PnntngRequnsmon/GraDhiCSerViceSf ! i 141'41

1. Please oomplete unshaded . mas on . 2. Distribute copies as follows: Whiteand ~ - '3. On completion of order the Yellow copy 4. Pleasedirectenqulrles quoting requisi-

form as appllcable . . Yellow to Graphic Services. Retain Plnk * will be retumed wuh me printed tion. number and account nurrber to
: Copies. for your raconis L .+ material. - ex'ensnon 3451, }
TITLE oRrR DESCRIFPTION 3 z’ o e /
k S %’ ’7 -— L/_ C&h«fy&ﬁ w-«e.ﬁ)é‘i/ / "‘""‘";t‘“ - 'M

DATE REQUIS|TIONED : DATE REQUIRED V ACCOUNg/ NO

ok 1862 ASAP . /.Zéléé/‘f §)]

REQE{ISITIONER PRINT') PHONE -~ : . i SIGNIN AUTHORITY

Moyan Epglen »u//‘?;L - Aof msﬁw

WS Defneze s OS. pLoujd T

Copyright: 1 hereby agree to assume all responsibility and Iuablluty for.any- |nfnngement of copyrights and/or patent nghts which may arise from
" the processing of, and reproduction of, any of the materials herein requested. | further agree to indemnify-and hold blameless the
Umversuty of Waterloo from any liability which may ‘arise from said processmg or reproducmg |-also acknowledge that materials
‘processed as a result of, thts requusmon are for educatlonal use only -

NumMBER T NUMBER 5".
OF PAGES .. / ot " OF COPIES _ ' -
TYPE-OF PAPER STOCK -
) BOND DNCR‘- ‘PT. Mﬁ DBRISTOL MlED D
PAPERSIZE T .
e Deteis Ouxe [
PAPEB COLOUR .) i
e [- L [ﬂ// []___,.—* 5

PRINTING . "NUMBERING | &
D 1'sipe PGS, SIDES ____ FROM - .
BINDING/F INISHING . ,
. oL
M\.ATING . '_E/STAPUNG PUNCHED PLASTIC RING]
_ FOLDING/ - = CUTTING : L

‘PADDING R . [SIZE

. Special Instructlons B

/Jr} A 3‘“7(: ,.«_&&AM«,{_/ V*-""
- «'fvm{l/w ‘
:“?'_K,n,@w()

Complete Sets of Frontiers
in
Logic-based Program ‘
Transformation
Research Report CS-87-64

December 1987

Complete Sets of Frontiers in Logic-based Prograrm
Transformation

Mantis H.M. Cheng* Maarten H. van Emdent Paul A. Strooperf

Abstract

Logic-based program transformation allows us to convert logic programs that are
obviously correct (and as such can be considered as specifications), but often ineffi-
cient, into more efficient ones in such a way that correctness of answers is preserved.
However, existing methods either do not guarantee completeness, or else introduce
redundancy. We present a method for using sets of “partial derivation trees” to
obtain a specialized version of a program for a particular query, guaranteeing com-
pleteness and avoiding redundancy. An example of specializing a meta interpreter
for a particular program is given.

1 Introduction

The “fold” and “unfold” transformations were introduced by Burstall and Darlington [1]
to make functional programs more efficient. What they had in mind was a system of
“computer-aided programming” where a specification in functional form is transformed
by means of a computer program into a functional program of acceptable efficiency. Inde-
pendently of each other, Clark [2] and Hogger [5] have shown that these transformations
also apply to logic programs. They pointed out that in this context they have an addi-
tional advantage: the transformed version is a logical consequence of the original. As a
result, any answer obtainable from the transformed program is also an answer obtainable
from the specification. The properties of logical consequence guarantee correctness with
respect to the specification. But this correctness is only what is usually called partial
correctness: it is not always clear whether all answers obtainable from the specification
can also be obtained from the result of the transformation. When this is the case, we say
that the transformed program is complete with respect to the specification.

In this paper we are only concerned with the “unfold” transformation, also called
“partial evaluation” or “symbolic execution”. As such, it appeals more directly to pro-
gramming intuition: the transformed program is the result of replacing procedure calls
by the appropriately instantiated bodies of their definitions. This sometimes allows more
efficient execution of the transformed program.

