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Abstract

In a nested relation attributes are allowed to have relations as val-
ues. In this paper we present an algebra for nested relations. The
operators of traditional relational algebra are extended to nested rela-
tions and operators for nesting and unnesting are defined. To be able
to combine and modify subrelations within a relation, a new operator
called a subrelation constructor is introduced. The proposed algebra
simplifies and generalizes earlier approaches to defining an algebra for
nested relations.

1 Introduction

A fundamental assumption of traditional relational database theory and cur-
rent relational database systems is that all relations are in First Normal Form
(1NF), that is, all attributes must have atomic (non-decomposable) domains.
Such relations are commonly called flat relations. There are, however, both
theoretical and practical reasons for investigating databases where this as-
sumption has been relaxed and attributes are allowed to have relations as
values. A relation-valued attribute may, in turn, have attributes which have
relations as values, and so on. We will call relations of this type nested
relations, instead of the rather clumsy non-first-normal-form relations.
Attempts to extend the use of relational databases to non-traditional
applications dealing with complex objects, for example, engineering designs
or office forms, have had limited success. Even in more conventional busi-
ness applications, the limitation to flat relations has proved to be a severe

*This research was supported by Cognos, Inc., Ottawa and by the Natural Sciences and
Engineering Research Council of Canada under grant No. A-2460.
Authors’ e-mail addresses: {vdeshpande, palarson}@waterloo.{edu,cdn,csnet}



2 Deshpande and Larson

Table 1: An employee database consisting of a single nested relation.

EMPLOYEE
CHILDREN TRAINING
ENO | NAME | NAME | DOB SEX [ CNO | DATE
105 John Jane 800510 | F 314 791010
Eric 821005 | M 606 810505
714 820620
123 Anne Maria | 751112 | F 315 810613
423 820711
153 Bruce 314 791010
205 Ian Bob 701016 (| M
Steve 750115 | M

EMP CHILDREN TRAINING

ENO | NAME ENO | CNAME [ DOB SEX ENO | CNO | DATE
105 John 105 Jane 800510 | F 105 314 791010
123 Anne 105 Eric 821005 | M 105 606 810505
153 Bruce 123 Maria 751112 | F 105 714 820620
205 Ian 205 Bob 701016 | M 123 315 810613
205 Steve 750115 | M 123 423 820711

153 314 791010

Table 2: The employee database structured as three flat relations.

restriction. It leads to unnecessary fragmentation of the database, both
conceptually and physically. As a result, querying the database becomes
cumbersome and slow because, except for the simplest queries, the required
data has to be collected from several relations and joined to obtain the re-
sult. There are many situations where the insistence on flat relations leads
to an artificial separation of data. The following example illustrates one such
situation.

Consider a simple database containing information about employees,
their children, and courses taken by the employees. If nested relations are
allowed, this information can be stored in a single relation. An instance
of this relation is shown in Table 1. (DATE refers to the date when the
employee completed the course.) If nested relations are not allowed, the
information must be separated into three flat relations: EMP, CHILDREN,
TRAINING. This is shown in Table 2. For simplicity, we assume that the
conceptual relations shown in Tables 1 and 2 are also physically stored in
the same way.

There is little to be gained by structuring the database as three separate
relations. At the conceptual level, we fail to see how the version in Table 2
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would be easier to understand. There is no redundancy in the nested relation
in Table 1 and no update anomalies can occur. Physically, the three-table
version requires more storage because the attribute ENO is repeated in both
CHILDREN and TRAINING.

Querying the database in Table 2 is also conceptually more difficult and
actual processing of a query is often slower. This is typically caused by the
need to join several relations. A join must be explicitly carried out in the
flat relations case, whereas it is already materialized in the nested relation.
Consider the following query:

Example 1.1 Find ENO and NAME of all employees without children.

In traditional relational algebra this would be expressed as

T := x[ENO|(EMP) — x|ENOJ(CHILDREN)
Result := T x 7[ENO,NAME|(EMP)

The translation of the query into relational algebra can hardly be called
obvious. In the relational algebra for nested relations developed in this
paper, the same query translates into

Result := 7[ENO,NAME]o[CHILDREN = §](EMPLOYEE)

(The condition CHILDREN = @ simply states that an EMPLOYEE tuple
qualifies if the (sub)relation CHILDREN is empty.) Evaluation of the first
query is also more complicated and likely to be significantly slower than
evaluation of the second query. The first query involves computing a set
difference and a join, which are both slow and expensive operations. The
second query can be evaluated in a single scan of the EMPLOYEE relation.

In this paper we define an algebra for nested relations. We build on
earlier work by [RKS84], [SS86], [AB84a], and [AB84b]. Roth, Korth and
Silberschatz [RKS84] did not define any operations on subrelations. These
are handled in our algebra by a new operator called a subrelation constructor.
Our algebra is closest to the one proposed by Schek and Scholl in [SS86].
We have tried to simplify the definitions of the operators by making them
consistently recursive. Our algebra, we feel, is also easier to understand.
The algebra proposed by Abiteboul and Bidoit [AB84a] for Verso-relations
differs significantly from ours. Furtado and Kerschberg [FK77] proposed
an algebra for ‘quotient relations’ which can be viewed as simple nested
relations. Fischer and Thomas [TF86] studied the interaction of nest and
unnest with other relational operators.

