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ABSTRACT

Two numerical methods are developed for transient
saturated-unsaturated two dimensional groundwater
flow. One formulation uses the usual single phase for-
mulation with a passive air phase at constant pressure.
The second model uses a full two phase air-water for-
mulation. The numerical results for both formulations
are compared on some test problems. In some cases,
the single phase formulation and the two phase formu-
lations give greatly different results. This can be
explained in terms of the fractional flow curve for the
air-water system. The single phase technique generally
requires less computational work than the two phase
formulation, although there are some situations where
the numerical performance of the single phase formula-
tion is very poor.

1. Introduction

Since a groundwater system is generally open to the air, it is
common practice to neglect the flow of the air phase, and assume
that the pressure in the air phase is atmospheric [1-4]. This
assumption effectively eliminates the air mass balance from a
groundwater flow model.
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The passive air phase assumption is also commonly used in
numerical models of immiscible contaminant transport in ground-
water systems [5-8]. Immiscible models are required for simulation
of pollutant transport involving fuel oil, gasoline, or organic sol-
vents. In general, simulation of non-aqueous phase organic com-
ponents necessitates modelling of three phase flow: air, water and
a non-aqueous phase. The constant air pressure assumption

reduces the number of unknowns and equations by one.

In the context of saturated-unsaturated (air-water) groundwa-
ter flow problems, some authors have questioned the assumption of
a passive air phase [9,10]. A one dimensional model of water infil-
tration into a soil column has been developed [10] which can use
either the full two phase air-water formulation, or the usual single
phase approach with a constant air pressure. In some cir-
cumstances, the two approaches give significently different results,
with the two phase model predictions being closer to experimental
results. [10] The authors also find that the two phase approach is
computationally less expensive than the single phase method [10].
However, the model is one dimensional, which permits use of the
simplifying assumption of constant total fluid velocity, and hence
requires solution of only one equation for both approaches. This

will not in general be possible in more than one dimension.

The objective of this article is to examine closely the assump-
tion of a passive air phase in multi-dimensional groundwater sys-
tems. Attention is restricted to two phase air-water systems. Two
separate numerical models are formulated, one using the full two
phase approach, and the other using the standard single phase
(constant air pressure) method. The numerical results for both
models will be compared for some two-dimensional groundwater
problems. The results are explained in terms of the shape of the

fractional flow curves.
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2. Formulation

The equations for two phase water (w) and air {a) flow in a
porous medium are: [11]

Water mass balance:

d
E (¢Sw pw)=qw

KK,,py

+ -
v Ky

(va —Pw9 vD )] (1)
Air mass balance:

0
E (¢Sa pa)=qa

K, P,

+v-

(vP, -pagvD)] (2)

where :

¢ = porosity

S = saturation of phase ¢

Pe = density of phase ¢

K,, = relative permeability of phase ¢
P, = pressure of phase ¢

e = viscosity of phase ¢

g = gravitational acceleration

D = depth

qe = source/sink term for phase £
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Since the saturations sum to one, the air saturation is given
by:

Sa"—"l_sw (3)

The air pressure is related to the water pressure through the capil-

lary pressure P, :
Py=P, + Py, (Sy) (4)

The capillary pressure P,,, is an experimentally determined func-
tion of water saturation [11], as are the relative permeabilities K,
[11]. The porosity is assumed to be the following function of water

pressure P, :
¢=¢o[1+cm(Pw—Po)] (5)

where ¢, is the porosity at pressure P,, and C,, is the compressi-

bility of the porous medium. Normally C,, is very small.

The density of the water phase is given by:

pw=pwo[1+cw(Pw_Po)] (6)
where p,, is the density of the water phase at pressure P,. The
density of the air phase is given by the ideal gas law:

pao Pa
p — e—— 7
a Po ()

where p,, is the density of air at P=P,.

For the purposes of this study, the viscosities will be assumed
to be constants, although they are sometimes taken to be functions

of phase pressures (7,8].

The system of equations (1-7) represents a set of two equa-
tions in the two primary variables P,, S,,. All other variables are

functions of these two unknowns. This set of equations represents
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the full two phase approach to the solution of saturated-
unsaturated groundwater flow.

However, if the air phase pressure is assumed to be constant,
P,=P,, then equation (4) can be used to eliminate the water
saturation:

ﬁa =-"Pw +Pcwa (Sw) (8)

For example, suppose the capillary pressure is a straight line func-
tion of the water pressure:

Peua =P’c (I—Sw) (9)
where P’, is a constant. Then S,, is given by:

P-a—Pw

S,=min |1, 1—
w P[c

(10)

so that S,, is a function of P, .

