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On The Average Case of String Matching
Algorithms

Ricardo A. Baeza-Yates *

Data Structuring Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1, Canada

Abstract

We study the average case of several string matching algorithms.
We obtain analytical results in random text. We derive a simple ex-
act analysis for the Naive algorithm and for different versions of the
Boyer-Moore algorithm. Also, an approximate analysis is given for the
Knuth-Morris-Pratt algorithm. Experimental results for all the algo-
rithms support the analysis. For patterns of length 2, an exact analysis
is provide for almost all the known practical algorithms and optimal
algorithms. Finally, we model real text, and some improvements to the
Boyer-Moore algorithm are presented.

1 Introduction

This work deals with the average case of string matching algorithms. The
string matching problem consist in find all occurrences (or the first occur-
rence) of a pattern in a text, where the pattern and the text are strings over
some alphabet. We are interested in reporting all the occurrences. It is well
known that to search for a pattern of length m in a text of length n (where
n > m) the search time is O(n) in the worst case (for fixed m). Moreover, in
the worst case at least n—m+1 characters must be inspected [16]. However,
between two different algorithms the constant in the linear term can be very
different. For example, the constant multiple in the Naive algorithm is m,
where as for the Knuth-Morris-Pratt algorithm it is 2. On the other hand,
the average case of this algorithms is not well studied. All previous analyses
assumes an approximate model or are not formally developed.

*This work was also supported by the Institute for Computer Research of the University
of Waterloo and the University of Chile, Santiago, Chile.



We derive an exact analysis for the Naive algorithm, the Rabin-Karp
algorithm (a probabilistic one) and for different variants of the Boyer-Moore
algorithm in a random text model. An approximate analysis is derived for
the Knuth-Morris-Pratt algorithm. Extensive experimental results support
these analysis. Also, these results are compared against experimental results
in real text.

For patterns of length 2, we provide an exact analysis of almost all known
algorithms. We also include some optimal algorithms in different senses for
this case.

Based on the experimental results for real text, we present a variation of
the Boyer-Moore algorithm that improves the search time for non-uniform
text, based on statistics previously obtained from the text.

2 Previous Results

Not too many papers mention the average case of string matching algorithms.
Moreover, only one paper deals exclusively with this case. The following is
a review of previous work on this topic.

The first paper is the classic Knuth, Morris and Pratt algorithm, pub-
lished in 1977 [14]. This work presents the first algorithm, in which the
constant factor in the linear term in the worst case, does not depend on
the length of the pattern; it is based on a preprocessing of the pattern that
takes O(m). In fact, the expected number of comparisons performed by this
algorithm (search time only) is bounded by

n<C,<2n.

In the same paper, it is showed that there exists an algorithm in which the
expected worst case number of inspections ! is O(k’—ffnﬂn) in random text,
where c is the size of the alphabet. Is conjectured that this is also a lower
bound. For some patterns, the expected number of characters examined by
this algorithm is O(Z). Also, an optimal algorithm for patterns of length
2, is presented. The algorithm is optimal in the sense that it minimizes the
average number of characters examined to find all the occurrences of the

pattern in the text. The expected number of inspections is

- __c2+c—1

In = ;-(26—_'1')—'1 + O(c) .

That same year, another classic algorithm was published by Boyer and
Moore [4]. The main idea, is to search from right to left in the pattern. With
this schema, the search is faster in average. An analysis of the algorithm in

10One character can be compared many times, but inspected only once.



the average is presented, based on some simplifying assumptions. However,
no closed form is provided. Experimental results support their analysis for
alphabets of size greater than 30.

In 1979, Yao [19] published the first paper on the complexity of the string
matching problem. He proved the conjecture raised in Knuth, Morris and
Pratt’s paper, showing that the minimum average number of characters that
need to be examined in a random string of length n is

I,>6 (ﬂ‘-’g—i"ln)

m

for almost all patterns of length m (n > 2m). This lower bound also holds for
the “best case” complexity. A generalized basic algorithm with this average
search time is presented.

Horspool in 1980 [13] presented a simplification of the Boyer-Moore al-
gorithm, and based on empirical results shows that this simpler version is
as good as the original Boyer-Moore algorithm. Moreover, the same results
shows that this algorithm is better than algorithms which use a hardware
instruction to find the occurrence of a designated character for almost all
pattern lengths. For example, the Horspool variation beats a variation of the
Naive algorithm (that use a hardware instruction to scan for the character
with lowest frequency present in the pattern), for patterns of length greater
than 5.