Many other aspects of nested relations have been studied. Extensions of
SQL to nested relations have been proposed in [RKB85]. Normal forms for
nested relations were first investigated by [M77] and later by several other
researchers [RK87|, [OY85].
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The rest of the paper is organized as follows. In section 2 we introduce
and define a number of basic concepts. In section 3 we define the effect
of the traditional operators (union, intersection, difference, select, project,
Cartesian product, join) when applied to nested relations. The operators
nest and unnest are also defined, as is the rename operator. In section 4
we introduce the new concept of a subrelation constructor, and show several
examples of queries posed using the constructor to illustrate the ease of use
and power of the algebra. In section 5 we show the same queries posed in
the algebra proposed by [SS86] as a way of comparison. Finally, section 6
contains a brief conclusion and prospects for further work.

2 Basic Concepts

In a traditional relational database, all attributes of a relation are atomic-
valued. In a nested relation, we allow attributes to be relation-valued. This
can continue recursively a finite number of times, that is, a relation-valued
attribute may, in turn, contain relation-valued attributes. A relation-valued
attribute is also called a subrelation. An attribute which is atomic-valued is
called a single-valued attribute. We give the following recursive definition.

Definition 2.1 (Nested relation) The scheme of a nested relation is of
the form R(A;, Az, ..., Ap), n > 1, where R is the name of the scheme and
each A; is either the name of a single-valued attribute (defined over some
domain) or the scheme of a nested (sub)relation.

A flat relation is a relation where all attributes are single-valued. A
database scheme is a collection of relation schemes R;, Ry, ..., Ry. An in-
stance r of a relation R consists of tuples over the scheme R.

The scheme of a nested relation R can be represented by a tree, Tr, called
the scheme diagram. This is a convenient way of graphically illustrating the
nesting structure of the relation. Tg is a tree with R as the root node and
the relation-valued attributes of R as subtrees. The nodes of the scheme
diagram are labelled with the names of the corresponding (sub)relations. As
a convention, all the attributes of the (sub)relation are listed to the right of
a node. The scheme diagram of relation EMPLOYEE is shown in Figure 1.

Let R be the name of a relation or subrelation. Then attr(R) denotes the
set of (single-valued and relation-valued) attribute names of R, sattr(R) the
set of single-valued attribute names of R, and rattr(R) the set of relation-
valued attribute names of R. For example, attr(EMPLOYEE) = {ENO,
NAME, CHILDREN, TRAINING}, sattr{EMPLOYEE) = {ENO, NAME},
rattrf(EMPLOYEE) = {CHILDREN, TRAINING}. In this paper, we also
adopt the convention that Y denotes names of subrelations, X denotes single-
valued attribute names, V,W and Z denote attribute names that may be
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ENO
EMPLOYEE NAME
CHILDREN
TRAINING
NAME CNO
CHILDREN DOB TRAINING DATE

SEX
Figure 1: Scheme diagram of the relation EMPLOYEE

either single-valued or relation-valued. If Z C attr(R) and t is a tuple over
R, we write t[Z] to denote the projection of t onto the attributes in Z.

The definition of a relational algebra operator must specify both the
structure of the resulting relation and its value. To define the structure of
a relation we introduce the concept of the format of a relation. Note that
a relation created by an algebra expression does not have a name, unless it
is explicitly assigned one. For example, the relation resulting from #[X](R)
does not have a name. Hence, the format of a relation does not include
the top-level name of the relation, if it has one. However, if we want to
be able to use the result of an algebra expression as an operand in another
expression, we must be able to refer to its attributes, for example, in a
selection condition. Hence, the format of a relation includes attribute names.
The result relation inherits the attribute names of its operand relations,
according to certain rules. A formal definition follows.

Definition 2.2 (Format) Let X be a single-valued attribute, and R(Zy,. .., Zy)
a nested relation scheme where R is the name of the relation and Z,,...,2Z,
are attribute names.

format(X) = ‘’domain(X)
format(R(Z, . .., Zy)) ‘(’Z1format(Z2y), . . ., Zpformat(Z,)‘)’

Example 2.1

format(R(A,B(C,E)))
= (A:format(A), B format(B))
= (A:domain(A),B(C:format(C),E:format(E)))
= (A:domain(A),B(C:domain(C),E:domain(E)))
format(r[ENO,TRAINING](EMPLOYEE))
— (ENO:domain(ENO), TRAINING
CNO:domain(CNO),DATE:domain(DATE)))
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Definition 2.3 (Equivalence of Formats) Let R, Ry be two nested re-

lations. The formats of Ry and Ry are equivalent, written format(R;) =
format(R;), if

attr(R;) = attr(Rp) A VA; € attr(R,;), B; € attr(Ry),
(A; = Bj = format(A;) = format(B;))

Note that according to the above definition, the ordering of attributes
within a relation is unimportant in determining the equivalence of relation
structures. Attributes are identified by their names, not their positions.

We restrict the class of nested relations to those which are in Partitioned
Normal Form (PNF). A relation R is in PNF if the single-valued attributes of
R form a key for the relation, and recursively, each relation-valued attribute
of R is also in Partitioned Normal Form. For example, the instance of
EMPLOYEE in Table 1 is in PNF. A formal definition is given below, slightly
modified from [RKS84].

Definition 2.4 (Partitioned Normal Form) Let R be a relation with atir(R)
consisting of single-valued attributes X and relation-valued attributes Y. An
instance r of R is in PNF if

1. X = XY, (X functionally determines XY) and
2. Forallt € r and for allY; €Y, t[Y;] is in PNF.

In the relational algebra to be defined, pathnames are used for referring to
subrelations which are nested in the relation structure. We give the following
definition.

Definition 2.5 (Pathname) Let R be a nested relation. An ezpression of
the form Y1.Ys.---.Y; is a valid pathname in R if Y, € rattr(R) and Y; €
rattr(Y;—1), 1 =2,3,...,k.