*Dept. of Computer Science, University of Waterloo, Waterloo Ont., Canada N2L 3G1
tDept. of Computer Science, University of Victoria, Victoria B.C., Canada V8W 2Y2

But partial evaluation is only useful if we know it yields a complete result, otherwise
we cannot discard the inefficient specification. Tamaki and Sato [12] show that certain
transformations on clauses, including unfolding, preserve completeness. To make the
results of Tamaki and Sato applicable to our purpose, it is necessary to eliminate from the
program those clauses which are redundant with respect to the desired query. Although
this can be achieved by means of a dependency analysis done after the transformations,
we found it possible to combine the unfold transformation with a dependency analysis to
achieve the desired result in a single operation, which is to build what we call a “complete
set of frontiers”.

In doing so, we take as starting point the idea of Vasey [15], who shows that the result
of unfolding can be regarded as a “qualified answer”. We obtain the desired completeness
by considering frontiers of “conditional answers” (our preferred terminology for Vasey’s
qualified answers) in a suitable derivation tree. As a first approximation, our completeness
is based on the fact that in the derivation tree no computation can “escape” the frontier.
This observation is only an approximation, because in all but a few trivial cases one has
to consider more than a single derivation tree with frontier. We characterize when enough
frontiers have been found. These are then a set of clauses obtained by unfolding which
is complete with respect to the specification.

Lloyd and Shepherdson [8] independently found a result similar to our theorem on
complete sets of frontiers.

2 The frontier theorem

From now on, we assume without loss of generality that each query posed to a logic
program consists of a single goal. If this were not the case, and we would have a query
of the form ?G4,...,Gy for n > 1, we can add the clause G(Xy,...,X,,) « Gy,...,G,
to the program and replace the query by ?G(Xj,...,Xm). Here G stands for any pred-
icate symbol not appearing elsewhere in the program, and Xj,...,X,, are the variables
occurring in Gy, . .., Gn.

A derivation tree for a query Q is a tree with @ at the root. Each node in the tree
is a query consisting of a conjunction of atomic formulae, called the goals of the query.
If the query is not empty, it has a selected goal. A node N, consisting of the query
?Gy, .. . , G, with selected goal G; has a child for each clause whose head unifies with G;.
If G; unifies with the head of the clause A «— By, ..., B, with most general unifier §, then
the corresponding child consists of the query ?(G4,...,Gi—1,B1,...,Bm, Gis1,...,Gr)9.

A derivation is a path starting from the root in the derivation tree which is either
infinite or ends in a leaf node of the derivation tree. A successful derivation is a derivation
ending in an empty query, denoted by O. A failed derivation is a derivation ending in a
non-empty query with no children. It follows from the definition that this only happens
if the selected goal does not unify with the head of any clause of the program. A partial
derivation is a path starting from the root in the derivation tree. It can end in a non-leaf
node of the derivation tree.

It should be noted that Prolog finds its answers by constructing a particular type of
derivation tree, the Prolog derivation tree. This derivation tree is obtained by always

selecting the leftmost goal in each query, and by ordering the children of a node in
the same way as the corresponding clauses in the program. A successful response by
Prolog corresponds to a successful derivation in the Prolog derivation tree, the answer
substitution being the composition of all substitutions made in that derivation.

Starting with a program P, if there exists a successful derivation of the query ?7G,
with 6 being the composition of all substitutions in the derivation, then we say that G is
an (unconditional) answer to the query. In this case the answer is a logical consequence
of the program P, which we write as:

P =VGo

where the universal quantification is over all variables in G6.
Suppose, that starting from the query ?G, we have derived a non-empty query Gy, . .., Gy,
with @ being the composition of all substitutions so far. Then the clause (G « Gy,...,G,)0
is a conditional answer to the query. Again, as can easily be shown from the soundness
of resolution, we have:

PEY(G « Gy,...,Gn)0

where the universal quantification is over all variables occurring in the clause (G «

Gi,...,Gn)b.

Definition 1 (Partial derivation tree) A partial derivation tree i3 a finite initial sub-
tree of a derivation tree in which it is possible for non-empty leaf queries not to have a
selected goal.

In a partial derivation tree there are three types of leaves: empty queries, failed
queries (these have a selected goal, but no children nodes) and non-empty queries with
no selected goal. For each empty query, there is a corresponding unconditional answer.
Each non-empty query with no selected goal has a corresponding conditional answer.

