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On the Existence of Speed-Independent Circuitst

C-J. Seger

Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1

ABSTRACT

A circuit is called speed-independent if its nontransient
behavior does not depend on the size of the delays in the
different components of the circuit. We show that the class
of speed-independent circuits is relatively small — in fact,
very many useful circuits cannot be realized in a speed-
independent design. For example, we show that there does
not exist any speed-independent mod-k counter for any
k>1. The results are derived using a very general model of
a network which is applicable to both gate circuits and more
modern MOS switch-level circuits. Furthermore, the results
are also robust with respect to different delay assumptions
and definitions of speed-independence.

1. Introduction

The ideas to be discussed will be introduced by means of some
examples. Consider the gate circuit G; of Fig. 1. Assume that the

gates can have arbitrarily large, but finite, inertial delays, and that the
wires are delay-free. Assume also that any transition between 0 and 1
or 1 and 0 is instantaneous. The total state x=0, y = (y1,y,y3)=(0,1,1)

(we will write 011 for short) is stable, i.e. the excitation of each gate is
equal to the current value of the gate output, and thus there is no ten-
dency to change state. It is easy to verify that, if the input changes to
x =1, the network will eventually end up in the new stable state y=101.
Since this state is the only nontransient state reachable no matter what
the gate delays are, we say that the transition is speed-independent. On

t This research was supported by the Natural Sciences and Engineering
Research Council of Canada under grant A0871, by a scholarship from the In-
stitute for Computer Research, University of Waterloo, and by an Ontario Gra-
duate Scholarship.



2 C-J. Seger

the other hand, consider the gate circuit G, of Fig. 2. If this circuit is
started in the stable state x=0, y = (y1,)2,y3) =100 and the input changes
to 1, the circuit can end up in either the state 000 or 001 depending on
the relative sizes of the delays in gates 1 and 2. In fact, gates 1 and 2
both become unstable after the input changes, i.e. these two gates are
involved in a ‘‘race’’. If gate 1 changes first, the outcome is 000; if
gate 2 is faster, state 001 can also be reached. Since the nontransient
outcome of this transition depends on the internal delays in the circuit,
the transition is not speed-independent.

x
:[> » D" Y2 ) ¥3
Figure 1. Gate circuit Gy.
X y2

| {>c - y3

Figure 2. Gate circuit G,.

It is important to note that the classification of transitions according
to speed-independence is very sensitive to the race model chosen. Con-
sider, for example, the gate circuit G; of Fig. 3. Assume the circuit is
started in the stable state x=0, y=(y1,y2,¥3,y4)=1000 and that the
input changes to x=1. It is easy to verify that this transition is speed-
independent if only the gates have delays associated with them. How-
ever, if the wire between the first inverter (gate 1) and the AND gate
(gate 3) also has a delay, the transition is no longer speed-independent,
since the network can then end up in either the state y=0100 or the
state y=0101. The latter state can be reached when the wire delay
between gates 1 and 3 exceeds the delay of gate 2.

The first study of speed-independent circuits was done by Muller
and Bartky in the late 1950’s [9,11]. They assumed that only the gates
have delays associated with them, that all transitions are instantaneous,
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3 ,
j,>c h%1 I {>c Ya
y2 -

Figure 3. Gate circuit Gs.

and that the circuits do not have any inputs. Using these assumptions,
they developed a theory for such speed-independent circuits. For more
details, the reader is referred to[9, Chapter 10] which contains a
thorough treatment of this theory. One of the main differences
between Muller and Bartky’s work and ours is the fact that they
developed a theory for circuits that do not have any input signals,
whereas we are interested in the response of a circuit to a sequence of
input changes.

With the arrival of MOS VLSI circuits, the idea of speed-
independence has again become of interest [7, 10, 14], because delays
can be substantial on a VLSI chip, and it is very difficult (and expen-
sive) to correct a circuit that contains some timing problem. Hence,
the idea of designing the circuit in such a way that it is guaranteed to
work correctly, independently of the sizes of the delays, sounds very
attractive.

One of the problems with speed-independent design is the difficulty
of verifying that a given circuit really is speed-independent. For many
delay models the problem of determining the behavior of a circuit is
NP-hard [6, 12] or even PSPACE-complete [13] and thus intractable for
anything but trivial circuits. Fortunately, there do exist reasonably real-
istic race and delay models in which the outcome of a transition can be
determined in polynomial time. Several such models were discussed
in [3]. In particular, the extended multiple winner (XMW) model was
defined and characterized. The XMW model assumes that delays can
be arbitrary, but finite. Furthermore, in contrast to more classical
binary race models, the XMW model allows changes to be relatively
slow and to go through an intermediate value X.

The main contributions of this paper are the following results. First
we define an abstract sequential machine that summarizes the speed-
independent behavior of a circuit. Second, we show how a sequential
circuit can be converted into an equivalent combinational circuit, in the
sense that ternary simulation gives the same results for both circuits.
Third, the following basic properties of speed-independent circuits are
derived:
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1) Any odd number of changes of the same set of inputs must
leave the network in the same state.

2) If a multiple-input change is speed-independent, then the circuit
must end up in the same state if this multiple-input change is
made ‘‘step-by-step”’.

3) Suppose some set of inputs changes. If an output node does not
change value for this input change, and there is no hazard on
this node for this transition, then that output node will keep the
same value for any number of changes of that same set of
inputs.

Unfortunately, these properties are quite restrictive. Using these
necessary conditions, we show that the class of speed-independent cir-
cuits is quite small. For example, we show that it is not possible to
design a speed-independent mod-2 counter, i.e. a circuit whose output
changes with half the frequency of its input signal. Finally, we show
that the above results also hold for quite different delay assumptions
and definitions of speed-independence.