Equation (8) eliminates the water saturation as a primary
variable, the only unknown being the water pressure P,. This
also implies that the air mass balance (equation (2)) can be
dropped from the system of equations. Consequently, the single
phase approach uses only equations (1) and (8) to give a system
with one equation and one unknown.

It is immediately obvious that the single phase approach
entirely ignores all flow properties of the air, in particular the rela-

tive permeability of the air phase is neglected.

3. Discretization

The discretized equations for the two phase approach will be
given in the following. The single phase method uses a subset of
the two phase equations along with equation (8).
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The equations (1-2) are discretized in a cell centered finite
difference form similar to that used in [5-8]. If N represents the
time level, and ¢ the 7’th finite difference cell, then the discretized

forms for equations (1-2) are:

Mass balance for phase € =w, a:

‘/i
= [(5epe) M+ = (850p0) F—ati"” (11)

V.
— o [Tehes Kivw Yeivn — Tei-wn Kin tein]
)

+ [y and z flowterms |=0

where:

V; = volume of ¢’th finite difference cell
Krepe

He
Az; = cell width in the z-direction

1)y = phase potential

¢ =

The absolute permeability K;,, is defined using the harmonic
mean [7], and Ty, represents either Ty; or Tyiyy depending on
the upstream point for phase ¢ [11]. The superscript M can be
either the N’'th or (N+1)'th time level (this will be discussed
later). The phase potentials 1y are given by:
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+1 1
wi+l — Pﬁ*

Voih = Bz, + Borry) /2

_ (Am;pf,f-ﬁ + Az ) (Di41 — D;)

(Az; + Az;y,) (Azr; + Azx; ) /2
oy — Pt PM sy — PM,

Voivn = (Az; + Az ) /2 + (Az; + Azyy)/2

_ (Az; p M., + Az, 10M) (D41 — D;)
(Az; + Az;y,) (Az; + Az;yy)/2

The equations (11-12) are implicit in the water pressure P,, except
for the weak dependence in the density terms. Expressions which
are functions of S, and P, in the flow (pressure gradient) terms
are implicit or explicit depending on whether M=N or
M=N+1.1f cell 7 is a fully implicit cell, then M=N+1. If cell
¢ is an IMPES cell (implicit pressure, explicit saturation) [11], then
M=N. The state of a cell (fully implicit or IMPES) can change
dynamically during the course of a simulation. Switching criteria
are based on stability considerations. This adaptive implicit
method is described in detail in references [12,13,14]. The adaptive
implicit method achieves the stability of a fully implicit method
while using much less work and storage than a fully implicit
method.

Ignoring for the moment the use of upstream weighting in
equations (11-12), then a standard tayler series truncation error
analysis shows that the spatial error is of 0(Axz?) if Az;= con-
stant. If Ax; is spatially varying (an irregular-grid) then the trun-
cation error is formally O(1) (non-convergent). However, some
more recent work has shown that a cell centered discretization is
0(maz (Ax; )?) even for an irregular grid [15,16]. Of course, use of
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upstream weighting results in a first order truncation error in
equations (12-13). The error in the time direction is also first order.

The discretized equations are solved using full Newton itera-
tion, and an iterative method based on an incomplete LU factori-
zation with ORTHOMIN acceleration is used to solve the Jacobian
[13,17]. Full advantage is taken of the sparsity structure of the
adaptive implicit Jacobian (i.e., no zeros are stored or multiplied).

The above numerical method applies to the full two phase
approach. In the single phase method, only the water equation is
used, with the water saturation given by equation (8). The single
unknown P, is taken to be fully implicit in all flow terms
(M=N+1 in equation (13)). Again, full Newton iteration is used
to solve for PY*!. Since there is only one unknown per cell in
the single phase method, this technique will require less work in

work general than the two phase approach.

4. Fractional Flow Curves

Before examining some test problems, it is instructive to con-
sider some simple cases of equations (1-2). Assuming one dimen-
sional flow with no gravity or source/sink terms, then:

0 0

'5{ (pw Sw ¢) + dx (pw Vw) =0 (13)
0 0

E (pa Sa ¢) = dx (pa Va) =0 (14)

where V, is the velocity of phase €. If the water water phase is
incompressible and pressure changes in the air phase are small,
then equations (13) and (14) can be approximated by [10].
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4. Fractional Flow Curves

Before examining some test problems, it is instructive to con-
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sional flow with no gravity or source/sink terms, then:

0 0
57 Pw Sw @)+ 5= (py Vi) =0 (13)
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incompressible and pressure changes in the air phase are small,
then equations (13) and (14) can be approximated by [10].
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2 (50 ) = KV, 2= (1) (15)
where:
Vi =V, + V,, = constant (16)
K,,
fo= % = K
b T

Here f,, is the fractional flow curve, and capillary effects have
also been neglected in equation (15). Complete details of the
approximations involved are given in reference [10].