A pathname uniquely identifies a subrelation within R. Note that the
relation name R is not included in the pathname. The complete name
of an attribute Z in a subrelation Y; of a relation R, is then of the form
Y1.Y;.---.Y;.Z where Y1.Y;.---.Y; is the pathname identifying Y;. By us-
ing complete names we can always uniquely identify an attribute within a
relation. For example, in EMPLOYEE, CHILDREN.NAME refers to the
attribute NAME of the subrelation CHILDREN, while NAME refers to the
attribute NAME in EMPLOYEE.

Next we define the scope of a pathname. The scope consists of the set of
attributes (names) which can be referred to when the pathname is specified.
Intuitively, the scope consists of all the attributes which are ‘seen’ as one
goes along the path starting at the root of the scheme diagram of R and
going down to the subrelation identified by the pathname.
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Definition 2.6 (Scope of a Pathname) Let S = {Ry,R,...,Rn} be a
database scheme and P = Y1.Yz.---.Yy a valid pathname in relation R;.
Then the scope of P is defined as

scope(P) = S Uattr(R;)Uattr(Yy) Uattr(Y1.Y2) U...Uattr(Y1.Ys. - --.Yk)
~{R;,Y1,Y1.Y3,...,V1.Y;.---Y}}

The tmmediate scope of P refers to the set of attributes that are seen at the
lowest level of the path, that is, iscope(P) = attr(Y;.---.Yy).

For example, consider the scheme R(A,B,C(D,E),H(I,J(K,L))), and the
path P=H.J . Then

scope(HJ) = {R} U attr(R) U attr(H) U attr(H.J) — {R,H,H.J}

{R} U {A,B,C,H} U {H.LH.J} U {HJK,HJ.L} - {R,H,H.J}
{A,B,C,H.LH.J.K,HJ.L}

attr(H.J)

{HJKHJ.L)

iscope(H.J)

At the instance level, each occurrence of J consists of a set of tuples (possibly
empty) and everything above it along the path will have fixed values which
can be referred to as needed. Note that it is not possible to (directly) refer
to attributes inside C, since attributes D, E are not within the scope of P.

A running example of a University database is used in this paper to
illustrate the proposed algebra. The database contains information about
faculties, students, courses, and course offerings. An instance of the database
is shown in Tables 3 - 6.

3 The Algebra Operators

In this section we extend the operators of traditional relational algebra to
nested relations and define three additional operators: nest, unnest and
rename. The operators nest and unnest were originally introduced in [JS82].
The definitions are similar to those in [RKS84]. Note, however, that we
allow empty subrelations.

3.1 The Set Operators

The set operators union, intersection and difference are extended to allow
set operations to take place between nested relations. The formats of the
two operands taking part must be equivalent, and the resultant relation also
has the same format as the operands.
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FNAME DEPARTMENT
DNAME | COURSES PROFESSORS
CNO PNO | PNAME OFFICE | EXT
Mathematics | Math MAT 130a | 82035 | J. Barnes MC 5034 | 2698
MAT 130b
Comp.Sci. | CS 240 80148 | P. Smith MC 6212 | 6678
CS 340 79250 | A. Curtis MC 6342 | 6717
CS 448 84079 | R. Alegre MC 6017 | 5712
CS 488
CcO CO 230 83123 | R. Sims MC 5054 | 2765
CO 330 81341 | B. Marshall | MC 5115 | 7561
75017 | M. Weber MC 5165 | 6304
Science Physics PHY 263 77015 | R. Robin PHY 363 | 4241
PHY 354 82169 | C. Theil PHY 345 | 5112

Table 3: The relation FACULTY.

SNO | NAME FAC

8380 | D. Walters | Science

8470 | A. Brown Mathematics
8619 | T. Lonsdale | Mathematics
8621 | R. Helbig Mathematics
8653 | G. Wright Mathematics

Table 4: The relation STUDENT.

CNO TERM | ENROLLMENT

>NO CNAME PREREQ SNO | GRADE
CNO CS 240 | F86 8653 | 85
MAT 130a | Calculus I 8621 | 80
MAT 130b | Calculus II MAT 130a CS 340 | W87 8621 | 78
CS 240 Prog. Principles 8653 | 82
CS 340 Data Structures | CS 240 8619 | 90
CO 230 CS 448 | S87 8621 | 83
CS 448 Database Mgmt. | CS 340 8653 | 88
CS 488 Graphics CS 340 8619 | 92

CO 330 CS 488 | W88

MAT 130b CO 230 | W86 8380 | 67
CO 230 Combinatorics 8470 | 93
CO 330 Enumeration CO 230 CO 230 | F86 8653 | 87
PHY 263 Classical Mech. MAT 130a 8619 | 82
MAT 130b CO 330 | W87 8621 | 47
PHY 354 Optics MAT 130b 8619 | 92
8653 | 80

Table 5: The relation COURSES.
Table 6: The relation OFFERINGS.
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Let ® € {U,n, —}, and Ry, R; relational expressions where format(R;)
= format(R;). The syntax of the operators is:

R,OR,

We now look at the instance level effects of the operators. Let rattr(R;)
= rattr(Rz) = (Wl,Wz, SN ,Wn).

e Union:

riUry = {s | (3t1 € r1,3t2 € ry : s[sattr(Ry)] = ty[sattr(Ry)] = t2[sattr(R;)]
As[W1] = t1[W1] U 2[Wh] A ... A s[W,] = 81 [W,] U t2[W,])
V3t €r, Vs €Er: 8 =1 A ti[sattr(R;)] # ta[sattr(R;)])
V(th Ery, Vi1 Er 8=t A tg[sattr(Rz)] # tl[sa.ttr(Rl)])}
format(R; U R;) = format(R;)

e Intersection:

riNry ={s | 3t; € r1,3t; € ry : sfsattr(Ry)] = ty[sattr(R)] = t[sattr(R;)]
/\s[Wl] =1t [Wl] Nty [WI] AN S[Wn] = tl[Wn] Nty [Wn]}
format(R; N R;) = format(R;)

o Difference:

ri—r2={s|3t1 € ry: (Y2 € ry: s =1t Aty[sattr(Ry)] # ta[sattr(Ry)])
V(3uz € ry : s[sattr(Ry)] = t;[sattr(Ry)] = ua[sattr(Ry)] Aty # uy
Ns[W1] = t1[Wh] — ta[Wi] A ... A 8[W,] = t1[W,] — £3[W,])}
format(R; — Rp) = format(R;)

The definitions are recursive, since the operators are applied to each sub-
relation W; € rattr(R;). Table 8 shows the results of applying the operators
to the nested relations of Table 7.