Recently, Ebergen [4] showed that a very large class of circuits
(including mod-2 counters) could be realized in a speed-independent
design if a small set of basic “building blocks” could be designed
speed-independently. Unfortunately, our results show that such build-
ing blocks do not exist. The reason that there do not exist speed-
independent designs for many functions is the ‘“pessimism’ of the
assumptions of speed-independence. In particular, it is not very realis-
tic to assume that delays can be arbitrary large. In most cases it is
quite reasonable to give some bounds for the delays in a circuit. This
would lead to circuits and circuit designs that can be said to be speed-
insensitive, rather than speed-independent. We think that such a con-
cept is much more practical. Unfortunately, it is quite difficult to
analyze the behavior of a circuit under such bounded delay assump-
tions. This problem must be solved before speed-insensitive circuits can
be designed and verified reliably.

The paper is structured as follows. In Section 2 we establish a gen-
eral framework for describing both classical gate circuits and more
modern MOS switch-level circuits. The basic race model used is dis-
cussed in Section 3. An efficient algorithm for computing the outcome
of a transition in this race model is described in Section 4. The
material in Sections 2-4 has been described in detail elsewhere [3], but a
summary of the main results has been included to make this paper self-
contained. An abstract machine, called a fundamental mode speed-
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independent asynchronous machine, is defined in Section 5 in order to
summarize the speed-independent behavior of a network. A useful
trick to transform an arbitrary sequential network into a combinational
network is described in Section 6. In Section 7 we derive some general
and, as it turns out, very restrictive properties of speed-independent cir-
cuits. In Section 8 we show that the results obtained in Section 7 are
fairly robust with regard to different delay and race models. Finally, in
Section 9 we discuss some ramifications the results may have and also
point out some areas of further research.

2. Network Model

A rather general concept of a network is introduced in this section.
As was shown in [3], this model provides a common framework for
representing both gate networks and switch-level MOS networks. For a
more comprehensive discussion of this framework and a description of
how gate circuits and switch-level MOS circuits can be modeled using
the framework, the reader is referred to [3]. We will use the conven-
tion that x, y, and z denote vectors of state variables, whereas x;, y;, and
z; denote single components of the vectors. Similarly, a, b, ¢, and d
denote particular constant vectors of state variables, and a;, b;, ¢;, and d,

denote their components.
Let {0,1} be the set of the two usual binary values, and let

T={0,1,X}. The symbol X will be used to denote an unknown or inter-
mediate value.

A network N is a finite directed labeled graph N = <V ,E,x,y,Y>,
where

V={1,...,m} is a set of vertices,

E C VXV is a set of edges,

x=(xy,...,X,), n<m, is a vector of input variables taking values from T,
y=(1...,¥m) is @ vector of vertex variables taking values from T,
Y=(Yy,...,Y,) is a vector of ternary excitation functions.

Vertices 1,...,n are all of indegree 0, and are called input vertices. Ver-
tices n+1,...,m are function vertices and are all of indegree >1. The
excitation function of an input vertex j is the function ¥;:T —T defined

simply as Y;=x;. For a function vertex j the excitation function is a

ternary function Y; :Td’—>T, where d; denotes the indegree of vertex j.
An edge (i,j)€E shows that Y; is a function of y;. Thus, for a function
vertex, Y; depends only on some subset of {y,...,y,}. The ordered pair
x,y), x€T", yeT™, is called the trotal state of N. For notational
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convenience, we will treat an excitation function Y; as a function of the
total state of N, i.e. we will write Y;(x,y)!. The vertex variable y; is

interpreted as the present state of a vertex, whereas the excitation func-
tion Y;(x,y) computes the value to which the vertex is trying to change,

when the present input is x and the present state is y.

If y;=Y;(x,y) then vertex i is stable; otherwise it is unstable. A

given total state (x,y) is stable if each vertex is stable. A network will
remain in a stable total state indefinitely, unless the input changes, in
which case the state becomes unstable. If there are two or more ver-
tices that are unstable in a total state, we say that there is a race. In
general, there may be several possible successor states for a given
unstable state. This set of possible successor states depends on the race
model used, as elaborated in the next section.

3. Race Model

The underlying idea of speed-independence is that a circuit should
exhibit the same behavior, independently of the sizes of the delays in
the circuit. For this reason we will analyze a circuit using the extended
multiple winner (XMW) race model. For a more complete description
of the XMW model, the reader is referred to [3].

There are three basic ideas behind the XMW model. First, it is
assumed that the inputs remain fixed after each change until the net-
work has 'a chance to ‘‘stabilize”. This corresponds to the
fundamental-mode operation assumption of [8]. Second, the past his-
tory is completely ignored, in the sense that all unstable vertices have
the same chance of ‘“‘winning”’ a race no matter when they entered the
race. Third, any unstable vertex with a binary present value may take
on an intermediate value X. We define the XMW model more for-
mally as follows:

Define the partial order C on T as follows: ¢;C¢; for all €T, 0CX,
and 1CX. The partial order is extended to T", r >1, in the obvious
way: sCr iff 5;Cr; for 1<i<r. Also, the partial order is extended to
ordered pairs in the natural way: @,b)Cla,b) iff aCa and bCbh. For
s,t €T’, r>1, we write sCt when sCt and s#t. The least upper
bound, denoted Lu.b., on the partial order C is defined as usual.

t Strictly speaking we should write Y ({x,y)), but the angle brackets are om-
itted to improve readability.
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Intuitively, X is used to denote an ‘‘unknown’’ or “‘intermediate’
value. Thus sCt indicates that s has less “‘uncertainty’’ (more binary
values) than ¢.