For example, consider the following program, defining the membership relation using
the append relation:

% member(E, L): element E is a member of list L.
% example: member(3, [1,2,3,4,5])
member(E, L) <- append(U, [E|V], L);

% append(U, V, W): list W is list V appended to list U.
% example: append([1,2], [3,4,5], [1,2,3,4,5])

append([1, V, V);

append([XIU1, V, [XIW]) <- append(U, V, W);

A partial derivation tree for the query ?member (X,Y) is shown in Figure 1 (the selected
goals are underlined).

Definition 2 (Frontier) The frontier of a partial derivation tree is the set of all un-
conditional and conditional answers corresponding to the leaf nodes.

In the above example, the frontier consists of the clauses

3

? member(X.Y)

? append(U.[X|V]L.Y)

{U=[.Y=[X|V]} {U=[X'|U"], Y=[X'|W']}

o ? append(U',[X|V],W")

Figure 1: Partial derivation tree for member.

member(X, [XIV1);
member(X, L[X’1W’]) <- append(U’, [XIV], W’);

where the first clause is the unconditional answer corresponding to the left branch of the
partial derivation tree. The second clause is the conditional answer corresponding to the
right branch.

The frontier of a partial derivation tree consists of clauses, and as such, we can regard
it as a logic program. We would like to replace our original program by a frontier, but
if we do that, the resulting program will not be complete. To obtain completeness, we
have to consider a suitable set of frontiers, giving rise to a logic program by including
the clauses in all of the frontiers. We formalize this idea by defining a complete set of
frontiers.

In the following discussion, L(F") denotes the set of goals appearing in the bodies of
the clauses of a frontier F. Similarly, for a set of frontiers S, L(S) denotes the union of
the L(F) for every frontier F in S. For a frontier F', R(F') denotes the root of the partial
derivation tree having F as a frontier. Finally, the goal G is an instance of the goal G,
if there exists a substitution 6 such that G1 = G26.

Definition 3 (Complete set of frontiers) A set of frontiers S for a query Q is com-
plete iff the following three conditions hold:

1. each frontier F in S is non-trivial, that is, at least the root itself has a selected goal.

2. there is a frontier F in S such that Q is an instance of R(F).

3. for each goal G in L(S), there is a frontier F' in S such that G 8 an instance of
R(F).

The above frontier by itself is not complete. The goal append (U’ ,[XIV],w?) is not
an instance of the root of the partial derivation tree. If we add the frontier obtained by
unfolding this goal once, which is

append([1, [XIVI, [XIV]);
append([X’1U’1, [X1v], [X’IW’]) <- append(U’, [XIV], W’);

then we obtain a complete set of frontiers. Note that this is a version of the append
program specialized for the purpose of the member program.

Any program P has at least one complete set of frontiers. For example, if we construct
a frontier for the most general form of every predicate symbol appearing in P, then we
have a complete set of frontiers (note that a frontier can be empty, which takes care of
undefined calls in P). In fact, if we consider the frontiers in which we only select the
root and do not select goals for any of the queries appearing at depth 1 in the partial
derivation tree, then we obtain our original program as a complete set of frontiers.

The complete sets of frontiers given above are not very useful. The following algorithm
suggests a more general way to obtain a complete set of frontiers S for a query @ and a
program P.

1. Start with the frontier of any partial derivation tree for the query @ as the only
element in S.

2. Select any goal, G, occurring in L(.S), but which is not an instance of R(F) for any
frontier F' in S. Add the frontier of any partial derivation tree for G to the set,
after removing any frontier F' for which R(F’) is an instance of G (since the answers
in such a frontier will also be included in the frontier of G).

3. If no such goal exists, then S is a complete set of frontiers for @ in P.

Although we can select any goal which is not an instance of a derivation tree already
constructed, it is often more efficient to choose the most general form of all the occurrences
of any such goals with the same predicate symbol. The intuition behind a complete set
of frontiers is that they are expanded versions of the original program specialized to the
query. The following result formalizes this idea.

Lemma 1 Let S be a complete set of frontiers for a query Q and a program P. If the
goal G is an instance of R(F') for a frontier F' in S, and if there is a successful derivation
D of G in P, then there is a successful derivation D' of G in S. Moreover, if 6; and 0,
are the compositions of all substitutions in D and D' respectively, then G, is an instance

Of G92 .
A proof of this lemma is presented in the appendix.