As defined above, the set operators always return a result which is in
PNF. Applying one of these operators directly does not always give the same
result as first unnesting the operand relations, applying the operator, and
renesting the resulting (flat) relation. When applying an operator directly,
the result may contain tuples with empty subrelations. Nesting a flat relation
cannot produce empty subrelations (unless null values are allowed). If the
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R1 R2
X1 Y1 X, Y1
X2 Y, X2 Y,
X3 X4 X3 X4
1 1 1 1 1 2 3 1
1 2 2 2
2 3 1 1 1
3 1 2 3 1 2
2 2 2 2
3 2 3 3
2 2 1 2 3 1 2 1
2 1 1 3
3 1 1 1 1
3 1 3 1 2 1 3
2 2 4 1 1 2
2 1 2 3
4

Table 7: The given instances R; and R;.

result does not contain any tuples with empty subrelations, then it is the
same as would be obtained by first unnesting for union and intersection,
but not for difference. Unnesting first and then applying set difference may
produce a result which is not in PNF.

3.2 Projection

The project operator is extended to allow projection on subrelations as well
as single-valued attributes. The syntax is

~[Z](R)

where R is an arbitrary relational expression, and Z is a set of attributes
such that Z C attr(R).

We now look at the instance level effect of the operator. Let Z2 =
{Z,,...,2;} C attr(R). We give two different interpretations of the operator:
with and without preservation of PNF.

Projection without preservation of PNF: There are two cases to con-
sider.
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Table 8: Union, intersection and difference applied to R;, R;.

Ry UR, Ry N R, Ry — Ry
X, Y: X1 Y: X, Y:
X, Y, X Y. X2 Y
X: Xa X; Xa X; X,
1 1 1 1 1 2 3 1 1 1 1 1
1 2 3 1 2 1 2
2 3 1 2 2 2
2 2 3 1 2 1 3 3 2
1 1 4 2 2 1 2
3 1 2 2 1
2 2 3 1 1
3 2 3 1 3 1
3 3 2 2
2 2 1 2 4
2 1
3 1 1
3 1 3 1
2 2
2 1
1 3
1 1
1 3
4 1 1 2
2 3

11
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R 7I'[X1,Y1](R) W[XI,YI](R)
Y; Y, Y:
X | X2 |A B X, [A B X, [A B
1 |1 |1 2 1 [1 2 1 |1 2
2 2 2 2 2 2
1 (2 |1 1 1 [1 1 1 1
1 2 1 2 2 (2 1
2 |1 12 1 2 [2 1 1 1
2 2 1 1 2 1 1 (<)
2 1 2 1
(a) ()

Table 9: Projection and preservation of PNF for case 1.

1. sattr(Z) # 0, that is, Z contains at least one single-valued at-
tribute.

x[Z|(r) = {s|3Jter:s=t[Z]}
format(x[Z](R)) = (Ziformat(Z,),..., Ziformat(Z;))

2. sattr(Z) = 0, that is, Z contains only relation-valued attributes.
Assume that attr(Z;) = {Z;,,...,Z;}, 1 <1 < k. It is required
that attr(Z;) N attr(Z;) = 0 for 1 # j.

x[Z)(r) = {s|3ter: (3t €t|Z]: slattr(Z1)] = t1)
A...A (Bt € t[Zy] : s[attr(Zy)] = tr)}
format(r[Z](R)) = (Zi,format(Z,,),..., 2 format(Zy,),---,
Zy, format(Zy,), . . ., Zy,format(Zy,))

The definition for case 2 has the following properties. If the projection
list consists of one relation-valued attribute, the instances of the subrelation
from all tuples form the result. Duplicate tuples are eliminated. If the
projection list contains two or more relation-valued attributes, we first take
the Cartesian product of their instances in the same tuple and then form
the result relation as above (see Tables 10(a) and 10(b)).

As defined above, a projection does not always produce a result in PNF.
This is illustrated in Tables 9 and 10. The relation instance shown in Table
9(a) is in PNF. Using the above definition of projection (case 1), we obtain
the result shown in Table 9(b). The result is not in PNF, nor is it intuitively
appealing. We would prefer the result of Table 9(c), which is in PNF. The
same situation may occur when projecting onto relation-valued attrit:ites
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' 7[¥1, Y3](R) 7[Y1, V2] (R)
X Y| Yo i| 7 i\ Y,
A | B|Ys A | B[Ys A | B[Ys
¢ C C
I (1 ]1]1 1 [1]1 1 |11
2 2 2 2
3 3 3
2|1 1 (2|1 4
8 3 1 [2 |1
2 |1 |12 2 |11 3
4 2 4
2|1 3 2 [1[1
4 2 [2 |1 2
(a) 3 3
1 [1 |2 2 |2 |1
4 3
1 |2 (1 (c)
4
(b)

Table 10: Projection and preservation of PNF for case 2.

alone (case 2). This is illustrated in Table 10. Again, the result in Table
10(b) is not in PNF, and we would prefer the result of Table 10(c), which is
in PNF. We therefore redefine the effect of the projection operator so that
the result is guaranteed to be in PNF. This definition of projection is used
throughout the rest of the paper.