The following fundamental assumption is made about the excitation
function of any network N:

{a,b) C{c,d) implies Y(a,b)CY(c,d).

This is a monotonicity property of the excitation function that is con-
sistent with our use of the value X. Basically, if the total state is more
uncertain, the excitation cannot become less uncertain.

For any aeT" and beT™, define U(a,b) to be the set of unstable
vertices in b, i.e.

U(a,b) = {i : 1<i<m, and b;#Y;(a,b)}.

The XMW relation R, on the set 7" defines the set of successors for any
total state (a,b), aeT", beT™, as follows. If b is stable, i.e. if
U(a,b)=(y, then the only possible successor is b, i.e. bR, b. Other-
wise, let bR, b, for any b such that:

1) bsb, and

2)  bie{b,Yi(a,b),lub.{b,Y(a,b)}} 1<i<m.
No other pairs are related by R,.

For any input vector a €T" and any state beT™, define the set
cycl(R,,b) to be the set of total states of N that appear in cycles in the

relation R, and are reachable from b. Note that each stable state reach-
able from b is in cycl(R,,b). Formally,

cycl(R,,b) = {c€T™ : bR,c and cRj}tc},

where R." is the transitive closure of R,, and R, is the reflexive transi-
tive closure of R,.

The concept of a transient cycle is introduced in order to capture
the fact that delays cannot be infinite. A cycle is called transient if
there exists a vertex v which is unstable in all of the states in the cycle,
has the same value in all these states, and either that value is binary or
the excitation of v is the same in all these states. If a cycle is not tran-
sient, it is called nontransient. Let

out(R,,b) = {c ecycl(R,,b) : ¢ appears in a nontransient cycle }.

The set out(R,,b) is the outcome of the XMW analysis of the behavior of
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N when started in total state b, in the sense that it consists of all the
states N can be in, under nontransient conditions.

The reader should note that out(R,,b)# ¢¥. This follows from the

fact that the sequence of states obtained by changing all unstable ver-
tices to their excitations in every state of the sequence must eventually
lead to a cycle. This cycle of states must be nontransient by definition,
and thus all such states appear in out(R,, b).

The following property of the XMW relation will be used later.
Assume the binary input vectors @ and a differ in at least two com-

A

ponents, and that 4 is a binary input vector ‘‘between” 4 and a (i.e.
that g; is either equal to g; or ag; for j=1,...,n, but a#d and a#a). If
a network N is started in the stable total state (a,b), and the input is
first changed to a and then later to a, the proposition states that the
outcome after this second change is contained in the outcome obtained
when the input is changed immediately from 4 to a. More formally:

Proposition 1 Let d, da, a €{0,1}" be three input vectors such that a #a4,
a#a, and aCl.u.b.{d,a}. Furthermore, assume that (d,b) is a stable
total state of N. Then

{d : d eout(R,, c), where c eout(R;, b)} C out(R,,b).
Proof: We prove the following stronger version of the claim:
{d:deout(R,,c), where bR;c} C out(R,,b).

Proposition 1 then follows directly from the fact that
out(R;,b)C{c:bR;c}.
The proof consists of two steps. First we show that if bR, c, then

bR;c. Second we show that if bR,c, then out(R,,c)Cout(R,,b).
Together, these give that

{d:deout(R,,c), where bR c} C {d: d cout(R,,c), where bR, c} C out(R,,b)

establishing the claim.

The first property follows from the following observations. First,
since (d,b) is a stable total state of N, we can conclude that
(by,...,b,)=a. Furthermore, by the definition of a, g; is either equal to
d; or a;. Hence, it follows that U(a,b) CU(a,b) and that
Yi(a,b)=Y;(a,b) for all jeU(a,b). Since only unstable vertices can
change according to the XMW relation, it is easy to prove by induction
on k that: if bRYd then bR}d, U(a,d)cU(a,d) and that
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Y;(a,d)=Y;(a,d) for all jeU(a,d). We leave the details of the proof to
the reader.

The second property, i.e. that if bR;c then out(R,,c)Cout(R,,b),
follows immediately from the definition of out. ©

The XMW model permits us to predict the outcome of any input
change under very general assumptions about delays in a network. In
fact each vertex may have an arbitrary finite inertial delay. It is natural
to define the concept of speed-independence in terms of a network’s
behavior according to an XMW analysis.

Definition 1 A network N, started in a binary stable total state (4, b) and
with a new binary input vector a, is said to be speed-independent with
respect to (a,b) if out(R,, b) contains a single binary state.

The reader should note that, by the definition of out, the single
state in out(R,,b) must be a stable state. Note also that the term

speed-independence is defined with respect to a certain starting confi-
guration. We will later extend this idea to cover the general behavior
of a network.

The above definition differs from Muller and Bartky’s original
definition of speed-independence [9] in three ways. First, the underly-
ing race model is somewhat different, in that the XMW model includes
an intermediate value X, whereas their model is a classical binary race
model. Second, our definition excludes transitions that can cause the
network to enter a nontransient oscillation. We will return to these
differences in Section 8. Finally, our network model is different in that
we include inputs to the circuit, whereas Muller and Bartky’s model
does not. In fact, the characterization of the behavior of a speed-
independent circuit in response to a sequence of input changes is the
main problem studied in this paper.

4. Ternary Simulation

The XMW race model, though conceptually simple and relatively
natural, is computationally intractable; in the worst case the graph of
the relation R, may have O(3™) vertices. Fortunately, there exists an
efficient algorithm computing essentially the same information. This
simulation procedure, due to Eichelberger [S], consists of Algorithms A
and B described below. For more details of the procedure and proofs
of the claims below, the reader is referred to [3].