Equation (15) is a non-linear first order hyperbolic equation for
Sy. Some example fractional flow curves for various types of rela-
tive permeabilities are shown in Figure 1. It has been assumed
that:

My

a

= 100

which is a typical value. For non-linear hyperbolic systems, it is
generally expected that shocks and rarefactions can form [18].
Equation (15) is a form of the well known Buckley-Leverett equa-
tion [19].

Consider the following initial condition. Suppose the flow is
in the positive z-direction (V;>0 in equation (15)), with an initial
state of Sy =1 for <0, and Sp=0 for z >0. Equation (15) will
describe the time evolution of this system. Satisfaction of the gen-
eralized entropy condition [18] requires that physically admissable
solutions to equation (15) obey a geometric constraint with respect
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to the fractional flow curve f, (Figure 1). For the fractional flow
curves shown in Figure 1, this constraint can be stated as follows:
the chord connecting the state on the right (Sp=0) to the state
on the left (S must lie above f,. This chord is shown as the
dotted line in Figure 1. Figure 1a was constructed assuming:

K,=S5,K,,=5,
Figure 1b was constructed assuming:

K,, =S K,,=S2
while Figure lc was constructed assuming:

K,, =S} K,, =S}

In the case of Figure 1a and 1b, the chord construction indicates
that the initial shock of unit height will continue to propagate to
the right (S, =1). However, if the fractional flow curve is similar
to Figure 1c¢, then the chord construction intersects the fractional
flow curve f, at a value of S,, less than one. This value S, =S,
is given by the point on the z-axis where the chord from S,=0 is
tangent to f, (see Figure 1c¢). Consequently, the system will form
a rarefaction fan with values S;<S, <1, followed by a shock of
height S, .

Suppose that the single phase approach is being used to model
the time evolution of the system with the initial conditions

described above

S,=1, z<0; S,,=0, >0.

Consider the ¢-th finite difference cell, with
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If the capillary effects are small, of O(¢), then the initial pressures
will be:

]
o
|
o

Pi=PF = -

Piy=Pig= """

[
N
v

where P is the constant atmospheric pressure. Equation (8)
implies that

P,—e<P;<P,,0<8, <1

This means that there will be very little flow from cell ¢ to cell
?+1 (due to the small pressure gradient) until cell 7 fills up with
water. Thus, the single phase approach, at least for this simple
case, will tend to propagate sharp shock fronts of unit height.

For fractional flow curves as given by Figures 1a and 1b, the
true two phase solution also has shock fronts of unit height. In
these cases, we can expect that the single phase solution and the
two phase solution will be in good agreement. However, in the
case of an f,, similar to Figure 1lc, the true two phase solution
consists of a rarefaction behind a shock. Since the single phase
solution uses no information about the air relative permeability
curve, the single phase technique will tend to propagate a shock of
unit height, with no rarefaction. In this situation, we can expect
significant deviation between the single phase and the two phase

solutions.
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Note that the shock formation for the air-water system is
enhanced by the large viscosity ratio (u,/p,) which strongly

influences the shape of the fractional flow curves.

Of course, it remains to be seen whether the above highly sim-
plified analysis is applicable to multi-dimensional flows where grav-
ity and capillary effects are important. This will be investigated

by means of some numerical examples.

5. Dam Seepage Problem

In order to verify that the single phase model and the two
phase model are giving results comparable to previously published
solutions, the first example is the well known dam seepage problem
[20,21,22]. Although this is a steady-state problem, the time depen-
dent equations (11-12) can be used by starting with an arbitrary
initial state and integrating to a large time.

The geometry for this example is given in Figure 2, and con-
sists of a rectangular porous dam with a headwater of height h;, a
tailwater of height h, and base length €. A full description of
this problem and a complete bibliography is available in [21].
Many different numerical techniques have been used to solve this
problem [21], but to the best of my knowledge a full two phase

solution has not been attempted previously.

The data used for this example are given in Table 1. The
height of the seepage point h, is only dependent on the ratios of
hy, hy and €. However, for completeness, all the physical data are

shown in Table 1.