The first (published) analysis of the Naive algorithm appears in 1985 by
Barth [3]. This work uses Markov chains, assuming that the probabilities
of transition from one state to another do not depend on the past. The
expected number of comparisons needed to find the first match for the Naive
algorithm is
cmtl c
c—-1 c—1
where ¢ (as usual) is the alphabet size. This paper, using an heuristic model,
also derives an approximation for the Knuth-Morris-Pratt algorithm, given
by

Cfc'rat match =

m—1

— (4
Cﬁrat match"scm'f'c_l'i'c—c—l

With this results, Barth states the following approximation for the ratio of
the expected number of comparisons between the Knuth-Morris-Pratt and

the Naive algorithms:
KMP 1 1 1

" ~ .
Natve c ¢




3 Preliminaries

We are interested in the average number of comparisons between a character
in the text and a character in the pattern (tezt-pattern comparisons) when
finding all occurrences of the pattern in the text, where the average is taken
uniformly with respect to strings of length n over a given alphabet. It
might be argued that the average case taken over random strings is of little
interest, since a user rarely search for a random string. However, this model
is a reasonable approximation when we consider those pieces of text that do
not contain the pattern, and the algorithm obviously must compare every
character of the text in those places where the pattern does occur.

3.1 Random Text

Let 3 be the alphabet of size c. Let f; be the probability of choosing the
character ¢ from the alphabet. If you choose two characters independently
from the alphabet, the probability that these characters are equal is

c
Pequal = E fsz

=1

We define a random string of length [ as a string built by concatenation
of | characters chosen independently from Y uniformly (that is f; = % for
all 1). In the following we will use random strings, however almost all the
results can be translated to the general case by changing 1/c to pegqual.

Let text = tjtz---t, be a random string of length n and let pattern =
p1ps2 - - - Pm be a random string of length m with n > m. In practice, we will
use n > m.

Lemma 3.1 In a comparison, the probability that two characters, one from
the text and one from the pattern, are equal, is always %, unless we have
other events conditioning the current event.

Proof: Follows by definition, because each letter is chosen independently,
and so these events are uncorrelated. =

Is possible to extend the previous lemma, to the case of a memoryless
algorithm. In that case, the result also holds, because does not matter if the
character in the text, or the character in the pattern, or both, were compared
before, because we are not recording (using) the result of the previous events.

Lemma 3.2 The probability of finding a match between a random text of
length m and a random pattern of length m is

1
Prob{match} = e



Proof: We have
~ 1
Prob{match} = Prob{ty = p1 A+ Aty = ppn} = H Prob{t; = p;} = —
1=1 ¢

using the previous lemma. =

Lemma 3.3 The ezpected number of comparisons to decide if a random
pattern of length m match or not with a random tezxt of length m is

_ c 1
Cm-c—l(l—-c_;)

Proof: Because the strings are random strings, the order of the comparison
of the m positions is irrelevant. Without loss of generality, suppose that the
comparison order is from left to right. Then, using the first lemma, we have
that

_ m-—1 m--l1 ¢ 1
Cn=1 1X Prob{t; =p1 A---At; =p;} = - = 1-—
m + ‘=Zl ro { 1 D1 1 pi} pard P c—1 ( cm>

THEOREM 3.1 The ezpected number of matches of a random pattern of
length m in a random text of length n is

E[matches] = n

- 1
n-mt+l . n>m,
cm

otherwise (n < m) is 0.

Proof: In each m consecutive positions in the text, the probability of finding
a match is given by 1/c™. Each one of this substrings is independent from
the others by Lemma 3.1, and there are n — m + 1 possible substrings that
could match with the pattern. m

In many cases, we will need the expected value of the reciprocal of a
random variable. Since in general F (%) # T':%:Ej we use the Kantorovich
inequality [5]

(xmaz - xmin)z

4TminTmaz

1< B(2)E (%) <1+

where Z,, and Z,,,, denotes the range of the random variable z. If, the
variance of z converges to 0, asymptotically in some parameter, then the
lower bound is an equality (by the law of large numbers).



3.2 Markov Chains

We will need some basic results from Markov chains. A stochastic process is
a Markov process if the probability of one event only depends on the previous
event. A Markov chain is a Markov process in discrete time with a discrete
state space. In a Markov chain, each event, is generally associated with a
state. The above definition is equivalently to saying that the probability of
a transition from time ¢ to time t + 1 depends on the state at time t and the
final state at time ¢t + 1 [6].

Let S = {s1,---,8,} be the possible states in the chain, such that r is
finite. The transition matriz of the process is defined as

P= [Pij = Prob{t' - j/‘.}]rxr ’

that is p;; is the conditional probability of transition from state ¢ to state j
given that the process is on state 1. Let p® = (p(lt), ceey pg)) be the vector

state occupation probabilities at time t (that is, for example, pst) is the
probability of being in state ¢ at time n). Then

p®) =pOPt (n=1,2,..)

where p(©) is the vector of initial state probabilities.

We are interested in Markov chains with no absorbing states. That is in
all the states, there exists at least one transition to other state. Then, if =
is the stationary vector of state occupation probabilities, that is

im p) =
i p = =

then, x is the solution the following linear system of equations 6]

P-Dx=0, > m=1
j
where I is the identity matrix.