10 C-J. Seger

Let N be a network started in the stable total state (d,b) and with a

new input vector a. Furthermore, let a=lu.b.{d,a}. Algorithm A is
defined by:

Algorithm A
h:=0;
y'i=b;
repeat
h:=h+1;
fori=1ltom
yt=Y(a,y*™);
until y*=y*1;

In the following we will use A (B) to denote the name of the algo-
rithm, and A (B) to denote the length of the sequence of states pro-
duced by Algorithm A (B).

Proposition 2 Algorithm A produces a finite sequence y,y',...,y* of
states, where A <m, and y* Cy*+! for 0<h <A.

Algorithm B is defined next:

Algorithm B
h:=0;
fimyts
repeat
h:=h+1;
fori=1ltom
zih= Yi(a,zh-l);
until 2"=2""1,

Proposition 3 Algorithm B produces a finite sequence 2,2',...,2% of
states, where B <m, and 2! 3z"+! for 0<h <B.

The following two theorems are of vital importance for the remain-
ing part of this paper.

Theorem 1 The result y* of Algorithm A is the least upper bound of all
the states reachable from the initial state b according to the XMW race
model, i.e. y* = Lu.b.{ceT™: bR, c}.

Theorem 2 The result z? of Algorithm B is the least upper bound of all
the nontransient cyclic states reachable from b according to the XMW
race model, i.e. 28 =Lu.b. out(R,,b).

The above theorems dealt with the nontransient behavior of a given
network. However, the network being analyzed is often a part of a
larger system. In such cases, some subset of the vertices may be
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j—
j—

‘“‘visible” to the rest of the system. We will call such vertices output ver-
tices. When output vertices are present, there is a new problem. Con-
sider, for example, an output vertex that has the value 0 initially, and
also in all the states of out(R,,b). It is quite possible that the vertex has

the value 1 or X in some of the transient states during the transition.
Such short pulses must be detected, since they may cause unwanted
state changes in the rest of the system controlled by this output vertex.

As usual, assume that N is started in the stable total state (a,b) and
that the input changes to a. We say that there is a static I-hazard on an
output vertex i for the transition @ — a iff b;=1, ¢;=1 for every state

ceout(R,,b), and there exists a state d such that bR;d and d;%1. A
static 0-hazard is defined similarly.

The following theorem shows how the results of ternary simulation
can be used to detect static output hazards:

Theorem 3 Assume network N is started in the stable total state a,b)
and the input changes to a. Let y* be the result of Algorithm A and Z°
be the result of Algorithm B. Then output vertex i has a static 1(0)-
hazard iff b; = z? = 1(0) and y/ = X.

The concept of speed-independence of Section 3 is not Very con-
venient, since it is defined in terms of an XMW analysis. However, by
Theorem 2, it is easy to verify that the following definition of speed-
independence is equivalent to that of Section 3.

Definition 1' A network N started in the binary stable total state (4, b)
and with a new binary input vector a, is said to be speed-independent
with respect to (a,b) if the result of Algorithm B for this change is
binary.

S. Behavioral Model

In this section we combine the different concepts introduced in the
earlier sections to define an abstract finite-state machine to describe the
speed-independent behavior of a given network.

Definitien 2 The fundamental-mode, speed-independent, asynchronous
machine (FSAM), M, corresponding to a network N, consists of the fol-
lowing:

1) A finite set Q of internal states. Each state ¢ €Q corresponds to
a binary stable state of N.
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2) A finite set £ of input symbols. Each input symbol c€X is a
nonempty subset of {1,...,n} representing the set of input vari-
ables being complemented.

3) A finite nonempty set ZC{1,...,m} of output vertices.

4) A mapping 7 (called the rransition map of M) of a subset D of
OxXtoQ.

5) An initial stable state g°€Q.

Furthermore, the transition map must satisfy the following condi-
tion: The network N is speed-independent with respect to the state p
for the input change ¢ and this transition takes N to the state g iff
7(p,0)=q. The reader can easily verify that this condition implies
that M is deterministic.

We denote M by the ordered quintuple M=(Q,%,Z, ,q%). Note that M
may be incompletely specified, i.e. D CQXE. This means that if, for
example, (p,o)gD, then N is not speed-independent with respect to the
state p for the input change o. Hence, a network may be speed-
independent only with respect to certain transitions. The reader should
also note that there cannot exist any state p €Q and input symbol o €X
such that 7(p,s)=p, i.e. there cannot be any self loops in a diagram of
M. The reason for this is that each state p €Q represents a stable state
of N, and the state of the network includes the values of the input ver-
tices. Since an input symbol ¢ represents some input variables being
complemented, it follows that if 7(p,s)=g, then p#q.

The definition of M is somewhat redundant, since the input symbol
o that takes the machine from state p to state ¢ can be deduced from
the values of the first n components of p and q. However, the redun-
dancy simplifies the notation and will be retained.

In many cases it is appropriate to impose one further restriction on
M. As described in Section 4, it is often important to ensure that the
transitions of a network are free of output hazards. A FSAM M is said
to be hazard-free if for all p,qeQ and o€X such that r(p,0)=gq, there
is no hazard on any output vertex during the transition from p to q.

To illustrate the above definitions, and also to give an example of a
nontrivial speed-independent network, we present the gate circuit G4 of

Fig. 4. Following [3], and associating one vertex with each gate, it is
easy to derive the abstract network N; of Fig. 5, with the excitation
functions:
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Yi=x1 Ya=yyo  Ys=03+ys) Yr=yv6 Yo= (74 y10)
o=x Yis=ypo Ye=0us+ys) Yg=yys Yig=(yg+ o)

Figure 5. Network Nj.