Theorem 1 (Frontier Theorem) If P is a program, Q a query, and S a complete set
of frontiers for Q, then

[@] N success set of P = [Q] N success set of S

where [Q)] is the set of all ground instances of Q.

Proof By the correctness of SLD-resolution we know that
success set of P D success set of S

and hence we also have

[@] N success set of P 2 [@Q] N success set of S.

Conversely, if G € [Q] N success set of P, then G € [Q] and by the definition of a
complete set of frontiers we know that G is an instance of R(F) for a frontier F' in S.
Thus we can apply the previous lemma (G is a ground goal, so the substitutions that
take place during the derivation do not concern us here) to conclude that G € success
set of S, and hence

[@Q] N success set of P C [Q] N success set of S

and the proof is completed. n
It should be noted that the frontier theorem is valid for frontiers of any derivation tree,
not just the Prolog derivation tree. In this way, selection methods other than Prolog’s
can be “compiled into” the frontier.
In the next section, we give a detailed example of how the frontier theorem can be
used. To illustrate the ideas involved we give a small example here, similar to one in [3].
Consider the following program to transpose a matrix:

% A matrix is represented as a list of rows, for example

% [[1,2,31,[4,5,6]].

% transpose(M1, M2): matrix M2 is the transpose of matrix Mi.

% Example: transpose([[1,2,3],[4,5,6]1, [[1,4],[2,5],[3,6]1])
transpose(M, []) <- nullrows(M);

transpose(M, [RIRs]) <- colMat(R, M1, M) & transpose(Mi, Rs);

% colMat(C, M, CM): matrix CM has column C as its first column; the
A remainder of its columns constitute matrix M.

% Example: colMat([1,4], [[2,31,[5,611, [[1,2,3],[4,5,61])

colMat([1, (1, [1);

colMat([X1Y], [Xslys], [[XIXs] | T]) <- colMat(Y, ¥Ys, T);

% nullRows(M): matrix M only has empty rows in it.
% Example: nullRows([[1,[1,[11)

nullRows([1);

nullRows([[] | Rows]) <- nullRows(Rows);

Suppose we know a matrix has two rows; then we obtain a specialized program by cal-
culating a complete set of frontiers for the query ?transpose([R1,R2],T). The frontier
of the partial derivation tree in Figure 2 consists of the clauses

T1: transpose([[1,011, [);
T2: transpose([[XIXs],[X’1Xs’]], [[X,X’] | Rsl) <-
transpose([Xs,Xs’], Rs);

where T1 is the unconditional answer corresponding to the derivation ending with the
empty query. T2 is the conditional answer corresponding to right branch of the partial
derivation tree. Since the only goal appearing in the body of the clauses is an instance of
the root of the derivation tree, we know that this is a complete set of frontiers. Therefore,
we have derived a specialized program to transform n X 2 matrices.

“2iranspose([R1|R2].T)

{T=11} {T=[RIRs]}

2nullRows([R1.R 2] ? colMat(R.M1.[R1.R2]) & transpose(M1,R)
{R1=[]} {R1=[X|Xs],R=[X|Y],M1=[Xs|Ys]}
2 nullRows([R2]) 2 colMat(Y.Ys.[R2]) & transpose([Xs|Ys],Rs)
{(R2=[1} {R2=[X'|Xs', Y=[X'|Y'],Ys=[Xs'|Ys']}
2nullRows({]} ?2colMat(Y'.Ys'.[]) & transpose([Xs,Xs'|Ys'],Rs)
{Y'=[1,Ys'=[]}
m] ? transpose([Xs,Xs'],Rs)

Figure 2: Partial derivation tree for transpose.

Y

X

>z

Figure 3: Dataflow network for the Fibonacci problem.

3 Example: specializing a meta-interpreter

Meta programming is a powerful technique in logic programming. An exarmple is a meta-
interpreter allowing the programmer to separate the control and the data component of
the program. A major problem with meta programming is the inherent lack of efficiency.
Partial evaluation can be used to solve this efficiency problem [3,11,10]. In this section we
show how we can use partial derivation trees to perform this task. The frontier theorem
guarantees us that the resulting program is both correct and complete.