3.3 Experimental results

The empirical data, in almost all the algorithms, consists of results for two
types of text: random text and real text. In both cases, 100 runs were
performed, obtaining all the statistical measures with their 95% confidence
interval. In each case, patterns from length 2 to length 15 were considered.
The two main costs measured, were the number of comparisons performed
between a character in the text and a character in the pattern, and the num-
ber of instructions executed. The instruction model was as simple as pos-
sible, considering any instruction to have cost 1 unit, except multiplication,

6



division and modulus which cost 2 units. In the graphs Ibarsubn denotes
the number of instructions performed while searching a text of length n.

In the case of random text, the text was of length 20000, and both the
text and the pattern were chosen at random uniformly from an alphabet
of size c. The values 2 (binary), 4 (DNA), 10, 30 (lower case English) and
90 were considered. The results are more sensitive to the random number
generator for small alphabets. Moreover, when an algorithm work differently
for each pattern (for example Knuth-Morris-Pratt for alphabet size 2).

In the case of real text, we used a document in English. The document
selected was the Constitution of The United States. The length of this text
is approximately 48000 characters, and the patterns were chosen at random
from words inside the text, in such a way, that a pattern was always a
prefix of a word (or sentence). The alphabet used, was the set of lower
case characters, some numbers and some punctuation symbols, giving 33
characters.

4 Optimal Algorithms

All the linear algorithms that will be presented later, are optimal time algo-
rithms in the worst case. However, they are not space optimal in the worst
case, because these linear algorithms use space that depends on the size of
the pattern or the size of the alphabet, or both. Galil and Seiferas (8,10]
show that is possible to have linear time worst case algorithms using con-
stant space. Also they show that the delay between two characters in the
text is constant. That is, it is possible to search in real time [9)].

Yao’s result [19] is a lower bound for the average case number of inspec-
tions. What happens with the average case for the number of comparisons?
First, we will find an optimal algorithm on the number of inspections for a
pattern of length 2 [14] using Markov chains. The following diagram shows
the Markov chains for the two possible patterns (two equal characters or two
different characters). Note, that the pattern is scanned right to left.



The algorithm is optimal in the sense that it uses all the information from
the past, and then, it inspect the minimum possible number of characters in
the average. Note that we have three labels in each edge. One, is the value
of the last character inspected (“.” means any character), the other is the
probability that this transition happens, and the last (between parenthesis)
is how many positions we can advance in the text. Using, the results from
Markov chains we have that for the pattern “aa”

1-1/c 1/c ©
P= 0 0 1
1-1/c 0 1/c

and that

r=m[c(c—l), c—1,

Now, we can compute, the expected number of characters shifted per
inspection (for each new transition we inspect a new character), or csi for
short.

c(2¢—1)

Elesi] =2(1 - 1/c)p1+p2 + (1/c+2(01 = 1/e))ps = 53— —7

For the case “ab” the result is the same!. Then, using the Kantorovich
inequality (in this case an equality) we have Knuth’s result:

I = c2+c-1

"7 e(2c-1)

The expected number of comparisons of this algorithm is not the same.

The reason is that for the case “ab”, in the state 1, we need two comparisons
to decide which is the new state and in state 3, we need other comparison to

n+0(1)



decide if we report a match or not (unless ¢ = 2). Arranging the comparisons
to minimize the number of times that the second comparison is performed
and using a different code for each case, we have an algorithm that performs
less comparisons on the average than Knuth’s algorithm. Table 1 shows the
empirical results for both algorithms (patterns of length 2). Both algorithms
are optimal on the expected number of comparisons for ¢ = 2.

Algorithm | c=2 ¢=4 ¢=10 ¢=30 ¢=90
Knuth 1.1716 1.1086 1.04762 1.01654 1.00551
Ours 0.969 0.972 0.983 0.997 1.0005

Table 1: n—ciﬂi for optimal algorithms

Lemma 4.1 The ezpected number of comparisons performed by the previous
algorithm to search a pattern of length 2 in a text of length n is
2¢(c?+c-1) - 9¢(c?+c—1)
<Cn<
23 +3c2—4c+1 4(2c3+3c?—4c+1)

Proof: Computing the extra comparisons from the probability vector and
using the Kantorovich inequality (Cy, ranges from 1 to 2). m

Is the previous algorithm optimal on the number of comparisons? The
answer is: No. An algorithm that behaves like the previous algorithm for the
pattern “aa”, and like the Boyer-Moore algorithm (presented in section 8)
for the pattern “ab” performs less comparisons on the average for all ¢ > 2.
Namely

clc+1)(2+c-1) - 9¢(c+1)(c?+c—1)
(2c—1)(3+ct-c+1) SCns 8(2c—1)(c*+ct—c+1)

An interesting question is which is the number of states of the determin-
istic finite automata that represents a general optimal algorithm that scan
the pattern right to left (or a “Boyer-Moore dfa”). An obvious upper bound
is 2™. In [14], it is explained why a pattern consisting in m different symbols
requires O(m?) states. An O(m3) lower bound over a three character alpha-
bet is known [11]. Is easy to see from the Knuth-Morris-Pratt algorithm,
that an optimal algorithm that scan the pattern left to right needs also at
least O(m?) (and possiblely not more).