In order to simplify the analysis, the reduction procedure described
in [3] is carried out using the set {5,9} as the feedback vertex set. This
yields the reduced network NJ of Fig. 6 with excitation functions:

Yi=x  Ys=(Owo+ 0105+ y0) +ys))

Yo=x,  Yo=(3201025+Y9) +¥s) + Oays+9)')
(Note that it was shown in [3] that XMW analyses of N; and NJ are
equivalent. We will return to this in Section 8.)

Assume that Ni is started in the stable total state (00,0011), i.e.
assume that ¢°=0011. The FSAM M, corresponding to the network Ny
is shown in Fig. 7. (To simplify the picture, it is assumed that all ver-
tices of N{ are output vertices.) Note that no transition caused by a
multiple-input change is speed-independent for this network. It is
interesting to note that for any state p in M for which an input symbol &
is allowed, any odd number of o’s will take the machine to the same
state. ~ For example, 7(0011,{1})=1001, 7(1001,{1})=0001 and
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Figure 6. Network Nj.

7(0001, {1})=1001. In Section 7 we will show that this is no coincidence
but a fundamental property of speed-independent circuits.

Figure 7. FSAM M, corresponding to network Nj.

6. The Composite Network Function

In this section we show how to derive a combinational network
from a sequential network, in such a way that the two networks yield
identical results for ternary simulation. This transformation will serve
as one of our basic tools to derive the behavior of an arbitrary speed-
independent network in Section 7. The intuitive idea can be illustrated
as follows. Suppose we are given a network N with m vertices as in Fig.
8(a). Assume the state (d,b) is a stable total state of N and that the
input changes to a. Normally, using the ternary simulation algorithm
described in Section 4, we start with the state b, and then iteratively
compute ‘‘next-states’’, yL,¥2,...,y*. The next-states are computed as
follows:

yi = Y(a’ yi_l)’

where a is the Lu.b.{d,a}. This process is repeated until a stable state
y* is reached. We know that A <m by the monotonicity of Algorithm
A. Consider now the following alternative approach. Suppose that all
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edges leaving the vertices are broken. We then get a combinational cir-
cuit of the form shown in Fig. 8(b). By construction, this combina-

tional circuit is such that y™'= Yi(x,y™) for 1<j<m. Now, by connect-

ing m copies of this combinational network in series we get a combina-
tional circuit of the form shown in Fig. 8(c). It is easy to see that, if
y"=b and x=a, we get y™'=yA. The reader can easily verify that the
same idea can be applied for Algorithm B as well. These concepts will
be made more precise below.

X1 — X1

Xy X,

Y 1 i e

u - <
(a) (b)

Figure 8.  (a) Original network;
(b) combinational network;
(c) composite network.

Given a network N, define its composition function F :T*"*™ T™ as
F(x,y)=Y™)(x,y), where Y® is defined recursively as follows:

Y(x, Y®D(x,y)) if h>1
Y®(x,y) = {y if h=0

The following properties of F will be used later.

Propgsition 4 F(x,y) is monotonic, i.e. (ad,b)C (a,b) implies that
F(a,b) C F(a,b).

Proof: Assume that (3,b)C(a,b). We prove by induction on & that
Y®(4,5)CY®™(a,b) for h>0. From this it follows immediately that
F(a,b)CF(a,b), and hence that F is monotonic.

Basis:
h=0. Trivially true.

Induction hypothesis:
Assume that Y®)(a,b) C Y®)(a,b), for some h >0.

Induction step:
By the definition of Y®*D it follows that
Y®(G,b)=Y(a,Y*)(a,b)), and that Y**D(a,b)=Y(a,¥®(a,b)).
Since Y*)(d,b) C Y™(a,b), by the induction hypothesis, and Y is



16 C-J. Seger

assumed to be monotonic, we can  conclude that
Y(@a,Y™(a,b)) £Y(a,Y®(a,b)). Hence the induction step goes
through and the proposition follows. O

Proposition 5 If (a,b) is a stable total state of N, then F(a,b)=>b.

Proof: We prove by induction on h that Y®)(a,b)=b for h>0. It then
follows immediately that F(a,b)=05b.

Basis:
h=0. Trivially true.

Induction hypothesis:
Assume that Y®)(a,b) = b, for some h>0.

Induction step:
By the definition of Y®+D it follows that Y#+(a,b)=Y(a,Y®)(a,b)).
Since Y®(a,b) = b, by the induction hypothesis, and (a,b) is
assumed to be a stable total state, i.e. Y(a,b)=>b, we can conclude
that Y®**D(a,b)=b and the induction step goes through. O

Lemma 1 Assume a network N is started in the stable total state (d, b)
and that the input is changed to a. Let y* and z® be the results of
Algorithms A and B for this input change respectively. Furthermore,
let a=Llu.b.{d,a} and F(x,y) be the composition function of N. We
then have the following properties of F:

(i) F(a,b)=>b (stability)

(ii) F(a,b)=y*  (result of Alg. A)

(ili) F(a,y*)=y* (stability)

(iv) F(a,y*)=2 (result of Alg. B)

(v) F(a,z2)=2% (stability)

Proof: Properties (i), (iii), and (v) follows immediately from Proposi-
tion 5 and the definition of Algorithms A and B. For property (ii), let
y°,...,y* be the sequence of states produced by Algorithm A. Note that
y'=b and that A<m. We now show, by induction on h, that
Y®(a,b)=y" for 0<h<A.

Basis:
h=0. Since YO(x,b)=b, and y°=b, the result follows immediately.

Induction hypothesis:
Assume Y*)(a,b)=y" for some h>0.

Induction step:
By the definition of Y®+D it follows that Y**D(a,b) =Y (a,Y*)(a,b)).
Similarly, by the definition of Algorithm A, it follows that
y"*1=Y(a,y"). Since Y®)(a,b) = y*, by the induction hypothesis, we
can conclude that
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Y®+(a,b) = Y(a,Y®(a,b)) = Y(a,y*) = y**'.