The application we will use is dataflow programming. Consider the dataflow network
shown in Figure 3, which finds the sequence of Fibonacci numbers (this type of network
was proposed in [6]). To keep the exposition simple, we consider an example with only
two nodes; more interesting examples of dataflow programming are shown in [16]. Each
node represents a processor, each arc a communication channel. Data flows through the
arcs in the direction associated with it. Each processor computes independently of the
others, and is activated as soon as enough data is available in its input channels.

The add node adds the two numbers on its input channels, and puts the result on its
output channel. The shift node needs two numbers on its input channel; it copies one
of these to each of its output channels. It removes only the first number from its input

(f

channel during the computation. The initial state of the network is shown in Figure 3;
the channel between add and shift contains a 0 and a 1, the others are empty.

To represent the network in logic (see [13]), we first translate the nodes into a logic
program. The definitions for the nodes in the network are

add([X|Xs], [Ylys], [ZlZs]) <- sum(X, Y, Z) & add(Xs, Vs, Zs);

shift([X1,X21Xs], [X1lYs], [X212s]) <- shift([X2|Xs], Ys, Zs);

The relation sum(X, Y, Z) holdsif Z = X + Y. To solve the Fibonacci problem, we
have to specify how the nodes in the network are connected, and what the initial state
of the network is. This is done by the condition in

fib([0,11Z]) <- shift([0,112], X, Y) & add(X, Y, Z);

The connections are represented by shared variables between the nodes, where the vari-
ables represent the stream of data flowing through a particular channel. The initial state
is the difference between the arguments of two nodes that are connected. If we now
ask the query 7£ib(F) we would like F to be instantiated to the stream of Fibonacci
numbers (note that we have an infinite derivation, so that in fact we never obtain a suc-
cessful answer substitution; so what we want is F to be instantiated during this infinite
computation).

Unfortunately, when we run this query on the standard Prolog interpreter, F only gets
instantiated to a stream of uninstantiated variables. This is because the AND-control
required to solve this problem is more complex than the one provided by Prolog, which
attempts to prove a goal completely before proving the next goal in a query. One solution
to this problem is to transform this program so that the AND-control is replaced by OR-
control [14], which is easy to provide in Prolog. In this example we demonstrate the
alternative of building a meta-interpreter providing the required AND-control.

In this problem, it is sufficient to treat the goals in a query as a queue rather than a
stack; as in the meta-interpreter:

% prove(L): the list of goals L can be proven.
prove([1);
prove([Goal | Goals]) <-
clause(Goal, Body) &
append(Goals, Body, NewGoals) &
prove(NewGoals);

% append(U, V, W): list W is list V appended to list U.
% example: append([1,2], [3,4,5], [1,2,3,4,5])

append([1, L, L);

append([X|Xs], L, [XINL]) <- append(Xs, L, NL);

More complex dataflow networks require a meta-interpreter based on the “freeze” concept

[4].
Now that we are using a meta-interpreter, we have to specify the clauses of our
program through the clause predicate. The clauses for the add and shift relation are

8

% clause(H, B) asserts that there is a clause with head H and

% body B in the program.

clause(add([X|Xs],[YIYs],[ZIZs]), [add(Xs,Ys,Zs)]) <- sum(X, Y, Z);
clause(shift([X1,X2|Xs],[X11Ys],[X21Zs]), [shift([X21Xs],Ys,Zs)]);

Note that the sum predicate is moved outside the body as defined by the clause predicate.
There are two reasons for this. First, it is a built-in predicate, which cannot be handled
by our meta-interpreter as it stands. Moreover, we do not want it to be placed on the
queue of goals to be executed. Instead, we want to execute it whenever we use the add
clause. This is to make sure that the appropriate values get instantiated for the other
clauses. As it turns out, this is not necessary in this case, as the shift clause does not
require that the first two variables are instantiated before it can execute.
We also have to change the clause defining the actual £ib predicate to

£ib([0,11Z]) <- prove([shift([0,11Z],X,Y),add(X,Y,2)]);

If we now ask the query ?£ib(F) to Prolog, it will instantiate F to the stream of Fibonacci
numbers.