Projection with preservation of PNF: Again, there are two cases to
consider:

1. sattr(Z) # 0, that is, Z contains at least one single-valued at-
tribute. Assume that rattr(Z)= {Z1,2,,...,2,}, n < k.

7[Z](r) = {s| 3t € r : s[sattr(Z)] = t[sattr(Z)]
Ns[Zy] = {U te[Z1]|Vtr € r : s[sattr(Z)] = tx[sattr(Z)]}
k

;\'s.[Z,,] = {{Jtx[Z.]|Vtx € r : s[sattr(Z)] = t[sattr(Z)]}}
k
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2. sattr(Z) = @, that is, Z contains only relation-valued attributes.
Assume that rattr(Z) = {21, Z, . . ., Z;} ; and assume that rattr(Z;)
={Ziq), Zi(2)- - -» Zi(rs)}, 1 <8<k, r; 0.

n(Z](r) = {s|3t € r : (Qu; € t[Z,] : s[sattr(Z;)] = ui[sattr(Z1)])
A ... A (Qug € t[Z;] : s[sattr(Zy)] = uk[sattr(Z)])

Ns[Zyy) = {UtlZ)[Zy)l Ve r =\ s[sattr(Z;)] = 1] Z;][sattr(Z;)]}
l j=Llk

A8 Zy ()] = {LIJ t[Z1)[ZyplIVi € v\ s[sattr(Z;)] = t1]Z;][sattr(Z;)]}
j=1,k

As[Zy] = {J tlZe)[Zeyl Vi € r =\ slsattr(Z;)] = tiZ;][satte(Z;)]}
l i=lk

N8| Zy(ry)] = {U 8| Ze][Zr(ry) IVl € 7 /\ s[sattr(Z;)] = t[Z;][sattr(Z;)]}}
l =Lk

3.3 Selection

The selection operator of traditional relational algebra must be extended to
be applicable to nested relations. What is required is the ability to make
use of both the single-valued and relation-valued attributes of a relation in
the selection. This is accomplished by allowing the selection predicate to
contain relation algebra expressions over the relation-valued attributes of
the relation, and also allowing set comparisons. The syntax of the selection
operator is

o[FI(R)

where R is a relation expression and F is a selection predicate over attributes
in scope(R). The important thing to note here is that although the selection
predicate may be testing the tuples in a subrelation of R, entire tuples
of R are selected. Like the set operators, selection is a format preserving
operator, that is, the format of the result relation is the same as the format
of the operand relation, R.

The selection predicate F' is a logical combination of atomic selection
conditions. We allow the standard boolean operators: AND (A), OR (V)
and NOT (-).

Definition 3.1 (Atomic selection condition) An atomic selection con-
dition has one of two forms: Zy op C or Z; op Z; where op € {<,<,>,>,=
,#,C,C, D, 2}, C is either a single-valued or relation-valued constant, and
Zy,Zy are one of the following:



An Algebra for Nested Relations 15

e the name of a single-valued or relation-valued attribute within the scope
of the operand relation of the selection operation.

e a relational algebra expression operating on relation-valued attributes
within the scope of the operand relation of the select statement.

All scalar comparisons must be made between comparable domains. In set
comparisons, the two operands must have equivalent formats.

The formal definition of the effect of the select operator at the instance
level can now be given. Consider the selection statement

o[F(2)|(R)
where Z C scope(R) and F is a selection predicate over the attributes Z.

o[F)(r) = {s|3ter:s=tAF(t[Z]) =true}
format(o[F(Z)](R)) = format(R)

Example 3.1 Find every employee who has both a son and a daughter.
(Refer to Table 1.)

Result = o[r[SEX](CHILDREN) = {F, M}|(EMPLOYEE)

When constructing selection conditions involving algebra expressions, the
scoping rules of the operators must be strictly observed. Consider the rela-
tion R(A,B,C(D,E,F(G)),H(1,J)) and the selection

o[x[X](C) = B(R)

The question is: What attributes are allowed in the projection list X? The
answer is provided by the scoping rules of the projection operator: the
attributes in the projection list must be a subset of the attributes of the
operand of the project. Hence, X C attr(C) = {D,E,F,H}

Now consider the selection

a[o[A > D](C) # B](R)

Is the comparison A>D allowed? The answer is provided by the scoping rules
of the selection operator: the selection predicate must be over attributes in
the scope of the operand relation. The comparison is valid because C is in
scope(R), and A and D are in scope(C). However, the scalar comparisons in

o[o[(D < G) A (B =1))(C) # B](R)

are now allowed because G and I are not in scope(C).
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3.4 Cartesian Product

Cartesian product can trivially be extended to tuples of nested relations.
The syntax of the Cartesian product operator is

R; X Ry

For the Cartesian product to be defined, we must have attr(R;) N attr(R;)
= 0. Let attr(R;) = (A1,..., Am), and attr(Rz) = (Bi,..., Bs). The effect
on the instance level is defined as follows:

ry Xry = {sl It €, taery: s[attr(Rl)] =4 A s[attr(Rz)] = tg}
format(R; X R;) = (Aiformat(A;),..., Anformat(A,,),
Bsformat(By), . . ., Baformat(B,))

3.5 Join and Natural Join

In traditional relational algebra, a join is simply a Cartesian product followed
by a selection. We retain this feature and define the join as

R]_ o [F] Rg = O'[F](Rl X Rg)

