Ty. The compo-

sition environment is now:

{ symbolize(carSet, |a, c]), symbolize(engine, b), symbolize(car, d),

symbolize(caboose,e) }
Again, we have

Composition phase:

T, = symbolize(carSet,|[d])
T, = symbolize(train,[b,[a,c],¢])

Ts = symbolize(train,|b,|a,c]])

where T is preferred to T; and T since train Dyq, carSet. After this invocation

of the composition phase, we have:

CE = {symbolize(carSet,|a,c]), symbolize(engine,b), symbolize(carSet,[d]),

symbolize(caboose,e) }
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Composition phase:

Ty = symbolize(carSet,|a,c,d])
T, = symbolize(carSet,|d,a,c])
Ts = symbolize(train,[b,|a,c],¢])

T, = symbolize(train,[b,|a,c]])

where Ty and T; are both preferred to one another, and are both preferred to T

and Ty. The composition environment is now:
{ symbolize(carSet, [a, c,d]), symbolize(engine,b), symbolize(caboose, d) }
Composition phase:

Ty = symbolize(train,[b,|a,c,d)],¢])
T, = symbolize(train,b,|a,c,d]])

where T is preferred to T, as the cues of T} are a superset of the cues of Ty.

The composition phase is then done as there is no other composition theory
that can be found. CE is now made up of only symbolize(train,[b,[a,c,d],e]). The

specialization phase is then invoked to specialize the elements of the composition

environment.
Specialization Phase:

Specialization symbolize(short Haul, b, [a, c,d], €]) is then made as there is a ground

instance of a specialization axiom such that:
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symbolize(shortHaul, b, [a,c,d), €]) : symbolize(train,[b,|a,c,d),€]) «—

symbolize(switcher,b);

and condition symbolize(switcher,b) is a logical consequence of GKI since it was

one of the initial observations. We can further specialize:

symbolize(short Haul, [b, [a,c, d]e])
to symbolize(localTrain,[b,[a,c,d),€])
since:
symbolize(localTrain, (b, [a,c,d],€]) : symbolize(shortHaul, [b,[a,c,d], €]) «—

symbolize(mizedCarSet,[a,c,d]);
and symbolize(mizedCarSet,[a,c,d]) can be verified with the axiom:

symbolize(miztedCarSet,[a,c,d]) : symbolize(carSet,[a,c,d]) —
member(a, [a, ¢,d]) A symbolize(passCar,c) A member(c,[a,c,d]) A ne(c,a) A

symbolize(freightCar,a)
where
symbolize(carSet,|a,c,d]) N symbolize(passCar,c) A symbolize(freightCar,a)

are logical consequences of GKI.

The process then terminates because no more specialization can be found for
the elements of CE. At the end of the recognition process, the composition environ-
ment contains the prototype symbolize(train,[b,[a,c,d],e]) which is then the most
general prototype, from the composition hierarchies, explaining the observations.

The answer of the iterative recognition process, which is the content of I at the
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end of the process, is symbolize(localTrain, (b, |a,c,d],e]). This answer is a most

specific interpretation for the initial set of observations (see figure 4.4).

The description of the scene depicted by the image that produced the original

set of observations used in this example:

{ symbolize(boz, a), symbolize(switcher,b), symbolize(coach,c),

symbolize(car, d), symbolize(caboose, ) }

is that it is a scene of a local train.

Note that many details were left out during the recognition process for this
example. Our intention was to show the incremental analysis of the image that

takes place during the iterative recognition process.

4.6 Correctness of the Recognition Process

We now discuss the correctness of the iterative/ recognition process presented in
this chapter, with respect to the semantics presented in Chapter 3. Formal proofs
of the correctness of the recognition process presented here would only result in
voluminously unrequired formal discussion, since our purpose was to only indicate
how Perceptual Reasoning can be use as a guide to define a recognition process,
and to show how we can characterize, in more detail, model-based approaches that
exploit hierarchical organization of the visual knowledge. We instead informally
argue that the iterative recognition process presented is correct with respect to the

semantics defined in Chapter 3.

It is very important to notice here that this argument is valid only because of
the axiomatization methodology we used (i.e. the restrictions on the axioms), and

that if this methodology is not followed the argument doesn’t hold any more.
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We first can informally defend the recognition process presented as sound,
meaning that all answers found by the iterative recognition process are valid in-

terpretations, by the following arguments:

Suppose the recognition process found an answer I that is not an interpretation

according to our semantics of Chapter 3. This would then either mean that:

(1) There exists an observation from the intermediate image that is not a logical

consequence of 1.