The region ABCF in Figure 2 was discretized using a regular
cell centered grid. Half cells were used on the boundaries, so that
cell centers coincided exactly with the boundaries. Initially, the

dam was unsaturated (S, =0).
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Since only the steady state solution was of interest, the fol-
lowing computational procedure was adopted. With Sy =0 at
t=0, a coarse 5X7 grid was used initially. The equations were
integrated to a time of two years, at which time the saturation
changes were very small. The solution on this coarse grid was then
interpolated onto a finer grid (cell size halved in the z and y
directions), the time integration was repeated, the results interpo-
lated onto a finer grid, and so on. The mesh sequence consisted of
9X7,9X13, 17X25 and 33X49 grids. An initial timestep size of
01 days was used on each grid, and a timestep selector based on
saturation changes [13] was used. Timesteps built up very rapidly,
typically the entire two years was completed in about 10
timesteps. For the two phase formulation, each grid was initial-
ized so that all cells were in the IMPES state (only one unknown
per cell for the Jacobian solver). On the finest grid, saturation
changes of the order of 10™° were observed over the final one year
timestep, indicating that for practical purposes, the system had
reached a steady state.

The boundary conditions for the two phase method were
defined as follows: along AB (Figure 2) the water pressure was
specified by the head of water:

P*= max [0, p,,g (D—D,)] + P,

where D, is the depth to the water surface on AB. This pressure
was fixed by injecting water into the boundary cells with a source
term of the form:

qu = W; (P*—P;) (17)

where P,; is the pressure in the ¢’th boundary cell, and W; is a
large number selected so that
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| P¥*—P,; | << P*

The boundary BC is a no-flow boundary, while CD has a

pressure specified by the head of water in the tailwater:

P* = max[0, py,g (D—Dy)] + P,

where D, is the depth to the top of the tailwater. Consequently,
along CD, a constant pressure sink term of the form:

rw

VV;' (P*—Pwi)

qQu =
w

is used.

Along DF, a constant air pressure 13,, is specified. This

boundary condition is imposed by sink terms of the form:

KK,, _ —
9y = W; (Pa_Pwi)’ (Pa_Pwi) <0 (18)
w
=0 7(13a—Pwi)>0
KK,, _
qq = VVi(Pa—Pai)

a

Note that the above sign check for g, ensures that seepage occurs
only when the water pressure is greater than the atmospheric pres-

sure P, .

Along AF, air was injected at pressure I-J-a:
g =W; (ﬁa_Pai) (19)

The capillary pressure for the two phase runs was set equal to zero
(P,'=0, so that P,=PF,).

Turning to the single phase formulation, a finite size capillary
pressure must be used, otherwise the equations for the water

saturation (equations (8-10)) become indeterminate. Given a finite
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P, (Table 1, equations (9-10)), then the initial water pressure is
set to be:

P,=P-P, (20)

to give a zero water saturation in the dam. The boundary condi-
tion along AB was specified using equation (17), while BC' was a
no-flow boundary. On CD, the same constant pressure sink term
was used as for the two phase method.

Along DF, the same water sink term as in equation (18) was
used. Since there is no air phase in this formulation, a constant
air pressure cannot be specified along AF. However, in practice,
the top row of cells is never saturated, so that water does not flow
across AF (since the water pressure is less than atmospheric).
Consequently, a no-flow boundary condition is applied to AF.

In order to compare the single phase and the two phase tech-
niques, a consistent method of estimating the height of the seepage
point h, (Figure 2) is required. The following method was
selected: h, is the distance from the base of the dam to the top of
the highest cell (along CF) with S, =1.0. In the single phase case
no seepage can occur if S, <1.0. This is because a finite capillary
pressure implies that P, <P, if Sy <1, and hence no flow from
equation (18). In the two phase situation, since the capillary pres-
sure is zero, two phase seepage can occur. However, the water
seepage ¢, is very small in any cell with S, <1.0, since the air
viscosity is much smaller than the water viscosity. As the water
saturation decreases from unity to zero in 2-3 cells in the vertical
direction (for small capillary pressure), any other reasonable
method for selecting the seepage point will adjust this distance by
at most half a cell width.

The results for the height of the seepage point h, are shown
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in Table 2. For comparison, we also give the result obtained in
[21] using an integral equation method. This result [21] was scaled

to correspond to the physical dimensions and used in this study.

Note the excellent agreement between the single phase
method with P,/=1kpa, and the two phase approach on the
33%49 grid. As noted previously, the single phase formulation
requires a finite size capillary pressure, but a capillary pressure of
the form in Table 1 with P,/=1 kpa gives a capillary fringe of
about .1 m. This cannot be resolved on the finest grid (cell size
1.25 m). A capillary fringe of approximately 1 m can be expected
with P,’=10 kpa. From Table 2, the single phase method with
P,'=10 kpa appears to be converging to a seepage point about 1
m higher than the runs with P,/=1 kpa, consistant with physical

reasoning.