Using the same approach, it is possible to obtain C,, for any algorithm,
for a pattern of fixed small length. Table 2 shows the results for patterns of
length 2 in function of the alphabet size ¢ for Boyer-Moore type algorithms
(see section 8).




Algorithm Lower Bound | Upper Bound
Boyer-Moore [4] 2L %(26%-11)7
Boyer-Moore-Galil [7] 2c3—3::+3c—1 8(2c3—§::+3c-—1)
Simplified Boyer-Moore | 3 c;_’c(;’j;)c 3 16(225:,(_";:_{1)

Table 2: Lower bound on .Taﬁ for Boyer-Moore type algorithms

5 Naive Algorithm

The naive or brute force algorithm, is the simplest string matching method.
The idea consist in try to match any substring of length m in the text
with the pattern. Clear, this is a memoryless algorithm, because the only
information recorded, is how many characters are matching at each point,
but we forgot all of that in the next trial.

THEOREM 5.1 The ezpected number of comparisons tezt-pattern performed
by the naive or brute-force algorithm to search a pattern of length m in a
text of lengthn (n > m) is

= (4

1
Cn = -~ )(n-
3 c_l(l cm)(n m+1)

Proof: Using Lemma 3.3 and Theorem 3.1 we have that there are n —
m + 1 substrings, and in each one of them, we perform on the average C,
comparisons. s

Asymptotically, on m and n (m < n) we have
Cn c

— -m
n —c_1+0(c )

This is drastically different from the worst case (mn). Figure 1 shows the
theoretical curve for some values of ¢, along with the empirical results. The
agreement between both curves is almost exact.

6 Knuth-Morris-Pratt Algorithm

The basic idea behind this algorithm is that each time a mismatch is de-
tected, our “false start” consist in characters that we know in advance.
Then, we can take advantage of this information instead of backing up over
all those known characters. Moreover, is always possible to arrange things

10



so that the pointer in the text is never decremented. For this, the algorithm
preprocesses the pattern to obtain a table that gives to which state of the
match you need to go if we found a mismatch. Further explanations can be
found in the original paper [14] or in text books (for example [18]). In the
worst case, the time is 2n + O(m).

The basic idea of this algorithm, also was discovered independently by
Aho and Corasick [1], to search for a set of patterns. However the space used
and the preprocessing time to search for one string is improved in Knuth-
Morris-Pratt algorithm. A variation that computes the next table as needed
when we are searching is presented in [2].

The Knuth-Morris-Pratt algorithm is not a complete memoryless algo-
rithm. In fact the next table acts as different states during the search. The
fact that Knuth-Morris-Pratt algorithm is not memoryless, makes Barth
model invalid and then his results [3]. If we have that two characters are
different, the next state is such that we have a new partial match and that
the new character in the pattern is different from the old one. Then, the
Markov chain for the case m = 2 has one state more for each different next:

1-1/c (1)

1-1/(c41) (1) (1
1/(e-1) (1)

In general the number of states will be m(m + 1)/2 + 1 for a pattern of
length m and we compute the following exact results:

Lemma 6.1 The ezpected number of comparisons text-pattern performed by
the Knuth-Morris-Pratt algorithm to search in a tezt of lengthn (n > m) is

1 1 1 C. 9 1 1 1)
4= <2< S-S+ =<)40
142 c2+c3+o(l/n)_n_8(1+c S+ ) +0(/n)

for a pattern of length 2 and
R A | Cn 9(S+ct—c2+1)
<2< o(1
c5_c+1 +O(1/n)— n — 8(05—‘0""1) + (/n)

11



for a pattern of length 3.

Proof: Computing the steady state probability as in section 4 and using
the Kantorovich inequality (C, ranges from 1 to 2 for any pattern length).
=

If we suppose that the memoryless model is valid, the result is not far
away from the exact result, and is asymptotically similar in the size of the
alphabet. Then, we can approximate the Knuth-Morris-Pratt algorithm
using this model.