(2) TU I1is not coherent.

But (1) cannot be the case since the recognition process presented, starts with
all the observations from the intermediate image, and each step is like a rewriting
system where observations only get rewritten by objects that imply them. Therefore
there can’t be an observation from the intermediate image that is not a logical
consequence of I. It also impossible for (2) to be the case since for I to be an
answer of the recognition process presented, it must be a set of specializations of
the composition theories in CE, and as a criterion of the composition phase, each
composition step use to modify the CE must be coherent, and the specialization

phase doesn’t affect the coherence.

There is then no possible way to obtain an answer that is not an interpretation,

and we therefore say that recognition process is sound.]

The iterative recognition process presented is also complete, meaning that the

recognition process will find a most specific interpretation for the image if one exists.

Completeness of the recognition process can be argued in the following manner:
Suppose that wasn’t the case, and that there exists an interpretation A that is more

specific then the interpretation I found by the recognition process. This then means



CHAPTER 4. EXPLOITING COMPOSITION AND SPECIALIZATION 74

that TU A = I. Because of the restricted way the visual knowledge is structured in

the presented process, there are only two possible way for this to be the case, either

(1) A must include at least one element that is a specialization of an element of I

or

(2) A contains the specialization of one object that implies some objects for which

the specializations are in 1.

But if (1) was the case, the specialization phase would have done one more
specialization, since the specialization phase only stops when no more specialization
can be done. It is then not possible for (1) to be the case. It is also not possible for
(2) to be the case, since the composition phase only stops when no more composition
step can be found for the CE, and if (2) was the case, there would exist an object
that could still imply some further aggregation of objects in CE when we stopped,
which means that there would exist at least one more composition step. But then

the composition phase would not have stopped.

Therefore the interpretation I found by the recognition process is a most specific

one for the image if one exists.[]

The recognition process being sound and complete, we can conclude that it is

correct.d



Chapter 5

Conclusion

From a computational point of view, images give rise to very ambiguous informa-
tion about the scene they depict. This ambiguity directly follows from the fact that
the image underconstrains the scene depicted. Processing the intrinsic information
included in an image, to obtain a description of the scene depicted, is then a very
difficult task. In principle, a formal theory of computational vision should provide
us with a definition of what it means for a computational vision system to con-
clude that an image depicts a particular scene. It should also serve as a guide for
the implementation of more efficient systems, by providing us with the grounds for
evaluating our current computational vision systems and indicate possible improve-
ment in our approaches. It is clear that what we need are formal theories that guide

our quest to achieve computational visual recognition.

Many of the aspects of the field of computational vision has not yet been formally
defined. Even the formal foundations of what constitutes an “interpretation” of an

image have not been paid much attention in the computer vision community.

The thesis that we presented and defended is that the meaning of the notion of

75
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a symbolic interpretation of an image is clarified by viewing visual computational

recognition as “theory formation”.

This dissertation outlined a formal characterization, called “Perceptual Reaso-
ning”, that reformulates model-based approaches to computational vision. Percep-
tual Reasoning is based on the idea of “theory formation,” and provides a clear and
precise semantics of an interpretation for an image, and logical criteria as the basis

for preferring one of possibly many interpretations.

In this concluding chapter, we summarize our progress toward this formal cha-
racterization, and highlight what we see as our contribution to the field of computa-
tional vision. We then suggest refinements and extensions as further research to be
pursued in the future, to correct coarser elements and weaknesses of the presented

research.

5.1 Summary and Contribution

We first present a summary of the dissertation by reviewing the concepts and ideas
discussed and introduced in each chapters. This quick summary is then followed
by a discussion of the formal theory presented which constitute our contribution to

the field of computational vision.

5.1.1 Summary

In the introductory chapter of this dissertation, we briefly present the basic founda-
tions of computational vision, mentioning concepts such as digital images, filtering,

edge enhancement, etc. We also point out that the terms low level- and high level-
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vision refers only to the extremities of a visual recognition “continuum,” as opposed

to being two distinct processes.

This very general introduction is followed by a statement of our thesis, some
motivation for the need for a clear and precise semantics of what constitutes a valid

image interpretation, and how one can be obtained.

The basic motivation is that this meaning (semantics) of an image interpretation,
and how one can be obtained, can provide the formal grounds to evaluate existing
model-based systems with respect to the criteria of soundness and completeness. It

can also serve as guide lines for new and perhaps more efficient implementations.