Hence the induction step goes through.

From the above we can conclude in particular that Y®)(a,b) = yA. If
A=m, then F(a,b)=Y"™(a,b)=Y4)(a,b)=y* and property (ii) is
proved. Otherwise, i.e. if A<m, it is easy to verify that
Y®+(a, b)=Y®)(a,b)=YA)(a,b)=y* for h>A. This follows simply
from the fact that (a,y*) is a stable total state, i.e. that y* =Y(a,y").
Altogether this establishes property (ii). Using similar arguments, it is
easy to verify property (iv). O

The above Lemma is crucial for the proofs in Section 7, since it
allows us to use the composite network function F instead of the net-
work N directly. Hence, we can establish the results using a combina-
tional, rather than sequential, network — a substantial simplification.

7. Fundamental Properties of Speed-Independent Circuits

In this section we derive some general properties that are common
to all speed-independent circuits. The following three theorems sum-
marize the main results of this paper.

Theorem 4 Let N be any network. Let M=(Q,%,Z,7,4q% be the
fundamental-mode, speed-independent,  asynchronous machine
corresponding to N. If there exist states p,q and r€Q, and an input
symbol ¢ €X, such that 7(p,0)=gq and 7(q,0)=r, then 7(r,0)=q.

In other words, any odd number of changes of the same set of
inputs must leave the network in the same state. An interesting special
case occurs when the network has only one input. From the above
theorem it follows that any FSAM, for a circuit with only one input,
can have at most 3 states. Since the value of the input vertex is part of
the state of the network, any such FSAM must have at least 2 states.
Hence, a one-input network can only have an FSAM with 2 or 3 states.
In fact, it is easy to see that the only possible machines are the ones
shown in Fig. 9.

From this we can conclude, for example, that there does not exist a
speed-independent mod-2 counter (a mod-2 counter is a circuit with one
input, one output, and whose output changes with half the frequency of
its input signal). In fact, there does not exist a speed-independent
mod-k counter for any k> 1.

The next theorem deals with multiple-input changes, i.e. when
more than one input vertex changes at the same time.
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{1} {1}
{1}
080 =080
{1} {1}
(a) (b)

Figure 9. The only possible FSAM’s for a network with only one input.

Theorem 5 Let N be any network. Let M=(Q,%,Z,7,q° be the
fundamental-mode, speed-independent, asynchronous  machine
corresponding to N. If there exist states p,q and r€Q and input sym-
bols ¢ and o;, such that ¢; is a proper subset of o, 7(p,s)=r, and

r(p,01)=4q, then 7(q,0 —0y)=r.

The theorem states, roughly, that if a multiple-input change is
speed-independent, then the network must end up in the same state if
this multiple-input change is made ‘“‘step-by-step’’.

Theorem 4 above dealt with the total state of a speed-independent
network. Our last theorem of this section gives conditions on the values
of specific output vertices. Since we deal here with outputs, we restrict
our attention to hazard-free transitions.

Theorem 6 Let N be any network. Let M=(Q,%,Z,7,q% be the
hazard-free, fundamental-mode, speed-independent, asynchronous
machine corresponding to N. Assume that vertex j is an output vertex,
i.e. that jeZ. If there exist states p,q and reQ, and an input symbol
o€, such that 7(p,0)=gq, 7(q,0)=r and p;=q;=a€{0,1}, then r;=c.

From the above and from Theorem 4 we can draw the following
conclusion. If an output does not change value for some input change
o, then it will not change for any sequence of ¢’s.

We prove the above theorems with the aid of a series of lemmas.
In fact, we prove a somewhat stronger result in that we do not restrict
our attention to only binary stable states of N. The following assump-
tions will be used for Lemmas 2, 3 and 4. Let N be any network
operated according to the fundamental-mode assumption, i.e. the net-
work is given sufficient time to ‘“‘settle down’ after every input change
before the input changes again. Let F denote the composite network
function of N as defined in Section 6. Furthermore, assume that the
input sequence is given by a° @', a? 43,... = 4, a, d, a,..., i.e. that the
input is cycled between the binary input vectors ¢ and a. Assume that
@,b% is a stable total state of N. Let b"*! denote the result of
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Algorithm A for the transition from the stable total state (a’,b’) when
the input changes to a’+l. Similarly, let 5'+! denote the result of Algo-
rithm B for the same transition. The following lemma is the key
lemma to all subsequent results. The lemma states that if, at some
point, a vertex with a binary value does not react to an input change, it
will never react thereafter.

Lemma 2 If there exists a k>1 such that bf~'=pl1*=pk=oae(0,1},
then b= bi=o for all i > .

Proof: We prove this by induction on i.

Basis:
i =k. Trivially true by the assumptions in the lemma.

Induction hypothesis:
Assume b}~ = b}= o for some i>k.

Induction step
First note that Lu.b.{a*!,a'} = Lu.b.{a’,a'*"}=L.u.b.{G,a}=a. By the
monotonicity of Algorithm B (Proposition 3), it follows that
b*~1“1b' and hence, by the monotonicity of the composite network
function (Proposition 4), that F;(a,b'~¥)JF;(a,b’). However, by
Lemma 1 (iii), F(a,b')=b"1¥ and, in particular,
Fj(a,b'~)= bi~!4 which is equal to o by the induction hypothesis.
Hence, a=F;(a,b'"")JF;(a,b’) and thus F;(a,b’)=a. Further-
more, by Lemma 1 property (ii), it follows that b}-*!=F;(a, b’) and
hence b}*!'=a. In other words, the value of vertex j after Algo-

rithm A for the input change a’ to a'*! will be «. Finally, by the
monotonicity of Algorithm B (Proposition 3) it follows immediately
that b**+1Jp'+! and therefore that bi*'=a. Hence the induction

step goes through and the lemma follows. O
From Lemma 2 we get the following corollary.