In the general case, the Markov chain will have m + 1 states. In state 5
we have the following transitions:

e To state j+ 1 if j < m+1 with probability 1/c (match of a character)
advancing the pointer in the text by one.

e To state 1 if j = 1 with probability 1 — 1/c advancing the pointer in
the text by one. ’

e To state ¢ (1 < ¢ < j)if 1 < §j < m+ 1 with probability (1 —
1/c) Prob{nezt[j] = i} without advance the pointer in the text.

e To state 1if 1 < § < m+1 with probability (1—1/c)Prob{nezt(j] = 0}
and advancing the pointer in the text by one.

e To state ¢ if § = m+1 (after a match) with probability Prob{nezt[m-+
1] = 1} without advance the pointer in the text.

Then, the expected number of characters skipped per comparison is

Elcsc]=p1 + f:(l/c+ (1 — 1/c)Prob{nexzt[j] = 0})p;
1=2

Now, we can made the following approximation:

(c—1)~*

Prob{nezt|j] = i/mismatch} ~ pr

for 1 < i < j, and Prob{nezt[j] = 0/mismatch} is the complementary
probability. This approximation is computing the probability that the last
¢ — 1 characters matched are a prefix of the pattern (that is match the
beginning of the pattern) and that the other characters must be different
from the character in the pattern that mismatch. Computing an asymptotic
approximation for Prob{nezt[j] = 0} and using that }>7",p; = 1~ p; —
Pm+1 = 1 — p1 + O(c™™) we obtain an asymptotic approximation for the
expected number of comparisons

- 1 1 -3
anl'{-;—c—._,‘-l'O(c )
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and is tight for alphabets of size greater than 10, as can be seen from the
empirical results. Figure 2 show the empirical results contrasted with the
approximation developed here. Barth approximation of Knuth-Morris-Pratt
algorithm is not good (too optimistic), as shown in Figure 2 for the case
¢ = 4. In fact, the average ratio between the two algorithms is better
approximated by

KMP 1 - 2

Naive c?
and then both algorithms are closer on the average for large alphabets.

Table 3 shows the empirical results contrasted with the exact theoretical

values for m = 3.

Result c=2 ¢c=4 ¢c=10 ¢=30 ¢=90
Theoretical | 1.322 1.1919 1.090 1.032 1.01098
Empirical 1.321 1.186 1.0896 1.03343 1.01119

Table 3: Results on ”—c_ﬂl- for the Knuth-Morris-Pratt algorithm

7 Rabin-Karp Algorithm

Another approach to string searching is to use hashing. All that we need to
do is to compute the hash function of each possible m-character substrings
of the text and check if it is equal to the hash function of the pattern. The
problem with this method is that it seems at first to be just as hard as in
the Naive algorithm, and using more memory for the table.

However, Rabin and Karp [15] found an easy way to get around this
problem for the hash function h(k) = k mod ¢ where ¢ (the table size) is
a large prime. Their method is based on computing the hash function for
position 1 in the text given it value for position 1 —1. With this the algorithm
takes time proportional to n+ m in almost all the cases, without using more
memory. Note that it really finds a position in the text which has the same
value as the pattern, so, to be sure, we really should do a direct comparison
of that text with the pattern. However, the use of a large value of ¢ makes
a collision extremely unlikely. Theoretically, this algorithm could still take
mn steps on the worst case, if we check and we have too many matches
or collisions. In all our empirical results we observed 3 collisions in 107
computations of the hash function (generally, for big alphabets). Then, in
practice, we can forgot the checking, obtaining a truly linear algorithm.

The hash function used, is writing a string as a base-d number, where d
is the number of possible characters. More easy, is to use d a power of 2,

13



such that d > c. In this case, all the multiplications by d can be computed
as shifts. The prime q is chosen as large as possible, such that (d+ 1)q does
not cause overflow. For more details of the algorithm see [18].

THEOREM 7.1 The expected number of comparisons pattern-text performed
by the Rabin-Karp algorithm to search a pattern of length m in a text of
length n is asymptotically on n and m (with n>> m)

Chn m m
-n——}('i‘c—m—'i'O(;)

where } is the cost of computing the hash function expressed as comparison
units.

Proof: We have that

c"nz)((n+m)+’_"__(_'_‘__c;_"_"'_1_)

+ mnProb{colliston}

where the first term is the computation of all the hashing functions and the
second term is the number of comparisons used to check all the matches
found on average. The last term, depends on the number of collisions. The
probability of a collision is proportional to 1/q with the assumption that the
hashing function is uniform. m

The empirical results are plotted using ¥ = 1 in figure 3. They agree
very well for almost all the alphabet sizes.

8 Boyer-Moore Algorithm

A practical improvement on the average time is obtained searching from the
right to the left in the pattern [4]. The algorithm repeatedly positioning the
pattern over the text and attempting to match it. For each positioning that
arises, the algorithm starts matching the pattern against the text from the
right end of the pattern. If no mismatch occurs, then the pattern has been
found. Otherwise the algorithm computes a shift; that is, an amount by
which the pattern will be moved to the right before a new matching attempt
is undertaken.