Although the above program solves the Fibonacci problem, the meta-interpreter
makes it inefficient. We will now eliminate the overhead of the meta-interpreter by using
unfolding to obtain a complete set of frontiers. We are interested in the query ?£ib (F).
So we first create a frontier for this goal. By taking the partial derivation tree with only
one level, we obtain the frontier with the clause

fib([0,11Z]) <- prove([shift([0,112],X,Y),add(X,Y,Z)]);
which is the original clause defining £ib. The goal
prove([shift([0 1 | Z],X,Y),add(X,Y,Z)])

is not an instance of the root of the initial partial derivation tree, and so we have to create
a frontier for it. We use the query ?prove([shift(U,V,W),add(X,Y,Z)]) with a more
general goal as the root of the partial derivation tree. This has the advantage that any
goal with the same predicates is an instance of this goal, so we do not have to create any
new frontiers when such a goal appears in a frontier. By taking the appropriate partial
derivation tree, we obtain the frontier with the single clause

prove([shift([U1,U2|Us], [U1|Vs],[U2]|Ws]),add(X,Y,2)]) <-
prove([add(X,Y,Z),shift([U21Us],Vs,Ws)]);

in it. The goal
prove([add(X,Y,Z),shift([U2|Us],Vs,Ws)])

is not an instance of any of the roots of the partial derivation trees created thus far. Again,
using the query 7prove([add(X,Y,Z),shift(U,V,W)]) with a more general goal, we can
obtain the frontier with the clause

prove([add([XIXs],[YlYs],[Z]1Zs]),shift(U,V,W)]) <-
sum(X, Y, Z) & prove([add(Xs,Ys,Zs),shift(U,V,W)]);

in it.

Now we have a complete set of frontiers (note that the sum predicate is built-in, and
we assume the definitions for built-in predicates are included in any set of frontiers).
Hence, the program

fib([0,112Z]) <- prove([shift([0,11Z],X,Y),add(X,Y,2)]);
prove([shift([U1 U2|Us],[U1]Vs],[U2IWs]) ,add(X,Y,Z)]) <-
prove([add(X,Y,Z),shift([U2|Us],Vs,Ws)]);
prove([add([XI|Xs],[YIYs],[ZlZs]),shift(U,V,W)]) <-
sum(X, Y, Z) & prove([shift(U,V,W),add(Xs,Ys,Zs)]);

is equivalent to the original program. If we ask the query ?fib(F) it will instantiate F
to the stream of Fibonacci numbers.
Alternatively, we can obtain the frontier

prove([shift([U1,U2|Us],[U11Vs],[U2|Ws]),add([XIXs],[YIYs],[ZIZs])]) <-
sum(X, Y, Z) & prove([shift([U2|Us],Vs,Ws),add(X,Y,2)]);

for the query ?prove([shift(U,V,W),add(X,Y,Z)]) by considering a larger partial
derivation tree. That way we obtain the program

£fib([0,112]) <- prove([shift([0,11Z],X,Y),add(X,Y,2)]);
prove([shift([U1,U2|Us], [U11Vs],[U2|Ws]),add([XIXs],[YIYs],[Z212s]1)]) <-
sum(X, Y, Z) & prove([shift([U2]Us],Vs,Ws),add(X,Y,Z2)]);

which is equivalent to the original one, and is even more efficient than the previous version
since an additional level of the meta-interpreter has been removed.

4 Concluding remarks

We have extended the state of the art in logic-based program transformation by combin-
ing a completeness-preserving unfold operation with specialization to a particular query.
However, in doing so, we have not included other important program transformations,
such as folding, the use of functionality, and the use of various other properties of pred-
icates. Of course, these other transformations can be applied to the complete set of
frontiers generated by our method in such a way that Sato and Tamaki’s results guar-
antee completeness. In another iteration a set of frontiers can be generated which is
complete and nonredundant with respect to the query of interest.

It would be more natural to apply the other transformations as soon as applicable,
that is, to include them into the algorithm for generating complete sets of frontiers.
This is in fact done in the program transformation system implemented by Strooper
[9]. Under guidance of the user, this system builds a frontier for a specified query. The
user determines interactively whether the current SLD-derivation should be extended, in
this way exerting full control over the choice of frontier, while avoiding the error-prone
operations such as performing substitutions and recording the resulting frontier. As soon
as the frontier is completed, the user specifies any of the transformation rules other than

10

unfold to be applied to the frontier. The resulting set of frontiers is then tested for
completeness and new frontiers are generated, as described in this paper.

As shown in [9], the implemented system has considerable practical potential. Future
work is needed to analyze its correctness and completeness properties.