Upstream weighting of the relative permeability is used for
both the single phase and two phase approaches. Upstream
weighting is necessary in the two phase case since the system is
hyperbolic-parabolic, and upstream weighting ensures convergence
to the correct physical solution [19] In the single phase case,
upstream weighting ensures that the saturation profile decreases

monotonically from one to zero in the vertical direction.

The small capillary pressure results for both single phase and
two phase formulations are in good agreement with the calculation
carried out in [21], which is believed to be correct to the number of
figures shown. In view of the fact that there is some degree of
uncertainty in the experimental capillary curves, even the coarse

17X 25 grids are probably adequate for practical purposes.

Since the derivative of equation (10) is discontinuous at
S,=1.0, it was found necessary to underrelax the Newton itera-
tion for the single phase formulation whenever a cell switched from
the saturated state to the unsaturated state or vice versa. The sin-

gle phase approach was approximately 2-3 times faster, in terms of
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CPU time, than the two phase method.

It does not appear possible to solve the dam seepage problem
using the single phase formulation with a value of P, much less
than than 1 kpa. Smaller values of P,/ caused an excessive
number of Newton iterations, and many timestep cuts. Conse-
quently, the single phase method may have some difficulty in
modelling problems with a very small capillary pressure.

To investigate the effect of non-linear relative permeability
curves on the performance of these methods, several runs were car-
ried out with quadratic relative permeability curves. Only slight
differences of the order of the truncation error were observed in
the results. However, for small values of the capillary pressure,
the single phase method required a large number of Newton itera-
tions for convergence. This is shown in Table 3. The numerical
performance of the two phase formulation was relatively unaf-
fected by non-linear relative permeability curves. In fact, the CPU
time for the single phase formulation was comparable with the
CPU time for the two phase method in this case.

Since the water pressure in the single phase formulation is
tightly coupled to the water saturation by equation (10), it is clear
that increasing the non-linearity of K,,, causes Newton’s method
some difficulty. In the two phase method, the pressure and satura-
tion are comparatively weakly coupled, so that Newton’s method
has less difficulty with a non-linear K,,. A similar effect has been
observed in thermal oil reservoir simulation [23] where the use of
extra unknowns (and equations) enhances the convergence of

Newton’s method.

In the case of the two phase formulation, the adaptive implicit
method proved quite effective. Only a small number of cells near
the saturated-unsaturated transition zone turned fully implicit
during the course of the run.



18 Peter A. Forsyth

6. Time Dependent Example

In order to determine the effect of different fractional flow
curves on the time dependent results for the single phase and two
phase methods, consider the example illustrated in Figure 3. The
data used for this problem are given in Table 4. The region
ABCDE (Figure 3) is initially filled with air. As before, a cell cen-
tered [11] grid is used with half cells on the boundaries.

The boundary conditions for the two phase formulation were
imposed as follows: along AB and AE a constant pressure
(P, =100 kpa) air source term is used to impose constant air pres-
sure, while along BC a water source term is used, with water pres-
sure P* given by the static water pressure. The boundary CD is
a no-flow boundary, while constant air pressure is imposed on DE
by using constant pressure (13,,=100 kpa) water and air sink
terms. These source/sink terms have the same form as discussed

for the Dam Seepage problem.

Turning attention to the single phase technique, the boundary
conditions are specified in the following way: along BC a water
source term is applied to force the correct pressure, CD is a
no-flow boundary, while along DE, a water sink term is used with
P, a constant air-pressure ﬁa. As with the Dam Seepage prob-
lem, we cannot specify air injectors along AB and AE, and so
no-flow boundaries are imposed. In practice, since the capillary
fringe does not extend past AE (P.,/=10 kpa implies a fringe of
about 1 m), these boundary cells along AB and AE are never

saturated, and hence water cannot flow across these boundaries.

All sink terms for both single and two phase formulations
involve a sign check to ensure that water seepage occurs only if

water pressure is greater than atmospheric.

Several example runs were carried out with 11X11 and

21X21 regular grids. In order to provide a quantitative measure
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of the difference between the two methods, we will consider the
quantity:

3 Vi & Sui
> Vi 4

Q= (21)

where the sum is over all cells. The dimensionless storage Q is
the fraction of the available pore volume of the porous medium
that is filled with water. Clearly, if there is a large difference in
the computed value of @, then there is a significant difference
between the two approaches. Table 5 gives the results for the
dimensionless storage @ at t=1.0 days. From Table 5, the spa-
tial truncation error is of the order of 1-2 % for the 21X21 grid.
This level of accuracy will be adequate to determine if there are
any significant differences between the single phase and two phase
methods. Consequently, all results reported in the following use
the 2121 grid.