The natural join consists of the join without the selection predicate F. The
implied selection predicate is equality between the common attributes, that
is, attributes in R; and R; with the same name. If a common attribute is
relation-valued, set equality is implied. As in traditional relational algebra,
only one copy of each common attribute is retained. The syntax is:

R1D<1R2

where R;, R; are relational expressions. Let attr(R;) = VZ and attr(R;)
= WZ, where V= {V3,...,Vi;}, W = {W,,...,Wi}, and Z= {Z,...,2Z,}
are sets of attributes. Then attr(R;) N attr(Rz) = Z is the set of common
attributes.

ridry = {s|3t; €ry, Iy €ry:s[V] =t [V]A s[W] = t3[W]
As[Z] = 41[Z) A t4[Z] = t2[Z]}
format(R; @ R;) = (Viformat(Vy),...,Viformat(Vy), Ziformat(Z;),
.« .y Zpformat(Z,), Wiformat(W,), . . ., Wiformat(W;))

An example of the natural join is given in Table 11. If a natural join
is applied to a subrelation, two attributes are considered to have the same
name if they agree on the last component of the complete attribute name,
that is, the pathname is disregarded.
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1r[CNO,CNAME,TERM,ENROLLMENT] (OFFERINGS x COURSES)
CNO CNAME TERM | ENROLLMENT
SNO | GRADE
CS 240 | Prog. Principles | F86 8653 | 85
8621 | 80
CS 340 | Data Structures | W87 8621 | 78
8653 | 82
8619 | 90
CS 448 | Dabatase Mgmt. | S87 8621 | 83
8653 | 88
8619 | 92
CO 230 | Combinatorics W86 8380 | 67
8470 | 93
CO 230 | Combinatorics F86 8653 | 87
8619 | 82
CO 330 | Enumeration W87 8621 | 47
8619 | 92
8653 | 80

Table 11: List the course number, name, term and enrollment of the courses
offered.

Example 3.2 Find the course number of every course taken by both D.
Walters and A. Brown.

Result = x[CNO|o[x[NAME|(ENROLLMENT x STUDENT)
2 {‘D. Walters’,'A.Brown’}|(OFFERINGS)

Clearly, we want the join ENROLLMENT x STUDENT to be over at-
tribute SNO. However, the full attribute name of SNO in ENROLLMENT
is ENROLLMENT.SNO. Hence, the above rule.

3.6 Nest

The nest operator creates a new subrelation and thus changes-the structure
of a relation. It was first introduced by Jaeschke and Schek in [JS82]. It is
not found in 1NF algebra. The syntax is

v[Z' = (2)|(R)

where R is a relational algebra expression, Z C attr(R) is the list of at-
tributes over which to nest, and Z' is the new name given to the the subrela-
tion composed of the nested attributes. We now state formally what happens
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at the instance level. Let V = {Vi,...,Vm}, Z ={Z,...,2Z,}, myn > 1;
let attr(R) = {V, Z}. It is required that sattr(V) # 0, and sattr(Z) = 0.

v[Z'=(2))(r) = {s|3ter:sV]=t]V]
As[Z'| = {u[Z] | Jue r:ulV]=s[V]}}
format(v[2' = (2)|(R)) = (Viformat(Vy),...,Vmformat(Vy), Z'(Ziformat(Z,),
.., Znformat(Z,)))

An example using the nest operator is given in Table 12.

3.7 Unnest

Unnest is the inverse of nest. This operator was also introduced by Jaeschke
and Schek in [JS82]. It is not found in 1NF algebra. The syntax is

HY1(R)

where Y € attr(R) is a relation-valued attribute. For this operator to be de-
fined, we must have attr(Y) N (attr(R)-{Y'}) = 0. The subrelation specified
by Y is unnested. We now specify what happens at the instance level. Let
attr(Y) = {Y1,...,Ya}, and attr(R) = {Z1,...,Zm,Y}.

ulY](r) = {s| 3t e r:slattr(R) — Y] = t[attr(R) - Y]
Aslattr(Y)] € t[Y]}
format(u[Y](R)) = (Ziformat(Zy),..., Znformat(Z,), Yiformat(Y1),
..., Ypformat(Yy))

Note that the unnest operator is not information preserving. The unnest-
ing of empty subrelations results in null values, which are not allowed in this
algebra. To avoid this, the tuples which would have contained the null values
after unnesting are discarded, resulting in loss of information.

3.8 The Rename Operator

This is an operator used to rename attributes. The problem of duplicate
names in a relation can arise, for example, when taking a Cartesian product.
To avoid this, one of the duplicate pair of attributes must be renamed. The
operator is defined as:

612 — Z'(R)

where Z € attr(R), and Z' is a new attribute name such that Z' ¢ attr(R).
We now specify what happens at the instance level. Let attr(R) = {Z1, ..., Zn, Z}.

b2 — 7(r) =
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v[STUBYFACULTY = (SNO, NAME) |(STUDENT)

FAC STUBYFACULTY
SNO | NAME
Science 8380 | D. Walters

Mathematics | 8470 | A. Brown
8619 | T. Lonsdale
8621 | R. Helbig
8653 | G. Wright

Table 12: An example using the Nest operator.

{s| 3t € r : s[attr(R) — Z] = t[attr(R) — Z] A s[Z'] = t[Z]}
format(§{Z «— Z'|(R)) = (Ziformat(Z,),..., Z,format(Z,), Z'format(Z))

As a convenient shorthand, we define

8121 — 21,2, — Z},...,2) — Z|(R) =
§[Zk — Zi)(...(6[22 «— Z3)(6[21 + Zi)(R)))..))