5 Acknowledgements

We gratefully acknowledge contributions to research facilities from the Natural Sciences
and Engineering Research Council of Canada and from the Advanced Systems Institute
of British Columbia. Thanks to Rajiv Bagai for his careful reading of an earlier version.

References

[1] R. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44-67, 1977.

[2] K. Clark. The Synthesis and Verification of Logic Programs. Research Report,
Imperial College, 1978.

[3] J. Gallagher. Transforming logic programs by specializing interpreters. In Proc. of
ECAI 86, pages 109-122, 1986.

[4] F. Giannesini, H. Kanoui, R. Pasero, and M. van Caneghem. Prolog. Addison-
Wesley, 1986.

[5] C.J. Hogger. Derivation of logic programs. Journal of the ACM, 28(2):372-392,
1981.

[6] G. Kahn and D.B. MacQueen. Coroutines and networks of parallel processes. In
Information Processing 77, pages 993-998, 1977.

[7] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1984.

[8] J.W. Lloyd and J.C. Shepherdson. Partial Evaluation in Logic. Technical Re-
port CS-87-09, Bristol University, 1987.

[9] P.A. Strooper. A Transformation System for Logic Programs. ICR Report UW /ICR
87-10, University of Waterloo, December 1987. ’

[10] A. Takeuchi. Affinity between meta interpreters and partial evaluation. In Informa-
tion Processing 86, pages 279-282, 1986.

[11] A. Takeuchi and K. Furukawa. Partial Evaluation of Prolog Programs and its Ap-
plication to Meta Programming. Technical Report TR-126, ICOT', 1985.

[12] H. Tamaki and T. Sato. A Transformation System for Logic Programs which Pre-
serve Equivalence. Technical Report TR-018, ICOT, 1983.

11

[13] M.H. van Emden and G.J. de Lucena Filho. Predicate logic as a language for par-
allel programming. In K.L. Clark and S.-A. Téarnlund, editors, Logic Programming,
pages 189—198, Academic Press, London, 1982.

[14] M.H. van Emden and P. Szeredi. Converting and-control to or-control by program
transformation. In J. Minker, editor, Foundations of Databases and Logic Program-
ming, Morgan Kaufmann Publishers, 1987. to appear.

[15] P. Vasey. Qualified answers and their application to transformation. In Proc. of the
Third International Logic Programming Conference, pages 425-432, 1986.

[16] W.W. Wadge and E.A. Ashcroft. Lucid, the Dataflow Programming Language. Aca-
demic Press, London, 1985.

Appendix: proof of lemma 1

Before we can prove lemma 1, we have to prove another lemma consisting of two parts.
The first part is a more general form of the lifting lemma ([7, page 43]) which deals with
partial derivations as well as successful derivations.

Lemma 2 Given a program P, a goal G and a substitution 6. If there ezists ¢ (possibly
incomplete) derivation D in P starting from GO and ending in Gy, ...,G,, with mgu’s
01, ...,0, appearing along the way. Then:

1. There exists a derivation D' in P starting with G, in which the same goals are
selected as in the corresponding nodes in D, and the same clauses from P are used
to resolve these goals. If 01, ..., 6, are the mgu’s along the way and GY,...,G.., are the
final goals then m = m' and there exists a substitution 6 such that 66,..4, = 607...6.§

and (G}...Gr)6 = G1..Gp.

2. GO,...0, unifies with GO, say with mgu v, and G66,...0, — G,...G,, 1s an instance
of (GO — G....G,,)v.

Proof We will prove the first part by induction on the length of D.

Base case: length of D is 1. Then G0 unifies with the head of a clause F « F}...F,
with mgu 6;,. Thus Fé, = G66, and so F and G unify, say with mgu ;. Moreover,
since 6 is the mgu of F' and G, there exists a substitution § such that 676 =60,. Hence
(Fy...F,)0.6 = (F1...F,)00, = (F...F},)0, (we may assume 6 does not act on any variables
of '« Fi,...,Fy,).

Induction step: let D be a derivation of length n + 1 starting from G6. Assume that
after n steps the goals are Gy, ...,Gn, and that G; is the selected goal which unifies with
the head of the clause F' « Fi, ..., F}. Let 6,...0,,+1 be the mgu’s along the way.