The initial timestep size was .01 days, and a timestep selector
based on saturation changes was used [13]. Small timesteps were
required initially because of the extremely rapid water movement
(S, =0.0 initially) across the boundary BC'. Several test runs
were carried out with parameters that forced smaller timesteps
from the timestep selector. The dimensionless storage changed
only in the third decimal place, which is adequate for our purposes.
A global material balance for the water was also monitored. At
the end of the simulations, the global material balance error was
less than 107°.

The dimensionless storage as a function of time is shown jn
Figure 4, (K,,=S,, Ky,,=S,), Figure 5 (K,,=S2, K,;,=52),
and Figure 6 (K,,=Sg, K,;,=S.). The single phase and two
phase formulations are in excellent agreement for both straight line
and quadratic relative permeability curves. However, the fourth
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power curves (Figure 6) show a large disagreement. In fact, at
t=1.0 days, the single phase dimensionless storage is in error by
30%.

These results can be explained with reference to the fractional
flow curves as shown in Figure 1. As discussed in Section 4, the
fractional flow curves for an air-water system with straight line or
quadratic relative permeability curves indicate that an initial shock
of unit height will continue to propagate (Figure 1a, 1b). On the
other hand, fourth power relative permeabilities will result in the
evolution of a rarefaction followed by a shock from an initial shock
of unit height.

Detailed examination of the output revealed that for fourth
power relative permeability curves, the two phase solution did
show a long rarefaction followed by a shock, while only a shock
was observed for the single phase solution. This gives rise to the
large discrepancy between the single phase and two phase formula-
tions as shown in Figure 6. The word shock is used loosely here,
since there is a non-zero capillary pressure which spreads the
“shoek” over several cells. As discussed in Section 4, the single
phase formulation has a tendency to propagate sharp fronts. From
Figure 6, it is clear that the amount of water stored in the porous
medium is much larger for the single phase solution that for the
two phase solution. The long rarefaction produced by the two
phase method reduces the amount of fluid retained by the porous
medium. This storage effect could be significant in practical prob-

lems.

Another measure of the difference between the single phase

and diphasic formulations is given by the quantity:
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N | s5; — s2;
N

(22)

i=1
where N is the total number of cells, S5; is the value of the
saturation obtained with the single phase techniques, and Sg,- is
the same value obtained with the double phase formulation. Table
6 shows the average absolute saturation difference (equation (22))
at one day for the various relative permeability curves. As
expected from Figures 4, 5, 6, there is a large deviation for the
quartic curves. The differences are especially pronounced near the
saturation front.

The shape of the fractional flow curve in Figure 1c is deter-
mined primarily by the flatness of the air relative permeability
near S,=0. To verify that the shape of K,,, and hence the shape
of the fractional flow curve, strongly affects the numerical results,
a two phase simulation was carried out with K,,=Sg, K,;=5;.
This run was in good agreement with the single phase solution
with K,,=Sg.

In terms of CPU time, the single phase formulation was
approximately 2-4 times faster than the two phase simulation
(depending on the relative permeability curves), even for highly
non-linear K,,. This is in contrast to the Dam Seepage problem,
where non-linearity causes slow convergence in the single phase
method. However, for this example, the capillary fringe is of the
order of 1 m thick, while the finite difference cells are .25 m in
size. This gives a smooth transition between saturated (S, =1.0)
and completely unsaturated (S,=0.0) cells in the vertical direc-
tion. In the case of the Dam Seepage problem, convergence diffi-
culties were severe only in the case of a small capillary pressure,
when the capillary fringe was less than a finite difference cell in
length. Of course, a large P,' also decreases the magnitude of the
derivative with respect to P, in equation (10), and hence
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decreases the discontinuity in slope at S,,=1.0.

7. Conclusions

Two separate numerical methods for saturated-unsaturated
groundwater flow have been developed: the usual single phase for-
mulation with a passive air phase at constant pressure, and a full
two phase formulation. In the case of the dam seepage problem,
both methods are in good agreement with each other and with pre-

viously published results.

For general time dependent flow problems, the single phase
and two phase formulations agree as long as the relative permeabil-
ity to air is not too flat near S, =0. If the relative permeability to
air behaves like S: or a higher power near S, =0, then very large
errors are observed in the single phase formulation. These results
can be explained with reference to the air-water fractional flow

curves.