The shift is computed using two heuristics. The match heuristic is based
on the idea that when the pattern is moved to the right, it has to (1) match
over all the characters previously matched, and (2) bring a different character
over the character of the text that caused the mismatch. Secondly, the
occurrence heuristic uses the fact that we must bring over the character of
the text that caused the mismatch, the first character of the pattern that
will match it.

14



Both shifts can be obtained from precomputed tables based solely on the
pattern and the alphabet used. Hence, the space needed is m + ¢ + O(1).
Given these two shifts, the algorithm chooses the largest one. The shift
strategy also can be applied after a match.

Knuth [14] show that in the worst case the number of comparisons is
O(n + rm) where r is the total number of matches. Hence, this algorithm
can be as bad as the Naive algorithm when we have too many matches (for
example, the case of an small alphabet). An alternative proof, more simple,
can be found in [12]. In [14] the preprocessing of the pattern is showed to
be linear in the size of the pattern, as the Knuth-Morris-Pratt algorithm.
However, that algorithm is incorrect. The corrected version can be found on
Rytter’s paper [17].

The simulations results obtained here agrees well with the empirical and
theoretical results on the original paper [4]. See figure 4 for the empirical
and theoretical results of our paper. Here, we go further in the analysis, to
obtain asymptotic results.

Suppose that a mismatch has occur in position k+1 from the right. Then,
the shift due to the occurrence heuristic is m — k if the mismatched character
does not appear in the pattern; or is j if the mismatched character appears
7 positions to the left and does not appear at the right of that position; or
is 1, if the mismatched character appears in one of the k positions at the
right. Hence, the probability that the shift due to the occurrence table is 5
given a mismatch at position k + 1 from the right is

1-(1-1/c)*! =1
(1-1/c)¥"1/c 1<j<m—k
(1-1/c)m™1 j=m-k

0 m—-k<j<m

Ocj(k) =

For the match heuristic, given a mismatch at position k + 1 from the
right, the shift is of size k, if the substring matched, matchs the pattern k
positions to the left (if ; > m — k the corresponding suffix of the substring
matches a prefix of the pattern) and does not match anywhere at the right
of that position. Hence, the probability that the shift due to the match table
is j given a mismatch at position k + 1 from the right is defined recursively
as [4]

i-1
M;(k) = a;(1~ Y- Mi(K) , Mi(k) = o
with
._{ (1-1/c)(1/c) 1<j<m—k
Y Weor T m-k<ji<m
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The solution for the recursion is
j-1
Mj(k) = ay H(l —a.-) , 3>1
=1

The probability that the maximum of the two tables is 5 given a mismatch
at position k + 1 from the right is

Pi(k) = 0c;(K) Y- Mi(k) + My(k) 3 Ol

=1

Hence, the average number of characters skipped per comparison is

(1/c)*

m—1 m 1
Elcsc] = 1-1/¢)——— P (k
esel = 32 (1= 1/0) 7y 2P +

mc™

We are not able to compute a closed form for the previous expression,
mainly because Mj(k) is not on a closed form. However, we have obtained
the following asymptotic result for a large alphabet size ¢

G > m(m+ 1)

-2
2m2c +0(c7) -

1
—+
m

To improve the worst case, Galil [7] modifies the algorithm, remember-
ing how many overlapping characters we can have between two successive
matches. Then, instead of going from m to 1, the algorithm goes from m to
l where | (> 1) depends if the last event was a match or not.

This algorithm is truly linear, with a worst case O(n + m). However,
according to the empirical results (figure 3), as expected, only improves the
average case for small alphabets, at the cost of using more instructions. The
improvement is of O(c™™).

A simplified version of the Boyer-Moore algorithm is obtained using only
the occurrence heuristic. The main reason, is that in practice, the patterns
are not periodic. Also, the space goes down from O(m + ¢) to O(c). With
this, the space depends only on the size of the alphabet (almost always fixed)
and not on the length of the pattern (variable). For the previous reason, does
not make sense to write a simplified version that uses Galil’s improvement,
because we need O(m) space to compute the overlapping characters. Off
course, now the worst case will be O(mn) (unlikely to occur), but will be
faster on the average.