By the induction hypothesis, there exists a derivation D’ of length n with mgu’s 6;...6,
ending in GY, ..., G,,. There also exists a substitution é such that 6;...6,,§ = 66,...6,, and
(G}...GL,)6 = G1...Gr. Since G6 = G;, G| also unifies with the head of F « F, ..., F},
say with mgu 6,,,. Since we also have G;0,11 = Gi60,4; = FO,4,, there exists a
substitution & such that 6,6’ = 66,,,, and hence 6;...6, ,,6' = 06,...6,,,. Moreover,

12

since we may assume that § does not act on any variables of F « F},...,F, we have
(G'l...Gﬁ-_lFl...FkGﬁ-_l_l...Gﬁn)0{1+15’ = (Gl--oGi—lFl---FkGi-l-l---Gm)0n+1-

For the second part, we note that G6;...0.6 = G66,...6,,, which means that GO and
G#6,...0], unify. Let v be the mgu.

Since v is the mgu of G6 and G0;...6,, there must exist a substitution o such
that G,..0,ya = Gb,...8.8, Now, (G8 — G..G")y = (G¥,..6, — G...G.)v, and
G66,...6, — G1...G,, = (G0;...8, — G..G')S. From which it follows that (GO
Gi...G ya = G66,...0, — G,...G,, since we may assume that v and § do not act on any
variables that appear in a body but not the corresponding head of the two clauses. L]

Using the above lemma we can prove lemma 1.

Lemma 1 Let S be a complete set of frontiers for a query Q and a program P. If the
goal G 1s an instance of R(F) for a frontier F in S, and if there is a successful derivation
D of G in P, then there is a successful derivation D' of G in S. Moreover, if0; and 6,
are the compositions of all substitutions in D and D’ respectively, then G, is an instance

of GO,.

Proof The proof will be by induction on the length of D. Let # be the substitution
such that G = R(F)f, and let T be the partial derivation tree corresponding to F'.

We can use the switching lemma [7, page 45] repeatedly to obtain a successful deriva-
tion D" of G in P in which the goals are selected in the same way as the corresponding
path in T (since G = R(F)6 we know by the previous lemma that such a corresponding
path exists). For the queries beyond the frontier of T we always select the leftmost goal in
D". Then D" is of the same length as D, and if 65 is the composition of all substitutions
in D", then G5 and G, are variants.

There are two cases to consider:

1. We reach success within the frontier (this includes the base case where the length
of D" is 1). Since G is R(F')8, we can use the previous lemma and conclude that F
(and hence S) contains an unconditional answer of the form R(F")#', which unifies
with G. Thus we can use this unconditional answer to obtain a succesful derivation
of G in S. Moreover, if 6, is the mgu of G and R(F')#’' then we can also use the
lemma to conclude that G65 (and hence also G6,) is an instance of Gb;.

2. We cross the frontier at a point with the remaining subgoals G4,...,G,,. By the
previous lemma, the corresponding query in D” contains the goals Gy,..., G,, and
there exists a substitution § so that G;..G, = (G}...G,)6. This means that the
frontier contains the conditional answer R(F)8' — G, ...,G,. Since R(F)#’ unifies
with G we can use this conditional answer to resolve G in S to obtain the goals
(G4, ...,GL)y, assuming v is the mgu of G and R(F)¢'. Moreover, Ga « G1...G,, is
an instance of (G « Gj...G",)y, where « is the composition of the substitutions in
D" before G;...G,, is reached.

We always select the leftmost goal in D” from G;...G,, on. Hence, it must contain
a succesful derivation D; of G, say with a; being the composition of the substitu-
tions. Now G is an instance of G}v, and G’ appears in the frontier of S, so G,

13

and hence G, must be the instance of a root of a frontier of S. Since D; is also
shorter than D, we can use the induction hypothesis to conclude that there is a
successful derivation of G; in S. But G, is an instance of G}v, and so there is a
derivation D) of G}y in S. Moreover, if 4; is the composition of the substitutions
in D}, then Gia, is an instance of Gjy7:.

Similarly, D" must contain a succesful derivation D; of G;ay...a;—1, with @; being
the composition of the substitutions. By the induction hypothesis, there must exist
derivations D; of Giyy...vi—1 in S such that G;a,...q; is an instance of Giy~yy...v;,
where v; is the composition of the substitutions in D..

So we obtain a successful derivation of G in S by first using the rule R(F)vy’ «
G}...G!, and then using the derivations Di,...,D). Moreover, Gaaj..a, is an
instance of Gyv;...Yx. "

14

	