Corollary 1 (Monotonicity for change sequences) For all k>1,
pr—Lk ok

Proof: It suffices to show that whenever bf " is binary, then b}**! has
the same value. Suppose bf*=a¢€{0,1}. From the monotonicity of
Algorithm A (Proposition 2) and the monotonicity of Algorithm B
(Proposition ~ 3), it  follows that b} '=bl=a. Hence,
bf'=bf*=bf=0a€{0,1} and Lemma 2 applies. Thus b}~ =bi=q for
all i >k and, in particular, bf**'=a. O
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The following two lemmas give conditions on the values of a vertex
after an odd and an even number of input changes respectively. The
first lemma states that, if a vertex has a binary value after one input
change, then it will have the same value after any odd number of input
changes. The second lemma is similar, but for even number of
changes.

Lemma 3 If b} = €{0,1}, then b?'=o for all i >1.
Proof: By induction on i.

Basis:
i = 1. Trivially true by the assumption in the lemma.

Induction Hypothesis:
Assume b? 1= for some i >1.

Induction Step:

Since i >1 and thus 2i—2>0, the state b*~2%-1 ijs well defined. By
Lemma 2, property (iv), it follows that b%~1= F(a%-!, p%-22%-1) and,
in particular, that b¥*~'=F;(a®1,p%2%-1). By the same argu-
ments, b+ =F;(a¥+!,p%%+1). However, by Corollary 1 it follows
that p¥—22-17p%-12 7p2.2+1  Also, by assumption, a®1=qa%*l=q
and thus (a1 p%-22-1y7(a2%+1 p2.2i+ly  This, together with the
monotonicity of F (Proposition 4), shows that
F(a¥1, pE—22-1) I (q2+1, p2i2i+1y Thus,
bj2i—1___ Fj((lZi—l,b2i_2’2i—1)gFj(02i+1, b2i,2i+1) — bj2i+1, and since bl_2i—1= o,
by the induction hypothesis, it follows that 5**!=0o and the induc-
tion step goes through. O

Lemma 4 If bj2=ozE{0, 1}, then bj?i= a for alli >1.

Proof: By arguments similar to those in the proof of Lemma 3. O
We are now in a position to prove Theorem 4.

Proof of Theorem 4: There are two cases to consider. First, if r=p,
the result follows trivially from the fact that M is a deterministic
machine. Otherwise, when r#p we prove the result by contradiction.
Assume 7(r,0)=s for some s#q. Then the state s must differ from
the state ¢ in at least one component, say q;#s;. However, by the
definition of M it follows that all the states p, ¢, r, and s are binary
stable states of N. Since r(p,o)=¢q and g;=«€{0,1}, Lemma 3 applies,

showing that s; must be equal to o, contradicting the assumption that
q;j#s;. Hence the result follows. O
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Theorem 5 follows from a more fundamental property of the XMW
race model.
Proof of Theorem 5: Let d = (py,...,p,), d= (915---,94), and a = (ry,...,r,).
It is easy to verify that a=d, aa, and that a Cl.u.b. {a,a}. Since p is
assumed to be a stable state of N, it follows that (d, p) must be a stable
total state of N, and hence, by Proposition 1, it follows that:

{d:deout(R,,c), and ceout(R;,p)} C out(R,,p).

Since 7(p,0)=r it follows that out(R,,p)={r}, and similarly, since
7(p,01)=q, that out(R;,p)={¢q}. Altogether this gives  that
out(R,,q) C out(R,,p). However, since out(R,, q) # & and
out(R,,p) = {r} it follows that out(R,,q)={r} and thus that 7(q,0—0;)=r
establishing the theorem. O

Finally we prove Theorem 6.

Proof of Theorem 6: There are two cases to consider. First, if r= D,
the result follows trivially. Otherwise, if p »r, consider the output ver-
tex j. Since all transitions are assumed to be hazard-free, the transition
from p to g in particular must be hazard-free. However, since
Pj=q;=a€{0,1}, Theorem 3 applies, showing that the result of Algo-
rithm A for this transition must be equal to . Using the same notation
as in Lemmas 2, 3 and 4 above, we can conclude that
pj=bl=bM'=bl=gj=a. Hence Lemma 2 applies, establishing that
bi=a for all i >1, and in particular that ri=a. O

Using the above results, it is easy to verify that the following six
types of vertex behavior are the only possible for a vertex in a speed-
independent network when the input alternates between the two binary
input vectors @ and a:

1) The vertex never reacts.

2) The vertex changes value on the first input change and keeps
this value from there on.

3) The vertex changes value for every input change.

4) The vertex keeps the same value, although there may be a short
pulse during every input change.

5) The vertex keeps the same value, although there may be a short
pulse during the first input change.
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6) The vertex keeps the same value for the first input change,
except that there may be a short pulse during this transition.
For the remaining changes, the vertex changes value for every
input change.
Note that only behaviors 1-3 are normally acceptable for an output ver-
tex.

The gate circuit Gs of Fig. 10 contains gates of all the above types if

it is started in the stable total state x=0, y=(y,...,y7)=1010100, and

the input oscillates between 1 and 0. In particular, gate 1 is of type 1,
gates 2 and 3 are of type 2, gate 4 is of type 5, gate 5 is of type 3, gate
6 is of type 4, and finally gate 7 is of type 6.

)
n —{H

0 Y2
>

1

Figure 10. Gate network Gs.