4 The Subrelation Constructor

The operators defined in the previous sections only allow us to combine and
modify relations at the root. This is clearly not sufficient; we also need to be
able to modify the interior of a nested relation. In this section we introduce
the concept of a subrelation constructor which provides this capability. As an
introduction, consider the following query against the university database.

Example 4.1 For each course offered, list the student number, student name
and grade of all students who received a grade of 85 or above.

To answer this query we must modify the subrelation ENROLLMENT by
selecting tuples where GRADE > 85 and then joining with the STUDENT
relation to obtain the student name. Using our new subrelation constructor
this query can be expressed as follows:

R := ¢(CNO,TERM,SCHOLARS); SCHOLARS := ¢[GRADE > 85]
(ENROLLMENT) x #[SNO,NAME](STUDENT)3}(OFFERINGS)

This expression is interpreted in the following way. For each tuple (at
the root level) of OFFERINGS, construct a new tuple which consists of
CNO, TERM and a new subrelation SCHOLARS. (The subrelation EN-
ROLLMENT disappears.) SCHOLARS is constructed from the tuple’s EN-
ROLLMENT relation and the (external) relation STUDENT, as specified
by the given algebra expression. The result is shown in Table 13.
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CNO TERM SCHOLARS

SNO | NAME GRADE
CS 240 | F86 8653 | G. Wright 85

CS 340 | w87 8619 | T. Lonsdale | 90

CS 448 | S87 8653 | G. Wright 88
8619 | T. Lonsdale | 92

CS 488 | W88

CO 230 | W86 8470 | A. Brown 93

CO 230 | F86 8653 | G. Wright 92

CO 330 | W87 8619 | T. Lonsdale | 92

Table 13: For each course offered, select students with a grade of 85 or above.

The syntax of the subrelation constructor is
¢P(Ay,...,Ax); A, = By, ..., A, = Ei3(R)

where P is a pathname in relation R, A;,..., A; are attribute names and
E;, ..., E; are relational algebra expressions. Each expression E; specifies
how the value of the attribute A;; is to be computed. If an attribute in the
attribute list does not occur in the expression list, then it retains its old
value. An expression E; can only operate on relations in scope(P).

We define the effect of the subrelation constructor for the case when only
one new subrelation is constructed. The extension to the case of constructing
several new subrelations is conceptually straightforward, though unwieldy.
There are two cases to consider:

1. P is empty. We consider the constructor
¢(Z,W);W := E(Vy, R2)$(R1)

where Z = (Zy,...,2,) C attr(R;) are the attributes to be preserved,;
W is the new subrelation to be computed; V C rattr(R;) are relation-
valued attributes of R;; and R; is some relation in the database. The
effect of this operation is then

§2Z,W); W := E(Vo, R2)3(r1) =

{s|3t € r1 : 8[Z] = t[Z] A s[W] = E(t[Vo],72)}
format(¢(Z,W); W := E(Vo, R2)$(R1)) =

(Z1format(Z2,), . . ., Z,format(Z,), W format( E(Vo, Rz)))

Note that t[V;] represents a set of relation instances, and r; a relation
instance.
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2. P is not empty, P = Y1.Y3.---.Y;. The constructing expression may
now operate on any relation-valued attributes in scope(P). We con-
sider the constructor

{Yl.Yz. oo .Yk(Z, W); W = E(VO, Vi, o o, Vi, Rz)}(Rl)

where Z C iscope(P) are the attributes to be preserved; W is the new
subrelation to be computed; Vo C rattr(R;); V; C rattr(Yy.---.Y;)
(1 £ j < k); and R; is some relation in the database. The effect of
this operator is then

{Yl.Yz. s .Yk(Z, W); W = E(Vo, .o ,Vk, Rz)}(rl) =
{s|3t € ry : s[attr(R) — Y;] = t[attr(R) — Y]
/\8[Y1] = {Yz.Ys. e .Yk(Z, W); W := E(t[Vo],V]_, eees Vi, Rg)}(t[Yl])}
format(¢Y1.Yz. - .Yi(Z,W); W := E(Vy,..., Vi, R2)}(Ry)) =
format(R;) except that the term Y; format(Y;) is replaced by
Yiformat(§Y3.Ys. - .Yi(Z,W); W := E(V,..., Vi, R;)¥(Y1))

The algebra expressions used within a subrelation constructor may, of
course, in turn contain subrelation constructors. However, this is needed only
rarely. The subrelation constructor is a simple, but very powerful operator,
as the following examples show.

Example 4.2 For every course offering in Fall 86, list course number and
student number, name and grade of every student enrolled in the course.

T1 := o[TERM=‘F86’|(OFFERINGS)
Result := §(CNO,ENROLLED); ENROLLED:=
ENROLLMENT i x[SNO,NAME]|(STUDENT)$(T1)

Example 4.3 For all faculties and all departments, list every course offer-
ing, giving course number and term, where no student recieved a grade of 90
or higher.

T1 := =[CNO,TERM]
o{o[GRADE > 90](ENROLLMENT) = §](OFFERINGS)
Result := §DEPARTMENT(DNAME,DC);

DC:=DEPARTMENT.COURSES x T1$(FACULTY)
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SNO | SNAME REM
CNO
8619 | T. Lonsdale | CS 240
8621 | R. Helbig CO 230

Table 14:

Example 4.4 For each course, list the course number, name and the course
number and name of its prerequisite courses.

T1 := COURSES
Result := ¢§(CNO,CNAME REQ);
REQ := n[CNO,CNAME|(PREREQ x T1)$(COURSES)

Example 4.5 For each student who has not taken all the prerequisite courses
to the courses he/she has taken, list student number, name and the missing
courses. The query is posed below, and the result is shown in Table 14.