Then, each time that a mismatch is found, we select the maximum from
the heuristic table or 1, for the absolute shift of the pattern. This algorithm,
because we are not using the match heuristic, is memoryless, and then we
can apply the first lemma of section 3.
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Lemma 8.1 The ezpected value of each shift of the pattern over the text on
the Stmplified Boyer-Moore algorithm is

3 _ .2 m 2 - m
,§=c c+1_c(1_l) + c (c 1)
cZ—-c+1 c cZ—c+1 c?

and the ezpected number of character skipped per comparison is

Elcsc]= (c—-1)(1—c(1-1/c)™) ln(c )+c(c—-l) In(—— . )+ (——)
Proof: We take the average of the occurrence table over all possible mis-
matches, that is

S=—+ E(l - 1/6)(1/0)'°21001(k)

k=0 =1

giving the desired result. For the expected number of character skipped per
comparisons we take the same average weighted by the number of compar-
isons of each case, that is

1 (/ £ o
Elcsc] = ——+ Z(l 1/c ) ZJOc,(k)

J=1
We use the fact that 352, z%*!/(k + 1) = —In(1 — z) to approximate the

expression above. m

THEOREM 8.1 The ezpected number of comparisons text-pattern performed
by the Simplified Boyer-Moore algorithm to search a pattern of length m in
a text of length n (n > m) is asymptotically on n and m (with m < n)

+ O((1-1/¢)™)

C. 1
n (c- 1) (In(5) + eIn(z57))
and asymptotically on n and ¢ (with ¢ K n) is

m2+1

2cm? + O(c"z)

+

1
m

Proof: The expected number of comparisons is bounded by "% 'c':’:l ..

Figure 5 shows the theoretical and empirical results for this case. An
interesting fact to improve the previous algorithm, is to note, that after
we know that the pattern matches (or not), any of the characters from the
text can be used to address the heuristic table. Based in that, Horspool [13]
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improves the algorithm, using always the character in the text corresponding
to the last character of the pattern. To avoid the comparison to know the
maximum in the case that the value of the table is O (last character of
the pattern), he notes that is possible to define initially the entry in the
occurrence table for the last character in the pattern as m and then compute
the heuristic table only up to the first m — 1 characters of the pattern. The
code in the C programming language for an optimized Horspool version of
the Boyer-Moore algorithm is really simple. Namely

for( k=0; k<MAXSYM; k++ ) d[k] = m; /* preprocessing

for( k=1; k<m; k++ ) d[pat[k]l] = m-k;

pat[0] = CHARACTER_NOT_IN_THE_TEXT; /* to avoid having
text [0] = CHARACTER_NOT_IN_THE_PATTERN; /* special code if the
*/

/* pattern matches the

*/
k =m; /* beginning of the text
*/
while( k <= n )
{
k1 = k;
for( j=m; text[k1] == pat(jl; j-- ) ki--;
if( j == 0 ) Report_match_at_position( k1 + 1 );
k += d[text[k]];
}

/* restore pat[0] and text[0] if necessary */

The simplicity of the Horspool version, also simplifies the analysis.

Lemma 8.2 The ezpected value of each shift of the pattern over the text
(that is the expected value of d[text[k]]) is

se(i-(-2))

Proof: We have that the value of the shift is m if the character in the text
is different from any character in the pattern between positions 1 and m — 1
inclusive. The probability of that event is (1 — 1/c)™ 1. The value of the
shift is m — 7 if the character of the text is equal to p; and is different from
all the characters in the pattern between positions 5+ 1 and m — 1 inclusive.
The probability of this case is 1/¢(1— 1/¢)™ =1, Then
m—1
S=m(1-1/c)™" ' +1/c D (m-35)(1- 1/e)™ 1 =c(1-(1-1/c)™)
j=1
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THEOREM 8.2 The ezpected number of comparisons text-pattern performed
by the Horspool version of the Simplified Boyer-Moore algorithm to search a
pattern of length m in a text of lengthn (n > m) is

-
Cn > Lo

STy

and asymptotically on n and m (with m < n) is
Cy 1
n c-1

(n—-m+1)

+0((1-1/¢c)™)

and asymptotically on n and ¢ (with c < n) is

Proof: The expected number of times that we shift the pattern is bounded
by lmgﬁij Each time, on the average, we perform C,, comparisons. This
expression is valid in this case, because the expected shift does not depend
in which position the pattern did not match. It is possible to obtain a lower
bound using E[csc|, but the result is weaker than the previous one. m

Based on the analysis, this version of the simplified Boyer-Moore algo-
rithm is better, and is as good as the original Boyer-Moore algorithm for
alphabets of size 10 or bigger. Figure 6 shows the empirical results and the
theoretical results for Horspool version.

Finally, figure 7 shows the expected number of instructions per character
for all the algorithms (¢ = 30). Based on the empirical results, it is clear,
that Horspool variant is the best known algorithm for almost all pattern
lengths and alphabet sizes.

9 Searching on Real Text

Figure 8 shows the same empirical results of previous sections for a real text
(see section 3.3). Although the results are very similar, the main difference
between random text and real text is the following: if we have a partial
match, the probability that the next character will match, will be generally
greater than 1/c. For example, suppose that we are searching for computer
and at some point we have compu as a partial match. Which is the prob-
ability that the next character is a t?. The answer depends on how many
words in English begin with that prefix, but obviously is greater than 1/30.
This tell us that in real text the value of Cy, is a little higher.