In general, the single phase numerical model was several times
faster (in terms of CPU time) than the two phase model. However,
in the case of highly non-linear water relative permeability curves
and finite difference cells larger than the capillary fringe, the
numerical performance of the single phase formulation degraded to
such an extent that it was no longer any faster than the two phase

formulation.

To summarize, in many practical situations, the assumption of
a passive air phase will give results very similar to a full two phase
formulation with substantially less computational work. However,
if the length of the capillary fringe is less than the length of a grid
cell, or if the air relative permeability is very flat near S, =0, then

the two phase formulation is preferred.



Single Phase and Two Phase Numerical Formulations 23

References

[1]

2]

8]
[4]

(5]

[6]

[7]

8]

[9]

[10]

J. Bear, Dynamics of Fluids in Porous Media, Elsevier,
New York, 1972

R.A. Freeze, “Three dimensional transient, saturated-
unsaturated flow in a groundwater basin’’, Water Resour.
Res. 7 (1971) 347-366.

R.A. Freeze and J.A. Cherry, Groundwater, Prentice Hall,
New Jersey, 1979.

F.A. Dullien, Porous Media Transport and Pore Structure,
Academic, New York, 1979.

L.M. Abriola and G.F. Pinder, “A multi-phase approach to
modelling of porous media contamination by organic com-
pounds 1. Equation development’, Water Resour. Res. 21
(1985) 11-18.

L.N.M. Abriola and G.F. Pinder, ‘A multiphase approach to
modelling of porous media contamination by organic com-
pounds 2. Numerical simulation”, Water Resour. Res. 21
(1985) 19-26.

C.R. Faust, “Transport of immiscible fluids within and
below the unsaturated zone: a numerical model”’, Water
Resour. Res. 21 (1985) 587-596.

G.F. Pinder and L.M. Abriola, “On the simulation of
nonaqueous phase organic compounds in the subsurface”,
Water Resour. Res. 22 (1985) 1095-1195.

D.W. Green, H. Dabiri and C.F. Weinaug, ‘“‘Numerical
modelling of unsaturated groundwater flow and ‘comparison
of the model to a field experiment’’, Water Resour. Res. 6

(1970) 862-874.
H.J. Morel-Seytoux and J.A. Billica, ‘““A two phase numerical



24

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

Peter A. Forsyth

model for prediction of infiltration: applications to a semi-
infinite column”, Water Resour. Res. 21 (1985) 607-615.

D.W. Peaceman, Fundamentals of Numerical Reservoir
Simulation, Elsevier, New York, 1977.

G.W. Thomas and D.H. Thurnau, ‘‘Reservoir simulation
using an adaptive implicit method”, Soc. Pet. Eng. J. 23
(1983) 760-768.

P.A. Forsyth and P.H. Sammon, ‘Practical considerations
for adaptive implicit methods in reservoir simulation”, J.
Comp. Phys. 62 (1986) 265-281.

P.A. Forsyth and P.H. Sammon, ‘“‘Local mesh refinement
and modelling of faults and pinchouts”, Soc. Pet. Eng. J.
Form. Eval. 1 (1986) 275-285.

T.A. Manteuffel and A.B. White, ‘“The numerical solution of
second order boundary value problems on non-uniform
meshes’’, Los Alomos National Lab Preprint LA-UR-84-196,
1984.

P.A. Forsyth and P.H. Sammon, ‘“‘Quadratic convergence for
cell centered grids”’, Appl. Num. Math. (to appear) 1987.

A. Behie and P.A. Forsyth, ‘“‘Incomplete factorization
methods for fully implicit simulation of enhanced oil
recovery’’, SIAM J. Sci. Stat. Comp. 5 (1984) 543-561.

P.D. Lax, Hyperbolic Systems of Conservation Laws and
the Mathematical Theory of Shock Waves, SIAM Regional
Conference Series in Applied Mathematics, SIAM, Philadel-
phia, 1973.

L.P. Dake, Fundamentals of Reservoir FEngineering,
Elsevier, New York, 1978.

P. Ya Polubarinova-Kochina, Theory of Groundwater Move-

ment, Princeton University Press, Princeton, 1962.



Single Phase and Two Phase Numerical Formulations 25

C.W. Cryer, “A survey of steady state porous flow free
boundary problems’’, M.R.C. Tech. Rep. 1657, Mathematics
Research Center, Univ. of Wisconsin, 1976.