8. Alternative Notions of Speed-Independence

In the previous section we derived some general properties of
speed-independent circuits. However, we used a rather restricted
definition of speed-independence. In this section we extend these result
to different definitions of speed-independence.

Ternary simulation was the main tool used to prove the results in
the previous section. It is easy to verify that all the results of Section 7
(except possibly Theorem 5) carry over to any race and network model
that can be shown to correspond to ternary simulation. In [3] two sum-
marizing theorems were proved for gate circuits and switch-level circuits
respectively. However, the following concepts are required before we
can state these theorems. The general multiple winner (GMW) model is
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a race model very similar to the XMW model, but one in which all state
variables are assumed to be binary. Hence, the model is primarily
tailored towards gate circuits. As with the XMW model, delays are
assumed to be inertial and arbitrary, but finite. For more details about
the GMW model, the reader is referred to [2]. In a gate-delay model,
only the gates are assumed to have delays associated with them. In a
gate- and wire-delay model, both the wires and the gates are assumed to
have inertial delays associated with them. Finally, in a feedback-delay
model, it is assumed that there are delays only in the feedback lines of
the circuit. The following theorem for gate circuits was proved in [3]:

Theorem 7 Let N be the gate-delay model of a circuit, let N be the
feedback-delay model, and N the gate- and wire-delay model. The fol-
lowing analysis techniques are all equivalent for gate circuits from the
point of view of nontransient state behavior and static output hazards:

1. GMW analysis of N.
2. XMW analysis of (a) N, (b) N, and (c) N.
3. Ternary simulation of (a) N, (b) N, and (c) N.

There are several different alternatives for calculating node excita-
tions in MOS switch-level models; these representing different design
philosophies for CMOS and NMOS circuits. In [3] some of these alter-
natives for CMOS circuits were discussed. For more details, the reader
is referred to [3] and also to Bryant’s work [1]. Let N be a node-delay
model, i.e. a model in which a delay is associated with every internal
node; let N be the same model reduced to feedback variables; and let N
be the node- and transistor-delay model where delays are assumed in
both nodes and transistors. In [3] the following result was established:

Theorem 8 The following analysis techniques are all equivalent for
switch-level circuits, using any one of the node excitation models
described in [1,3], from the point of view of nontransient state
behavior and static output hazards:

1. XMW analysis of: (a) N, (b) N, and (c) N.

2. Ternary simulation of: (a) N, (b) N, and (c) N.

The above two theorems allow us to give a number of different
definitions of speed-independence, that are all equivalent in the sense
that the results of Section 7 hold for each of them. For example, if we
assume that only the feedback lines of a gate circuit can have delays
and that transitions can go through an intermediate value X (i.e. using
the XMW model) we know, by Theorem 7, that Theorems 4 and 6 are
still valid. Hence, even in such a restricted model, where only the
feedback lines have delays and the rest of the circuit is built of ideal
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(delay-free) components, one cannot construct a speed-independent
mod-2 counter.

One of our basic assumptions in the definition of speed-
independence was that the circuits are operated in fundamental
mode [8], i.e. input changes occur so seldom that the circuits have
time to settle down after each change before the input changes again.
This assumption seems to contradict the basic idea of speed-
independence, since here we implicitly introduce an assumption about
the sizes of the delays in the circuit. However, since this assumption
makes it easier to design speed-independent circuits, and our main
results are negative, it follows that if the fundamental-mode assumption
is removed, the class of speed-independent circuits can only become
smaller. In fact, suppose a circuit behaves correctly for a change o fol-
lowed by o,, where 01N oy= ) and o, may occur before the network has
reached a stable state. It is easy to verify that a necessary and suffi-
cient condition for this is that the multiple-input change o;U o, must be
speed-independent.

Another possible change in the definition of speed-independence is
to relax the condition that a circuit must reach a unique stable state
after each input change. This can be achieved by allowing the circuit to
enter any nontransient oscillation as a result of an input change. In
such a case one can define a nondeterministic version of the sequential
fundamental-mode machine of Section 5. However, it is not difficult to
show that, for the XMW model, the results of Section 7 still hold for
such a model. In particular, one can show that the lu.b. of all the
states reachable after some sequence of input changes is equal to the
result obtained by using ternary simulation for every input change.
Since Lemmas 2-4 did not require that the total states of N reached
after each input change be binary, the result follows immediately.
Whether this result also holds for the GMW model using gate and wire
delays is still an open question.

Finally, it is worth mentioning that the race model used by Muller
and Bartky in their original work on speed-independence was the GMW
model, but one in which only the gates were assumed to have delays. It
is not known whether using such a definition of speed-independence
would substantially increase the size of the class of speed-independent
gate circuits.
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9. Conclusions

In this paper we have derived some general properties of speed-
independent circuits. We have shown that the class of speed-
independent circuits is quite small, and that many useful functions can-
not be realized with a speed-independent design. One might argue that
this implies that the concept of speed-independence must be aban-
doned. However, one may also interpret the results as showing that the
definitions of speed-independence used in this paper are too pessimistic
— in particular, that the race models chosen are too pessimistic. It is
not very surprising that one cannot design a circuit that is guaranteed to
work when the ‘‘devil’s advocate” is allowed to insert arbitrarily many,
arbitrarily large delays anywhere in the circuit. This points to the need
of more realistic race models — models in which delays are bounded by
some lower and upper bounds. One could then define a circuit to be
speed-insensitive if the behavior of the circuit is independent of the size
of the delays under the assumption that the delays are within these
bounds. Unfortunately, at the present time, there does not exist any
method to analyze a circuit under such a delay assumption. Methods
for doing so must be developed before speed-insensitive circuits can be
designed and verified reliably.
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