Our second chapter examine existing control structures of computational vision.
One of the guiding paradigms arising‘ from a consensus of researchers of the field of
computational vision is that contextual information should be used to ease visual
recognition by a computer. Contextual information refers to the recognition of one
object leading to the expectation of other objects. It is generally accepted that
image understanding is almost impossible without such expectations. Model-based
approaches to computational vision are founded on this idea of using contextual
information. We point out the work of Mackworth [Mac78] who informally charac-
terized the hypothesize-and-test paradigm of model-based approaches to computer

vision in his Cycle of Perception.

We conclude chapter 2, by observing that intuitively, this cyclic way of procee-
ding with the analysis of images is very similar to the way scientists build theories
to explain different phenomena. We then analogically relate different processes of
the model-based approach to computational vision, such as “hypothesis invocation
schemes,” the “focus of attention,” and the verification of the “expectations of an

hypothesis,” to the different steps of theory formation.
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Chapter 3 present a formal characterization that synthesizes model-based ap-
proaches to computational vision, by viewing visual recognition as “theory forma-
tion”. First order logic is chosen for the formal language of the characterization
because of the formal treatments that are possible within it, and its clear seman-
tics. From this characterization follows a clear and precise semantics of an inter-
pretation for an image. Logical founded criteria that provides basis for ranking

interpretations of an image are also provided. These criteria naturally follow from

our characterization.

In chapter 4, we discuss the use of hierarchies of abstraction of prototypical ob-
jects for the representation of visual knowledge. Then, inspired by Haven’s “Theory
of Schema Labelling” [Hav85], we present a particular instance of Perceptual Rea-
soning that explicitly exploits the use of composition and specialization hierarchies
for the representation of the visual knowledge. The outline of an algorithm for
visual recognition is defined that specifies an incremental recognition process which

exploits the contextual information explicitly encoded in the visual knowledge.

Using the train domain used by Havens, we present an example of this particular
recognition process, and conclude with an informal argument of the correctness

of this recognition process with respect to the semantics defined in the previous

chapter.

5.1.2 Contribution

We view our formal theory formation characterization of model-based approaches
to computational vision as a contribution to the field of computational vision for

the following reasons:

First, the characterization provides a precise semantics of an image interpreta-
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tion. This semantics describes what it means for a model-based vision system to
come to a conclusion about what is the scene depicted by an image. The semantics
presented is independent of implementation and can therefore be use to formally

analyze existing vision systems with respect to soundness and completeness.

Second, this formal characterization provides logical criteria for preferring one
interpretation over others. These criteria also provide a semantics for the “focusing

of attention” that takes place in model-based approaches to computation vision.

Finally, the theory formation foundations of Perceptual Reasoning clarify the
the motivation for the hypothesize-and-test control structure used in model-based
recognition systems, by providing a control framework for different processes of

model-based approaches to recognition.

We don’t believe that the incremental recognition process presented in Chapter
4 provides a complete account of all the details of how model-based approaches
to computational vision use contextual knowledge. We presented it only to show
that, by following a particular programming methodology for the composition and
specialization axioms, it is possible to precisely specify each step towards computa-
tional visual recognition. This demonstrates how the formal theory can be used to

define new computational approaches to recognition.

5.2 Future Research

One possible refinement to the theory formation characterization of Chapter 3 is to
formally define all the conditions for which some primitives may not be observable in
the image. Such a formalization would require an extensive study of the semantics
underlying occlusion and non-visibility due to the viewpoint, and maybe other such

conditions.
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For occlusion, one solution would be to permit the use of assumptions about
occlusion to explain why a primitive cannot be observed, provided that we have
proper evidence to believe that an object is in front of the object predicting this
primitive. We already indicated that lower level cues like T-junctions could be used

as such evidence of occlusion.

A formal characterization of non-visibility due to the viewpoint to explain that a
predicted primitive can not be observed would rely on a precise study of perspective.
Non-visibility due to the viewpoint has already been given a lot of attention from

the computer graphics community; useful insight may be gained from that research.

The algorithm and the programming methodology that was imposed for compo-
sition and specialization axioms in chapter 4, could be improved by generalizing the
algorithm to deal with more general forms of representation. This generalization
would require attention to insure that we don’t loose efficiency. There is a trade off

between expressiveness and efficiency.

Finally, we would also like to use Perceptual Reasoning as a specification to

design and implement a computer vision system for a practical application.
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