D.R. Westbrook, ‘‘A mixed variational inequality boundary
iteration method for some free boundary problems” SIAM J.
Sci. Stat. Comp. 5 (1984) 192-202.

P.A. Forsyth, B. Rubin and P.K.W. Vinsome, ‘Elimination

of the constraint equation and modelling of some problems

with a non-condensible gas in steam simulation”, J. Can.
Pet. Tech. 20 #4 (1981) 63-68.



26 Peter A. Forsyth

TABLE 1

Data for the Dam Seepage problem.

Headwater height (h;) 60m
Length (¢) 40m
Tailwater-height (k) 10m
Permeability 1071 m?
Porosity 0.3
Water viscosity 1cp

(1073 kg m™! s71)
Air viscosity 01 ¢cp

(107° kg m™1 s71)
Water density (P, =100 kpa) 1000 kg /m?®
Air density (P, =100 kpa) 1.5 kg /m?®

Capillary pressure
Pcwa =Pc' (I-Sw)

Relative permeabilities
K,,=Sy K,,=S,

Atmospheric pressure 100 kpa

(10° N m™?)
Reference pressure 100 kpa

(10° Nm™?)
Formation compressibility 5%X107 kpa~?

(5X1079 N~1m?)
Water compressibility 4.3X1077 kpa™!

(4.3%10710 N~1m?)
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TABLE 2

Seepage point (ho in Figure 2) for the dam seepage problem.

Method Grid Maximum Capillary ho(m)
Pressure P,’
(Kpa)
Two Phase 17X25 0.0 31.25
33X 49 0.0 31.875
Single Phase 17X25 10.0 33.75
33X49 10.0 33.125
17X25 1.0 33.75
33 X49 1.0 31.875
Integral Equation N/A 0 31.875
from Cryer [1976]
(believed to be exact
to figures shown)
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TABLE 3

Effect of non-linear relative permeability on the single phase solu-

tion of the Dam Seepage problem, P,/=1kpa.

Relative Permeability | Total Number of Newton
Iterations on the finest Grid

Kpy=S, 26
K,,=S2 99
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TABLE 4

Data for the time dependent example.

Permeability
Porosity
Water Viscosity

Air Viscosity

Water Density (P, =100 kpa)

Air Density (P, =100kpa)
Capillary pressure

Pewa =Pc'(1 —Sy )

Relative Permeabilities

P.'=10kpa
(10*Nm™2)

Krw———st'l‘)w K, =S('zm

Atmospheric Pressure

Initial Water Saturation
Initial Pressure

Formation Compressibility
Water Compressibility

1072m?

3

lep
(1073kgm~ts71)
.01 cp

(10 3kgm™1s71
1000kg m™3

1.5 kgm™3

P, =100 kpa
(1°°Nm™?)
S,=0
P,=90kpa (9X10* Nm™?)

5X107% kpa~! (51079 N1 m?)

29

4.3X1077 kpa™! (4.3X1071° N~ m?)
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TABLE 5

Dimensionless storage @ (fraction of pore volume filled with
water) at t=1.0 days for different grid sizes. Quadratic relative
permeability curves (Kyw="S0, Krq =52) used.

Method Grid Size Dimensionless
Storage Q
Single Phase 11X11 583
21X21 571
Two Phase 11 X11 570
21 X21 563
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TABLE 6

Average difference in computed water saturations for the sin-
gle phase (S5;) and double phase (S2;) methods, t=1 days.

Relative Permeability Used.

K,=S, K,=S§5, .004

K,, =852 K, =S} 01

K,, =S} K,=S5] 14
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(6)
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Figure Captions

Fractional flow curves for air-water systems with:

(a) Kyp=05y, Kru=5,
(b) Kpy=52, K,u=5
(c) Krw=S$’ I{m=S¢;1

Description of the region for the Dam Seepage problem.
Illustration of the domain for the time dependent example.

Dimensionless storage (fraction of pore volume filled with
water) for the time dependent example, straight line relative
permeabilities used (n, =n,=1).

Dimensionless storage for the time dependent example, qua-
dratic relative permeability curves (n, =n,=2).
Dimensionless storage for the time dependent example,

fourth power relative permeability curves (n, =n,,=4).
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Description of the region for the Dam Seepage problem.
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(3)  Illustration of the domain for the time dependent example.
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(4) Dimensionless storage (fraction of pore volume filled with water) for the time
dependent example, straight line relative permeabilities used (n, =n, =1).
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(5) Dimensionless storage for the time dependent example, quadratic relative per-

meability curves (ng =n,=2).
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(6) Dimensionless storage for the time dependent example, fourth power relative
permeability curves (n, =n, =4).
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