Which is the model for this correlation when we have partial matches?.
Suppose that the probability of match the first character of the pattern is
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Pequal (like random text). And then, each time, if we have a partial match
the probability increases up to some point.

Based on the frequency of the characters in the real text used, we found
that p.guas = 0.073 and if we do not include spaces as a valid character for
the first letter of a word, the value is p.guqa = 0.046.

Figures 9 and 10 shows what happens in practice for four algorithms:
The naive and Knuth-Morris-Pratt algorithms (left to right) and the Boyer-
Moore and Boyer-Moore-Horspool algorithm (right to left). The results are
plotted for 4 different pattern lengths.

Note that for the left to right algorithms p.qyuai is near 0.046 as expected.
This is because only prefix of words (sentences) are used. Other interesting
fact, is that the probabilities are more or less the same for both algorithms
(the naive algorithm try all positions, Knuth-Morris-Pratt not).

For the right to left algorithms position 1 means a mismatch in position
m and so on (reverse order). Here, we have that p.guq is near 0.073, because
the prefix of a sentence can finish with a space (likely on long patterns).
Again, the probabilities for both cases are similar.

Based, on the results, a possible model for this probability, is an expo-
nential curve

Prob{p; = t;/partial match} =1 — (1 - p,quaz)e"’(j'l)

where a is a parameter that control how fast the curve converges to 1. We
found that a good approximation for the left to right algorithms is

Prob{p; = t;/partial match} =1 — 0.955¢~0-26(-1)
and for the right to left algorithms is
Prob{p; = t;/partial match} =1 — 0.92¢030-1)

Both curves are also plotted in figures 9 and 10. Is interesting to see that
the correlation in both directions and for all values of m is very similar.
These experiments are not conclusive, and is necessary to run more general
simulations. However, it is clear that the correlation is very high, and then
to search on real text is slightly hard than to search on random text.

How we can improve the average time on real text?. Based only on the
pattern, it is not possible to improve the length of the expected shift on the
Boyer-Moore-Horspool version. However, it is possible to reduce the number
of comparisons in each trial. Suppose we are searching for the pattern “max-
imize”. May be good idea to compare first if ‘2’ is in the text rather than
to compare ‘e’, because ‘e’ is a character with high frequency in English.
Then, the optimal comparison order is giving by the probability of finding
each character on the text. We can find that information preprocessing the
text, or using previous statistics about text in the language used.
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Also, is possible at the same time, to compute dynamically the maximum
value of the shift for all the characters compared in one trial. However,
this idea is not good, because we increase the number of instructions per
comparison more than the final savings. Other way, if we cannot determine
which is the best character in the text to compute the shift, is to use an
heuristic based on the pattern. One possible heuristic is to use the position
k — (m — j°P*) on the text to compute the shifts, with j°?* given by

7% = max(j(1 - Prob{p;}),j = 1..m)

This is based on the fact that if the character in the text mismatch with p;,
the absolute shift is 7 if the character is not in the pattern. The position
7°Pt will be different from m if we have two of the following cases:

e a long pattern
e non uniform text
o a character with high frequency

The main drawbacks of the algorithm is that we need O(mlogm) pre-
processing time and O(m + c) space. Also, in the internal loop we have 3
instructions more per comparison, and the heuristic fails many times, be-
cause the character in the text can mismatch, but is in the pattern. A
simplified version of this heuristic that optimizes both things only in the
last positions without increasing the number of instructions improves Hor-
spool version for long patterns in real text. This improvement is greater if
the probability distribution of the symbols is further away from the uniform
distribution.

10 Conclusions

Using a simple random model for text, we have analyzed almost all the known
algorithms for string matching. The empirical results show that this model
is close enough to real text (being searching in real text slightly harder) to
predict the average behaviour of these algorithms. More over, the empirical
results and the theoretical results are almost similar for typical alphabets
(¢ > 10).

Asymptotically on m, the length of the pattern, the constant factor in the
linear term of the average number of comparisons is given by a function that
only depends on the alphabet size (that is, do not converge to 0 with large
m [19]) for almost all the known algorithms. Analogously, asymptotically on
¢, the size of the alphabet, the constant factor depends only on the pattern

size.
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Up to now, Horspool version of the Boyer-Moore algorithm is the best
algorithm, according to the average number of machine instructions per-
formed, for almost all pattern lengths. For non-uniform text the variant
presented here may be better, depending on the probability distribution of
the symbols used.
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Figure 1. Simulations results for the naive algorithm in random text
(dotted line show the theoretical results)
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Figure 4. Simulations results for the Boyer-Moore algorithm in random text
(dotted line = with Galil’s improvement, dashed line=theoretical results)
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Figure 9. Conditional probability of a match in position j
for Naive (dotted line) and Knuth-Morris-Pratt algorithms
(dashed line = model approximation)
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