T1 := u[CT=(CNO)]x[CNO,SNOJu|ENROLLMENT](OFFERINGS)
T2 := §(SNO,REM); REM :=x|PREREQ](CT x COURSES) — CT}(T1)
Result := (x[SNO,SNAME|(STUDENT)) x (¢[REM # 0](T2))

5 Comparisons

In this section, comparisons are made between our algebra and the algebra
proposed by [SS86], which we call the Schek and Scholl algebra.

Example 5.1 This query is against the relation EMP in Table 1. Find all
employees having a son or daughter with the same name, listing employee
number, name and date of birth of the child.

e Schek and Scholl algebra

T1 := x[ENO,NAME,
(x[NAME:CNAME, DOB|(CHILDREN)):JUNIOR](EMP)
T2 := x[ENO,NAME,(x[DOB](c[CNAME=NAME](JUNIOR))):JR](T1)

Result := u[JR|(T2)
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e Our algebra

Result := [JR|¢(ENO,NAME,JR); JR := 7[DOB]
o[CHILDREN.NAME = NAME]| (CHILDREN) } (EMP)

The following queries are against the example relation used in [Ss86].
The scheme is as follows: DEPT(D, DN, AE(AN,AJD), TE(TN,TJD,C(CN,Y))
). AE and TE contain information about administrative and technical em-
ployees, respectively. AJD and TJD are job descriptions and C contains
information about courses taken by an employee.

Example 5.2 (Q7in [SS86]) Find the technical and administrative employ-
ees for each department who share the same job description.

e Schek and Scholl algebra
Result := «[D,DN,(r[AN,TN,TJD]
(c[AJD=TJID|(AEXTE))):ATE](DEPT)
e Our algebra
Result := ¢§(D,DN,ATE);ATE:=
x[AN,TN,TJD|(AEx[AJD=TJD] TE)}(DEPT)

Example 5.3 (Q8 in [SS86]) Assume that we have a second relation CD(CN,CDES)
containing course descriptions. Change the relation DEPT to include the
names of the courses which each employee has taken.

e Schek and Scholl algebra

S1 := =x[CN:C#,CDES](CD)
Result := «[D,DN,AEx[TN,TJD,x[CN,CDES,Y]
(o[CN=C#](C x S1)) : TCD](TE) : TEC|(DEPT)
e Our algebra

Result := ¢TE(TN,TJD,TCD);TCD := C x CD)}(DEPT)

The following four queries are the same as the last four queries of the
previous section. The queries are posed in the algebra of [SS86].

Example 5.4 For every course offering in Fall 86, list course number and
student number, name and grade of every student enrolled in the course.
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S1 := o|TERM=‘F86’|(OFFERINGS)
S2 := =[SNO:S#,NAME|(STUDENT)
Result := =[CNO,r[SNO,NAME,GRADE](c[S#=SNO]

(ENROLLMENTxS2)) : ENROLLED](S1)

Example 5.5 For all faculties and all departments, list every course and
course offering, giving course number and term, where no student received a
grade of 90 or higher.

S1 := x|[CNO:C#,TERM|
o[¢[GRADE > 90(ENROLLMENT) # §](OFFERINGS)
Result := #x[FNAME,r|DNAME,(r[CNO,TERM](¢[CNO=C#]

(COURSES x $1))):DC}(DEPARTMENT):DEPT](FACULTY)

Example 5.6 For each course, list the course number, name and the course
number and names of the prerequisite courses.

S1 := x[CNO:C#,CNAME](COURSES)
Result #[CNO,CNAME, (x[CNO,CNAME] (6 [CNO=C#|
(PREREQ x S1))):REQCOURSES](COURSES)

Example 5.7 For each student who has not taken all the prerequisite courses
to the courses he/she has taken, list student number, name and the missing
courses.

S1 := v[CNO:CTAKEN]|x[CNO,SNO|u[ENROLLMENT](OFFERINGS)
S3 7[CNO:C#, 7[CNO:C#](PREREQ):REQD](COURSES)

S4 := =[SNO,r[CNO,REQD](c[C#=CNO] (CTAKEN x §3)):CT](S1)
S5 := n[SNO:S#,7[C#|(u[PREREQ](CT)):CREQD](S4)

S6 := =[SNO,CREQD,CTAKEN](c[SNO=S#](S1 x S5))

S7 := =[SNO,CREQD,r[C#:CNO|(CTAKEN):CTAKE](S6)

S8 := =[SNO,(CREQD-CTAKEN):CMISSING](S7)

S9 := =[SNO:S# NAME,FAC|(STUDENT)

Result := =x[SNO,NAME,CMISSING]o[SNO=S#](S8 x S9)
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6 Discussion

We have in this paper defined an algebra for nested relations. Our objective
was to design an algebra which achieves a balance between power and ease
of use and understanding. Our design was strongly influenced by the algebra
of Schek and Scholl [SS86]. The main difference is in the way modification
of subrelations is handled. In addition, we also require that all relations
be in PNF. We feel that our concept of a subrelation constructor is easier
to understand and leads to simpler queries than the algebra of Schek and
Scholl.

Our algebra is more restricted than the algebra for Verso relations de-
signed by Abiteboul and Bidoit [AB84a]. For example, we chose not to
allow set operators on relations with different formats, which is allowed in
the Verso algebra. This was dictated by our desire to keep the algebra
conceptually simple.

We plan to use our algebra in a new database system based on nested
relations. It will be used internally in the system to specify queries and
query execution plans. (The external query language will be different.) To
do so, the algebra must be further extended to allow, for example, arithmetic
expressions and aggregate functions (count,max,sum,avg). This can easily
be done without changing the basic structure of the algebra.
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